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approaches we overlooked in the May 1996 article of

Signal Processing Magazine titled “Blind Image De-
convolution.” We would like to discuss them here for com-
pleteness along with some other works found in more recent
literature. As the area of blind image restoration is a rapidly
growing field of research, new methods are constantly being
developed. Although it is difficult to include all of the newer
works here, we have tried to address the most successful
techniques.

The objective of this article is to discuss the major

Projection-Based Blind Deconvolution

This method, proposed by Yang etal. [1], belongs to the class
of nonparametric deterministic image constraints methods.
The motivation in designing this method is to improve upon
the poor convergence properties of other older methods of its
class. The degradation is assumed to be represented by the
following linear model:

g(x,y)= f(x,y)*h(x.y)

where f(x,y) is the true undistorted image, 4(x,y) is the point
spread function (PSF), and * represents the two-dimensional
linear convolution operator. The true image and PSF are
assumed to be square integrable and additive noise is ne-
glected.

The approach attempts to simultaneously restore the true
image and PSF by restricting them to lie in the following
intersection of sets (Please note that bold variables represent
lexicographically ordered vectors of their two-dimensional
counterparts):

thecC,=C,NnC,NC,

where

C, = {(Eh): f(x)h(xy) = g(x.y)}

C= {(f,fl):f(x,y), satisfies prior knowledge of the true
image},

C,= {(i:,i;): ﬁ(x,y) satisfies prior knowledge of the PSF}.

Examples of C, and C, are constraints of support, intensity
range, and bandlimitedness.
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To avoid the mathematical complications of using gener-
alized projection operators to estimate the true image and
PSF, a more practical approach to blind deconvolution is
proposed. The following cost function is defined:

JER) = 3 (n-[Femriey)).

V(xy)

The procedure begins by making educated initial estimates
of the true image and PSF. The technique is cyclical in nature.
Each cycle is comprised of two parts. First, J is minimized

with respect to h subject to the constraint that he C, (keeping

f constant at the last image estimate) to produce a PSF
estimate. Second, J is minimized again by reversing the rolls
of h and f to produce an image estimate. The cycles are
continued until a prespecified convergence criterion is met.
The complexity of the algorithm is of order O(Nfz) where N,
is the total number of pixels in the image estimate.

Simulation results in [1] demonstrate the performance of
the method. It has been shown to outperform Lane’s conju-
gate gradient algorithm, and it appears to be robust to inac-
curacies of support size and is sensitive to noise. The major
disadvantage is that the solution is not necessarily unique and
that the method is subject to erroneous solutions associated
with the local minima of J. Modifications of the method have
been proposed to improve the speed of convergence [2] and
to improve the quality of restoration for the multiple frame
situation [3]. The most probable application area for this
method is astronomy.

Maximum Likelihood Restoration

This technique is a more general approach to the maximum
likelihood (ML) ARMA parameter estimation methods dis-
cussed in the May 1996 issue of Signal Processing Magazine.
The true image and additive noise of the imaging system are
assumed to be multivariate Gaussian processes. The degra-
dation model in matrix-vector notation is:

g=Hf+n

where g, f, and n are the lexicographically ordered vectors
corresponding to the blurred image, true image, and additive
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noise, respectively. H is the PSF matrix. It is assumed that f
and n are uncorrelated with covariance matrices A, and A,
respectively. It is also assumed that the additive noise is
white, so that A, = 621 where I is the identity matrix.

The problem of blind deconvolution becomes that of
estimating the unknown parameters ¢ = {H,A ,,c.} from g.
A maximum likelihood estimate of these parameters is ob-
tained. That is, we find the parameter set such that the
probability density function (pdf) of g conditioned on ¢ is
maximized. This pdf is given by:

plgld) = ! | exp{—%g"(HAFHH +6§I)"g}

[2m(HA H" +0°1
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where (-)" is the conjugate transpose of a matrix. Due to the
high degree of nonlinearity, the optimization is difficult and
is conducted by using the expectation-maximization (EM)
algorithm {4, 5].

Since only second order statistics are used in the estima-
tion procedure, the algorithm only applies to the identifica-
tion of non-minimum phase PSFs. In addition, the PSF
estimate may not be unique. By making additional assump-
tions on the symmetry, sign, support and/or scaling of the PSF
a unique solution may be obtained.

The simulation results of the algorithm show that there is
a trade-off between the sharpness of the true image estimate
and noise amplification. The estimation of the noise variance
o, is usvally smaller than the true value which produces a
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noisier image estimate than that given by a true Wiener filter.
It has also been found that the proper incorporation of con-
straints improves image restoration significantly.

The main advantage of the technique is that no parametric
form of the PSF or its support size is required and the
algorithm has low computational complexity. The complex-
ity of the algorithm is O(V,) where N, is the total number of
pixels in the original image. In addition, the algorithm allows
one to obtain explicit equations for the blur, noise, and power
spectra of the true image. The main disadvantage is that the
EM algorithm might converge to a local optima of the cost
function. A multichannel extension of the algorithm for mul-
tispectral images has been proposed [6]. It has been shown to
result in a more reliable restoration. The most probable
applications for the algorithm is photography, medical imag-
ing, and multispectral image processing.

Other Recent Developments

With the surge of research in the area of blind image restora-
tion, a great deal of work in the area has been recently
published. Many of the newer contributions are extensions or
refinements of previously cited work and place emphasis on
applications. We briefly discuss them in this section.

Some recent work is applied in particular to medical
imaging. ML estimation using the EM algorithm applied to
three-dimensional light microscopy has been proposed [7].
The technique is an extension of references [5] and [15] of
our May 1996 Signal Processing Magazine article. Another
technique has been applied to improve the spatial resolution
of ultrasound images [8]. High-order spectra are used for the
identification of possibly nonminimum-phase PSFs. The al-
gorithm is successful in suppressing additive Gaussian noise
in the image.

Other blind deconvolution techniques that make use of
high-order statistics can be found for the identification of
texture images [9, 10]. They assume that the blurring process
is represented by an AR filter, and use iterative identification
algorithms to estimate the true image and AR parameters.
These techniques fit into the class of nonparametric methods
based on high-order statistics.

New work has also been done for the class of zero sheet
separation techniques. Algorithms have been designed to
make blind deconvolution using zero sheets less sensitive to
noise [11].

Other recent work applies to the class of nonparametric
deterministic image constraints methods. An extension of the
iterative blind deconvolution algorithm (reference [39] of
Signal Processing Magazine, May 1996) to situations where
many differently blurred versions of the same object are
available is suggested [12]. A modification of the iterative
blind deconvolution algorithm using the Richardson-Lucy
algorithm is also proposed for solar images [13]. In addition,
a modification of Lane’s conjugate gradient algorithm (ref-
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erence [46] of Signal Processing Magazine, May 1996) has
been applied to adaptive optics compensated data [14].
Analysis of conditions to guarantee a unique solution for the
NAS-RIF algorithm (reference [43] of Signal Processing
Magazine, May 1996) has also been done. Other researchers
have examined the importance of the selection of initial
conditions and the accuracy of the support constraints for this
class of methods [15].

A statistical technique for situations in which an inaccu-
rate noisy PSF estimate is available has been developed. In
this method image restoration is performed using a regular-
ized constrained total least-squares approach [16].
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