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Abstract—In this paper, we present a novel blind deconvolution
technique for the restoration of linearly degraded images without
explicit knowledge of either the original image or the point spread
function. The technique applies to situations in which the scene
consists of a finite support object against a uniformly black, grey,
or white background. This occurs in certain types of astronomical
imaging, medical imaging, and one-dimensional (1-D) gamma
ray spectra processing, among others. The only information
required are the nonnegativity of the true image and the support
size of the original object. The restoration procedure involves
recursive filtering of the blurred image to minimize a convex
cost function. We prove convexity of the cost function, establish
sufficient conditions to guarantee a unique solution, and examine
the performance of the technique in the presence of noise. The
new approach is experimentally shown to be more reliable and
to have faster convergence than existing nonparametric finite
support blind deconvolution methods. For situations in which the
exact object support is unknown, we propose a novel support-
finding algorithm.

I. INTRODUCTION

I N MANY imaging applications, the degradation of the true
image can be modeled as

(1)

where

discrete pixel coordinates of the image frame;
blurred image;
true image;
point spread function (PSF);
additive noise;
discrete two-dimensional (2-D) linear convolution
operator.

In this model, the observed image true image
and noise are coupled linearly; therefore, the prob-
lem of recovering from is referred to as the
linear image restoration problem. The existing linear image
restoration algorithms assume that the PSF is knowna priori
and attempt to invert it and reduce noise by using varying
amounts of information about the PSF, true image, and noise
statistics [1].

In many situations, however, the PSF is unknown, and
little can be assumed about the original image. Therefore, the
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majority of existing linear image restoration techniques are
not applicable for solving this type of problem. The process
of simultaneously estimating the PSF (or its inverse) and
restoring an unknown image using partial or no information
about the imaging system is known asblind image restoration.
For the linear degradation model of (1), where the noise term

is neglected, it is specifically referred to asblind
deconvolution.

There exist several motivating factors for the use of blind
deconvolution in image processing applications. In many situa-
tions, it is difficult to accurately measure the degradation using
calibration or on-line identification techniques; in addition, it is
costly, dangerous, or physically impossible to obtaina priori
information about the scene to be imaged. For example, in
remote sensing and space imaging, fluctuations in the PSF
are difficult to characterize as a random process, and there
is difficulty in statistically modeling the original image [2].
In addition, the use of adaptive optics systems are often too
expensive for some observation facilities, and the potential
for phase error exists with cheaper partially compensating
systems. Thus, post processing such as blind deconvolution
still may be required [3]. It is clear that the development of a
practical blind deconvolution scheme for images would benefit
many imaging facilities.

In practice, somea priori information is required to restore
the image successfully. The partial information available is
specific to each imaging application; therefore, many diverse
techniques for blind deconvolution of images have been pro-
posed. The challenge is to design a method that exhibits the
most appropriate compromise among computational complex-
ity, reliability, robustness to noise, and portability for a given
application. We provide a brief outline of existing techniques
in Section II.

The first contribution of this paper is the development of
a novel blind deconvolution technique for the restoration of
linearly degraded images. Explicit knowledge of either the
original image or point spread function is not required. The
proposed technique [4] is relevant to applications in which
an object of finite extent is imaged against a uniformly
black, grey, or white background. The edges of the object
are assumed to be completely or almost completely included
within the observed frame. This often occurs in some types
of astronomical imaging, medical imaging, among others. The
only information required for restoration is the nonnegativity
of the true image and support size of the original object. The
restoration procedure involves recursive filtering of the blurred
image to minimize a convex cost function. The advantage
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of the proposed technique over existing methods is that
convergence to the feasible set of solutions is guaranteed.
We discuss the specific problem we address and introduce the
novel blind deconvolution technique in Sections III and IV,
respectively. A proof of the convexity of the associated cost
function and a discussion of the uniqueness of the solution are
given in Section IV-B and Appendixes A and B. We derive
analytic expressions for the performance of the technique in
the presence of noise in Appendix C and propose methods of
compensating for the undesirable effects of additive noise in
Section IV-C.

The second contribution is the design of a novel support-
finding algorithm for situations in which the size of the original
object is unknown. The algorithm is based on the principle of
cross-validation. We provide a discussion of the technique in
Section V.

The third contribution of this paper is a comparative study of
the performance of the proposed technique with other methods
belonging to the class of nonparametric, finite support blind
deconvolution methods. The proposed technique is shown to
produce more reliable results and to converge faster than the
other methods for complex grey-scale images. In addition, it
is more robust to overestimation of the support size. Section
VI presents simulation results showing the quality of restored
images for each method. Even though this paper deals in
particular with 2-D signals, this work applies equally for one-
dimensional (1-D) applications such as gamma ray spectra
processing.

II. EXISTING BLIND IMAGE DECONVOLUTION TECHNIQUES

Most of the available blind deconvolution methods for
images apply to the restoration of grey-scale images. They are
grouped into classes based on their assumptions about the true
image and PSF. Early techniques [5] attempt to identify the
PSF from the degraded image characteristics before restoration
of the image. A parametric model for the PSF is assumed with
spectral nulls at locations dependent on the specific parameter
values; these parameter values are estimated using the spectral
nulls of the degraded image. Although the method has low
computational complexity, it is sensitive to noise and is limited
to situations in which the PSF contains spectral nulls.

Lane and Bates have shown that any degraded image
formed by convolving several individual components

having compact support is automatically
deconvolvable using zero sheet separation techniques provided
its dimension is greater than one [6]. The major drawbacks
of the algorithm are its sensitivity to noise and its high
computational complexity.

In ARMA parameter estimation methods, the true image is
modeled statistically as a 2-D autoregressive (AR) process and
the PSF as a 2-D linear system with finite impulse response;
therefore, the blurred image is represented by a 2-D ARMA
process. Several approaches have been proposed to estimate
the ARMA parameters [7], [8]. The techniques are reasonably
robust to noise but can suffer from ill-convergence and phase
ambiguity and, for practical success, require that a parametric
form of the blur be available.

A similar method models the true image and additive
noise as multivariate Gaussian processes [9], [10]. Maximum-
likelihood (ML) estimates of the PSF parameters and of the
covariance matrix parameters for the true image and the noise
are computed to perform blind deconvolution. Due to the high
degree of nonlinearity, the necessary optimization is difficult
and is conducted using the expectation-maximization (EM)
algorithm. As only second-order statistics are used in the
estimation process, the algorithm applies to the identification
of nonminimum phase PSF’s. The main advantages of the
technique are that a parametric form of the PSF and its support
size are not required for restoration and that the algorithm
has low computational complexity. The main obstacle is that
the EM algorithm may converge to a local optima during the
maximization process.

ML EM-based techniques are also used for the blind decon-
volution of light microscopic images [11]–[13]. The approach
takes into account the statistical nature of the quantum photon
emissions. Nonnegativity and bandlimit constraints among
others are imposed on the image and/or PSF. The main
advantage of the approach is the inherent noise suppression for
oversampled images. The major limitation is its computational
speed.

Another class of blind deconvolution techniques applies to
the restoration of texture images [15]. The techniques are based
on the minimization of a given cost function, which accounts
for the probabilistic nature of the true image by making use
of its higher order statistics (HOS). These methods allow
the identification of nonminimum phase PSF’s but require
that the true image be represented by a known non-Gaussian
probability distribution.

Multichannel techniques are proposed for situations in
which differently blurred versions of the same image are
available for processing. The most successful methods of this
class are thecepstrum based high-order statistics algorithms
[16], [17]. The approach combines partial, higher order
cepstral information from two differently blurred frames to
estimate the true image. The major limitation is that the
method is computationally intensive for 2-D signals and is
implemented only for 1-D blurs.

The final class of methods is called nonparametric finite
support restoration techniques. The true image is assumed to
be positive and to be comprised of an object with known finite
supportagainst a uniformly black, grey, or white background.
The support is defined as the smallest rectangle within which
the unblurred object is completely encompassed. Several ap-
proaches fall under this class [18]–[22], including the proposed
blind deconvolution method. Existing techniques suffer from
poor convergence properties and lack reliability. The new
approach is shown to produce more accurate results and to
have faster convergence than existing nonparametric finite
support blind deconvolution methods.

A more detailed review of existing blind image deconvolu-
tion techniques can be found in [23].

III. PROBLEM FORMULATION

The objective of blind image deconvolution is to construct
a reliable estimate of the imaged scene from a blurred version.
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Fig. 1. Example of a finite support image. The support of the true image is
different from the support of the blurred image.

This task is achieved by using partial information about the
imaging process as areferenceto deconvolve the true image
and PSF from the blurred image.

In this paper, we make the following assumptions about the
imaging process, the true image, and the PSF.

1) The degradation is described by the linear model of (1).
2) Imaging is performed such that the object is entirely

encompassed by the observed frame.
3) The background of the image is uniformly grey, black,

or white.
4) The true image is nonnegative, and its support is known

a priori; the support is defined to be the smallest
rectangle encompassing the object of interest (Fig. 1
illustrates the region of support).

5) The true image and PSF areirreducible; the term irre-
ducible refers to a signal that cannot be expressed as the
convolution of two or more component images of finite
support on the understanding that the delta function is
not a component image.

6) The inverse of the PSF exists, and both the
PSF and its inverse are absolutely summable
(that is, and

7) In the situation where the background of the image
is black, the sum of all PSF pixels is assumed to be
positive, which occurs in almost all image processing
applications.

Note that Assumption 6 is somewhat restrictive. For example,
in microscopy applications, the PSF has a cone-shaped spectral
null. This, however, implies that its inverse is not absolutely
summable. Hence, the proposed algorithm cannot be used for
such applications. As we explain in Section IV, Assumption 7
is required to avoid the trivial all-zero solution to the problem,
which can occur in certain situations.

No other constraints are imposed on the PSF. If the actual
support of the true image is unknown, we use a novel
support-finding algorithm, which is described in Section V,
to determine the extent of the object. The other algorithms of
this class require the PSF to be nonnegative and have known
support.

Constraints of nonnegativity and support have been used
in nonblind restoration problems to improve the resolution of
gamma-ray spectra [24]. Evidence exists that nonnegativity

Fig. 2. Proposed blind image deconvolution method.

and support information can extrapolate the high-frequency
components lost when the distortion is bandlimiting [25];
therefore, such constraints hold promise in blind image restora-
tion.

The problem requires computing an image estimate ,
given , by minimizing an error metric that incorporates
knowledge of the support and nonnegativity of the true image.
A solution that globally minimizes the error metric is termed
a feasiblesolution. The objective is to obtain the true image
up to a positive constant multiplier and displacement. That is

(2)

IV. THE NONNEGATIVITY AND SUPPORTCONSTRAINTS

RECURSIVE INVESE FILTERING (NAS-RIF) ALGORITHM

A. General Overview

The proposed method is referred to as the nonnegativity
and support constraints recursive inverse filtering (NAS-RIF)
algorithm. The blurred image is input to a 2-D vari-
able coefficient FIR filter whose output represents an
estimate of the true image denoted This estimate
is passed through a nonlinear constraint process that uses a
nonexpansive mapping to project the estimated image into the
space representing the known characteristics of the true image.
The difference between the projected image and

is used as an error signal to update the coefficients of
filter Fig. 2 gives an overview of the method.

For the NAS-RIF algorithm, the image is assumed to
be nonnegative with known support; therefore,
represents the projection of the estimated image onto the set
of images that are nonnegative with given finite support. This
requires replacing the negative pixel values within the region
of support with zero and pixel values outside the region of
support with the background grey-level value The cost
function used in the restoration procedure is defined as

(3)

where

if and
if and
if

(4)
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Using (4), (3) reduces to

sgn

(5)

where the definition for sgn

sgn
if
if

(6)

is used, is the set of all pixels
inside the region of support, and is the set of all pixels
outside the region of support. As we can see, for situations in
which the background is black (i.e., , the parameter
set for all globally minimizes This results
in a restored image for all , which is the all-
black solution. To avoid this trivial solution, we make use of
Assumption 7 of Section III, which states that the sum of all
the PSF coefficients is positive, i.e.,

(7)

Using the fact that the 2-D discrete-time Fourier transform of
at is given by

(8)

we can deduce that

(9)

Taking the reciprocal of both sides and letting and
be the spatial and Fourier transform functions of the

ideal inverse of , respectively, we see that

(10)

or, effectively

(11)

Thus, we can deduce that the sum of the pixels of the inverse
PSF is also positive. We can use this fact to constrain the
parameters from the trivial all-zero solution.

Since our goal is to obtain a positive scaled version of the
ideal image , we can constrain the sum of all the filter
coefficients to be any positive constant to meet this
objective. In this paper, we choose so that we have
the following constraint on our FIR filter coefficients:

(12)

In the implementation of the NAS-RIF algorithm, we use the
iterative conjugate gradient minimization routine. One option
for constraining the parameters to fulfill (12) is to normalize

at every iteration. Research, however, indicates that this

method of constraint is computationally inefficient for use with
the conjugate gradient minimization routine [26], [27]. Thus,
we use a penalty method and add a third term to the cost
function. The overall function is represented by

(13)

The cost function consists of three components. The first
penalizes the negative pixels of the image estimate inside the
region of support, and the second penalizes the pixels of the
image estimate outside the region of support that are not equal
to the background color. The first component prevents the
pixels of the intermediate restorations from becoming highly
negative and can have the effect of increasing convergence of
the NAS-RIF algorithm. It also has the effect of reducing noise
amplification when additive noise is present in the degraded
image. The nonnegative real variablein the third component
of (13) is nonzero only when is zero, i.e., the background
color is black. This third component, as discussed, is used
to constrain the FIR filter coefficients away from the
trivial all-zero global minimum.

It is shown in Appendix A that the cost function of (13)
is convex with respect to the FIR filter coefficients ;
therefore, convergence of the algorithm to the global minimum
is possible using a variety of numerical optimization methods.
The conjugate gradient minimization routine is used for the
minimization of because its speed of convergence is, in
general, much faster than other descent methods. One of the
advantages of this routine is that convergence in a finite
number of iterations is guaranteed when a quadratic cost
function is used and exact arithmetic is assumed. Even for
nonquadratic costs, the method shows considerably increased
convergence speed relative to the steepest descent method
[27]. The algorithm is based on the premise that information
about the curvature of at each iteration can accelerate the
minimization process. The NAS-RIF algorithm is summarized
in Table I.

B. Convergence Properties

This section addresses the convergence and uniqueness
properties of the NAS-RIF algorithm. The major advantage
of the algorithm is that it entails the minimization of a convex
cost function. All other existing nonparametric finite support
restoration techniques involve the minimization of nonconvex
costs and, practically, do not guarantee convergence to the
global solution. In Appendix A, we provide a formal proof of
convexity of the proposed cost function of (13).

Convexity of the cost function implies that does not
contain local optima. However, it does not necessarily imply
that the solution to the problem is unique. It is critical to
differentiate between the uniqueness of the global minimum
of the cost function and the uniqueness associated with the
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TABLE I
SUMMARY OF THE NAS-RIF ALGORITHM

overall blind deconvolution problem. To avoid confusion, we
will attempt to contrast these related topics.

We may show intuitively that the solution to the blind
deconvolution problem is, in general, not unique. For example,
if is irreducible (i.e.,
where , then can be
represented as

(14)

Deconvolution of into two components may not nec-
essarily result in and ; it is possible to obtain

and or and
Even if nonnegativity and support information about
is known, it is possible to have ambiguous solutions because

and can both be nonnegative and are zero
outside the support of This is a limitation of blind
deconvolution. Because little information is available about

the imaging system, ambiguous solutions may result. The
assumption that the true image is irreducible eliminates
many of these situations.

The previous discussion also pertains to the NAS-RIF
algorithm for noiseless conditions and assuming an infinite
extent inverse filter. If is invertible, then it
can be shown that [which
results in an image estimate ] will globally
minimize Similarly, if is invertible, then

[which results in
] will also globally minimize In fact, it can be shown

that Thus, minimizing may
result in one of several solutions, most of which are physically
meaningless to the problem. The irreducibility assumption can
successfully eliminate this problem.

In practice, however, is of finite extent and must
approximate closely enough to produce an image
estimate “highly similar” to the true image. Even if the



380 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 2, FEBRUARY 1998

irreducibility of is imposed, the minimization of
with respect to the finite extent filter may not result in
a unique solution. The uniqueness of in this situation
is related to the unimodality of with respect to

A distinction between convexity andstrict-senseconvexity
is important. A convex function implies that the function does
not contain any local optima. However, there can exist a set
of points, all of which globally minimize the function. In
contrast, strict-sense convexity implies that the cost function
is unimodal, that is, it has a unique global minimum. In
Appendix A, we prove that is convex. Appendix B shows
that a sufficient condition for to be unimodal (i.e., strictly
convex) is that the pixels of the blurred image must
form linearly independent vectors , which are
defined as

(15)

where , and are the dimensions
of the FIR filter Experience shows that for practical
images, this condition almost always holds, and the solution to
the proposed algorithm for finite coefficients is almost always
unique.

C. Effects of Noise

The effects of noise for the classical linear image restoration
problem have been studied [29]. The analysis is somewhat
more difficult for blind deconvolution as little information is
known about the imaging process.

1) Ill-Posed Nature of the Blind Deconvolution Problem:
Deconvolution is an ill-posed problem because small per-
turbations of the given data produce large deviations in the
resulting solution. The particular process of inverse filtering
attempts to restore the image by direct-inversion of the PSF;
therefore, the problem is ill posed due to the presence of
additive noise. This follows because the direct inverse of the
PSF transfer function often has a large magnitude at high
frequencies; therefore, excessive amplification of the noise at
these frequencies results.

Although convexity is preserved in the presence of noise
for the proposed NAS-RIF algorithm, may lose rank,
and thus, may lose unimodality due to the perturbations of

The problem is, therefore, formally classified as ill
posed [30]. We discuss regularization methods to combat the
ill-posed nature of the problem in Section IV-C3.

2) Bias Introduced by the Presence of Additive Noise:
The analysis of the effect of noise on the cost function
provides insight into the behavior of the NAS-RIF algorithm in
practical situations. Because the cost functionis nonlinear,
its global minimum in the presence of noise is difficult
to characterize in terms of its minimum in the noiseless case

However, if we consider the continuity of with respect
to , we see that the value of the cost function in noisy
conditions at the ideal parameter setting is an effective
indicator of the degree of bias introduced in the restored image.
We present the results for the case of zero-mean stationary
additive white Gaussian noise (AWGN) of variance in this

section. Appendix C provides a detailed analysis. The expected
value of the cost at assuming infinite extent coefficients is

(16)

where

(17)

bias term resulting from the presence of
noise;
true image;
desired equalizer setting in the noiseless
situation;
number of elements in ;

(18)

The bias is a function of the true image, the variance of the
noise , and the energy of the optimal coefficients The
first two terms on the right-hand side of (16) correspond to
the bias of the nonnegativity constraint and the last term to
the bias of the support constraint. The first two terms imply
that the effect of noise is small when the ratio is
large for all Noise has less effect if the image
is largely positive because the perturbations have less effect
on the restoration with respect to the nonnegativity constraint.
The bias related to the support constraint is proportional to the
variance of the noise For a fixed value of , we can see
that the noise has less effect on the restoration if the variance of
the inverse of the ideal PSF is small, that is, if the inverse PSF
is lowpass. Practical PSF’s are generally lowpass, and their
associated inverses are high pass so that noise amplification is
expected in the solution.

3) Compensation for Noise Amplification:To avoid exces-
sive noise amplification, regularization of the problem is
usually required. Traditional forms of regularization make use
of a smoothness constraint on the true image data [31]; a
stabilizing functional can be added to the cost to damp noise
amplification. Although this would regularize the problem, it
requires knowledge of the smoothness characteristics and/or
noise variance. As the problem is blind, these smoothness
parameters will have to be estimated through trial and error.
Several restorations using different smoothness constraints will
have to be generated and evaluated to find the best set of
parameters, which will increase computational time.

Regularization can also take the form of terminating an
iterative restoration procedure before it converges to the in-
verse solution. As an iterative restoration process progresses,
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the error due to blurring decreases as the error due to noise
amplification increases. At some point in the algorithm, this
total error reaches a minimum and the procedure should be
stopped before convergence. This phenomenon is explained
and experimentally investigated in [33]–[36] and has demon-
strated the effectiveness of premature algorithm termination in
combating noise amplification.

A drawback of the proposed NAS-RIF algorithm is that
the convergence point is not necessarily the best estimate
of the original image in the presence of noise. The iterative
implementation of the inverse filter has the advantage that it
can be terminated prior to convergence, resulting in a partially
blurred image, which will often exhibit less noise amplifi-
cation. This would require monitoring image estimate at the
output of the nonlinear constraint and terminating
the process when a “visually optimal” result is achieved. In
most situations, some subjective idea of the variance of the
image is available. Results of this technique are shown in
Section VI.

V. NOVEL BLIND SUPPORT-FINDING ALGORITHM

A. Introduction to the Cross-Validation (CV)

Historically, cross-validation (CV) has been used as a
criterion for estimating the optimal regularization parameter
in smoothing problems, but recently, CV has been applied to
image restoration applications [14], [37]. The principle behind
CV is straightforward. The data is divided into two sets: an
estimation set and a validation set. The estimation set is used
to obtain a model or estimate based on a particular parameter
value or assumption. The validation set is then used to validate
the assumption. In this way, many competing parameter values
or assumptions may be tested to find the most appropriate. It
is necessary to use as much of the data as possible to obtain
a reliable estimate, but it is also desirable to test the estimate
on as much of the data that was excluded from the estimation
process as possible. CV overcomes this dilemma by allowing
all the data to be used for both functions.

B. CV Approach of Determining the Object Support Size

For nonblind image restoration applications [37], the data
used for estimation and validation are the given blurred image
pixels. An image estimate is produced based on assumptions
made about the imaging system. The assumption is validated
by “reblurring” (convolving) it using the known PSF and
finding the energy of its deviation from the original blurred
image pixels excluded from the estimation process.

Because, in blind image restoration, the PSF is unknown,
it is impossible to validate an assumption in this way. One
method suitable for blind image restoration is to divide thea
priori information (instead of the blurred image pixels) into
estimation and validation sets. We can make use of the fact
that we know the image is positive and of finite support.
A support region is assumed, and the pixels outside the
assumed support are randomly chosen to be in one of
groups All the pixels outside , which are
denoted by , are minimized except for those in groupto

form a “restored” image estimate by minimizing the
estimation error with respect to as

(19)

where
This estimate is validated by calculating the sum of the en-

ergies of for and the negative pixels
within , which is an objective measure of the authenticity of
an assumed support. The validation error is given by

(20)

The support region , which minimizes , is consid-
ered to be the optimal support for restoration. In practice,
may be chosen to be any shape, the parameters of which are
varied to select the most appropriate support region. For the
results presented in this paper, the support is assumed to be
rectangular with variable dimensions and fixed orientation.

C. Implementation Issues of the CV Approach

Since the full cross-validation procedure requires
“restorations” to assess a selected support, we suggest im-
plementation of a less computationally demanding approach,
which does not substantially sacrifice the performance of the
full procedure. The technique is commonly referred to as the
holdout method.

The validation error may be approximated by computing the
error over only a single deleted set of pixels rather than all
sets. This way only a single restoration is required to assess a
given support. The expression for the new validation error is

sgn

(21)

where the deleted set is
In general, the CV criterion is difficult to minimize an-

alytically, and numerical techniques must be employed to
determine the optimal support parameters. We incorporate
a search procedure to find the minimum of the, possibly
multimodal, validation error function. Fortunately, simulation
results show that the validation error is smooth with respect to
support parameters. Any local minima are dominated by large-
scale changes in the function. Therefore, the search procedure
can initially consist of a selecting points on a widely spaced
grid of possible support parameters. The grid is continually
made finer to pinpoint the precise location of the minimum.
The procedure in algorithmic form for rectangular support is
provided in Table II. Results shown in Section VI demonstrate
the reliable performance of the procedure.
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TABLE II
SUMMARY OF THE BLIND SUPPORT-FINDING ALGORITHM

VI. SIMULATION RESULTS AND COMPARISONS

We provide simulation results of the proposed NAS-RIF
algorithm to demonstrate its improved performance over the
existing methods. Three popular methods of the class

• iterative blind deconvolution algorithm [18], [19];
• Lane’s conjugate gradient method [20];
• McCallum’s simulated annealing method [21];

have been implemented for comparison. We briefly describe
the techniques here. A more detailed description of the im-
plementation of these algorithms for this study can be found
in [4] and [30].

The iterative blind deconvolution method proposed by Ayers
and Dainty [18] is, by far, the most popular method in this class
of restoration techniques. The basic structure of the algorithm
is presented in Fig. 3. The image estimate is denoted by

, the PSF estimate by , and the linearly degraded
image by The capital letters represent fast Fourier
transformed versions of the corresponding signals. Subscripts
denote the iteration number of the algorithm.

After a random initial guess is made for the image, the
algorithm alternates between the image and Fourier domains,
enforcing known constraints in each. The constraints are
based on information available about the image and PSF.

Fig. 3. Iterative blind deconvolution method.

Since the image and PSF are both assumed
to be positive with finite known support, the image domain
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constraints are imposed by replacing negative-valued pixels
within the region of support and nonzero pixels outside the
region of support with zero valued pixels. The Fourier domain
constraints involve a Wiener-like filtering operation

(22)

(23)

The real constant represents the energy of the additive
noise and is determined by prior knowledge of the noise
contamination level, if available. The algorithm is run for a
specified number of iterations, which is denotedMaxIter, or
until the estimates begin to converge. The method is popular
for its low computational complexity. The major drawback
of the method is its lack of reliability. The uniqueness and
convergence properties are, as yet, uncertain. In addition, the
restoration is sensitive to the initial image estimate, and the
algorithm often exhibits instability.

The conjugate gradient method was proposed by Lane [20]
to alleviate the problems associated with the instability of the
iterative blind deconvolution method. The image and PSF
are assumed to be nonnegative with known finite support.
Essentially, the procedure involves the minimization of the fol-
lowing cost function using the conjugate gradient optimization
routine:

(24)

where and represent pixels for which the image and
PSF estimates violate their known constraints. Although the
algorithm has reasonably low computational complexity and
is fairly robust to noise, it suffers from convergence to
incorrect local minima. The cost is multimodal; therefore,
the minimization routine is often trapped in local minima. Our
experience with the algorithm showed that for realistic images,
it is difficult to achieve proper convergence.

In contrast, the simulated annealing approach by McCallum
[21] entails the minimization of the multimodal cost function

(25)

The image and PSF are assumed to be positive with known
finite support. Using these constraints on and , a
simulated annealing procedure is employed for the minimiza-
tion of In simulated annealing, estimates of the cost function
parameters are iteratively varied to globally minimizeThe
parameter values are randomly perturbed. If the perturbation
reduces , then it is accepted; if it increases, then it is
accepted with probability The probability is reduced as the
number of iterations increases. In the case of infinite precision
and infinitely many iterations, the procedure is guaranteed
to reach the global minimum of a multimodal cost function.
The restoration algorithm is reliable and provides reasonable

results in the presence of noise. The major disadvantage is
that convergence to the global minimum of the cost function
is slow.

A. Convergence of the Algorithms

Lane’s conjugate gradient algorithm failed to produce mean-
ingful results for the examples shown in this paper. Three
different images were synthetically blurred: two small binary
images of text and a larger more complicated grey-scale image
of a toy. The PSF’s are referred to by their dimensions and are
shown in Fig. 4. Figs. 5–8 show the results of the proposed
NAS-RIF algorithm [the iterative blind deconvolution (IBD)
method] and McCallum’s simulated annealing method. The

PSF is a Gaussian PSF commonly found in x-ray
imaging and astronomy, the PSF is a Gaussian-
like separable PSF, and the PSF is a nonseparable,
nonsymmetric PSF that attenuates high-frequency components
to a greater degree than the other PSF’s.

The restored images and percentage mean square errors
(MSE) are displayed. The percentage MSE is defined as

MSE (26)

Because any scaled version of the image estimate is desired,
is chosen such that MSE is minimized; specifically,

(27)

The proposed NAS-RIF algorithm produced good results
and converged for all examples provided in Figs. 5–8. The
IBD method also produced comparable results for simple
binary images, but convergence was often slower than the
NAS-RIF algorithm. The method became unreliable for more
complicated grey-scale images; the IBD method failed to
converge for the toy image of Fig. 8, even after several
thousand iterations. Its major drawback is that convergence
is not guaranteed, and instability often results. In addition, no
specific termination conditions exist for the method, and the
quality of restoration depends on the initial conditions and the
noise parameter , even in noiseless situations.

Lane’s conjugate gradient method has definite termination
conditions and does not suffer from instabilities like the
IBD method. However, it often exhibits convergence to the
local minima of its cost function. Experience shows that for
moderate to large size images, selection of initial conditions to
achieve global convergence is nearly impossible. For the ex-
amples presented in this paper, the method failed to converge
to a meaningful solution.

McCallum’s simulated annealing method produced compa-
rable results to the NAS-RIF and IBD algorithms for small
binary images. The major limitation is that its convergence
speed is slow, and the computational complexity is impracti-
cally high great for larger images.
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Fig. 4. Synthetic test blurs used for simulations. The blurs are labeled by their dimensions.

TABLE III
COMPUTATIONAL COMPLEXITY OF VARIOUS BLIND DECONVOLUTION ALGORITHMS FOR IMAGES

B. Computational Complexity

Table III provides a comparison of the computational com-
plexity of the algorithms for the particular example in Fig. 5
and on a per-iteration basis. The second column of Table III
gives the total number of multiplications to achieve restoration
for the UT blurred image in Fig. 5, and the third column
gives the order of the algorithms per iteration. The NAS-RIF
algorithm required the fewest multiplications to produce the
restored image for the example in Fig. 5. On aper iteration
basis, the computational complexity of the NAS-RIF algorithm
is proportional to the number of FIR filter coefficients
In practice, will be moderately sized so that it will not
constitute a severe computational burden.

C. Performance Under Nonideal Conditions

Fig. 9 shows the results of the NAS-RIF algorithm for
incorrect support size. The restorations of the “BIR” image,
of true support pixels, blurred by the PSF are
shown assuming image supports of and The

restoration for overestimation of support size, which is shown
in Fig. 9(a), is close to the original image. Underestimation
of support size produces poor results. Although the restoration
scheme initially seems to converge to the true solution, as
shown in the MSE plot of Fig. 9(d), subsequent iterations
produce poor results. The other algorithms produce poor
results for underestimation of support size as well. McCallum’s
simulated annealing algorithm is robust to overestimation of
the support size, but the IBD method and Lane’s conjugate
gradient algorithm produce poor results even for an overesti-
mation of support of 10%.

Fig. 10 demonstrates the noise amplification that results
in the NAS-RIF method as a function of the number of
iterations. Initially, as the number of iterations increases, the
image is deblurred, as shown in Fig. 10(c). However, after
subsequent iterations, the noise is amplified as demonstrated
in Fig. 10(d) and (e). Premature termination is an effective
method of regularizing the problem. The IBD method is less
susceptible to noise because of the Wiener-like filter that is
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5. Results for the UT image degraded by a23 � 23 PSF under
ideal conditions. (a) Original image. (b) Degraded image using the
23� 23 PSF under noiseless conditions. (c), (d) NAS-RIF restoration using
� = 0:0138 and (Nxu; Nyu) = (5; 5): (e), (f) Best IBD restoration using
� = 0:001;MaxIter = 500: (g), (h) Simulated annealing restoration using
T0 = J=10:

incorporated in the frequency domain. However, it produces
poor results as shown in Fig. 10(g) because it fails to converge
to a solution for the more complicated grey-scale toy image.

The performance of the NAS-RIF algorithm for real image
data is demonstrated in Fig. 11. The real degraded image
was prepared by STScI and can be found in theirsoft-
ware/stsdas/testdata/restore/data/jupiter
directory at thestsci.edu ftp site. Fig. 11(a) shows the
original degraded Hubble data. The NAS-RIF restoration
assuming a support of after eight iterations is
provided in Fig. 11(b). Because of the additive noise present
in the data, premature termination based on visual inspection
was employed in the NAS-RIF algorithm. Fig. 11(c) shows
the normalized (per pixel) cost function for each iteration of

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Results for the BIR image degraded by the23 � 23 PSF un-
der ideal conditions. (a) Original image. (b) Degraded image using the
23� 23 PSF under noiseless conditions. (c), (d) NAS-RIF restoration using
� = 1:00 and (Nxu; Nyu) = (5;5): (e), (f) Best IBD restoration using
� = 0:0001;MaxIter = 2500:

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Results for the BIR image degraded by the51 � 51 PSF un-
der ideal conditions. (a) Original image. (b) Degraded image using the
33� 33 PSF under noiseless conditions. (c), (d) NAS-RIF restoration using
� = 1:20 and (Nxu; Nyu) = (5;5): (e), (f) Best IBD restoration using
� = 0:0001;MaxIter = 5000:

the NAS-RIF algorithm. In contrast, the IBD method failed
to converge to a solution. Several different random initial
estimates were tested, but none converged to a meaningful
solution. The results presented here use the blurred image as
an initial estimate for the image and a randomly generated
image as an initial estimate for the blur. Fig. 11(d) shows
the IBD restoration result, which produced the minimum
energy deviation from the known nonnegativity and support
constraints. This result occurred at the second iteration of
the IBD algorithm. This result is visually almost identical
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Results for the toy image degraded by a21 � 21 PSF under
ideal conditions. (a) Original image. (b) Degraded image using the
21� 21 PSF under noiseless conditions. (c), (d) NAS-RIF restoration using
� = 0:371 and (Nxu; Nyu) = (5; 5): (e), (f) Best IBD restoration using
� = 0:0001;MaxIter = 3700:

(a) (b)

(c) (d)

Fig. 9. Results for incorrect estimation of support size for the BIR image (of
true support15�65) degraded by the21�21PSF under noiseless conditions.
(a), (c) NAS-RIF restoration using� = 1:02 and (Nxu; Nyu) = (5;5)
(support is overestimated to be17 � 67): (b), (d) NAS-RIF restoration
using � = 1:02 and (Nxu; Nyu) = (5; 5) (support is underestimated to
be 13 � 63):

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 10. Results for the toy image degraded by the21� 21 PSF at BSNR
of 40 dB. (a) Original image. (b) Degraded image using the21 � 21 PSF
and a BSNR of 40 dB. (c) NAS-RIF restoration using(Nxu; Nyu) = (5;5)
after nine iterations. (d) NAS-RIF restoration after 23 iterations. (e) NAS-RIF
restoration after 74 iterations. (f) MSE plot for NAS-RIF restoration. (g)
Best IBD estimate using� = 0:001;MaxIter = 5000: (h) MSE for IBD
restoration.

to the original blurred image. The normalized (per pixel)
energy function for each iteration is shown in Fig. 11(e). In
contrast to the NAS-RIF algorithm, the IBD method is not
well behaved as the iterations progress. Different values of
the noise parameter were tested, but each one produced the
results similar to the one presented.

VII. CONCLUSIONS

A novel blind deconvolution scheme for the class of non-
parametric finite support restoration methods is developed.
It has clear advantages over existing techniques of its class
because convergence to the feasible set of solutions is guaran-
teed. The convexity of the proposed cost function is established
analytically. For situations in which the support of the original
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(a)

(b) (c)

(d) (e)

Fig. 11. Results for the Hubble space telescope image of Jupiter. (a) De-
graded image. (b) NAS-RIF restoration using(Nxu; Nyu) = (31; 31) after
eight iterations. (c) Normalized cost per iteration for the NAS-RIF restoration.
(d) Best IBD estimate using� = 0:001;MaxIter = 2500: (e) Error
deviation from known constraints per iteration for the IBD method.

image is unknown, a novel support-finding algorithm based on
cross validation is presented.

Simulation results of the proposed NAS-RIF method have
demonstrated the algorithm’s improved speed of convergence
over the existing techniques, its superior convergence proper-
ties, and its lower computational complexity. Simulations of
the blind support-finding algorithm show its potential for blind
image restoration applications.

APPENDIX A
PROOF OF CONVEXITY

To prove the convexity of , the following definition and
theorem are used [28].

Definition A.1 (Convex Function):A function
is said to be convex when, for all and all

, there holds

(28)

We denote the class of such functions
Theorem A.1:Let be in be

positive numbers, and assume that there is a point where all
the ’s are finite. Then, the function

(29)

is in

We break the cost function into three components, which
are denoted and We see from Theorem A.1 that we
can prove the convexity of with respect to by proving the
individual convexities of each component of Our analysis
first establishes the convexities of and and then tackles
the more difficult problem of proving the convexity of

A.1. Proof of Convexity of Support Constraint Cost Function

In this section, we establish the convexity of the component
of resulting from the support constraint on the image
estimate. The function is given by

(30)

where It is apparent from (30) that
is quadratic with respect to It, therefore, follows that

is convex [28].
Similarly, if we consider the component function

(31)

we note that is also quadratic with respect toand is thus
also convex [28].

A.2. Proof of Convexity of the Nonnegativity
Constraint Cost Function

In this section, we establish the convexity of the first com-
ponent of , which results from the nonnegativity constraint
on the image estimate. The function is given by

(32)

To establish the convexity of , we use the following defi-
nition and theorem from [28].

Definition A.2 (Monotone Function):The mapping
is said to be monotone on when, for all and

in

(33)

where represents the inner product operation
Theorem A.2:Let be a function differentiable on

Then, is convex on if and only if its gradient is
monotone on

It is easy to see that the derivative of with respect to
is given by

sgn

sgn

(34)

if and is 0 otherwise. The function is the
Dirac delta function (distribution), and represents the
unit step function, which should not be confused with the FIR
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filter The gradient of with respect to is
given by

(35)

where are the dimensions of the image estimate
Computing the gradient inner product (GIP)

GIP (36)

where , we obtain

GIP gip (37)

where

gip

(38)

It is straightforward to see (39), shown at the bottom of the
page. It follows from (37) that

(40)

Using Theorem A.2, we see that is convex with respect to
Since is related to linearly,
is convex with respect to [28].

Since and are all convex, it follows from The-
orem A.1 that is convex with respect to its parameters

APPENDIX B
UNIQUENESS OF THESOLUTION

As shown in Appendix A, can be broken down into three
convex component functions and To prove the
unimodality of , it is sufficient to prove the unimodality of
any of the component functions. Inspection of the expressions
for and suggests that neither component is unimodal.
For example, assuming that the pixels of the blurred image are
nonnegative (which is usually the case for intensity images),
any that fulfills the constraints that
and for all globally minimizes and

Therefore, to find sufficient conditions to ensure the
unimodality of , we find conditions to ensure the unimodality
of We use the following theorem [28]:

Theorem B.1:Let be twice differentiable on an open
convex set Then, we have the following.

1) is convex on if and only if is positive
semidefinite for all .

2) If is positive definite for all , then
is strictly convex on

From Theorem B.1, we see that is unimodal if its Hessian
is positive definite (i.e., Since is convex,

it follows from Theorem B.1 that is positive semidefinite
(i.e.,

It is shown in [40] the Hessian matrix of can be written as

(41)

where
A sufficient condition for (i.e., existence of a unique
solution) is that there exist linearly independent
vectors for [40].

APPENDIX C
EFFECT OFNOISE ON THE GLOBAL MINIMUM

This section derives the value of the cost function at the
true inverse blur parameter setting for noisy conditions and
assuming infinite extent equalizers are available. This value
gives an indication of the bias introduced in the restored image.
The proposed cost function may be represented as

(42)

where function is defined as

(43)

The image estimate is given by

(44)

where

(45)

and is the additive noise.

if
if
if
if

(39)
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The cost function can be written in terms of and
as

(46)

Assuming the additive noise is stationary zero-mean and
Gaussian, the following expectations are calculated. The term

represents the probability density function (pdf) of the
noise. Since is zero-mean and Gaussian, . which
is a filtered version of , is also zero-mean and Gaussian
with variance

(47)

where is the spatial autocorrelation of We
find that

(48)

cl cl

(49)

cl cl

(50)

where

(51)

Using these results, the expectation of the cost in the presence
of noise at the true inverse PSF is evaluated. It should
be noted that , and

if (the situation of a black
background).

cl

(52)

because and is equal to for

Therefore, the bias of the cost function due to zero-mean
AWGN is given by

(53)

where represents the number of elements in
For the case that is zero-mean additive white Gaussian
noise (AWGN) with variance

(54)
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