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Abstract—n this paper, we present a novel blind deconvolution majority of existing linear image restoration techniques are
technique for the restoration of linearly degraded images without not applicable for solving this type of problem. The process
explicit knowledge of either the original image or the point spread of simultaneously estimating the PSF (or its inverse) and

function. The technique applies to situations in which the scene tori K . . il inf fi
consists of a finite support object against a uniformly black, grey, restoring an unknown image using partial or no information

or white background. This occurs in certain types of astronomical about the imaging system is knownlaléd image restoration
imaging, medical imaging, and one-dimensional (1-D) gamma For the linear degradation model of (1), where the noise term

ray spectra processing, among others. The only information n(z,y) is neglected, it is specifically referred to &$ind
required are the nonnegativity of the true image and the support deconvolution

size of the original object. The restoration procedure involves h . | ivating f for th f blind
recursive filtering of the blurred image to minimize a convex | Neré exist several motivating factors for the use of blin

cost function. We prove convexity of the cost function, establish deconvolution in image processing applications. In many situa-
sufficient conditions to guarantee a unique solution, and examine tions, it is difficult to accurately measure the degradation using
the performance of the technique in the presence of noise. The cajibration or on-line identification techniques; in addition, it is

new approach is experimentally shown to be more reliable and . . . L
to have faster convergence than existing nonparametric finite costly, dangerous, or physically impossible to obtaipriori

support blind deconvolution methods. For situations in which the Information about the scene to be imaged. For example, in
exact object support is unknown, we propose a novel support- remote sensing and space imaging, fluctuations in the PSF
finding algorithm. are difficult to characterize as a random process, and there
is difficulty in statistically modeling the original image [2].

|. INTRODUCTION In addition, the use of adaptive optics systems are often too
expensive for some observation facilities, and the potential
?or phase error exists with cheaper partially compensating
systems. Thus, post processing such as blind deconvolution

N MANY imaging applications, the degradation of the tru
image can be modeled as

g(z,y) = h(z,y) * f(z,y) +nlz,y) (1) still may be required [3]. It is clear that the development of a
practical blind deconvolution scheme for images would benefit
where many imaging facilities.
(z,y) discrete pixel coordinates of the image frame; In practice, some priori information is required to restore
g(z,y) blurred image; the image successfully. The partial information available is
f(z,y) true image; specific to each imaging application; therefore, many diverse
h(z,y) point spread function (PSF); techniques for blind deconvolution of images have been pro-
n(x,y) additive noise; posed. The challenge is to design a method that exhibits the
* discrete two-dimensional (2-D) linear convolutiormost appropriate compromise among computational complex-
operator. ity, reliability, robustness to noise, and portability for a given

In this model, the observed imagéz, ), true imagef(x,y), application. We provide a brief outline of existing techniques
and noisen(z,%) are coupled linearly; therefore, the probin Section L.
lem of recoveringf(z,y) from g(x,%) is referred to as the The first contribution of this paper is the development of
linear image restoration problemThe existing linear image @ novel blind deconvolution technique for the restoration of
restoration algorithms assume that the PSF is knavmiori linearly degraded images. Explicit knowledge of either the
and attempt to invert it and reduce noise by using varyirjiginal image or point spread function is not required. The
amounts of information about the PSF, true image, and noig@posed technique [4] is relevant to applications in which
statistics [1]. an object of finite extent is imaged against a uniformly
In many situations, however, the PSF is unknown, ardack, grey, or white background. The edges of the object
little can be assumed about the original image. Therefore, thke assumed to be completely or almost completely included
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of the proposed technique over existing methods is thatA similar method models the true image and additive
convergence to the feasible set of solutions is guaranteadise as multivariate Gaussian processes [9], [10]. Maximum-
We discuss the specific problem we address and introduce likelihood (ML) estimates of the PSF parameters and of the
novel blind deconvolution technique in Sections Ill and IVgovariance matrix parameters for the true image and the noise
respectively. A proof of the convexity of the associated coate computed to perform blind deconvolution. Due to the high
function and a discussion of the uniqueness of the solution alegree of nonlinearity, the necessary optimization is difficult
given in Section IV-B and Appendixes A and B. We derivand is conducted using the expectation-maximization (EM)
analytic expressions for the performance of the technique afgorithm. As only second-order statistics are used in the
the presence of noise in Appendix C and propose methodsestimation process, the algorithm applies to the identification
compensating for the undesirable effects of additive noise @fi nonminimum phase PSF’s. The main advantages of the
Section IV-C. technique are that a parametric form of the PSF and its support

The second contribution is the design of a novel supposize are not required for restoration and that the algorithm
finding algorithm for situations in which the size of the originahas low computational complexity. The main obstacle is that
object is unknown. The algorithm is based on the principle @fie EM algorithm may converge to a local optima during the
cross-validation. We provide a discussion of the technique ifaximization process.

Section V. ML EM-based techniques are also used for the blind decon-
The third contribution of this paper is a comparative study @blution of light microscopic images [11]-[13]. The approach
the performance of the proposed technique with other methadges into account the statistical nature of the quantum photon
belonging to the class of nonparametric, finite support blinsmissions. Nonnegativity and bandlimit constraints among
deconvolution methods. The proposed technique is showndiers are imposed on the image and/or PSF. The main
produce more reliable results and to converge faster than ti/antage of the approach is the inherent noise suppression for

other methods for complex grey-scale images. In addition,giersampled images. The major limitation is its computational
is more robust to overestimation of the support size. Sectigpeed.

VI presents simulation results showing the quality of restored Another class of blind deconvolution techniques applies to
images for each method. Even though this paper dealstie restoration of texture images [15]. The techniques are based
particular with 2-D signals, this work applies equally for oneon the minimization of a given cost function, which accounts
dimensional (1-D) applications such as gamma ray specis the probabilistic nature of the true image by making use
processing. of its higher order statistics (HOS). These methods allow
the identification of nonminimum phase PSF's but require
that the true image be represented by a known non-Gaussian
probability distribution.

Most of the available blind deconvolution methods for Multichannel techniques are proposed for situations in
images apply to the restoration of grey-scale images. They arkich differently blurred versions of the same image are
grouped into classes based on their assumptions about the frugilable for processing. The most successful methods of this
image and PSF. Early techniques [5] attempt to identify tfetass are theepstrum based high-order statistics algorithms
PSF from the degraded image characteristics before restorafibd], [17]. The approach combines partial, higher order
of the image. A parametric model for the PSF is assumed witkpstral information from two differently blurred frames to
spectral nulls at locations dependent on the specific paramedstimate the true image. The major limitation is that the
values; these parameter values are estimated using the speniesahod is computationally intensive for 2-D signals and is
nulls of the degraded image. Although the method has lamplemented only for 1-D blurs.
computational complexity, it is sensitive to noise and is limited The final class of methods is called nonparametric finite
to situations in which the PSF contains spectral nulls. support restoration techniques. The true image is assumed to

Lane and Bates have shown that any degraded imagepositive and to be comprised of an object with known finite
g formed by convolving several individual componentsupportagainst a uniformly black, grey, or white background.
fi: f2,-++, fn having compact support is automaticallyThe support is defined as the smallest rectangle within which
deconvolvable using zero sheet separation techniques provigesl unblurred object is completely encompassed. Several ap-
its dimension is greater than one [6]. The major drawbaclsgoaches fall under this class [18]-[22], including the proposed
of the algorithm are its sensitivity to noise and its higiblind deconvolution method. Existing techniques suffer from
computational complexity. poor convergence properties and lack reliability. The new

In ARMA parameter estimation methods, the true image iproach is shown to produce more accurate results and to
modeled statistically as a 2-D autoregressive (AR) process aile faster convergence than existing nonparametric finite
the PSF as a 2-D linear system with finite impulse responsgipport blind deconvolution methods.
therefore, the blurred image is represented by a 2-D ARMA A more detailed review of existing blind image deconvolu-
process. Several approaches have been proposed to estif@tetechniques can be found in [23].
the ARMA parameters [7], [8]. The techniques are reasonably
robust to noise but can suffer from ill-convergence and phase
ambiguity and, for practical success, require that a parametricThe objective of blind image deconvolution is to construct
form of the blur be available. a reliable estimate of the imaged scene from a blurred version.

Il. EXISTING BLIND IMAGE DECONVOLUTION TECHNIQUES

I1l. PROBLEM FORMULATION
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Fig. 1. Example of a finite support image. The support of the true image is

different from the support of the blurred image. and support information can extrapolate the high-frequency

components lost when the distortion is bandlimiting [25];
This task is achieved by using partial information about tHberefore, such constraints hold promise in blind image restora-
imaging process as @ferenceto deconvolve the true imagetion.

and PSF from the blurred image. The problem requires computing an image estirrfﬁte Y),
In this paper, we make the following assumptions about tig&ven g(x,y), by minimizing an error metric that incorporates
imaging process, the true image, and the PSF. knowledge of the support and nonnegativity of the true image.

1) The degradation is described by the linear model of (#). Solution that globally minimizes the error metric is termed
2) Imaging is performed such that the object is entiref§ féasiblesolution. The objective is to obtain the true image

encompassed by the observed frame. up to a positive constant multiplier and displacement. That is
3) The background of the image is uniformly grey, black, 2
) ot ’ yorey f(a.y) = Kf(z = Doy = Dy). @

4) The true image is nonnegative, and its support is known
a priori; the support is defined to be the smallest IV. THE NONNEGATIVITY AND SUPPORTCONSTRAINTS
rectangle encompassing the object of interest (Fig. 1 RECURSIVE INVESE FILTERING (NAS-RIF) ALGORITHM

illustrates the region of support).
5) The true image and PSF areeducible the term irre- A. General Overview

ducible refers to a signal that cannot be expressed as thehe proposed method is referred to as the nonnegativity
convolution of two or more component images of finitgnd support constraints recursive inverse filtering (NAS-RIF)
support on the understanding that the delta function iggorithm. The blurred image(x,) is input to a 2-D vari-
not a component image. able coefficient FIR filters(x, y) whose output represents an
6) The inverse of the PSF exists, and both thgstimate of the true image denotgdz,y). This estimate
PSF and its inverse are absolutely summablge passed through a nonlinear constraint process that uses a
(that is, X92_.  Xj2_olh(z,y)|<oo and nonexpansive mapping to project the estimated image into the
Y o EZC’:—oom_l(% y)| <o0). space representing the known characteristics of the true image.
7) In the situation where the background of the imagghe difference between the projected imaﬁeL(a?,y) and
is black, the sum of all PSF pixels is assumed to bf ;) is used as an error signal to update the coefficients of
positive, which occurs in almost all image processingiter u(z,y). Fig. 2 gives an overview of the method.
applications. For the NAS-RIF algorithm, the image is assumed to
Note that Assumption 6 is somewhat restrictive. For examplee nonnegative with known support; therefoﬁrL(x,y)
in microscopy applications, the PSF has a cone-shaped spec¢ggaftesents the projection of the estimated image onto the set
null. This, however, implies that its inverse is not absolutelgf images that are nonnegative with given finite support. This
summable. Hence, the proposed algorithm cannot be usedriguires replacing the negative pixel values within the region
such applications. As we explain in Section 1V, Assumption @f support with zero and pixel values outside the region of
is required to avoid the trivial all-zero solution to the problengupport with the background grey-level valiig;. The cost

which can occur in certain situations. function used in the restoration procedure is defined as
No other constraints are imposed on the PSF. If the actual N N

support of the true image is unknown, we use a novel J =" ez y) = fla, )P 3

support-finding algorithm, which is described in Section V, V()

to determine the extent of the object. The other algorithms of .o
this class require the PSF to be nonnegative and have known

support. ) flz,y) if Jf(a:,y) >0 and(z,y) € Dayp
Constraints of nonnegativity and support have been usedvz(z,y) =14 0 if f(z,y)<0and(z,y) € Doy
in nonblind restoration problems to improve the resolution of Lp if (z,9) € Deup

gamma-ray spectra [24]. Evidence exists that nonnegativity 4)
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Using (4), (3) reduces to method of constraint is computationally inefficient for use with
. the conjugate gradient minimization routine [26], [27]. Thus,
I= 3 Play 1 —sgn(f(z,9)) we use a penalty method and add a third term to the cost
(@.4)€ Dou 2 function. The overall function is represented by
+ Z [fA(-T,y) - LB]2 (5) J= Z fQ(.’L' y) 1- Sgn(f(xvy))
(#:9)€Dsup oy ’ 2
where the definition for sgn) 2
sgripy 2 [ L 720 © + Y ey -LelP+q| Y ulzy) -1
9= -1, if f<o (2.4)CDrey V()

13
is used.f(z,y) = g(z,y) *u(z,y), Dop is the set of all pixels (13)
inside the region of support, anf,,,, is the set of all pixels ~ The cost function consists of three components. The first
outside the region of support. As we can see, for situationspenalizes the negative pixels of the image estimate inside the
which the background is black (i.el,z = 0), the parameter region of support, and the second penalizes the pixels of the
setu(z,y) = 0 for all (z,y) globally minimizesJ. This results image estimate outside the region of support that are not equal
in a restored imagé(a;,y) = 0 for all (z,y), which is the all- to the background color. The first component prevents the
black solution. To avoid this trivial solution, we make use ofixels of the intermediate restorations from becoming highly

Assumption 7 of Section I, which states that the sum of aflegative and can have the effect of increasing convergence of

the PSF coefficients is positive, i.e., the NAS-RIF algorithm. It also has the effect of reducing noise
amplification when additive noise is present in the degraded
> h(z,y) = S, >0. (7)  image. The nonnegative real variablén the third component
V(w,y) of (13) is nonzero only whelk g is zero, i.e., the background
Using the fact that the 2-D discrete-time Fourier transform &PIOr is black. This third component, as discussed, is used
h(z,y) atw = 0 is given by tq (_:onstraln the FIR f||t_er_ coefficients(x, y) away from the
trivial all-zero global minimum.
H(0) = Z h(z,y) (8) It is shown in Appendix A that the cost function of (13)
Y(z,y) is convex with respect to the FIR filter coefficiedts(x, y)};

therefore, convergence of the algorithm to the global minimum

is possible using a variety of numerical optimization methods.
H(0) =S, >0. (9) The conjugate gradient minimization routine is used for the

minimization of J because its speed of convergence is, in
Taking the reciprocal of both sides and lettig,(z,y) and general, much faster than other descent methods. One of the
Hinv(w) be the spatial and Fourier transform functions of thggvantages of this routine is that convergence in a finite

we can deduce that

ideal inverse ofh(z,y), respectively, we see that number of iterations is guaranteed when a quadratic cost
1 1 function is used and exact arithmetic is assumed. Even for
Hiny(0) = m = S, (10) nonquadratic costs, the method shows considerably increased
' convergence speed relative to the steepest descent method
or, effectively [27]. The algorithm is based on the premise that information
1 about the curvature of at each iteration can accelerate the
Z hiny (2, y) = S > 0. (1) minimization process. The NAS-RIF algorithm is summarized
V(z.y) ' in Table I.

Thus, we can deduce that the sum of the pixels of the inverse .
PSF is also positive. We can use this fact to constrain tBe Convergence Properties

parametergu(z,y)} from the trivial all-zero solution. This section addresses the convergence and uniqueness

Since our goal is to obtain a positive scaled version of ﬂiﬁ‘operties of the NAS-RIF algorithm. The major advantage
ideal imagef(x,y), we can constrain the sum of all the filtefof the algorithm is that it entails the minimization of a convex
coefficientsu(z,y) to be any positive constant to meet thigost function. All other existing nonparametric finite support
objective. In this paper, we choosg = 1 so that we have restoration techniques involve the minimization of nonconvex
the fO”OWing constraint on our FIR filter coefficients: costs and, practica”y, do not guarantee convergence to the

Z w(z,y) = 1. (12) global splution. In Appendix A, we prpvide a formal proof of
’ convexity of the proposed cost function of (13).

Convexity of the cost function implies that does not
In the implementation of the NAS-RIF algorithm, we use theontain local optima. However, it does not necessarily imply
iterative conjugate gradient minimization routine. One optioinat the solution to the problem is unique. It is critical to
for constraining the parameters to fulfill (12) is to normalizéifferentiate between the uniqueness of the global minimum
u at every iteration. Research, however, indicates that tlithe cost function/ and the uniqueness associated with the

V(z,y)
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TABLE |
SuUMMARY OF THE NAS-RIF ALGORITHM

e Definitions:

— uy is the vector of filter coefficients u(x, y) of dimension N, X Nyy in lexicographical order at the
kth iteration.

— ug(z,y) is the filter u(z,y) at kth iteration.

— J( ug) is the cost function of Equation (13) at parameter setting wuk.
— VJ( uy) is the Nyy Ny, x 1 gradient vector of J at .

— [M];,y denotes the zth row and yth column of matrix M

— < -,- > represents the inner product operator.

— || - || is the Eucledian norm.

—~ Dyup is the set of pixels inside the region of support.

— Dyyp is the set of pixels outside the region of support.
e Set initial conditions (k = 0):

FIR filter: uf = [ur(1, 1), -, (Now + 1)/2, (Nyu + 1}/2, .., e (Now, Ngu)] = [0, .-, 1, ..., 0]

tolerance: J > 0 is set.

e At iteration (k): k=0,1,2,...
1) If J{ug) < 6, stop.
2) Calculate the gradient vector of J,
a) Jx (il,‘, y) = uk(zs y) * g(z» y)
b) [VJ( )i - 1)Neu = G
= 2 e )enuu, o (@ VAU (2, 9))9(z — i+ Ly -+ 1) + 23, )y ep,; [ful=,9) — Lolg(z ~
i+Ly—j+1)+2y [Ev(z’y) u(z,y) — 1] where cl(-) is defined as in Equation (43).
3) f k=0, di = —VJ(ug)-
Otherwise,

_ <Vi(u)-VJ(ue,), VI(ug)>
a) Bur= £
b) dix = —VJ(ui) + Bri_1di_1

4) Perform a line minimization such as dlinmin. c in [39], to find #x such that

J(ug + tedi) < J(ug +tdi) fort eR

5) wky1 = uk + tedi

overall blind deconvolution problem. To avoid confusion, wéhe imaging system, ambiguous solutions may result. The
will attempt to contrast these related topics. assumption that the true imagér, y) is irreducible eliminates
We may show intuitively that the solution to the blindmany of these situations.

deconvolution problem is, in general, not unique. For example,The previous discussion also pertains to the NAS-RIF
if f(z,y) is irreducible (i.e.,f(z,y) = fi(z,y) * f2(z,¥) algorithm for noiseless conditions and assuming an infinite
where fi(z, ), fo(x,y) # Ké(z,y)), then g(x,y) can be extent inverse filter. Iffo(x,y) * h(z,y) is invertible, then it
represented as can be shown that,(x,y) = [f2(x,y) * h(z,y)]~" [which
_ results in an image estimafz,y) = fi(x,y)] will globally

9@, y) = Jy) * hzy) minimize J. Similarly, if f; (fy) *)h(a:, y() is )invertible, then

= filwy) * falw,y) * Mz, y). (14) uz(,y) = [fi(z,y) * h(z,y)]~* [which results inf(z,y) =

Deconvolution ofg(z, ) into two components may not nec—fQ(x’y)] V‘lli” also globally minimize.J. In fact., i',{ can be shown
essarily result inf(z,y) and h(z,y); it is possible to obtain that J(_h_ ) =J(u) = J(U2)_= 0. Thus, mlnl_mIZIngJ may
filz,y) andfalz, y)xh(z, y) or fa(z,y) and fi(z, y)xh(z, y). result.m one of several solutions, most of_ vyhlch are ph)_/SlcaIIy
Even if nonnegativity and support information abqft:,y) Meaningless to the problem. The irreducibility assumption can
is known, it is possible to have ambiguous solutions becaugiéccessfully eliminate this problem.
fi(z,y) and fo(x,y) can both be nonnegative and are zero In practice, howeveru(z,y) is of finite extent and must
outside the support of (z,y). This is a limitation of blind approximateh~!(zx,y) closely enough to produce an image
deconvolution. Because little information is available aboestimate “highly similar” to the true image. Even if the
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irreducibility of f(z,y) is imposed, the minimization of section. Appendix C provides a detailed analysis. The expected
with respect to the finite extent filtes{z, ¥) may not result in value of the cost at:* assuming infinite extent coefficients is
a unique solution. The uniquenessudfr, ¥) in this situation

is related to the unimodality of with respect tou. E{J(u (=, 9))}
A distinction between convexity angtrict-senseconvexity - Z (f2(z,y) + 02) <1 - Q<_f($v y)))
is important. A convex function implies that the function does (#,)€ Doup V20
not contain any local optima. However, there can exist a set Flry) _p ,
of points, all of which globally minimize the function. In - Z o L0 (= @)/20
contrast, strict-sense convexity implies that the cost function (2,9)€EDenp Y 2m
is unimodal, that is, it has a unique global minimum. In o o
Appendix A, we prove that/ is convex. Appendix B shows + o Dapll D> D [ (wn,y)l? (16)
that a sufficient condition for/ to be unimodal (i.e., strictly T1=—00 Y1 =—00
convex) is that the pixels of the blurred imagér, y) must \yhere
form N, [Ny, linearly independent vectorg,,, which are oo oo
defined as =02 3 Y WP @)
gz;y :[g(-’f,y) g(.’L’,y—l) g(xvy_2) nETEemT
(& = New + 1,y = Nyu + 1)] (15 E{J(u*(z,y))} bias term resulting from the presence of
where (z,y) € Dsyp, and N, x N, are the dimensions noISe; _
) . . flz,y) true image;
of the FIR filteru(z,y). Experience shows that for practical : . L .
. . N . w*(z,y) desired equalizer setting in the noiseless
images, this condition almost always holds, and the solution to situation:
the proposed algorithm for finite coefficients is almost always ’ —_—
unique. gl();;pll number of elements iByp;
C. Effects of Noise a1 /Oo _e
s) = — e d€. 18
Q) = 7= | e (19)

The effects of noise for the classical linear image restoration
problem have been studied [29]. The analysis is somewhaiThe bias is a function of the true image, the variance of the
more difficult for blind deconvolution as little information isnoisec?2, and the energy of the optimal coefficients. The
known about the imaging process. first two terms on the right-hand side of (16) correspond to
1) lll-Posed Nature of the Blind Deconvolution Problemthe bias of the nonnegativity constraint and the last term to
Deconvolution is an ill-posed problem because small pehe bias of the support constraint. The first two terms imply
turbations of the given data produce large deviations in thieat the effect of noise is small when the raffiox,y)/o is
resulting solution. The particular process of inverse filteringrge for all (x,y) € Dsyp. Noise has less effect if the image
attempts to restore the image by direct-inversion of the PSE;largely positive because the perturbations have less effect
therefore, the problem is ill posed due to the presence af the restoration with respect to the nonnegativity constraint.
additive noise. This follows because the direct inverse of tide bias related to the support constraint is proportional to the
PSF transfer function often has a large magnitude at highriance of the noise?2. For a fixed value of2, we can see
frequencies; therefore, excessive amplification of the noisethat the noise has less effect on the restoration if the variance of
these frequencies results. the inverse of the ideal PSF is small, that is, if the inverse PSF
Although convexity is preserved in the presence of noise lowpass. Practical PSF's are generally lowpass, and their
for the proposed NAS-RIF algorithny2J may lose rank, associated inverses are high pass so that noise amplification is
and thus,/ may lose unimodality due to the perturbations oéxpected in the solution.
g(z,y). The problem is, therefore, formally classified as ill 3) Compensation for Noise AmplificatiorTo avoid exces-
posed [30]. We discuss regularization methods to combat thige noise amplification, regularization of the problem is
ill-posed nature of the problem in Section IV-C3. usually required. Traditional forms of regularization make use
2) Bias Introduced by the Presence of Additive Noisef a smoothness constraint on the true image data [31]; a
The analysis of the effect of noise on the cost functiostabilizing functional can be added to the cost to damp noise
provides insight into the behavior of the NAS-RIF algorithm immplification. Although this would regularize the problem, it
practical situations. Because the cost functibis nonlinear, requires knowledge of the smoothness characteristics and/or
its global minimum in the presence of noisg, . . is difficult noise variance. As the problem is blind, these smoothness
to characterize in terms of its minimum in the noiseless caparameters will have to be estimated through trial and error.
u*. However, if we consider the continuity of with respect Several restorations using different smoothness constraints will
to w, we see that the value of the cost function in noisgave to be generated and evaluated to find the best set of
conditions at the ideal parameter setting is an effective parameters, which will increase computational time.
indicator of the degree of bias introduced in the restored imageRegularization can also take the form of terminating an
We present the results for the case of zero-mean stationdeyative restoration procedure before it converges to the in-
additive white Gaussian noise (AWGN) of variangg in this verse solution. As an iterative restoration process progresses,
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the error due to blurring decreases as the error due to ndieem a “restored” image estimatﬁ}(a:,y) by minimizing the
amplification increases. At some point in the algorithm, thisstimation error with respect tpu(z,y)} as
total error reaches a minimum and the procedure should be

_ ] 2
stopped before convergence. This phenomenon is explained E(S) = Z_[f(a:,y) ~ Lg] (19)
and experimentally investigated in [33]-[36] and has demon- (z.w)€s
strated the effectiveness of premature algorithm termination,jfere f(a: ) = u(z,y) * gla, y).

combating noise amplification. _ , This estimate is validated by calculating the sum of the en-
A drawback of the proposed NAS-RIF algorithm is thakygies off f(x, y)— L) for (x,y) € S; and the negative pixels
the convergence point is not necessarily the best estimgfgnin 5 which is an objective measure of the authenticity of

of the original image in the presence of noise. The iterativg, ;ssumed support. The validation error is given by
implementation of the inverse filter has the advantage that it

can be terminated prior to convergence, resulting in a partially 1 X . )

blurred image, which will often exhibit less noise amplifi-  V(5) :MZ > [file,y) - Ls]

cation. This would require monitoring image estimate at the =1 | (ay)eS:

output of the nonlinear constrairfivz.(x,y) and terminating R —con(f

the process when a “visually optimél" rgsult is achieved. In + Z St (e, y) [MH (20)

most situations, some subjective idea of the variance of the (w,y)es

image is available. Results of this technique are shown intpe support regiors*, which minimizesV (S), is consid-

Section V1. ered to be the optimal support for restoration. In practite,
may be chosen to be any shape, the parameters of which are

V. NOVEL BLIND SUPPORFFINDING ALGORITHM varied to select the most appropriate support region. For the

results presented in this paper, the support is assumed to be

A. Introduction to the Cross-Validation (CV) rectangular with variable dimensions and fixed orientation.

Historically, cross-validation (CV) has been used as
criterion for estimating the optimal regularization paramet
in smoothing problems, but recently, CV has been applied toSince the full cross-validation procedure requirdg
image restoration applications [14], [37]. The principle behindestorations” to assess a selected support, we suggest im-
CV is straightforward. The data is divided into two sets: aplementation of a less computationally demanding approach,
estimation set and a validation set. The estimation set is usghich does not substantially sacrifice the performance of the
to obtain a model or estimate based on a particular paramdtdr procedure. The technique is commonly referred to as the
value or assumption. The validation set is then used to validdweldout method.
the assumption. In this way, many competing parameter valued he validation error may be approximated by computing the
or assumptions may be tested to find the most appropriategitor over only a single deleted set of pixels rather thadAll
is necessary to use as much of the data as possible to ob&&its. This way only a single restoration is required to assess a
a reliable estimate, but it is also desirable to test the estimgigen support. The expression for the new validation error is

(§. Implementation Issues of the CV Approach

on as much of the data that was excluded from the estimation 1 R
i is di inq Vro(S) = Lg)?
process as possible. CV overcomes this dilemma by allowing Ho(S) = 54]] Z [fi(z,y) — LB]
all the data to be used for both functions. (z,y)€S
1 2 1 - sgrfi(z,y)
B. CV Approach of Determining the Object Support Size + W Z ff(% Y) [f
(m,y)€S

For nonblind image restoration applications [37], the data
used for estimation and validation are the given blurred image
pixels. An image estimate is produced based on assumptiovisere the deleted set iS;.
made about the imaging system. The assumption is validatedn general, the CV criterion is difficult to minimize an-
by “reblurring” (convolving) it using the known PSF andalytically, and numerical techniques must be employed to
finding the energy of its deviation from the original blurredletermine the optimal support parameters. We incorporate
image pixels excluded from the estimation process. a search procedure to find the minimum of the, possibly

Because, in blind image restoration, the PSF is unknowmgultimodal, validation error function. Fortunately, simulation
it is impossible to validate an assumption in this way. Onesults show that the validation error is smooth with respect to
method suitable for blind image restoration is to divide ¢éhe support parameters. Any local minima are dominated by large-
priori information (instead of the blurred image pixels) intscale changes in the function. Therefore, the search procedure
estimation and validation sets. We can make use of the faen initially consist of a selecting points on a widely spaced
that we know the image is positive and of finite supporgrid of possible support parameters. The grid is continually
A support regionS is assumed, and the pixels outside thmade finer to pinpoint the precise location of the minimum.
assumed support are randomly chosen to be in ond/of The procedure in algorithmic form for rectangular support is
groups {S1,---,Sx}. All the pixels outsideS, which are provided in Table II. Results shown in Section VI demonstrate
denoted bysS, are minimized except for those in grodgo the reliable performance of the procedure.

(21)
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TABLE I
SUMMARY OF THE BLIND SUPPORFFINDING ALGORITHM

A) Initialize parameters

o Smallest Test Support: (Nem, Nym) = (1, 1)

o Largest Test Support: {Ngpr, Nyar) = (Ngg — 1, Nyg — 1), where the blurred image is of dimensions
Ngg X Nyg.

» Set Search Interval: (AL;,ALy), 1 < ALy < Npg/2,1 < ALy, < Ny, /2 and AL, AL, € Z.
B) At iteration (Lz): Ly = Nym, Nom + ALy, Npm + A2L, ..., Noy
At iteration (Ly): Ly = Nym, Nym + ALy, Nym + A2L,, ..., Nyp
1) Randomly divide the pixels outside the selected support into M groups {Si,...,S8y} of equally
numbered elements.

2) Based on the assumed support S, “restore” the image by using the NAS-RIF algorithm of Table 1,
but using the following definitions for J( ux) and VJ( ug):

J(ue)= Y [felz,y) — Lo where fi(z,y) = ur(z,y) * g(z, ) (55)
(z,y)EE*gl—
and .
(VI )]t -1)Neur = 2 Z Je(@,y)g(z —i+Ly—j+1) (56)
(¢,9)€S-51

3) Calculate the simplified validation error based on the minimizing parameters f*(z,y) of step 2.
1 - 1 22 1 —sgn(f*(z
Vio($) = g 3 [Falen) Lol + g 0 i [JM] 657)
21 (z,¥)€S5, (z\y)es

C) Let (L;, L;) be the rectangular support dimensions that produces the smallest validation error of Equa-
tion (57) from the supports tested so far.

(Nomy Nym) = (L — ALz, Ly — AL)
(Nom, Nym) = (L; + AL, L; + ALy)

D) Reduce (AL;,ALy). If (AL;, ALy) = (0,0), stop. Otherwise, go to Step B).

VI. SIMULATION RESULTS AND COMPARISONS

~ A
F(uy Hy(uy
We provide simulation results of the proposed NAS-RIF e %I;Q%ST%];?E%ER )
algorithm to demonstrate its improved performance over the l—?
existing methods. Three popular methods of the class IFFT FFT
« iterative blind deconvolution algorithm [18], [19]; ~ n
» Lane’s conjugate gradient method [20]; Fdxy) hyx.y)
¢ McCallum’s simulated annealing method [21];
have bee_n implemented for compqrison. We_ b_riefly descr_ibe %Z%STER%‘#?S %i%ii%ﬁff
the technigques here. A more detailed description of the im-
plementation of these algorithms for this study can be found ﬂ:l
in [4] and [30]. k =kt
The iterative blind deconvolution method proposed by Ayers A ]4\ (x3) INITIAL Frfey)
and Dainty [18] is, by far, the most popular method in this class Sdxy) [0 k’y . ESTIMATE ’
of restoration techniques. The basic structure of the algorithm -
is presented in Fig. 3. The image estimate is denoted by EFT @FT
f(z,y), the PSF estimate by(x, ), and the linearly degraded POSE FOURIER
image by g(z,y). The capital letters represent fast Fourier R CONSTRAINTS B
transformed versions of the corresponding signals. Subscripts Fuyv) Hy(uy)

denote the iteration number of the algorithm.

After a random initial guess is made for the image, the
algorithm alternates between the image and Fourier domains,
enforcing known constraints in each. The constraints a&nce the imagef(z,y) and PSFi(z,y) are both assumed
based on information available about the image and PS6.be positive with finite known support, the image domain

Fig. 3. lterative blind deconvolution method.
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constraints are imposed by replacing negative-valued pixetsults in the presence of noise. The major disadvantage is
within the region of support and nonzero pixels outside thtbat convergence to the global minimum of the cost function
region of support with zero valued pixels. The Fourier domais slow.

constraints involve a Wiener-like filtering operation

. Glu, U)F;_l(% ») A. Convergence of the Algorithms

Hy(u,v) = 2 5 Inha/ H 5 (22) Lane’s conjugate gradient algorithm failed to produce mean-
-1 (u, 0)|* + alpha/|Hy—1(u, v)] ingful results for the examples shown in this paper. Three
Fk(u v) G(u, v)Hj_ (u,v) 23) different images were synthetically blurred: two small binary

images of text and a larger more complicated grey-scale image

.. of atoy. The PSF's are referred to by their dimensions and are
The real constantv represents the energy of the addltlY‘nshown in Fig. 4. Figs. 5-8 show the results of the proposed

noise and is determined by prior knowledge of the noisgas R|F algorithm [the iterative blind deconvolution (IBD)

contamination level, if available. The algorithm is run for #nethod] and McCallum’s simulated annealing method. The
specified number of iterations, which is denotdaxiter, or 57 o 91" pSE is a Gaussian PSE commonly found in x-ray

until the estimates begin to converge. The method is pOpu|F’r{aging and astronomy, the3 x 23 PSF is a Gaussian-

for its low computational complexity. The major drawbaclﬁke separable PSF, and 18 x 33 PSF is a nonseparable,

of the method is its lack of reliability. The uniqueness and,nsymmetric PSF that attenuates high-frequency components
convergence properties are, as yet, uncertain. In addition, {ge, greater degree than the other PSF's.

restoration is sensitive to the initial image estimate, and theThe restored images and percentage mean square errors

[ Hp—1 (u, 0)[2 + of |[Frey (u,0) |2

algorithm gften exhib[ts instability. 2(MSE) are displayed. The percentage MSE is defined as
The conjugate gradient method was proposed by Lane [20] .

to alleviate the problems associated with the instability of the Z [af(z,y) — f(z,y)]?

iterative blind deconvolution method. The image and PSF AN A ¥(z,y)

are assumed to be nonnegative with known finite support. MSE(f) = 100 Z F2(z,y) ’ (26)

Essentially, the procedure involves the minimization of the fol- V) ’

lowing cost function using the conjugate gradient optimization

routine: Because any scaled version of the image estimate is desired,
a is chosen such that MSIE) is minimized; specifically,

N ~

J(f(z,y), h(z,v))

= Y P+ Y Byt Y 16w i v(zx;y)f(w,y)f(w,y)
(@ )€r CRNISTE V(u,v) a= ) @27)
_F(u,v)ﬁ(uw”? (24) v(zx:y)f T,y

where vy and -y, represent pixels for which the image and The proposed NAS-RIF algorithm produced good results
PSF estimates violate their known constraints. Although th@d converged for all examples provided in Figs. 5-8. The
algorithm has reasonably low computational complexity angp method also produced comparable results for simple
is fairly robust to noise, it suffers from convergence t@inary images, but convergence was often slower than the
incorrect local minima. The cost is multimodal; therefore, NAS-RIF algorithm. The method became unreliable for more
the minimization routine is often trapped in local minima. Ougomplicated grey-scale images; the IBD method failed to
experience with the algorithm showed that for realistic imagegenverge for the toy image of Fig. 8, even after several
it is difficult to achieve proper convergence. thousand iterations. Its major drawback is that convergence
In contrast, the simulated annealing approach by McCalluig not guaranteed, and instability often results. In addition, no
[21] entails the minimization of the multimodal cost functionspecific termination conditions exist for the method, and the
2 2 . 2 quality of restoration depends on the initial conditions and the
T @ y) b, y) = v(zw:y)[f(x’y)*h(x’y)_g(x’y)] -+ (29) noise parameter, even in noiseless situation§.. o
’ Lane’s conjugate gradient method has definite termination
The image and PSF are assumed to be positive with knowwonditions and does not suffer from instabilities like the
finite support. Using these constraintsﬁrx,y) andﬁ(a:,y), a IBD method. However, it often exhibits convergence to the
simulated annealing procedure is employed for the minimizcal minima of its cost function. Experience shows that for
tion of .J. In simulated annealing, estimates of the cost functianoderate to large size images, selection of initial conditions to
parameters are iteratively varied to globally minimizeThe achieve global convergence is nearly impossible. For the ex-
parameter values are randomly perturbed. If the perturbatiamples presented in this paper, the method failed to converge
reducesJ, then it is accepted; if it increases, then it is to a meaningful solution.
accepted with probability. The probabilityp is reduced as the  McCallum’s simulated annealing method produced compa-
number of iterations increases. In the case of infinite precisicmble results to the NAS-RIF and IBD algorithms for small
and infinitely many iterations, the procedure is guarantebthary images. The major limitation is that its convergence
to reach the global minimum of a multimodal cost functiorspeed is slow, and the computational complexity is impracti-
The restoration algorithm is reliable and provides reasonalaially high great for larger images.
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21x21 PSF 23x23 PSF

33x33 PSF

Fig. 4. Synthetic test blurs used for simulations. The blurs are labeled by their dimensions.

TABLE 1l
CoMPUTATIONAL COMPLEXITY OF VARIOUS BLIND DECONVOLUTION ALGORITHMS FOR IMAGES
Algorithm Total Number of Multiplications | Order per Iteration
for the Example of Figure 5
NAS-RIF 4.8 x 107 NNy Nk
IBD 6.1 x 108 Nylog,(Ny/2)
McCallum’s simulated annealing 1.3 x 1012 N}N,f
B. Computational Complexity restoration for overestimation of support size, which is shown

Table Il provides a comparison of the computational cont? Fig. 9(a), is close to the original image. Underestimation
plexity of the algorithms for the particular example in Fig. ®f support size produces poor results. Although the restoration
and on a per-iteration basis. The second column of Table f¢heme initially seems to converge to the true solution, as
gives the total number of multiplications to achieve restoratigihown in the MSE plot of Fig. 9(d), subsequent iterations
for the UT blurred image in Fig. 5, and the third colummproduce poor results. The other algorithms produce poor
gives the order of the algorithms per iteration. The NAS-RIFesults for underestimation of support size as well. McCallum’s
algorithm required the fewest multiplications to produce theimulated annealing algorithm is robust to overestimation of
restored image for the example in Fig. 5. Omer iteration the support size, but the IBD method and Lane’s conjugate
basis, the computational complexity of the NAS-RIF algorithrgradient algorithm produce poor results even for an overesti-
is proportional to the number of FIR filter coefficientz,y).  mation of support of 10%.

In practice,u(x, y) will be moderately sized so thatitwill not  rig 10 demonstrates the noise amplification that results

constitute a severe computational burden. in the NAS-RIF method as a function of the number of
iterations. Initially, as the number of iterations increases, the

C. Performance Under Nonideal Conditions image is deblurred, as shown in Fig. 10(c). However, after

Fig. 9 shows the results of the NAS-RIF algorithm fopubsequent iterations, the noise is amplified as demonstrated
incorrect support size. The restorations of the “BIR” imagd) Fig. 10(d) and (e). Premature termination is an effective
of true supportl5s x 65 pixels, blurred by the1 x 21 PSF are method of regularizing the problem. The IBD method is less
shown assuming image supportsigfx 67 and 13 x 63. The susceptible to noise because of the Wiener-like filter that is
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Fig. 6. Results for the BIR image degraded by th& x 23 PSF un-
80 der ideal conditions. (a) Original image. (b) Degraded image using the
w 23 x 23 PSF under noiseless conditions. (c), (d) NAS-RIF restoration using
2 60 6 = 1.00 and (Nyy, Nyo) = (5,5). (e), (f) Best IBD restoration using
2 40 a = 0.0001, Maxlter = 2500.
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Fig. 5. Results for the UT image degraded by2a x 23 PSF under = 50
ideal conditions. (a) Original image. (b) Degraded image using the B
23 x 23 PSF under noiseless conditions. (c), (d) NAS-RIF restoration using 0
6 = 0.0138 and (Nyu. Nyo) = (5,5). (), (f) Best IBD restoration using 0 1ooo 2(1)1(23%:‘3'220 4000
a = 0.001, MaxIter = 500. (g), (h) Simulated annealing restoration using
To = J/10. (e) ®

Fig. 7. Results for the BIR image degraded by the x 51 PSF un-

neorported in th fequency domain However, i producds S0 0 N i i g
poor results as shown in Fig. 10(g) because it fails to converge- 1.20 and (V... N,.) = (5,5). (), (f) Best IBD restoration using
to a solution for the more complicated grey-scale toy imagey = 0.0001, MazIter = 5000.

The performance of the NAS-RIF algorithm for real image
data is demonstrated in Fig. 11. The real degraded imatpe NAS-RIF algorithm. In contrast, the IBD method failed
was prepared by STScl and can be found in tlssift- to converge to a solution. Several different random initial
ware/stsdas/testdata/restore/data/jupiter estimates were tested, but none converged to a meaningful
directory at thestsci.edu ftp site. Fig. 11(a) shows the solution. The results presented here use the blurred image as
original degraded Hubble data. The NAS-RIF restoraticen initial estimate for the image and a randomly generated
assuming a support of16 x 432 after eight iterations is image as an initial estimate for the blur. Fig. 11(d) shows
provided in Fig. 11(b). Because of the additive noise presethe IBD restoration result, which produced the minimum
in the data, premature termination based on visual inspectiemergy deviation from the known nonnegativity and support
was employed in the NAS-RIF algorithm. Fig. 11(c) showsonstraints. This result occurred at the second iteration of
the normalized (per pixel) cost function for each iteration dhe IBD algorithm. This result is visually almost identical
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Fig. 8. Results for the toy image degraded by2h x 21 PSF under & 60 H ! el A
ideal conditions. (a) Original image. (b) Degraded image using the 50
21 x 21 PSF under noiseless conditions. (c), (d) NAS-RIF restoration using 3 40
6 = 0.371 and (Nzu, Nyu) = (5,5). (e), (f) Best IBD restoration using 20
a = 0.0001, MazIter = 3700.
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Fig. 10. Results for the toy image degraded by 2lex 21 PSF at BSNR

of 40 dB. (a) Original image. (b) Degraded image using 2iex 21 PSF
and a BSNR of 40 dB. (c) NAS-RIF restoration usifWz ., Ny«) = (5,5)
after nine iterations. (d) NAS-RIF restoration after 23 iterations. (e) NAS-RIF
restoration after 74 iterations. (f) MSE plot for NAS-RIF restoration. (g)
Best IBD estimate usinge = 0.001, Maalter = 5000. (h) MSE for IBD
restoration.

BLIND IHMASE

RESTORATION

(b)

to the original blurred image. The normalized (per pixel)

100 100 energy function for each iteration is shown in Fig. 11(e). In
80 80 contrast to the NAS-RIF algorithm, the IBD method is not
t 60 & 60 well behaved as the iterations progress. Different values of
§ 40 2 0 the noise parameter were tested, but each one produced the

20 20 results similar to the one presented.
00 50 100 150 00 100 200 300
Iteration lteration VII. CONCLUSIONS
(©) (d) A novel blind deconvolution scheme for the class of non-

Fig. 9. Results for incorrect estimation of support size for the BIR image (&arametrlc finite support restoration methods is developed.

true suppori 5 x 65) degraded by th@1 x 21 PSF under noiseless conditions.It has clear advantages over existing techniques of its class
(), (c) NAS-RIF restoration using = 1.02 and (N.«, Nyo) = (5.5)  because convergence to the feasible set of solutions is guaran-
(support is overestimated to bE’ x 67). (b), (d) NAS-RIF restoration . L. .

using 8 = 1.02 and (New, Nyu) = (5,5) (support is underestimated to (€€d- The convexity of.the propo;ed cost function is estaph_shed
be 13 x 63). analytically. For situations in which the support of the original



KUNDUR AND HATZINAKOS: NOVEL BLIND DECONVOLUTION SCHEME FOR IMAGE RESTORATION 387

We break the cost functiod into three components, which
are denoted/y, J2, and.Js. We see from Theorem A.1 that we
can prove the convexity of with respect ta: by proving the
individual convexities of each component &f Our analysis
first establishes the convexities & and J; and then tackles
the more difficult problem of proving the convexity df.

k)

A.1. Proof of Convexity of Support Constraint Cost Function

é 3 In this section, we establish the convexity of the component
525 of J resulting from the support constraint on the image
B g estimate. The function is given by
o
=t ; 2
3 15 Jo= > [f(z,y) - Lg] (30)
g (#,9)€Dsup
2 05 5 7 5 5 Wh_eref(a:,y) = g_(a:,y)*u(a:,y). It is apparent from (30) that

lteration Jo is quadratic with respect to. It, therefore, follows that/,

(b) (c) is convex [28].
Similarly, if we consider the component function
§ 60 2
D
T 40 Js=| Y ulw,y) -1 31)
‘m V(z,y)
E 20
z we note that/; is also quadratic with respect tpand is thus
500 1000 1500 2000 2500 also convex [28].
lteration
(d) ©] A.2. Proof of Convexity of the Nonnegativity

Fig. 11. Results for the Hubble space telescope image of Jupiter. (a) gonstraint Cost Function

graded image. (b) NAS-RIF restoration usi(W.., Ny.) = (31,31) after . . . . .
eight iterations. (c) Normalized cost per iteration for the NAS-RIF restoration. [N this section, we establish the convexity of the first com-

(d) Best IBD estimate usinge = 0.001, MaxIter = 2500. (e) Error ponent of.J, which results from the nonnegativity constraint

deviation from known constraints per iteration for the IBD method. on the image estimate. The function is given by
image is unknown, a novel support-finding algorithm based on N 1 —sen(f
S gu(f(z,y))
cross validation is presented. A= Y fy — s |- (2
Simulation results of the proposed NAS-RIF method have (7,y)€Dsup

demonstrated the algorithm’s improved speed of CONVErgenge «iablish the convexity of,, we use the following defi-
over the existing techniques, its superior convergence propgt: .\ and theorem from [28].

ties, and its lower computational complexity. Simulations of pafinition A.2 (Monotone Function)The mapping.7:RY
the blind support-finding algorithm show its potential for blind , g~ is said to be monotone oR™ when. for allw and
image restoration applications. o in RY

APPENDIX A (T(u) =T ), u—u') >0 (33)
PROOF OF CONVEXITY
To prove the convexity of/, the following definition and
theorem are used [28].
Definition A.1 (Convex Function)A function J:RY — R
is said to be convex when, for gll, u’) € RY x RY and all
€ (0,1), there holds

J(ouw+ (1 - o)) < aJ(u)+ (1 — a)J (). (28)

where (-, -) represents the inner product operation
Theorem A.2:Let J be a function differentiable oiR” .

Then, J is convex onRY if and only if its gradientV.J is

monotone onRY.

It is easy to see that the derivative df with respect to

f(z,y) is given by

. . .
We denote the class of such functiofisnvR?. & =2f(x,y) [1 - sgr(f(a:,y))] _ L m)olf(a,y)
Theorem A.1:Let Jy, -+ Jm, be inConvRYN ¢y, - -+t be Of(z,y) 2 2
positive numbers, and assume that there is a point where all = f(z,y)[1 = sgr(f (=, )]
the J,’s are finite. Then, the function ; ;
g g =2f(z, y)us(~f(z,v)) (34)
A
T2t (29) if (2,y) € D.yp and is O otherwise. The functiof(-) is the
i=l1 Dirac delta function (distribution), and;(-) represents the

is in ConvR™. unit step function, which should not be confused with the FIR
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filter u(z,y). The gradient of/; with respect to{ f(z,y)} is Theorem B.1:Let J be twice differentiable on an open

given by convex sef? C RY. Then, we have the following.
. . . 1) J is convex onQ if and only if V2J(uo) is positive
V() =20/ (1, Dus(=f(1,1)) F(1,2)us(—f(1,2)) semidefinite for allug € .

(N, Napy Ny p)us(—f(Nop, Ny )P (35) 2) If V2J(up) is positive definite for alkg € Q, thenJ
is strictly convex onfl.
where N,y x N, are the dimensions of the image estimaterom Theorem B.1, we see thd is unimodal if its Hessian
f(z,y). Computing the gradient inner product (GIP) V2], is positive definite (i.e.V2.J; > 0). Since.J; is convex,
it follows from Theorem B.1 tha¥2.J, is positive semidefinite
GIP(f. /') 2 (VAH) = VAF), - f)  (36) (e, V2] > 0).

It is shown in [40] the Hessian matrix g can be written as

where f, f' € RN=rNus | we obtain

Vih=2 ) gngi, (41)
GIP(f, /Y= > din(f(z,),f(z,y) (37 (®4)€Dauy
] Diup A
(@€ Wheregfy = [g(-’lf, y)g(xv y_]-) o g(.’L’—qu—i-]_, y_Nyu+1)]
where A sufficient condition forv2.J, > 0 (i.e., existence of a unique
solution) is that there existV,,N,, linearly independent
gip(f(a:,y),f’(a:,y)) vectors g,y for (z,y) € Dy [40].
_f2 _ 7 12 £
- f (Axvy)U’SA/( (-T,y)) +Af (.’L’ y)U’S( fAE‘/I: )) APPENDlX C
— flz, ) f (2, Pus (= f(2,9)) + us(= (=, 9))]. EFFECT OF NOISE ON THE GLOBAL MINIMUM

(38) This section derives the value of the cost function at the

) . true inverse blur parameter setting for noisy conditions and
It is straightforward to see (39), shown at the bottom of thesqming infinite extent equalizers are available. This value
page. It follows from (37) that gives an indication of the bias introduced in the restored image.
The proposed cost function may be represented as

(V) =Va(f), f-F) =0 (40) ) )
J= > [Pydfey)
gsing Thgorem A.2, we see thdt is convex withArespect to (2,9)EDqup
. Sincef(z,y) = g(x,y) xu(x,y),w is related tof linearly, 2 2
§1 is coﬁféexyv)vith %(esggct t((ix [%]. g ’ + Z_[f (@) = L]
Since J1, J3, and J3 are all convex, it follows from The- (@y)€Dsup
orem A.l thatJ is convex with respect to its parameters 2
{u(1,1), -, u(Now, Nyu) - + [ > u(z,y) - 1] (42)
V(z,y)

APPENDIX B where functioncl(-) is defined as
UNIQUENESS OF THESOLUTION A
1 —sgu(f(=,y))

As shown in Appendix AJ can be broken down into three d(f) = B S— (43)
convex component functiondy, Jo, and Js;. To prove the
unimodality of .J, it is sufficient to prove the unimodality of The image estimat¢(z,y) is given by
any of the component functions. Inspection of the expressions _ * _ i 44
for J, and .J; suggests that neither component is unimodal. fw.9) = g(a9) x ulw,9) = f(o,9) + i) (44)
For example, assuming that the pixels of the blurred image avbere

nonnegative (which is usually the case for intensity images), (1) A i y) + n(z,y)
anyu(z,y) that fulfills the constraints thaty, ) u(z,y) = 1 *‘{x’y ; g\BY) T Y
and u(z,y) > 0 for all (x,y) globally minimizes./; and flz,y) = gz, y) *ulz,y)
Js. Therefore, to find sufficient conditions to ensure the Az, ) A n(z, ) * u(z, y) (45)
unimodality of J, we find conditions to ensure the unimodality ’
of J,. We use the following theorem [28]: andn(z,y) is the additive noise.
0 it f(z,9), f(z,y) 20
. 5 F2 f/ >0 if f(z,y)>0,f (z,y)<0
7 f z, 7f/ z, — f (.’L’ y) A( y)fA(-I,y) - AR = Y J ) (39)
S0 P =0 o ) faa Plag) 20 i ) <0, () 2 0
(f(a,9) = f'(@,9)? 2 0 it f(z,y), f'(z,y) <0
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The cost function can be written in terms $fz,) and

n(x,y) as
2.

(@) €Dsup

[el(f(, ) + iz, )]

+ > [Py +2f (@ y)iley) + 7% (2, y)
(2,9)€Dsup

- 2LBf($7y) - 2LBﬁ($7y) + L?B]

| D uley) -1

V(z,y)

J = [F2 (2, y) + 2f (2, )i, y) + 2P (2, )]

(46)

Assuming the additive noise is stationary zero-mean aB@causeE
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+ Y Pwy) +2f (@ y) E{ie, v)}
(,9)€Deup
+ E{7*(z,y)}

—2Lgf(z,y) — 2LpE{i(z,y)} + LE]
Y [P+

(#,Y)€Dsup
_f(xv y) ) )
(11— o ZARY)
a-a( =z
_ O—ff/xé—f) e—fz(alc,y)/ch2 + Z— 0_2
(#,4) € Dsup
(52)

{(z,y)} = 0 and f(z,y) is equal toLp for

Gaussian, the following expectations are calculated. The teym ye D
’ sup-+

pn(n) represents the probability density function (pdf) of th
noise. Sincew(x, y) is zero-mean and Gaussiait;z, ). which

Therefore, the bias of the cost function due to zero-mean
AWGN is given by

is a filtered version of(x, y), is also zero-mean and Gaussian

with variance

0_2

Ry (z2 —x1,y2 — yy)ulzy, y1)u(z2, y2)
V(z1,y1) V(z2,y2)

(47)

where R,,(x,y) is the spatial autocorrelation ef(x,y). We
find that

E{d(s +n)} = /

—0

1

oo

c(s+n)py(n) dn

—s
.2 2

/ e /20 dn

-0

-5
S
E{ncl(s+n)} = / ncl(s + n)pn(n) dn
= \;%6_52/202 (49)
E{n*cl(s+n)} = /00 n2cl(s +n)pn(n) dn
_ 8_0 —52/202 2 _ —S
e ime( )
(50)
where
a L ™ e
a2 = [ e (51)

Using these results, the expectation of the cost in the presen[C(]e

of noise at the true inverse PSF is evaluated. It should
be noted thatf(z,y) = v*(z,y) * §(z,y) = f(z,y), and
Y@t (z,y) = 1if v # 0 (the situation of a black
background).

E{J(w)} =[f*(z,y) + 2f (z,y) E{iz, y)cl(f(z,y)

+i(a,y)} + B{a2(z, y)el(f(z,y)
+ 7z, y))]

E{J(u"(x,y))}

= 2 (f2<$vy>+02><1—52<#>>
(#,4)€Dsup o
=Y AU ey
(J},y)EDS“p \/%

(53)

where || Dsyp|| represents the number of elementsig,,y,.
For the case that(x, y) is zero-mean additive white Gaussian
noise (AWGN) with variancer?

{#?(2,)} = E{[n(z,y) * u(z, )"}

oo oo
2
n
1=

—X Y1

o’ =F
=0 [w* (21, y1)]°. (54)

— o0
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