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Abstract | For classical linear image restoration, the

point-spread function (PSF) of the degrading system is

assumed to be given. However, in practical situations

this information is often unknown and must be estimated

from the blurred image itself. The task of combined PSF

identi�cation and image restoration is called blind decon-

volution.

This paper presents a novel approach to the blind

deconvolution problem for images. The technique applies

to situations in which the imaged scene consists of a �nite

support object against a uniformly grey background. The

only information required are the nonnegativity of the

true image and the support size of the original object.

A novel support-�nding algorithm is also proposed for

situations in which the exact object support is unknown.
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I. Introduction

In applications such as arti�cial satellite imaging,

astronomy, and medical imaging, improved image qual-

ity is often costly or physically impossible to obtain. In

addition, little is known about the image to be restored,

and it is often di�cult to calculate or measure the PSF

explicitly. The problem of simultaneously estimating the

PSF (or its inverse) and restoring an unknown image is

called blind deconvolution. The goal is to obtain a scaled

shifted version of the original image.

Early research in blind deconvolution of images as-

sumed that a parametric model for the PSF was known.

The parameter values were estimated using the frequency

domain nulls of the degraded image [1]. More recent

methods estimate the image and PSF simultaneously in

the restoration process [2]-[10], but are not suitable for

practical imaging applications. A major drawback of ex-

isting blind deconvolutionmethods for images is that they

su�er from poor convergence properties; the algorithms

converge to local minima [2]-[7], or are so computation-

ally demanding [8], [9] that they are impractical for real

imaging applications. Another disadvantage is that some

methods make restrictive assumptions on the PSF or the

true image that limits the algorithm's portability to dif-

ferent applications [10].

This paper presents a novel technique for the class

of nonparametric deterministic constraints blind image

restoration methods that overcomes the limitations of

existing techniques. The proposed technique is relevant

to applications in which an object of �nite extent is im-

aged against a uniformlywhite, grey or black background.

The edges of the object are assumed to be completely or

almost completely included within the observed frame.

This often occurs in applications such as astronomy and

medical imaging. Statistical knowledge of the original

image or a parametric model of the PSF are not needed.

The only information required for restoration is the non-

negativity of the true image, and the support size of the

original object. The proposed method, referred to as

the Nonnegativity and Support constraints Recursive In-

verse Filtering (NAS-RIF) technique, involves iteratively

minimizing a convex cost function. All other methods

of its class incorporate the minimization of nonconvex

cost functions; the advantage of the proposed NAS-RIF

technique is that convergence to the global minimum is

guaranteed, even in the presence of noise. In addition,

the proposed technique shows faster convergence speed

than existing iterative techniques and does not require

heavy memory requirements. The superior performance

of the NAS-RIF algorithm is demonstrated by computer

simulations and comparisons with existing methods of its

class.

The proposed NAS-RIF technique and the methods

of [2]-[4], [9] belong the class of nonparametric determinis-

tic constraints blind image restoration methods. They are

included for comparisons and make the following assump-

tions to achieve blind image restoration. The degradation

process is assumed to be represented by the following lin-

ear model:

g(x; y) = f(x; y) � h(x; y) + n(x; y)

=
X

8(m;n)

f(m;n)h(x �m; y � n) + n(x; y)(1)

where f(x; y) is the true image, h(x; y) is the PSF, n(x; y)

is the additive noise, g(x; y) is the degraded image, (x; y)

is the discrete pixel coordinate, and � represents two-

dimensional linear convolution. The true image is re-

quired to be nonnegative with known �nite support. The
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Fig. 1. Proposed Blind Deconvolution Scheme for Images

support is de�ned as the smallest rectangle containing

the entire object. In applications such as astronomy,

this information is sometimes available. In our technique,

it is estimated using a novel method introduced in sec-

tion II.B, if unknown. In addition to the assumptions

stated above, the methods of [2]-[4], [9] require that the

blur also be nonnegative with known �nite support for

proper restoration. In contrast, the only assumption our

algorithm makes about the blur is that its inverse exists.

II. Description of the Proposed Tech-

nique

A. The Proposed Blind Deconvolution Scheme

The proposed NAS-RIF technique consists of a vari-

able FIR �lter u(x; y) with the blurred image g(x; y) as

input. The output of this �lter represents an estimate of

the true image f̂ (x; y). This estimate is passed through

a nonlinear �lter which uses a non-expansive mapping to

project the estimated image into the space representing

the known characteristics of the true image. The di�er-

ence between this projected image f̂NL(x; y) and f̂ (x; y)

is used as the error signal to update the variable �lter

u(x; y). Figure 1 gives an overview of the scheme.

For the algorithm presented, the image is assumed

to be nonnegative with known support, so the NL block of

Figure 1 represents the projection of the estimated image

onto the set of images that are nonnegative with given

�nite support. This requires forcing the negative pixel

values within the region of support to zero, and pixels

values outside the region of support to the background

grey-level LB . The cost function used in the restoration

procedure is de�ned as:

J =
X
8(x;y)

h
f̂NL(x; y)� f̂(x; y)

i2

=
X

(x;y)2Dsup

f̂
2(x; y)

"
1� sgn(f̂ (x; y))

2

#

+
X

(x;y)2Dsup

[f̂(x; y) � LB ]
2 + 


2
4 X
8(x;y)

u(x; y)� 1

3
5
2

(2)

where f̂ (x; y) = g(x; y) � u(x; y), and sgn(f) = �1 if

f < 0 and sgn(f) = 1, if f � 0. Dsup is the set of all

pixels inside the region of support, and Dsup is the set of

all pixels outside the region of support. The variable 


in third term of equation 2 is nonzero only when LB is

zero, ie., the background colour is black. The third term

is used to constrain the parameters away from the triv-

ial all-zero global minimum for this situation. In many

imaging applications, the mean value of the true image

is preserved in the blurring process; that is, the PSF fol-

lows the constraint
P

8(x;y)h(x; y) = 1. This implies thatP
8(x;y) h

�1(x; y) = 1 from the properties of the discrete

Fourier transform (DFT). Since u(x; y) is an estimate of

h
�1(x; y), it can be constrained to

P
8(x;y)u(x; y) = 1 to

avoid this trivial all-zero solution; thus, the third term of

equation 2 is a constraining penalty term.

It can be shown that equation 2 is convex, so that

convergence of the algorithm to the global minimum is

possible using a variety of numerical optimization rou-

tines. The conjugate gradient routine is used for the

minimization of J because its speed of convergence is in

general much faster than other descent routines, such as

the steepest-descent method. The recursive algorithm is

summarized in Table 1.

B. Determination of the Support of the True Image

For situations in which the object support size is un-

known, determining it by visual inspection is often cum-

bersome and unreliable. A method for assessing the op-

timal support size automatically and objectively is pro-

posed. It uses the hold-out (HO) method used for model

validation in data analysis. The proposed support-�nding

algorithm is inspired by the constraint assessment algo-

rithm of [11], but is modi�ed for blind image restoration.

Competing assumptions on the true image, such as

di�erent support sizes, can be assessed using the hold-

out method. A support size for the true image is as-

sumed. The image estimate pixels f̂ (x; y) outside the

assumed region of support are collectively called the es-

timation set; they are used to obtain an estimate of the

true image. This is accomplished by minimizing a crite-

rion, called the estimation error, which incorporates only

the pixels within the estimation set. Speci�cally, the pro-

posed blind deconvolution algorithm is applied using the

assumed support and excluding the nonnegativity con-

straint. The set of pixels within the assumed region of

support is called the validation set, and is used to assess

the \correctness" of the assumed support size. This is

performed by computing the validation error which mea-

sures the energy of negative pixels of the image estimate

within the assumed region of support. The assumed sup-



Table 1. Summary of the proposed NAS-RIF algorithm.

I) De�nitions:

� fk(x; y): estimate of true image at kth iteration

� uk(x; y): FIR �lter parameters of dimension Nxu �Nyu at
iteration k

� �: tolerance used to terminate the algorithm

� J(u
k
): cost function at parameter setting u

k

� rJ(u
k
): gradient of J at u

k

� < �; � >: scalar product

� Note: underlined letters represent lexicographically ordered
vectors of their two-dimensional counterparts.

II) Set initial conditions (k = 0):

Set FIR �lter uk(x; y) to all zeros with a unit spike in the middle

Set tolerance � > 0

III) At iteration (k): k = 0;1;2; :::

1) f̂k(x; y) = uk(x; y) � g(x; y)

2) f̂NL(x; y) = NL[f̂ (x; y)]

3) Minimization Routine to update FIR �lter parameters.

For example: (conjugate gradient routine)

3a) [rJ(u
k
)]T = [

@J(u
k
)

@u(1;1)
@J(u

k
)

@u(1;2) : : :
@J(u

k
)

@u(Nxu;Nyu)
]

where

@J(u
k
)

@u(i;j) =

2
X

(x;y)2Dsup

f̂k(x; y)

�
1� sgn(f̂k(x; y))

2

�
g(x�i+1; y�j+1)

+2
X

(x;y)2Dsup

[f̂k(x; y)� LB]g(x�i+1; y�j+1)

+2


hP
8(x;y)

uk(x; y)� 1

i
3b) �k�1 = (< rJ(u

k
) �rJ(u

k�1);rJ(uk) >)=

(< rJ(u
k�1); J(uk�1) >)

3c) If k = 0, dk = �rJ(u
k
) .

Otherwise, d
k
= �rJ(u

k
) + �k�1dk�1

3d) Perform a line minimization such as dlinmin.c in [12]
to �nd tk such that
J(u

k
+ tkd

k
) � J(u

k
+ td

k
) for all t 2R

3e) u
k+1 = u

k
+ td

k

4) k = k + 1

5) If J(u
k
) < �, stop. Otherwise, go to 1.

port which produces the minimum validation error is se-

lected as the true image support. The algorithm follows

in Table 2.

If the assumed support is exact or larger than the

actual support a reasonable estimate of the true image

can be obtained. Since the true image is nonnegative,

the validation error for such an image estimate should

be small. Thus, the assumed support which minimizes

the validation error is intuitively a good estimate of the

actual support.

Table 2. Summary of the proposed support �nding algorithm.

Assume an equally spaced grid of support parameter values (Lx; Ly)
from (1;1) to the size of the blurred image (Nxg; Nyg).

1) Assume a rectangular support S with dimensions (Lx; Ly) from the
grid. If all values in the grid have been selected before, either

1. Go to step 5 if the exhausted grid contains successive ele-
ments.

2. Form a �ner grid centred about (Lx;min; Ly;min) (the pa-
rameters giving the minimum of the validation error found
so far), and select a parameters (Lx; Ly) out of this new
grid.

2) Based on the assumed support S, �nd the restoration �lter u�(x; y)
by using the conjugate gradient algorithm, to minimize the follow-

ing estimation error function: J(u) =
P

(x;y)2S
[f̂(x; y)�LB]

2 +




hP
8(x;y)

u(x; y)� 1

i2
where f̂(x; y) = u(x; y) � g(x; y) and S

is the region outside the assumed support.

3) Calculate the validation error based on the minimizing �lter param-
eters u�(x; y) of the estimation error of step 2.

V (S) =
1

k S k

X
(x;y)2S

f̂�
2
(x; y)

�
1� sgn(f̂�(x; y))

2

�
(3)

where k � k denotes the number of elements in the argument set,

and the \restored" image estimate f̂�(x; y) = u
�(x; y) � g(x; y).

4) Save the parameters (Lx;min; Ly;min), which give the minimum
value of V (S) found so far. Go to step 1.

5) Select the support parameters that minimize V (S) as the optimal
support size for restoration.

III. Simulation Results and Comparisons

The results of the proposed algorithm and the IBD

algorithm described in [2] and modi�ed in [3] are shown

in Figure 2.

The original toy image shown in Figure 2 (a) of sup-

port 119�81 was blurred using a 21�21 truncated Gaus-

sian PSF; noise was added for a blurred signal-to-noise ra-

tio (BSNR) of 70 dB. The degraded image is displayed in

Figure 2 (b). The proposed support-�nding algorithm es-

timated the support of the true image as 120�83. Based

on this support, the NAS-RIF restoration (after 379 iter-

ations) and mean square error (MSE) plots are shown in

Figures 2 (c) and (e), respectively. The proposed NAS-

RIF method converges to a good estimate in approxi-

mately 300 iterations. The results of the IBD method

are shown in Figures 2 (d) and (f). The algorithm was

unable to converge for 3500 iterations. The image esti-

mate generated by the IBD algorithm which showed the

minimum total energy of the negative pixels within the

region of support and the pixels outside the region of sup-

port deviating from the background grey-level was saved

as the true image estimate.

The restoration shown in Figure 2 (d) is the true im-

age estimate at the 1000th iteration of the IBD algorithm;
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Fig. 2. Simulation Results of the NAS-RIF and IBD Restoration Meth-
ods

this estimate produced the minimum MSE as shown in

the plot of Figure 2 (f). The algorithm failed to produce

a reliable estimate of the true image. Simulation results

of the algorithm for exact support size at various di�erent

initial conditions and noise parameter values � produced

poor results as well.

Although the IBD algorithm produces comparable

results to the NAS-RIF algorithm for simple binary im-

ages, it fails to converge to a reliable image estimate for

more complicated grey-scale images. In addition, the al-

gorithm often exhibits instability.

Lane's method of [4] was also simulated, but con-

verged to local minima for all the di�erent random initial

conditions tested. The method is unsuitable for practical

imaging applications as it su�ers from high sensitivity to

initial conditions.

McCallum's algorithm of [9] produced good results

for small images; however, for the degraded toy image,

it was too computationally time consuming to produce a

reliable estimate. The order of the algorithm per itera-

tion is O(N4
f
), where Nf is the number of pixel values of

the image estimate. In contrast, the IBD method has or-

der O(Nf log2(Nf )), and the NAS-RIF method has order

O(NfNuNls;k) per iteration, where Nu is the number of

FIR �lter parameters of u(x; y) and Nls;k is the number of

line searches required in dlinmin.c of step 3d of Table 1.

Since the number of �lter parameters of u(x; y) is usually

much smaller than the image size, the NAS-RIF method

requires much fewer computations on average than the

IBD method to produce a good estimate.

IV. Conclusion

A novel method for blind deconvolution of images

is presented. It is applicable to situations in which an

object of �nite support is imaged against a uniform back-

ground; this occurs in situations such as astronomical

speckle imaging and medical imaging, among others. The

proposed NAS-RIF algorithm has superior convergence

properties than existing methods of its class. Simulation

results demonstrate the more reliable performance and

faster convergence of the method.

In situations in which the support of the true im-

age is unknown, a support-�nding algorithm is proposed.

The algorithm shows promise for practical blind image

restoration.
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