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On the Use of Lyapunov Criteria to Analyze the
Convergence of Blind Deconvolution Algorithms
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Abstract—We present an approach to determine sufficient
conditions for the global convergence of iterative blind deconvolu-
tion algorithms using finite impulse response (FIR) deconvolution
filters. The novel technique, which incorporates Lyapunov’s di-
rect method, is general, flexible, and can be easily adapted to
analyze the behavior of many types of nonlinear iterative signal
processing algorithms. Specifically, we find sufficient conditions to
guarantee a unique solution for the NAS-RIF algorithm used for
blind image restoration. We determine that in many cases, there
exists a tradeoff between the quality of the deconvolution result
and the uniqueness of the solution. A procedure to determine the
length of the deconvolution filter to guarantee a unique solution
is established.

I. INTRODUCTION

I N APPLICATIONS such as image processing, digital com-
munications, and seismic data analysis among others, there

is a need for efficient blind deconvolution algorithms. Blind
deconvolution refers to the problem of separating two signals

and from their convolutional product , when
both signals are only partially known. In most applications,
is the signal to be restored,is the unknown degradation, and

is the degraded signal.
Many existing iterative blind deconvolution methods make

use of nonlinear transformations on the degraded signal to
deconvolve the data. The existence of the nonlinearities makes
analysis of the convergence and uniqueness properties of
the algorithms difficult. In this paper, we present a general
framework based on Lyapunov’s direct method for studying
the behavior of nonlinear blind deconvolution algorithms.
The framework we use applies to many blind deconvolution
schemes, such as the Bussgang class of blind equalization
methods [1] and the nonnegativity and support constraints
recursive inverse filtering (NAS-RIF) algorithm for blind
image restoration [2]. These methods belong the to the class
of zero memory nonlinearity deconvolution techniques and
are popular for their low computational complexity and flex-
ibility in performing blind deconvolution. Fig. 1 presents the
general architecture, which we discuss later. Each technique
of the class differs in the nonlinearity NL imposed during
deconvolution. We specifically discuss and concentrate on the
NAS-RIF algorithm [3] for blind image restoration. Convexity
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Fig. 1. Zero-memory nonlinearity deconvolution. Blind deconvolution is
performed by recursively inverse FIR filtering the degraded signalg with
the adaptive filteru to produce an estimate of the true signal^f . This estimate
is passed through a zero-memory nonlinearity to produce a signal^fNL, which
is considered to be an even better estimate of the true signal. The difference
between^f and ^fNL is used to updateu for the next iteration.

of the cost function minimized in the NAS-RIF algorithm
has been established in [3]. In this paper, we go beyond
our previous results and provide an analysis framework to
determine sufficient conditions to guarantee a unique solution.

In the next section, we introduce some fundamental concepts
used in our analysis, give a brief discussion of Lyapunov’s
direct method, and discuss zero memory nonlinearity decon-
volution. In Section III, we provide a method to analyze the
convergence properties of blind deconvolution methods using
finite extent [i.e., finite impulse response (FIR)] deconvolution
filters; we use the framework to find sufficient conditions
to ensure a unique solution for the NAS-RIF algorithm.
Concluding remarks are provided in Section IV.

II. BACKGROUND

A. Algorithm Convergence

In this section, we address some related concepts concerning
the issue of algorithm convergence and uniqueness of solu-
tion for the blind deconvolution process. The general blind
deconvolution problem is said to have a unique solution if
there exists only one pair of signals and that produce
the result , where is the linear convolution
operator. It is easy to see that the solution is unique if both
components and are considered to be irreducible.1 Ideally,
the deconvolution process may be implemented by using an
infinite extent deconvolution filter to perform the restoration
of given .

1The term irreducible refers to a signal that cannot be expressed as the
convolution of two or more component images of finite support on the
understanding that the delta function is not a component image.
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However, in practice, FIR deconvolution filters are used
for processing. Therefore, we must settle for obtaining a
solution that is an approximation to the signal. We call this
approximation adesired solution. Given an FIR deconvolution
filter, the objective of an iterative blind deconvolution method
is to converge to a desired solution from an arbitrary initial
condition. Two issues arise concerning the convergence of the
algorithm:global convergenceanduniqueness of solution.

An iterative blind deconvolution algorithm can be consid-
ered to be equivalent to the minimization of an associated cost
function . In this context, global convergence refers to the
ability of the algorithm to reach a global minimum of the cost
function from any initial condition. Uniqueness of the solution
refers to the existence of a single global minimum. Both of
these properties are related to the convexity of the function

. If a function is convex, then we can ensure convergence
to a global minimum using numerical descent routines. If a
function is strictly convex, then we can additionally guarantee
that this desired global minimum is unique [4].

B. Algorithm Stability

The convergence of a signal processing algorithm is also
related to its stability. We focus on discrete-time algorithms
described by a recursive time domain relationship of the form

(1)

where , and for all . In most
iterative signal processing algorithms, we want to find a
that is invariant under the mapping [i.e., ].
Such a parameter set is called anequilibrium solutionof (1)
[5]. Given an initial condition , we are often concerned
with whether or not the recursion will lead to an equilibrium
solution . Furthermore, we would like the recursion to
converge to given any . An algorithm that exhibits this
attribute is calledglobally asymptotically stable[5]; global
convergence of the algorithm to a unique solution is ensured.
Many iterative algorithms, such as the set of zero-memory
nonlinear deconvolution methods discussed in Section II-D,
are in the form of (1).

C. Lyapunov’s Direct Method

Lyapunov’s direct method can be used to provide sufficient
conditions for the asymptotic stability of a given nonlinear
recursion of the form of (1) [5]. Lyapunov analysis entails the
selection of an “energy” function commonly referred to as a
Lyapunov function , which maps the parameters
of a given nonlinear recursion to a scalar quantity. If a function

can be found that exhibits certain properties, which we
state in Theorem 1, then the recursive algorithm is globally
asymptotically stable. We make use of the following theorem
[5].

Theorem 1 (Global Asymptotic Stability):The equilibrium
of (1) is globally asymptotically stable if there is a function

such that

1) ;

2) there are continuous, strictly increasing functions
, and , where and

for all ;
3) is radially unbounded, i.e., as ;
4) for all ;

where is the standard Euclidean norm.
By selecting an appropriate Lyapunov function candidate
, we can determine the conditions that ensure that properties

(1)–(4) of Theorem 1 hold. These conditions will be sufficient
for global asymptotic stability of the algorithm and will
therefore ensure that there is convergence to a unique solution

for any initialization.

D. Zero-Memory Nonlinearity Deconvolution Methods

Several blind deconvolution algorithms fall under the cate-
gory of zero-memory nonlinearity deconvolution methods [1].
We mentioned two such methods—the Bussgang class of tech-
niques and the NAS-RIF algorithm—in the introduction. These
methods follow the architecture shown in Fig. 1 to restore
the signal . In such methods, deconvolution is performed
by inverse filtering the degraded signalwith a FIR filter .
The output of this filter is an estimate of the true signal.
This estimate is passed through a zero-memory nonlinearity
to produce a signal , which is considered to be an even
better estimate of . The FIR deconvolution filter is updated
by trying to minimize the difference betweenand . The
associated cost function is given by

(2)

where is a column vector representing an ordered set
of parameters of the FIR filter ,2 is the discrete signal
index (it is scalar in the 1-D situation and a vector in
the multiple dimension situation, e.g. for images),

NL NL is the zero-memory
nonlinearity, and represents the linear convolution operator.
The corresponding update law for the deconvolution filter is
given by

(3)

where

vector of filter coefficients at the th iteration
of the algorithm;
update step size;
gradient of with respect to .

It is easy to see that (3) is in the same form as (1).
The distinct algorithms of this class differ in the zero-

memory nonlinearity used for restoration. This function
often depends on the prior knowledge available about the
signal ; it could be in the form of statistical information
for applications such as seismic analysis and data communica-
tions, or it may be purely deterministic as for image processing
applications.

In this paper, we focus on the analysis of the non-negativity
and support constraints recursive inverse filtering algorithm

2For the 2-D case,u is the lexicographically ordered (i.e., row-ordered)
column vector of the filteru.
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(NAS-RIF) algorithm for blind image restoration [3]. The
method is applicable to situations in which one or more objects
of known finite support are imaged against a uniformly grey
background. The zero-memory nonlinearity is given by

NL

if and
if and
if

(4)

where

2-D vector representing discrete image pixel coor-
dinates;
region of support, which is assumed to be known
(and which we discuss below);
its complement;
pixel value of the background grey level.

The associated cost function reduces to

(5)

where is the unit step function, ,
and the third term with parameter is used to avoid the
trivial all-zero solution when , as explained in [3]. The
corresponding update law is given by

(6)

where is the th element of the vector , and
.

We consider situations in which the imaged scene is com-
prised of object(s) and a uniform background. We define
the region of support as a set including all pixels
encompassing the object(s) within the image frame. This
region can be of any shape. For example, in [3], is
defined as the smallest rectangle encompassing the object.

is the complement of (i.e., the set of all pixels
not within the predefined region of support); the regions
and are disjoint. We give examples of possible kinds of
supports in Fig. 2. Since the restored imageis computed
by linearly convolving the blurred image with , grows
in size with the size of . The edges of the image are
extended during filtering process. The dimensions ofare

, where and
are the dimensions of and , respectively.

The NAS-RIF algorithm attempts to extract information
concerning the frequencies attenuated due to blurring by using
information concerning the support and non-negativity of the

(a)

(b)

(c)

Fig. 2. Different regions of support encountered in image processing ap-
plications. Three different cases are shown. For each case, the undistorted
image, blurred image, and restored image frames are drawn. Blurring causes
the object(s) in the image frame to spread spatially; the outlines of the blurred
objects are shown and subsequently overlap the�Dsup region due to the
spreading of the object. The restored image is of a larger size than the blurred
image as it is computed by linearly convolving the blurred image with the
deconvolution filteru.

original data. A similar problem has been considered by
Gerchberg [6] (and later by Papoulis [7]) for the frequency
extrapolation of bandlimited functions with known finite sup-
port. The difference in the problem they consider is that
the frequencies within the band limit of the degradation are
assumed to be unaltered, whereas in the NAS-RIF algorithm, it
is assumed that the attenuation of all frequencies is unknown,
and we exploit the fact that the degradation is in the form
of a spatial-domain linear shift invariant convolution that can
be undone with inverse filtering. Wiley, in [8], shows that the
projection-based algorithm used in [6] and [7] is a special case
of generalized contraction mapping developed by Sandberg
[9], which guarantees the convergence of the algorithm to
a unique solution. Our algorithm is somewhat similar to the
class of iterative algorithms considered by Sandberg, except
that the projection operator is not necessarily one-to-one; thus,
convergence and uniqueness issues cannot be easily addressed
using the work in [9].

III. A NALYSIS

A. General Methodology

In this section, we provide a systematic technique to find
sufficient conditions to ensure the unique global convergence
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of an iterative blind deconvolution method using an FIR filter.
We base our analysis on Theorem 1.

1) Select a Lyapunov function candidate.
For example, we may select ,

where is the associated cost function of the algorithm,
and is the desired equilibrium solution to the update
law of (3) and is a global minimum of .

2) Restrict to the four conditions outlined in Theorem
1, and translate these to constraints on the algorithm
parameters (e.g., nonlinearities, update gains, etc.).

Continuing with the previous example, the conditions
translate to the following constraints on :

J1)
for all , where and are as stated
in (1) of Theorem 1.

J2) as .
J3) for all , where

.

3) Form the function and
substitute with the right side of the update law
of (3) to get solely in terms of .

In our example, becomes

(7)

4) Determine the conditions for which all the constraints
obtained from steps 2 and 3 are fulfilled.

From Theorem 1, we establish that these conditions
are sufficient to ensure global convergence and a unique
solution to the algorithm. If such conditions cannot be
obtained or are not satisfactory, go back to Step 1, this
time selecting a different Lyapunov function candidate.

We continue this stage of the analysis on the example
in the next section.

Our analysis approach is general in the sense that it can
theoretically provide sufficient conditions for the global con-
vergence to a unique solution of an algorithm with an update
law of the form of (1). The drawback is that the approach
works as long as an appropriate Lyapunov function can be
found that satisfies the conditions stated in Theorem 1. It
should be emphasized that the difficulty of the method lies in
determination of the candidate Lyapunov function. Selection
of a good function can be a nontrivial task; experience makes
the selection process easier. Vidyasagar [5] and Khalil [10]
give some good examples; however, there exists no general
procedure to determine a good Lyapunov function for a given
problem.

B. Conditions to Ensure Global Convergence
to a Unique Solution

From (7), we see that for our specific choice of candidate
Lyapunov function, finding the conditions that ensure that the
constraints J1) to J3) hold implies that the algorithm will
converge globally to a unique solution under these conditions.

To obtain these specific requirements, we make use of the
following definition and theorem [4].

Definition 1 (Hessian of a Function):The Hessian of a
function is defined as

...
...

...

where is an -dimensional vector comprised of components
.

Theorem 2: Let be twice differentiable in . Then,
given and a in a neighborhood about

(8)

for all and if is positive definite
for all [which is denoted by for all ].

Applying Theorem 2, we see that if we constrain
to be positive definite (i.e., ), then fulfills

(9)

for and for all such that
. Hence, (9) implies that increases along any ray

originating from the global minimum [4]. We can then bound
such that

for some integer and , which fulfills
J1). Furthermore, the increasing nature of along any ray
originating from ensures that as [see
J2)]. Inequality (9) also suggests thatmust be strictly convex
by definition [4]. The strict-sense convexity of implies that

has no points (other than at), which have a gradient
value of zero. Therefore, with an appropriate gain, it is
always possible to decrease the cost at the next iteration using
the gradient update law of (3) for any . As a result,
Condition J3) is fulfilled because for
all , where .

Thus, using our analysis methodology, we have determined
that for all ensures the global convergence of
the algorithm to a unique solution. Using a different candidate
Lyapunov function can provide a different set of conditions.

We show in Appendix A that the Hessian of the cost function
for the NAS-RIF algorithm is given in matrix-vector notation
by

(10)

We define and discuss the associated variables below. We as-
sume for simplicity that the blurred image of dimension

is indexed from to and
the that FIR deconvolution filter of size is
indexed from to .

Since the vector is the row-ordered vector of filter
coefficients , it is given by

(11)
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Similarly, is the row-ordered vector of the pixels of
, i.e.,

(12)

We also use to denote the pixel location in the
image of the element corresponding to theth row
of . For example, , , and

such that .
The remaining matrices and vectors in (10) are defined as

follows. is an
matrix such that . Specifically

...

...

(13)

where is a vector given by

(14)

and is defined as (15), shown at the bottom of the page.
The matrix is a diagonal matrix dependent onwith
diagonal entries given by

if
otherwise

(16)

where denotes the th element of a given matrix,
and is the pixel location in the restored image
corresponding to theth element of . Similarly, is a
diagonal matrix (independent of) with the diagonal entries
given by

if
otherwise

(17)

where is the set of all pixels within the region of support
as described in Section II-D. The vector is an all-ones
column vector of dimension , i.e.,

(18)

We denote the matrix transpose operator by .
The right side of (10) is comprised of three components. It

is straightforward to see that the third component is positive-
semidefinite and cannot be positive definite as it has a rank of

one (i.e., it is not full rank). The first component is also positive
semi-definite in general. Because the diagonal matrix
is a function of , its rank depends on, and we can always
find a such that becomes positive semidefinite.
For example, substituting results in it reducing to the
all-zero matrix. Thus, it is not possible in general to constrain
the component to be positive definite for all.

The second component, however, has no dependence on
and can be constrained to be positive definite. Thus, we force

(19)

which implies that the matrix must be
full rank. We can use this information to determine whether a
given deconvolution filter size can guarantee a unique solution.
The matrix is a function of the blurred image pixels (due
to the presence of ) and the support size of the true image
(due to the presence of ). In the next section, we show
that in some cases, we can determine an optimal (in terms of
accuracy) filter size, which also guarantees a unique solution.

C. The Accuracy and Uniqueness Tradeoff

Using (19), we can rewrite as

(20)

which is the sum of rank one
matrices, where denotes the number of elements in

. Therefore, a necessary (but not sufficient) condition to
guarantee that is full rank3 is

(21)

which can provide an upper bound on the size of. We
evaluate this condition for the three cases shown in Fig. 2.

Case A) depends on the values of both and
. Using Fig. 2 and the definitions of and
as labeled in the figure, (21) reduces to

(22)

which is always fulfilled if the blurred image has
dimensions greater than (dimensions
of the support in Case A of Fig. 2) and greater
than . This suggests that there is no upper
bound on the size of . An arbitrarily large size
of practical relevance can be chosen.

3Recall that the condition thatM is full rank is a sufficient condition for
uniqueness. Thus, (21) is necessary for a sufficient condition for uniqueness
[that is, for (19) to hold].

for and
otherwise

(15)
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Case B) does not depend on or . Condi-
tion (21) gives us

(23)

where and are defined as in Case B of
Fig. 2. An upper bound of

can be selected.
Case C) depends on only. The condition

(24)

where is shown in Case C of Fig. 2 is
necessary to ensure that is full rank. We may
select any and that fulfills (24) as an
upper bound on the size of.

Similar analysis can be carried out for any arbitrary support
shape.

It has been shown in [11] that increasing the size of
improves the accuracy of the restored image. However, our
previous analysis shows that in some cases, there is an upper
bound on the size of to ensure a unique solution. Thus, there
is an inherent tradeoff between accuracy and the possibility
of a unique solution. The matrix inequality of (19) provides a
testable condition to evaluate the convergence properties of the
algorithm prior to restoration. An optimal FIR deconvolution
filter of selected dimensions can be chosen to guarantee a
unique solution using the following general procedure.

1) Select the maximum initial size for the filter that
fulfills (21) (i.e., a necessary condition for to be
full rank). We provided three examples in this section
(above) on the use of (21) to find maximum values for

and . If bounds can be found as in Cases B
and C, the filter size is set to these values. If the filter
size has no bounds (as in Case A), an arbitrarily large
filter size is used.

2) Build the matrix given in (19) using the following
procedure:

2a) Form the matrix using (13) given the blurred
image .

2b) Form from the given region of support .
is assumed to be known prior to restoration;

otherwise, a support-finding algorithm such as in
[3] can be used.

2c) Compute .

3) Test the rank of . If is not full rank, decrease
the size of , and go to 2. Otherwise, stop and use the
preceding filter size tested in the NAS-RIF algorithm.

In practice, is almost always full rank for the upper
bound on the size of. However, in some cases, additive noise
and quantization of the blurred image may result in a loss of
rank. We provide one such instance next. Since the NAS-RIF
algorithm can be used for 1-D applications such as gamma ray
spectra processing, we give a simple 1-D numerical example.

Example 1—No Quantization:Consider the situation in
which the true image has a support at locations

and and is given by

The background pixel value is , and includes the
three center locations. The blurring function is

The resulting convolution product is given by

(25)

which forms the blurred signal such that and
; we assume that no quantization of the blurred image

pixels occurs and that the blurring at the ends of the signal are
truncated from the signal support as in Case B. Following the
procedure outlined in Section 3.1, we have the following.

1) We select a filter size of 3 (i.e., )
using the results of Case B (i.e., and

).
2a) We form the matrix as follows:

We form the row vectors for
.

(26)

We use (13) to form the matrix

(27)

2b) We form , using the fact that is of size 3 and
is centered on the restored image.

(28)



2924 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 11, NOVEMBER 1998

2c) We compute

(29)

3) Since the determinant of is nonzero, it is full-rank
and positive definite. Therefore, we may use a filter size
of 3 to guarantee a unique solution.

In our next example, we show how quantization noise can
cause the matrix to lose rank.

Example 2—Quantization of the Blurred Signal:We per-
form the same steps once more on the quantized blurred
signal . We round the convolution results to the nearest
integer so that

(30)

We select a filter size of 3 (i.e., ) using
the results of Case B once more. Using the same steps as in
Example 1, computation of gives

(31)

Since the determinant of is zero, it is not full-rank. Thus,
a unique solution cannot be guaranteed for a deconvolution
filter size of 3.

Repeating the procedure for and , we
find that

(32)

which is not full rank. Thus, a unique solution cannot be
guaranteed for any filter size greater than 1 due to the coarse
quantization imposed in our example.

IV. CONCLUSION

In this paper, we employ Lyapunov’s direct method to
analyze the convergence properties of iterative blind decon-
volution algorithms. The analysis approach is shown to be
successful in providing sufficient conditions for the unique
global convergence of an iterative blind deconvolution algo-
rithm. Depending on the choice of the Lyapunov function,
different sets of conditions may be obtained. The most difficult
part of the proposed analysis approach is the selection of an
appropriate Lyapunov function . This limitation, however,
allows the technique to be general and to be applied to a
broad class of algorithms.

The method is shown to be feasible and straightforward in
determining sufficient conditions for a unique solution to the
NAS-RIF algorithm. We successfully convert the problem of
establishing conditions for global convergence to determining
constraints that guarantee the full rank of algorithm-related
matrices. We also develop insight from our analysis framework

to determine a method to find an FIR deconvolution filter that
guarantees the most accurate unique solution. We demonstrate
this with the use of examples.

APPENDIX

DERIVATION OF THE HESSIAN OF

We provide a brief derivation for the Hessian of given
(10). From Definition 1, we see that we must take the second
derivative of with respect to the elements of. The variables
used in our analysis have been defined in Sections II-D and
III-B.

From (5), we see that the derivative ofwith respect to an
element of , namely , is given by

(33)

where we use the product and chain rules for differentiation.
Since

(34)

and

(35)

we find that our expression reduces to

(36)

Similarly, we can differentiate once more with respect to
to give

(37)

Using the definition of the Hessian (Definition 1), as well
as our indexing notation described in Section III-B in which
the indices of the 2-D FIR filter range from to

, it is straightforward to write
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...
...

...
(38)

as (38), shown at the top of the page, or equivalently in
matrix-vector notation using (37) as

(39)

A similar but more detailed derivation can be found in [11].
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