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Toward Robust Logo Watermarking Using
Multiresolution Image Fusion Principles

Deepa Kundur, Senior Member, IEEE, and Dimitrios Hatzinakos, Senior Member, IEEE

Abstract—This paper presents a novel robust watermarking
approach called FuseMark based on the principles of image fusion
for copy protection or robust tagging applications. We consider
the problem of logo watermarking in still images and employ
multiresolution data fusion principles for watermark embedding
and extraction. A human visual system model based on contrast
sensitivity is incorporated to hide a higher energy hidden logo in
salient image components. Watermark extraction involves both
characterization of attacks and logo estimation using a rake-like
receiver. Statistical analysis demonstrates how our extraction
approach can be used for watermark detection applications to
decrease the problem of false negative detection without increasing
the false positive detection rate. Simulation results verify theoret-
ical observations and demonstrate the practical performance of
FuseMark.

Index Terms—Data fusion, digital watermarking, image tagging,
logo watermarking, multimedia security.

1. INTRODUCTION

N THIS PAPER, we focus on the signal processing aspects

of the digital watermarking problem for the purpose of
robust grayscale logo embedding. We determine strategies to
improve watermark robustness through the incorporation of
image fusion tool-sets. We propose a multiresolution image
watermarking technique called FuseMark that addresses the
problem of invisible logo embedding in still images when
the original host signal is available for watermark extraction.
Although the host accessibility assumption is somewhat
impractical for many data hiding situations, we consider
applications in which an automated search is employed by a
party with access to the host. These types of watermarking
techniques, termed nonblind, have shown much higher robust-
ness to intentional attacks than their blind counterparts. Early
work in the area of robust nonblind watermarking involved
spread spectrum technologies applied in various domains and
often employing perceptual models [1]-[7].

The success of watermarking for intellectual property man-
agement depends, in part, on how easily it is adopted within
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common policy, and on how effectively infringement cases are
addressed [8]. It has been suggested that visually meaningful
watermark images may improve the trustworthiness of signal
tracing, identification or security based on data embedding in
the eyes of nontechnical arbitrators [9]. The presentation of a
recognizable mark is much more convincing than a numerical
value and allows the opportunity to exploit the human visual
system’s ability to recognize a pattern. As discussed in [10],
in the same way channel coding improves robustness against
transmission errors, the visual perception process naturally fil-
ters out random noise to better recognize a meaningful pattern.
This has motivated us to research embedding logos into images.
Since a logo is considered itself to be a small image, we make
use of image fusion architectures for watermarking instead of
the well-established SS strategies discussed previously. SS tech-
niques are more useful for detecting the presence of a given wa-
termark, than for extracting an arbitrary logo.

Grayscale logo watermarking has been applied primarily
to visible watermarking. In [11], Braudway et al. use ana-
lytic human perceptual models to embed, by varying pixel
brightness, a reasonably unobtrusive visible logo in still color
images; the process of adjusting the watermark intensity for
a given image is automated in [12] by using a texture-based
HVS metric. In [13], Meng and Chang borrow ideas from [11]
to extend visible watermarking for DCT-based video streams.
Similarly, Kankanhalli et al. in [14] work in the frequency
domain to classify segmented 8 x 8 DCT image blocks into one
of eight regions exhibiting different masking characteristics.
The visible logo is embedded in the luminance color component
and the associated watermark scaling factors for each DCT
block are based on the associated masking classification and
empirical formulas employing luminance sensitivity.

Invisible binary logo marking has also been investigated
by a number of researchers. In [15], Voyatzis and Pitas use
a chaotic system to securely scramble a binary watermark
into a pseudo-random bit sequence before embedding the
information by modifying the intensity values of selected host
image pixels. Similarly, in [16], Lin converts a binary logo into
a mark sequence using a unique serial number and embeds
by changing pixel block intensities in a novel way. Su and
Kuo [17] also design a scheme to detect binary logos, but in
cartoon and map images; the mark embedding process involves
modifying the bit planes of DWT coefficient subbands. In [18],
the authors present a nonblind method to embed a gray-level
image by first converting the watermark into bit planes. The
individual bit planes are then inserted as a set of binary logos.
More recently, Zeng et al. [10], consider resolving rightful
ownership through embedding a binary image and present
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ways to visualize the extracted mark. Adjacent logo bits are
then inserted into adjacent host image blocks. For improved
robustness in high degree attack situations, adjacent image
blocks are incorporated into the extraction procedure of a given
logo bit to produce a lower resolution, but visually appealing
extracted watermark result.

In [19], Knox proposes the concept of a reversible image for
data hiding, in which two 8-bit grayscale images are fused into
a signal 8-bit grayscale image. Essentially, the four most signif-
icant bits (MSBs) of one image are placed in the corresponding
four MSBs of the new image. The four MSBs of the second
image are hidden in the least significant bits (LSBs) of the new
image. The combined result is called reversible because swap-
ping the order of the bits, so that the LSBs become the MSBs
and vice versa makes the second image viewable while masking
the first.

By treating the logos as bit sequences, the proposed tech-
niques cannot conveniently account for the perceptual charac-
teristics of both the host and the watermark for effective data
hiding. Considering arbitrary grayscale intensity logos facili-
tates the embedding of arbitrary commercial logos and increases
the quality of and overall number of possible logos identifiable
by human observers. This motivates us to use image fusion prin-
ciples for invisible robust grayscale logo watermarking.

The process of embedding and extracting the picture logo is
analogous to image fusion in a number of ways.

* Both processes, to be effective, must make use of sophisti-
cated human visual models. For watermarking, the data is
hidden from perception; for fusion, the merged informa-
tion must be displayed so that the salient components of
each image are apparent upon viewing.

* Watermarking and fusion are both information compres-
sion problems in which two or more separate pieces of data
are combined into one result.

* Robust logo extraction involves identifying and merging
noisy versions of the embedded watermark from various
components of the host image which can be viewed as an
image fusion problem.

A. Contributions and Scope

The objectives of this paper are to

1) present a watermarking scheme designed with the use
of image fusion tool-sets. The technique makes use of
the discrete wavelet transform (DWT), a novel perceptual
weighting model to embed the watermark, and repetition,
for combined robustness;

2) develop a method to estimate the logo watermark from
a possibly attacked watermarked image to maximize
signal-to-noise ratio (SNR) of the extracted logo. We
employ a minimum variance fusion approach;

3) analyze the performance of the proposed fusion-based
algorithm for watermark detection applications. We
demonstrate how the proposed approach reduces the
probability of false negative detection without increasing
the false positive detection rate.

In Section II, we discuss the proposed technique. Section III
looks at performance advantages for watermark detection ap-
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plications. Simulation results are presented in Section IV fol-
lowed by a discussion and conclusions in Sections V and VI,
respectively.

II. MULTIRESOLUTION FUSION-BASED WATERMARKING
A. Why Multiresolution Fusion?

Image fusion is a process that produces a single image from
a set of input images. The fused image should contain more
“complete” information (as defined by a given application), than
any individual input [20]. Since this is a sensor-compressed in-
formation problem, it follows that wavelets, classically useful
for HVS processing, data compression and reconstruction, are
also helpful for such merging [21]-[23]. Some multiresolution
wavelet fusion methods make use of HVS models to determine
the perceptually most significant information from each image
to retain in the composite [21]. It is then expected that such rules
can be applied to judiciously select the components of the host
image in which to embed the watermark.

B. Fusemark

A multiresolution data fusion approach is employed in which
the image and the watermark are transformed into the discrete
wavelet domain. The resulting coefficients are then fused ac-
cording to a series of combination rules that take into account
the HVS characteristics. The watermark is restricted to be much
smaller in dimension than the host signal, so that it can be re-
peatedly fused throughout the signal. Because the fusion process
takes place at different resolution levels and at various local-
ized spatial regions, the watermark is spread throughout the dif-
ferent frequencies of the host, but is spatially localized at higher
resolutions of the host image. This provides robustness against
varying forms of signal distortions including filtering, subsam-
pling and cropping.

A preliminary version of this fusion-based watermarking al-
gorithm was first presented in [24]. In this paper, we extend our
scheme by incorporating a minimum variance fusion/rake-like
receiver for watermark estimation and provide statistical perfor-
mance analysis.

1) The Three Stage Method: Throughout our discussion, we
use f(m,n) to denote the host image and w(rn,n) the water-
mark, assumed to be a two-dimensional array of real elements.
We assume that the size of the watermark is smaller than the
host by a factor of 2"* and 2™v in the x and y dimensions, re-
spectively, where n,,n, € Z* (where Z* represents the set of
all integers greater than zero), and that the dimensions of the
watermark are 2N, X 2N,,,. These conditions facilitate our
description and analysis of the technique, however the dimen-
sions are not practically restricted to these forms.

The general technique is summarized in Fig. 1. The Sec-
tions II-B2 and II-B3 provide a more detailed and analytic
description.

Stage 1: We perform the Lth level DWT of the host image
to produce a sequence of 3L detail images at each of the L
resolution levels, and a gross approximation of the image at the
coarsest resolution level. The value of L is user-specified and is
set to a positive integer less than or equal to min(n,, n,)—1. We
denote the oth frequency orientation at the Ith resolution level



KUNDUR AND HATZINAKOS: TOWARD ROBUST LOGO WATERMARKING

187

Host Image Lindover I
level L
| DwT ’
Watermarked
L] Multiresolution |} Inverse |yimage
HVS-based [ Lth-level |
| Image Fusion DWT |
Watermark el ‘
— | owT r‘—
STAGE 1 STAGE 2 STAGE 3
Fig. 1. Proposed fusion-based watermark embedding method.
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Fig.2. Segmentation of the host image wavelet coefficients into N,,, X N, blocks for fusion watermarking. The salience of each block is computed and if it is
above a threshold specified by B, then the corresponding V.., X N, watermark wavelet coefficient is embedded. As suggested by the diagram, the watermark

is more widely spread spatially when embedded at a lower (coarser) resolution.

of the image f by f, ;(m,n) where o € {1,2, 3} represents the
frequency orientation corresponding to the horizontal, diagonal
and vertical image details, [ € {1,2,..., L} the resolution level
and (m, n) the particular spatial location index at the resolution
l. The gross approximation is represented by fu r.(m,n) where
the subscript “4” is used instead of o to denote the gross image
approximation at resolution L.

Similarly, the first-level DWT of the watermark w is per-
formed to produce N, X N, dimensional detail and approx-
imation subimages w, 1(m,n), o € {1,2,3,4}.

Stage 2: The subimages, f,;(m,n) (for o = 1,2,3 and
1=1,2,...,L) and f4r(m,n) are segmented into adjacent
nonoverlapping N, X N, blocks. Fig. 2 demonstrates the
procedure. We denote these rectangular blocks by f;', [(m,n),
i=1,...,2"%t%=2l where it can be shown that 2"=+7v—2
is the total number of N,,, X N, blocks at each frequency
orientation o and resolution /.

The salience, S, which is a numerical measure of perceptual
importance, of each of these localized segments is computed
using a model of the contrast sensitivity of the HVS. Contrast
sensitivity is defined as the reciprocal of the contrast necessary
for a given spatial frequency to be perceived. Experimental tests
have resulted in the well-known model given by Dooley [25].

The resulting contrast sensitivity for a particular pair of spatial
frequencies is given by:

COlwy,ws) = 5.05e 01 8wiFwa) (0-L(witwz) _ 1y (1)

where C'(w1,ws) is the contrast sensitivity matrix and w; and
wo are the spatial frequencies given in units of cycles per visual
angle (in degrees). A conversion from cycles per visual angle to
radians per pixel must be made prior to the use of C' in our algo-
rithm. For the simulations in this chapter, we apply a conversion
assuming a 256 x 256 host image and a viewing distance of six
times the image size [21].

Our definition of salience, first proposed and tested in [21] for
perceptually-based image fusion, provided a numerical value of
visual importance and, is given by

S(foa(mm)) = D Clwnwa)lFy (wi,w)f? (@)

v (wl ,OJQ)

where C'is the contrast sensitivity matrix, and F, (w1, w2) is
the normalized discrete Fourier transform of the image compo-
nent foiy (m,n); Foi’ (w1, w2) is normalized such that it has unit
energy (i.e., ||F(f,l(u)1,u}2)||2 =1).
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Fig. 3. Proposed fusion-based watermark extraction method.

The watermark is embedded only in B percent! of the most
salient detail coefficient image blocks at each resolution level
and orientation using the following equation:

f:)lt(m>n) = fé,l(m7n) +Si,lw0,1(m7n) 3)
where f*;*(m,n) is the watermarked DWT coefficient. For the
remaining blocks, we set

fo'(m,n) = f i (m,n). )
The parameters s’ , are positive real numbers that determine a
tradeoff between the visibility of the watermark and its robust-
ness to signal distortion at each of the resolution levels. The fol-
lowing rule of thumb has been determined to set these parameter
values:

S(£5,(m,n))

mMaXover all jS(fgyl(m7 ’l’l)) /
®)
where the absolute scale 5 ranges between 0.2 and 1 for our
test photographs. The fraction within the square root of (5) is
a relative measure that gives greater weight judiciously to the
embedded watermark in more salient host image regions.

A similar merging procedure is used to embed the watermark
approximation coefficient wy1(m,n) into the host image
approximation blocks fi ; (m,n). The watermark is embedded
in all blocks and § (which is used instead of 5 to distinguish
the two parameters) is set between 0.02 and 0.2 to ensure
imperceptibility.

Stage 3: The corresponding Lth-level inverse DWT of the
fused image components f;‘:l(m, n) is computed to form the
watermarked image.

The parameter L determines the maximum resolution at
which the watermark is embedded. In general, the larger the
value of L, the more localized the watermark is in the lower
frequencies of the host image that makes it naturally robust to
distortions which affect only image details.

2) Weighted Watermark Extraction: A summary of the
watermark extraction process is provided in Fig. 3. To extract
the watermark, the DWT is applied to the potentially degraded
watermarked image. We denote the resulting coefficients

f“(m,n). Each repetition of the watermark DWT coeffi-

52,125 Z |féz(mn)|

vV (m,n)

IThe larger B, the greater the visibility of the watermark. In our tests 25 <
B < 75 allows for an appropriate tradeoff between perceptibility and robust-
ness.

cients is extracted through subtraction of the host to produce
the estimates 0" ;(m,n) as follows:

o,l
f:,]lﬂ(mt n) - f(il(mt TL)

; : (6)

o,l

wz,l (m7 ’I’L) =

We choose to model the attacks on the watermarked image
blocks as locally stationary AWGN. This provides opportunity
to adapt to the particular image distortions to reliably recom-
pose the watermark. In addition, the model involves only one
simple locally invariant parameter to reflect the noise power at
a given image location. The limitation is that our degradation
model excludes geometric attacks such as rotation; effects of
nongeometric attacks such as compression, filtering and noise,
however, fall under the umbrella of our model. SHeciﬁcally,
each corresponding DWT coefficient image block f,’;"(m,n)
of the attacked watermarked image for | = 1,2, ..., L: and o =
1,2, 3, is assumed to undergo degradation of the form

A,

£ (myn) = £ (myn) + vl y(m,n)

)

in which v¢ ;(m,n) is zero mean AWGN with known variance
012)1- g The local characterization of the distortions allows more
opiimal combining of the watermark repetitions.

Similarly, we assume for the gross approximation coefficients
f;"L‘ (m,n) that

A
w,t

4,L (m7 n) =

w, i

4,L (m7 n) + vjl,L(mt TL)

®)

where v} 1 (m,n) is zero mean AWGN with known variance
034_ ,» which is independent of the block position 4. Distortions
that attempt to maintain the perceptual quality of the water-
marked image generally have a less diverse effect on the am-
plitude of these coefficients, so we neglect any block variation
in the noise power. Simulation results also demonstrate superior
behavior when ignoring these small variations.

Equation (7) suggests that 711; ,(m, n) can be represented by

vf),l(mv ’I’L) (9)

so,l

=wo,1(m,n) + uf),l(mv n)

wévl(m, n) =w,,1(m,n) +
(10)

where u! ,(m,n) is zero mean AWGN with variance

o2, l / (s; )2, Thus, our extracted repetitions are noisy
versions of the originals, where the noise power varies for each
repetition. Taking a data fusion perspective, we can combine
the repetitions by applying minimum variance fusion based
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Host Image

Fig. 4. Results for the DCT method: (a) host image, (b) watermarked image,
and (c) amplified absolute difference between the images of (a) and (b).

on the principles of Kalman filtering [20]. The estimate of the
DWT watermark coefficients IZ)Z ,(m,n) is produced as

L
o1 (m,m) = Z Z af),zﬁli,z(m,”)

I=11€S,

Y

for o =1,2,3, where S, ; is the set of all block indices con-
taining an embedded mark, and «g, ; is given by

Oz(;’l: 5
L Sil
Sy (—g;>
I=1j€S,, Vol

The details of the derivation of aiyl are provided in [26].
Similarly,

12)

gnaz+ny—2L

1
> o ny =2z Wi, (m, n).

i=1

1/34,1(m,n) = (13)

Equations (11) and (13) resemble the rake receiver structure
with maximal ratio combining used in multipath communica-
tion environments [27], [28]. This SNR maximization procedure
helps in the estimation of both logo-type watermarks and statis-
tical watermarks used for detection. Finally, the inverse DWT
is computed on the coefficient estimates to form the overall ex-
tracted watermark .

3) On the Estimation of Distortion Parameters: The calcu-
lation of the optimal weights ozf)y ; requires knowledge of noise

variances {02, } of each block containing the watermark. We
o,l

estimate the noise variance parameter of block i from the closest
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adjacent block not containing a watermark. Specifically, the pa-
rameters are computed as follows:
2 1

on = 2o Wi (mon) = £ (mn)?, (14)
L wawa v ( )

where ¢ € S,; and " is the spatially closest block to 7 at the
same resolution in which no watermark is embedded in the re-
gion (i.e., ©* & So,1).

The reader should note that we do not make use of the water-
mark w during the calculation of the weights. This quantity may
not be known or its use in computing ai’ ; may result in a biased
watermark estimate; the details are discussed in Section III.

III. WATERMARK DETECTION

Although the algorithm has been designed with logos in
mind, elements such as weighted watermark extraction have
advantages for statistical watermark detection as well. For
watermark detection a randomly generated noiselike sequence
w(%) is embedded. To test the existence of a particular watermark,
the corresponding extracted sequence is correlated with the
known embedded mark as follows

; 15)

where w and 1 are the known and extracted watermarks, re-
spectively. If and only if p(w,®w) > 7, where 7 > 0 is a pre-
specified threshold, the watermark is positively detected.

Due to the varying characteristics of the distortion in an
image, many techniques such as [7] extract the watermark
separately from the different image resolution and frequency
orientations. Each extracted watermark segment is separately
correlated with the embedded and the maximum value of
the correlation is used for watermark detection. We call this
maximum correlation detection. In this way, highly degraded
portions of the watermark are not used for detection. Although
this approach increases robustness, it also increases the proba-
bility of false watermark detection as we show in Section III-A.
For commercial watermarking applications such as DVD copy
protection, an increased threat of false detection is of serious
concern and may not be worth the performance improvement
[29].

We next demonstrate how the use of our adaptive weighted
watermark extraction method improves performance without in-
creasing the probability of false positive detection.

A. Probabilities of False Detection

For simplicity we assume that M different repetitions of a
randomly generated binary watermark signal are embedded
within the host and that there is no host signal interference since
the algorithm is nonblind. We summarize the results derived in
[26] for the following.

1) Elementary detection in which an arbitrary repetition of

the watermark is extracted and correlated with the known
mark for detection.
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Host Image

Watermarked Image Amplified Difference Image

©

Fig. 5. Results for the proposed multiresolution fusion-based method: (a) host
image, (b) watermarked image, and (c) amplified absolute difference between
the images of (a) and (b).

2) Maximum correlation detection, in which each repetition
is separately extracted and correlated. The maximum cor-
relation value is used for detection.

3) Optimal weight detection, which we described in Sec-
tion II-B2, in which the watermark repetitions are in-
dividually weighted to improve the overall SNR of the
extracted watermark. Then, correlation is performed.

1) Elementary Detection: The probability of false negative,

Py, and the probability of false positive, Py,, watermark de-
tections are calculated to be [26]

N,SN Ry
Py, = —erfc (1-7) (16)
2 2
and
1 Ny
pr ~ ierfc TT s (17)

respectively, where erfc is the complementary error function,
N, is the length of the watermark, 7 is the prespecified
threshold for detection and SN R; is the SNR of the extracted
watermark. Our analysis assumes that the extracted watermark
exhibits zero mean AWGN with finite variance.

2) Maximum Correlation Detection: The probability of
false negative watermark detection can be lowered by em-
ploying maximum correlation detection. As derived by the first
author of this paper in [26], P¢,, and Py, are

M
1 N.SNRs
P~ ] gerfe \/f’k(l ~-7) (18)
k=1
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Fig. 6. Results for additive white gaussian noise degradation: (a) correlation
coefficient versus SNR (the dashed and solid lines correspond to the DCT and
the proposed methods, respectively) and (b) degraded watermarked image at
0 dB SNR.

and

Ny
pr ~ 7erfc TT

(19)
respectively, where M is the number of repetitions of the wa-
termark signal separately extracted and correlated from the dif-
ferent regions of the image and SN Ry ;. is the associated SNR
of the kth repetition.

3) Optimal Weight Detection: In contrast, using the optimal
weighting strategy of Section II-B2, we find that

1 | N, SN ROW
an ~ Eerfc f(l - T)

(20)
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and

1 Ny

pr ~ §erfc TT (21)

where SN ROW is the SNR of the overall weighted watermark
estimate. For the specific case in which the noise energy on the
watermark is independent of frequency orientation o in which it
is embedded, it can be shown that [26]

M
SNROW = Z SN Ry, 1 (22)
k=1

where M is the number of repetitions of the watermark signal
separately extracted and correlated from the different regions
of the image and SN Ry, 1, is the associated SNR of the kth
repetition.

Thus, our postprocessing decreases the probability of false
negatives without sacrificing the possibility of a false positive
result. The extracted watermark has an effective SNR that is the
sum of those of the individual repetitions. This improvement is
also highly attractive for logo-type watermarking in which the
watermark is merely extracted and displayed rather than passed
through a correlator for detection.

IV. SIMULATION RESULTS

Although the probability of false negative is lower, the
probability of false positive increases linearly. We specifically
make use of the Daubechies 10-point wavelet [30] that provides
a good tradeoff between spatial and frequency localization for
all simulations. The well-known DCT method by Cox et al. [1]
has been implemented for comparison for robustness against
watermark detection. Instead of watermarking with an AWGN
sequence, we use a randomly generated binary sequence for
compatibility with our algorithm. The implementation is as
specified in [1] with a “scaling parameter” a = 0.1 as suggested
in the paper. The DCT method involves adding the watermark
to the N,, largest magnitude nondc DCT coefficients of the
host image where N, is the length of the watermark sequence.
We embed the +th element of the watermark w according to

FfCT(wl, wo) = FDCT(wl,wz) (14 aw(i)) (23)

where FPCT (w1, wy) and FPCT (wy,wy) are the DCT coef-
ficients of the host image f and the watermarked image f,,,
respectively, a is the scaling parameter discussed earlier, and
w(3) is the ith watermark element. The watermarked image
fw is formed by taking the inverse DCT of the coefficients
FPOT (wr,ws).

We perform two classes of tests. We first compare the
watermark detection capability of our fusion-based method with
the DCT method. Randomly generated binary watermarks? are
embedded within the host signal. The resulting watermarked
signal is corrupted using one of many common distortions that
we discuss in Section IV-A. The watermark is then extracted and
correlated with the embedded watermark sequence to measure

detection capability.

2The distribution of ones and zeros are assumed to be equiprobable.
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Results for Mean Filtering

Corrlation coefficient
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o
w
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Fig.7. Results for F'x F mean filtering degradation: (a) correlation coefficient
versus dimension of filter F* (the dashed and solid lines correspond to the DCT
and the proposed methods, respectively) and (b) degraded watermarked image
for 9 X 9 mean filtering.

In the next set of tests, we embed a grayscale logo to demon-
strate the performance of the proposed method in embedding
and recovering logos when the watermarked image undergoes
distortion. We compare the improved performance of using
our proposed weighted watermark extraction to our previously
proposed technique [24] where simple averaging is performed.

A. Results of Binary Watermark Detection

We perform simulations on the 256 x 256 host image shown
in Fig. 4(a) and a 256 bit randomly generated binary water-
mark comprised of the elements {—1, 1}.3> The corresponding
watermarked image using the DCT method with @ = 0.1 is

3We find experimentally that use of {—1,1} instead of {0,1} improves
invisibility of the watermark.
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displayed in Fig. 4(b). Larger values of a cause a visible
change in image contrast. To give an idea of the “shape” of
the watermark, we also provide an amplified version of the
absolute difference between the watermarked and host images
in Fig. 4(c). The watermark is generally smooth and stationary
throughout the image.

Similarly, the results for fusion-based watermarking are pro-
vided in Fig. 5. The same 256 bit watermark was converted
to a 16 x 16 binary watermark signal for use in the algorithm.
The simulations were conducted using the following parameters
5 =10.45,5 =0.18, L = 4, and B = 50. The absolute differ-
ence between the watermarked image [shown in Fig. 5(b)] and
the host image is displayed in Fig. 5(c). Because of the adaptive
and localized nature of our embedding routine the watermark
takes on characteristics similar to the host image itself. The use
of the DWT and a model of HVS allows the design of an em-
bedded signal that is more naturally masked by the host image
itself.

We evaluate and compare the performance of both techniques
to various types of image distortions that we discuss below.
The correlation coefficient given by (15) between the embedded
and extracted watermark is computed to assess robustness. We
choose the threshold 7" = 0.4 that has an associated probability
of false positive detection less than 10710 for a 256 bit water-
mark [26].

The watermarked image was degraded by applying additive
white Gaussian noise (AWGN) with varying power. Fig. 6
presents the corresponding correlation coefficients between the
embedded and extracted watermarks for different SNRs. The
dashed and solid lines correspond to the DCT and the proposed
methods, respectively. The proposed technique performs better
than the DCT method for lower SNRs. Fig. 6(b) shows the
degraded watermarked image (using the proposed method) for
an SNR of 0 dB. The watermark correlation coefficient is still
high enough to be detected for this degree of distortion.

Figs. 7 and 8 show the results for mean and median filtering,
respectively. An ' x F' mean (or median) filter was applied on
the watermarked image to attempt to destroy the watermark de-
tection capability. The dashed and solid lines correspond to the
DCT and the proposed methods, respectively. For larger filter
sizes the proposed technique outperforms the DCT method. The
watermark detection capability of FuseMark persists even when
the image is significantly degraded with 9 x 9 filters as shown
in Figs. 7(b) and 8(b).

The results for JPEG compression are displayed in Fig. 9
for different compression ratios (CR). For low CRs, the DCT
and the fusion-based method perform comparably. However, for
higher CRs the proposed technique is superior. The watermark
is detected using a threshold of 0.4 even for a CR of 35. The
resulting compressed image shows visible blocking artifacts as
displayed in Fig. 9(b).

The effects of image cropping on watermark detection is
shown in Fig. 10. The correlation coefficient as a function of
the percentage of the image area remaining is displayed. For
watermark extraction, the portion of the watermarked image
cropped out was replaced with the host image as performed in
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Results for Median Filtering
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Fig. 8. Results for F' X F median filtering degradation: (a) correlation
coefficient versus dimension of filter F° (the dashed and solid lines correspond
to the DCT and the proposed methods, respectively) and (b) degraded
watermarked image for 9 X 9 median filtering.

[1]. FuseMark has significantly superior performance because
of the inherent localization of the watermark at higher resolu-
tion levels. Even when only 2.25% of the image area remains,
the correlation coefficient for the proposed technique is high.

Fig. 11 provides the results for resizing of the marked images.
The images were scaled down in size by a factor of F' using
bilinear interpolation and were resized to their original dimen-
sions before watermark extraction. FuseMark performs compa-
rably to the DCT method for smaller values of F'. The corre-
lation coefficient for both methods is reasonably high even for
F' = 4. For larger values of F', the proposed method out-per-
forms the DCT method. As shown in Fig. 11(b), the resulting
image for F' = 7 shows visible degradation due to the resolu-
tion adjustment, but the watermark can still be detected for the
proposed scheme.
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Results for JPEG Compression
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Fig. 9. Results for JPEG compression: (a) correlation coefficient versus
compression ratio (CR) (the dashed and solid lines correspond to the DCT and
the proposed methods, respectively) and (b) degraded watermarked image for
a CR of 35.

B. Results for Logo Watermarking

We compare the results of our proposed scheme in this paper
to that of [24] previously proposed by the authors. Both tech-
niques are nonblind and have the same embedding procedure.
FuseMark, however, also incorporates minimum variance fusion
for watermark estimation. In [24], simple averaging of the em-
bedded watermark repetitions is employed. FuseMark was not
compared to other logo watermarking schemes due to the in-
compatibility in mark characteristics and host accessibility.

The host image, watermarked image and associated logo
image are shown in Fig. 12(a)—(c), respectively. The logo is
an 8-bit (i.e., 256 color) 32 x 32 grayscale image. To form the
watermark, the DC value is subtracted from the logo image
and the result is scaled between —1 and 1. Watermarking was
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Results for Cropping
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Fig. 10. Results for cropping: (a) correlation coefficient versus percent
remaining image area (the dashed and solid lines correspond to the DCT and
the proposed methods, respectively) and (b) cropped image consisting of 2.25
percent of the original image area.

performed using the following parameters: s = 1.0, s = 0.1,
L =4,and B = 75.

Degradations similar to the ones discussed in Section IV-A
were applied. When the watermark was extracted it was scaled,
so that its minimum pixel value was set to black and its
maximum pixel value to white. The watermark estimates for
various distortions are displayed in Figs. 13—16. We provide
representative results for situations in which the watermarked
image was significantly distorted. We do not show the corre-
sponding distorted watermarked images as they are similar to
those provided in Section IV-A for watermark detection. The
weighted watermark extraction produces clearer logo estimates
than simple averaging in all cases. In general the watermark
logos were highly resilient to additive noise and JPEG com-
pression. The results shown in Fig. 15 for JPEG compression
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Results for Image Resizing
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Fig. 11. Results for image resizing: (a) correlation coefficient versus image
resize factor (the dashed and solid lines correspond to the DCT and the proposed
methods, respectively) and (b) image size reduced by a factor of 7.

ratios of 15 and 30 correspond to compressed watermarked
images which exhibit visible blocking artifacts.

V. DISCUSSION

A. Testing and Results

In general, FuseMark performed comparably to or better
than the DCT method for most images and attacks. The use of
the DWT domain inherently makes our design more resilient
to localized spatial and frequency domain distortions including
cropping, resolution reduction and filtering. From experience
with other host images, we find that the proposed method
works better in general for images with highly varying localized
characteristics (i.e., images with both smooth and busy areas).
This is due to the fact that our HV S-based merging rule adapts the

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 6, NO. 1, FEBRUARY 2004

Host Image

Watermarked Image Logo Image

Fig. 12. Results for logo watermarking using the proposed fusion-based
technique: (a) host image, (b) watermarked image, and (c) embedded 32 x 32
256 grayscale logo.

(a)

(0 (d)

Fig. 13. Results of logo watermarking for additive noise: (a) 30 dB SNR,
extraction by averaging, (b) 30 dB, SNR, extraction by optimal weighting,
(c) 20 dB SNR, extraction by averaging, and (d) 20 dB, SNR, extraction by
optimal weighting.

watermark signal strength to the local masking characteristics of
the hostimage. Thus, a higher energy signal can be imperceptibly
embedded within many regions of the signal. The proposed
method also works better than the DCT technique for images
with an overall high variance as demonstrated in Section IV-B
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(b)

(c) (d)

Fig. 14. Results of logo watermarking for median filtering: (a) 3 X 3 median
filtering, extraction by averaging, (b) 3 X 3 median filtering, extraction by
optimal weighting, (¢) 5 X 5 median filtering, extraction by averaging, and
(d) 5 x 5 median filtering, SNR, extraction by optimal weighting.

(@ (b)

(c) (d)

Fig. 15. Results of logo watermarking for JPEG compression: (a) CR of 15,
extraction by averaging, (b) CR of 15, extraction by optimal weighting, (c) CR of
30, extraction by averaging, and (d) CR of 30, extraction by optimal weighting.

with the tiger host image. The DCT method performs better than
FuseMark for mean and median filtering of smooth images. This
is because although FuseMark embeds an overall higher energy
signal, the DCT method can embed the watermark in lower fre-
quency components than FuseMark while maintaining imper-
ceptibility of the mark. One way in which to improve FuseMark
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(c) (d)

Fig. 16. Results of logo watermarking for cropping: (a) 56% of image area
remaining, extraction by averaging, (b) 56% of image area remaining, extraction
by optimal weighting, (¢) 25% of image area remaining, extraction by averaging,
and (d) 25% of image area remaining, extraction by optimal weighting.

would be to increase the value of the maximum decomposition
level L. However, the chance of watermark visibility increases.

In addition to the results demonstrated in Section IV-B for
logo marking, other types of logos such as a low resolution
32 x 32 image of Lena were embedded in the host image.
Generally, logos in contrast with statistical watermarks can
be embedded with much stronger energy while remaining
imperceptible within the host signal. We found that the larger the
size of the logo, the less resistance the technique had to cropping.
This is due to the fact that the watermark is less spatially
localized within the image due to its larger size. Experimentally,
we found that the embedded logo undergoes a proportional
level of perceptible distortion as the watermarked image. This
is an inherent advantage to our fusion-based watermarking
scheme since an attacker would have to essentially destroy
the watermarked image to guarantee that the logo watermark
was sufficiently degraded. The use of weighted watermark
extraction significantly improved the quality of the extracted
watermark for AWGN degradation, mild filtering and JPEG
compression.

Although the distortions that we have tested are not exhaus-
tive, they provide an indication of the potential of the proposed
technique and its relative performance with the DCT method.
Combinations of attacks were simulated as well. In most cases,
the quality of the host signal degraded more quickly than the
watermark detection capability. This can be attributed to the
weighted watermark extraction technique that works well on
general distortions as well as knowledge of the host signal which
allows for a sophisticated embedding procedures using salience
measures. The DCT method works better than the proposed
technique for combined distortions which only target high and
middle frequency components.
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B. Geometric Distortions

Our watermark degradation model used for extraction does
not account for de-synchronization attacks. Since FuseMark is
not blind, one way to overcome this obstacle is to try and register
the manipulated watermarked image with the host signal. For ar-
bitrary nonlinear distortions this procedure may be tricky. How-
ever, the authors believe that for affine-like transformations, the
accessibility to the host is a great advantage.

Image fusion strategies applied in this work are employed for
both data embedding and extraction. Since most fusion algo-
rithms assume that registration of images takes place prior to the
merging procedure, it is not surprising that proper registration
is required in our scheme for accurate watermark estimation.

C. False Detection Statistics

The analytic results presented in Section III serve to highlight
a limitation of detection strategies that are directly dependent
on the watermark to be detected. To decrease the probability
of false negative detection, the search space of the watermark is
increased and a decision is made based on the “best” correlation.
Unfortunately, it is often the case that if you look too hard, you
may eventually see what you are searching for (even if it is not
there!).

Our proposed watermark estimation, which is fundamentally
a form of minimum variance fusion, increases robustness
without sacrificing false positive detection. The key idea is
that detection is made more robust by employing a measure
of watermark reliability that is independent of the watermark
being tested for. In our case, the host image is employed to
get a measure of the “noise.” In cases, that the scheme is
blind, a reference watermark may be employed as discussed
by the authors in [31]-[33]. The fundamental insight is that in
a watermark extraction scheme, the false negative detection
rate must be optimized with respect to an unbiased quantity
independent of the mark.

D. Security

We focus on signal processing aspects to improve robustness
of logo watermarking. This technology, we hope, can be useful
for an overall audit, tagging or copy protection system that ac-
counts for protocol attacks [34], blind watermark estimation and
removal, and collusion. Our feeling is that modifications of the
algorithm will help solve at least some of these problems.

For instance, the embedding strategy may be made hostimage
dependent through the use of one-way cryptographic functions
as discussed in [34]. In this way, it is difficult to create a coun-
terfeit “original” host image. One preliminary idea that will be
the focus of future work is to relate the embedding direction to a
hashed version of the host. That is, we take the hash of the host
to produce a two-dimensional sequence h(m,n) € {0,1} for
m=1,2,..., Ny, n = 1,2,..., Ny,,. We can then replace
(3) with

f;ljii(mv ’I’L) = ;,l(mv n) + (2h(m/ ’I’L) - 1) Si,lwo,l(m-/ ’I’L)
(24)
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Given the resulting hash is one-way, producing a fake host such
that the embedding follows (24) will be difficult.

Existing logo schemes gain security against mark access by
scrambling the watermark using a secret key [15], [16]. The
advantage in this paper of not scrambling the mark is that the
perceptual characteristics of the logo may be exploited to hide it
more effectively. In FuseMark, the same detail components are
embedded in the corresponding details of the host, so that their
characteristics match up; this helps with both imperceptibility
and robustness. Attacks that attempt to maintain the perceptual
quality of the watermarked image are forced in some sense to do
the same for the mark. Scrambling the logo before embedding
or applying a noninvertible embedding rule such as in ((24) will
also scramble the perceptual characteristics of the mark. Hence,
there appears to be an underlying tradeoff between security and
obscurity.4

E. Logo Watermarks for Intellectual Property Disputes

As mentioned in the introduction, FuseMark is motivated,
in part, by the assertion that a logo watermark may be more
understandable to nontechnical arbitrators than statistical wa-
termarks for supporting infringement claims. There may be an
analogy between our use of statistical watermarks versus water-
mark logos, and fingerprints versus DNA evidence in jury-based
court cases. In the latter situation, DNA evidence is adopted with
much more reliability than fingerprints which brings about the
natural question: are statistical watermarks, therefore, more re-
liable than logos?

Our practical experience with both statistical and logo wa-
termarking leads us to believe that although there is a stronger
mathematical basis for watermark detection, there is not yet
a clear practical advantage of using detection strategies over
logos. DNA evidence has a much stronger scientific basis than
fingerprint analysis, in part, because removing or modifying
DNA is not possible for nonspecialists. However, watermark
detection analysis heavily lies on statistical modeling which is
not yet certain to be significantly more accurate than those em-
ployed for logo watermarking. However, we would like to em-
phasize that, overall, the success of using logo watermarks as
supporting evidence in disputes is dependent, in part, on the
ability of individuals to distinguish between logos which is still
an open research problem to our knowledge.

FE. Grayscale Versus Binary Logos

The fundamental advantage that we exploit in this work is
based on the characterisitics of grayscale logos that are more
easily masked by natural images, and, hence, can be more
strongly and judiciously embedded in the host for more reliable
extraction. Masking theory from the area of human factors
[35] demonstrates that the human perception system does
not perceive as well signals that are “similar” to one another.
Hence, we assert that using our basic structure for embedding,
there is more success in hiding higher energy grayscale logos
than binary logos in a host that is a natural image; the spectrum
of the grayscale logo and host will be somewhat matched.

4By obscurity we mean data hiding capability.
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VI. CONCLUSIONS

We have investigated the use of image fusion principles
for the problem of robust logo watermarking; an HVS model
has been incorporated to determine salient components of
the image in which to embed the watermark. The watermark
extraction process, that may also be viewed as a logo image
refusion process, involves assessing signal attacks and appro-
priately weighting and recombining the embedded watermark
components to maximize SNR. This strategy of weighted wa-
termark extraction may also be applied to watermark detection
algorithms in order to decrease false negative detection without
increasing false positive rate.

FuseMark, in its present form, demonstrates some perfor-
mance advantages of borrowing image fusion tool-sets for the
problem of watermarking. Several limitations must, however,
be overcome for the method to be useful for practical applica-
tion. These include making the watermark recoverable for blind
detection, and automating the process of determining the max-
imum overall watermark energy. Future work will address ap-
plying fusion principles for audio signals as well.
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