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Abstract

We derive capacity bounds for watermarking and data
hiding in the presence of JND perceptual coding for a class
of techniques that do not suffer from host signal interfer-
ence. By modeling the lossy compression distortions on the
hidden data using non-Gaussian statistics, we demonstrate
that binary antipodal channel codes achieve capacity. It is
shown that the data hiding capacity is at most equal to the
loss in storage efficiency bit rate if watermarking and quan-
tization for lossy compression occur in the same domain.

1 Introduction

Data hiding is the general process by which a discrete
information stream is hidden within a multimedia signal by
imposing imperceptible changes on the host signal. The
hidden information is often publicly retrievable, binary and
contains data helpful for information interpretation. The
problem has gained interest in applications involving cap-
tioning, maintenance of audit trails, and embedding hyper-
link information in “hyper-media.” In contrast to the related
research problem of robust digital watermarking, the threat
of intentional removal of the hidden data is small as such at-
tacks are only for the purpose of vandalism. For data hiding
the main source of concern is the effects of lossy compres-
sion on the hidden information. Such manipulation is neces-
sary to facilitate efficient information transfer and storage.
The main design challenge is to maximize the capacity of
the embedded data in the face of lossy compression.

1.1 Previous Work

Initial research into data hiding in multimedia signals
concentrated on the design of sophisticated embedding s-

trategies to improve robustness against typical signal dis-
tortions. More recent work has focused in particular on as-
sessing the effects of perceptual coding on the embedded
data [3, 8, 9, 23]. Perceptual coding refers to the lossy com-
pression of multimedia signal data using human perceptual
models.

A duality exists between the problems of perceptual cod-
ing and data hiding; the former problem attempts to remove
irrelevant and redundant information from a signal, while
the latter uses the irrelevant information to mask the pres-
ence of the hidden data. Thus, the objectives of the two
mechanisms are somewhat at odds. As a result, several pa-
pers have dealt with integrating perceptual coding with data
hiding [2, 5, 14, 15, 16, 22]. Most research has dealt with
the design of new algorithms to incorporate or combat lossy
compression. Newer work has also analytically studied data
hiding in the presence of compression to derive new insight-
s [13, 19].

There is, however, a need for more comprehensive work
which investigates not only the robustness, but the capacity
of different data hiding techniques in the presence of lossy
compression. This paper attempts to provide some new in-
sights and implications along these lines.

1.2 Contributions of this Paper

The objectives of this work is to evaluate and assess the
potential of high capacity data hiding in the presence of per-
ceptual coding. In particular,

1. we derive capacity bounds for data hiding in the pres-
ence of perceptual coding using the just noticeable d-
ifference (JND) perceptual paradigm. Unlike previous
work [1, 7, 18], we model the distortions on the hidden
data using non-Gaussian statistics.

2. we demonstrate that antipodal signals opposed to ran-



dom Gaussian sequences achieve capacity.

3. we relate the capacity of the embedded information to
the sacrifice in compression efficiency.

4. we draw new insights and implications for data hiding
for aggressive and mild compression.

The next section summarizes the JND perceptual
paradigm used for the data embedding and perceptual cod-
ing techniques and discusses the communications analogy
for the problem. Section 3 describes the general analysis
framework and class of systems encompassed by our the-
oretical work. Analytic results are presented in Section 4
followed by a discussion of the implications. Final remarks
conclude the paper.

2 Paradigms and Principles

2.1 JND Perceptual Model

Many models exist to describe the masking characteris-
tics of the human perceptual system [20]. Of these, one of
the most popular is based on a JND paradigm [10]. A set
of JNDs is associated with a particular invertible transform
T . Given that a multimedia signal is transformed using T ,
the JNDs provide an upper bound on the extent that each of
the coefficients can be perturbed without causing perceptual
changes to the signal quality. The set of signal and transfor-
m dependent JNDs can be derived using complex analytic
models or through experimentation.

Consider the discrete signal f(i) transformed with T to
produce the set of coefficientsF (u). By this paradigm, each
F (u) will have an associated JND, J �(u), such that we may
form F 0(u) as follows:

F 0(u) = F (u) + �(u)J�(u) (1)

where �(u) is any signal with coefficients between the val-
ues -1 and 1. Taking the inverse transform T �1 of F 0(u)
produces the signal f 0(i) which is guaranteed to be percep-
tually identical to f(i). The challenge is to make the JND
values as large as possible to fully exploit the masking char-
acteristics of a broad class of signals.

For lossy compression, the JND values are used to deter-
mine the quantization step size or, equivalently, determine
perceptually based bit allocation [10]. For data hiding in
raw multimedia, they are used to compute the maximum
level of signal energy embedded in specific signal coeffi-
cients. The maximization of this energy improves the ro-
bustness of the discreet data [18]. Even techniques which
do not explicitly use the JND models such as [7] may be
considered to fall within this class if we consider the JNDs
to be conservative and trivially constant over all u.

When both data embedding and perceptual coding are
applied to a signal, the combined effects of the processes
should not result in a change to any host signal coefficient
F (u) which exceeds J �(u). Thus, we assume the individu-
al perceptual models used for data hiding and compression
are conservative. Specifically, if the data hiding algorithm
is restricted to making changes to the coefficient F (u) be-
low or equal in magnitude to �(u), then the compression
algorithm must have an effective JND for quantization of
J(u) = J�(u) � �(u) to be both efficient yet cause no vi-
sual distortions.

2.2 Communications Analogy for Data Hiding

One popular analogy for data hiding in the presence of
distortion such as lossy compression is digital communi-
cations. Communicating the hidden signal information is
likened to transmission of the signal through an associated
communication channel as shown in Figure 1. Embedding
the signal is equivalent to channel coding and extraction of
the hidden information serves the same purpose as a com-
munications receiver. As discussed in the introduction of
the paper, for most data hiding applications the only poten-
tial source of manipulation after embedding is perceptual
coding. For this situation, the process of lossy compression
characterizes the associated communication channel for the
hidden data.

It follows that many of the same figures of merit used in
communications systems may be used to assess the quality
of data hiding approaches. The particular measure we are
concerned with in this paper is that of transmission capac-
ity. We consider the relationship between capacity and the
relative efficiency of both perceptual models used for hiding
and compression. Employing the structured JND paradigm
described in the previous section, we can treat the problem
as an information theoretic one to derive new mathematical
bounds and insights.

2.3 Models

The overall communication channel is considered to be
comprised of smaller sub-channels denoted c i, for i =
1; 2; : : : ;M . We assume that the coefficients F (u) are
grouped into disjoint sets Gi such that if F (v) 2 Gi, then
�(v)

J(v)
= Ei for some positive value Ei which we call the

relative perceptual efficiency. The values of Ei do not nec-
essarily have to be distinct for each i. As discussed in Sec-
tion 2.1, �(u) is the maximum magnitude by which F (u)
can be perturbed to embed the hidden data, and J(u) is the
quantization step size for perceptual coding. The number of
elements N in Gi is sufficiently large that a practical length
channel code may be used to transmit watermark informa-
tion. Embedding data into the coefficients in G i effectively
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Figure 1. The Communications Analogy for Data Hiding.

represents one “use” of the sub-channel c i. These assump-
tions are not restrictive for video marking applications in
which a great deal of host data is available.

Using Bennett’s Theorem [17], the quantization noise on
F (u) is modeled as a uniformly distributed random variable
between �J(u) and J(u). Although Bennett’s Theorem is
valid for a narrow set of conditions [17], it is commonly ap-
plied for the analysis of A/D converters and provides some
useful insights into their behaviour. In the same way, we
believe that this assumption will also provide better under-
standing into watermarking in the face of JND perceptual
coding. We assume that during watermark extraction or de-
tection there is no interference from the host signal; all the
watermark degradation is a result of the lossy compression
process. The information is embedded by modifying the
amplitude of F (u) (i.e., effectively adding a signal to it),
we then model the “noise” experienced by the hidden da-
ta in sub-channel ci also as a uniformly distributed random
variable.

3 Framework

3.1 Scope

Due to the convenience of using similar structures and
transforms for data hiding and compression, the gener-
al trend in current research is to embed the watermark
in the same domain as for performing perceptual cod-
ing [3, 5, 8, 22]. We adopt this framework in order for our
results to be applicable to this broad class of data hiding
and watermarking techniques. The capacity analysis in this
work is applicable to the following situation:

� Data hiding of the information signal w into the digital

multimedia signal f occurs in the transform T domain.
Specifically, the data w is hidden in the discrete coeffi-
cients F (u) produced by applying the invertible T on
f . The new coefficients from the embedding process
F̂ (u) are transformed using the inverse of T to produce
the output of the data hiding process denoted f̂ .

� For each coefficientF (u), the signal change due to wa-
termark embedding to produce F̂ (u) does not exceed
�(u) which is below the JND threshold J �(u) for that
coefficient.

� Perceptual coding of a signal f̂ occurs in the same do-
main as data hiding, after signal embedding. Specif-
ically, the marked signal f̂ is transformed with T to
produce coefficients which are then quantized to re-
duce the signal storage requirements.

� The perceptual paradigm for lossy compression is
based on the JND model. However, to keep the com-
bined data hiding and lossy compression operations
below perceptual detection, F̂ (u) is quantized to de-
gree J(u) = J�(u)��(u). Thus, if there was no data
hiding, �(u) = 0 for all u, and the lossy compression
would be equivalent to standard JND perceptual cod-
ing using J�(u).

� The only source of error on the extracted information
is due to lossy compression. The host signal does not
provide any interference to the hidden data.
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4 Analysis and Insights

4.1 Formulation

Let W (u) represent the signal change in F (u) to embed
the hidden data. After compression, assuming no interfer-
ence from the host signal, the received signal is

Ŵ (u) =W (u) +Q(u) (2)

where Q(u) is additive uniformly distributed noise and is
assumed to be independent of W (u). For the remainder of
the analysis, we drop the argument u.

Consider jW j � � and that the probability density func-
tion (pdf) of Q is given by

pQ(q) =

�
1
2J

jqj � J

0 otherwise
(3)

Because of the independence of W and Q, it follows that

p
Ŵ
(�) = pW (�) � pQ(�) (4)

where we use the notation that pX is the pdf of random
variable X 2 fŴ ;W;Qg.

4.2 Results for Aggressive Compression

Aggressive compression is defined as a situation for
which � < J , or equivalently Ei < 1. For this case, E-
quation 4 reduces to

p
Ŵ
(�) =

8>>>><
>>>>:

0 � � ��� J
1
2J
PW (� + J) ��� J < � � �� J

1
2J

�� J < � � ��+ J
1
2J
(1� PW (� + J)) ��+K < � � �+ J

0 � > �+ J

(5)
where PW (�) is the cumulative distribution function (cdf)

of W (i.e., PW (�) =
R �
�1

pW (�)d�).
The data hiding capacity of the associated sub-channel

ci is defined as

Ci = max
pW (�)

I(Ŵ ;W ) (6)

where pW (�) is the pdf of W , and I(�; �) is the mutual in-
formation between the two argument distributions [6].

Taking the derivative of I(Ŵ ;W ) with respect to pW (�)
and equating to zero, we find that the capacity is achieved
for

PW (�) =

8<
:

0 for � � ��
1
2

for �� < � � �

1 for � > �

(7)

or equivalently,

pW (�) =
1

2
Æ(� + �) +

1

2
Æ(� � �) (8)

where Æ(�) is the Dirac delta function. This means that to
achieve capacity, W has a discrete binary uniform distribu-
tion. This is not a Gaussian distribution as many researchers
have assumed because in the formulation of the problem we
limit both the noise and water mark to be bounded in ampli-
tude. The capacity of the sub-channel is then given by

Ci = H(Ŵ )�H(Q) (9)

=
h�
J
+ log(2J)

i
� log(2J) (10)

=
�

J
(11)

= Ei (12)

where H(�) is the entropy of the argument random variable.
Assuming that the signal and noise are independent for each
sub-channel ci, the overall data hiding channel capacity is
given by

C =

MX
i=1

Ci =

MX
i=1

Ei (13)

The “compression sacrifice” CS due to data hiding is de-
fined as the number of additional bits required for storage
of the signal because some of the perceptual masking prop-
erties are used for data hiding. For the uth coefficient, it is
given by log2(

�+J
J

). Thus, for sub-channel ci, the bit rate
sacrifice is N log2(Ei+1). Relating this to the sub-channel
capacities,

CS = N

MX
i=1

log2(Ci + 1): (14)

whereN is the number of coefficients comprising each sub-
channel.

4.3 Results for Aggressive Data Hiding

For dominant data hiding, Ei � 1. Using similar anal-
ysis and reasoning, the capacity C of each sub-channel is
bounded as follows:

log2(bEic+ 1) � Ci � log2(dEie+ 1): (15)

where b�c and d�e are the floor and ceiling operators, respec-
tively. The probability distribution of W which achieves
capacity is discrete and uniformly distributed. Therefore,

MX
i=1

log2(bEic+ 1) � C �

MX
i=1

log2(dEie+ 1): (16)
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For the case in which Ei is a natural number, it is easily
shown that

CS = NC: (17)

That is, the bit rate sacrificed for more efficient storage is
equal to the data hiding capacity bit rate times the number
of coefficients in each sub-channel.

4.4 Implications

The analysis in this paper demonstrates that if the same
transforms are used for both data hiding and perceptual cod-
ing then, at most, you can achieve a data hiding capacity
equal to the loss in storage efficiency bit rate. This occurs
for N = 1, and Ei a natural number (i.e., aggressive data
hiding). In this case the quantization noise is almost always
a smaller amplitude than the hidden data signal, so a very
weak channel code (in particular, the trivial block length of
N = 1) can be used as there is effectively a clean channel
for transmission. For aggressive compression, the capacity
is smaller than the loss of bit rate.

The results for capacity are analogous to those for ad-
ditive white Gaussian noise channels except that the ratio
of signal to noise energy is replaced by the relative per-
ceptual efficiency. The modeling of compression effects on
the hidden data as an amplitude limited uniformly distribut-
ed random variable, provides new insights into appropriate
channel codes to achieve data hiding capacity. It has been
considered in most theoretical work that Gaussian signal-
s are appropriate for high capacity data hiding; this is true
if the interference experienced by the hidden information
is also Gaussian. However, using our classical model for
quantization noise, we find that antipodal signals are more
appropriate for achieving capacity in the presence of ag-
gressive lossy compression. In fact, it is beyond the scope
of this paper, but it can also be shown that generalized K-
level antipodal signalling achieves capacity for aggressive
data hiding when Ei is a natural number. This implies that
some quantization-based algorithms such as those proposed
in [11, 4] or those using pn-sequences [21] (assuming that
the host signal interference is small) might be more appro-
priate for the task of data hiding than traditional Gaussian
signals.

A long powerful block code needs to be employed to
achieve capacity which suggests that N needs to be large.
Thus, capacity can be reached practically for high volume
host signals such as digital video. In addition, there is a re-
lationship between N , C, and CS in the sense that a more
powerful block code can be used to asymptotically approach
capacity, yet the cost to compression sacrifice CS grows lin-
early. Depending on the application and volume of host data
available, an appropriate selection of N can provide a good
compromise.

This work also provides insight into hiding data in the
same domain as perceptual coding. We see that the gain in
hiding ability is at most what you loose in compression ef-
ficiency. This motivates future investigation into using dif-
ferent transforms for both tasks. The fundamental limitation
in using a structured perceptual paradigm which involves a
particular transformation T and JNDs is that not all of the
perceptual masking characteristics are exploited. Thus, use
of complementary domains for the hiding and compression
processes may allow one to hide information without sacri-
ficing compression efficiency. Preliminary work in the area
has demonstrated the potential of this approach for achiev-
ing higher capacity data hiding without investing compres-
sion efficiency [12, 13].

5 Final Remarks

In this work we provided analysis to gain insight into
the capacity of a broad class of data hiding schemes. A
communication paradigm for data hiding was established
for which the primary source of channel noise was due to
perceptual coding. Assuming the same structure using JND
models for data hiding and perceptual coding, we see that at
best the data hiding capacity is equal to the increased stor-
age requirements of the information. In addition, through
more appropriate modeling of quantization effects due to
compression, we see that antipodal channel codes opposed
Gaussian sequences are more appropriate to achieve capac-
ity.

References

[1] W. Bender, D. Gruhl, and N. Morimoto. Techniques for data
hiding. In W. Niblack and R. C. Jain, editors, Proc. SPIE,
Storage and Retrieval for Image and Video Databases III,
volume 2420, pages 164–173, February 1995.

[2] S. Bhattacharjee and M. Kutter. Compression tolerant im-
age authentication. In Proc. IEEE Int. Conference in Image
Processing, volume 1, October 1998.

[3] A. G. Bors and I. Pitas. Image watermarking using block
site selection and DCT domain constraints. Optics Express,
3(12):512–523, December 7 1998.

[4] B. Chen and G. W. Wornell. Dither modulation: A new
approach to digital watermarking and information embed-
ding. In Proc. SPIE, Security and Watermarking of Multi-
media Contents, volume 3657, January 1999.

[5] T.-Y. Chung, M.-S. Hong, Y.-N. Oh, D.-H. Shin, and S.-H.
Park. Digital watermarking for copyright protection of M-
PEG2 compressed video. IEEE Transactions on Consumer
Electronics, 44(3):895–901, August 1998.

[6] T. Cover and J. Thomas. Elements of Information Theory.
John Wiley & Sons, Inc., Toronto, 1991.

[7] I. J. Cox, J. Kilian, T. Leighton, and T. Shamoon. Secure
spread spectrum watermarking for images, audio and video.

5



In Proc. IEEE Int. Conference on Image Processing, vol-
ume 3, pages 243–246, 1996.

[8] V. Darmstaedter, J.-F. Delaigle, J. J. Quisquater, and B. Mac-
q. Low cost spatial watermarking. Computers & Graphics,
22(4):417–424, 1998.

[9] H. Inoue, A. Miyazaki, A. Yamamoto, and T. Katsura. A
digital watermark based on the wavelet transform and its ro-
bustness on image compression. In Proc. IEEE Int. Confer-
ence in Image Processing, volume 2, October 1998.

[10] N. Jayant, J. Johnston, and R. Safranek. Signal compres-
sion based models of human perception. Proceedings of the
IEEE, 81:1385–1422, October 1993.

[11] D. Kundur and D. Hatzinakos. Digital watermarking using
multiresolution wavelet decomposition. In Proc. IEEE In-
t. Conference on Acoustics, Speech and Signal Processing,
volume 5, pages 2969–2972, 1998.

[12] D. Kundur and D. Hatzinakos. Attack characterization for
effective watermarking. In Proc. IEEE Int. Conference in
Image Processing, October 1999.

[13] D. Kundur and D. Hatzinakos. Mismatching perceptual
models for effective watermarking in the presence of com-
pression. In Proc. SPIE, Multimedia Systems and Applica-
tions II, September 1999.

[14] J. Lacy, S. R. Quackenbush, A. R. Reibman, D. Shur, and
J. H. Snyder. On combining watermarking with perceptual
coding. In Proc. Int. Conf. on Acoustics, Speech and Signal
Processing, volume 6, pages 3725–3728, May 1998.

[15] J. Lacy, S. R. Quackenbush, A. R. Reibman, and J. H. S-
nyder. Intellectual property protection systems and digital
watermarking. Optics Express, 3(12):478–484, December 7
1998.

[16] J. Meng and S.-F. Chang. Embedding visible video water-
marks in the compressed domain. In Proc. IEEE Int. Con-
ference in Image Processing, volume 1, 1998.

[17] S. R. Norsworthy, R. Schreier, and G. C. Temes, editors.
Delta-Sigma Data Converters: Theory, Design and Simula-
tion. Wiley, New York, 1997.

[18] C. I. Podilchuk and W. Zeng. Image-adaptive watermarking
using visual models. IEEE Journal on Selected Areas in
Communications, 16(4):525–539, May 1998.

[19] M. Ramkumar and A. N. Akansu. Theoretical capacity mea-
sures for data hiding in compressed images. In Proc. SPIE,
Voice, Video and Data Communications, November 1998.

[20] M. S. Sanders and E. J. McCormick. Human Factors in En-
gineering and Design. McGraw-Hill, New York, 7th edition,
1993.

[21] R. G. van Schyndel, A. Z. Tirkel, and C. F. Osborne. A
digital watermark. In Proc. IEEE Int. Conference on Image
Processing, volume 2, pages 86–90, 1994.

[22] H.-J. Wang and C.-C. J. Kuo. An integrated progressive im-
age coding and watermark system. In Proc. Int. Conf. on
Acoustics, Speech and Signal Processing, volume 6, pages
3721–3724, March 1998.

[23] R. B. Wolfgang, C. I. Podilchuk, and E. J. Delp. The ef-
fect of matching watermark and compression transforms in
compressed color images. In Proc. IEEE Int. Conference in
Image Processing, volume 1, October 1998.

6


