
ADVANCES IN PEER-TO-PEER CONTENT SEARCH 
 

Deepa Kundur1, Zhu Liu2, Madjid Merabti3, and Heather Yu4 
 

1Electrical & Computer Engineering Department, Texas A&M University, College Station, TX, USA 
2AT&T Labs – Research, Middletown, NJ, USA 

3School of Computing & Mathematical Sciences, Liverpool John Moores University, UK 
4Huawei Technologies (USA), Plano, TX, USA 

 

 
ABSTRACT 

 
This paper provides a timely review of influential work in the area of 
peer-to-peer (P2P) content search.  We begin with a survey of text-
based P2P search mechanisms and continue with an exposition of 
content-based approaches followed by a discussion of future 
directions.  
 

1. INTRODUCTION 
 

The power to access relevant and salient information in a timely and 
cost-effective manner is critical in today’s information age.  Models 
for information sharing between ad hoc groups of users are currently 
being investigated for collaborative and cooperative multimedia 
sharing applications.  The most common model to date is based on the 
peer-to-peer (P2P) communication network model.   Ideally, a P2P 
network consists of equal peer nodes that can take on the roles of both 
client and server to other peer network nodes.  Such network 
operation makes use of the data acquisition capabilities, computing 
power and bandwidth of the network nodes rather than exploiting an 
existing network infrastructure for operations such as routing and 
information retrieval. 

Naturally, processes such as content search must take into account 
this inherent network model as well as the characteristics of the 
information being acquired, stored and communicated.  For 
multimedia data, such P2P search and retrieval processes are 
especially challenging to design; inherent compromises among search 
time, retrieval accuracy, and query message bandwidth, must be 
accounted for.  This paper addresses recent advances in P2P content 
search by providing an overview of influential research in the area.  
We begin by giving an overview of text based P2P file search and 
then content-based search mechanisms are reviewed followed by a 
discussion of future directions.  

 

  2. TEXT BASED P2P SEARCH 
 

One of the earliest P2P implementations that brought P2P computing 
into the mainstream and which sparked a large amount of media 
attention was Napster [1]. Napster was created purely for the 
distribution of MP3 audio files, and as such it was swamped with 
negative press because people were downloading digital content 
illegally and consequently ignoring content copyright. Each Napster 
node downloads and installs the client software used to connect the 
peer to the centralized Napster server. Once connected, peers share 
MP3 files stored locally on their hard drives, with text-based 
information about them being indexed and stored by the Napster 
server.  Clients submit text-based queries to the Napster servers for a 
particular audio file. This results in a list of files that match, along 
with the connection information, username, IP and port address the 
querying client must use to connect to the peer hosting the file. Once 
the querying peer has this information it attempts to connect to the 

peer and transfer the target content in a P2P fashion. At this point the 
Napster server is no longer required [2]. 

Although Napster proved successful and is said to be the 
grandfather of modern P2P computing models it suffered from a 
number of limitations. The major limitation was the fact that it could 
only share MP3 content. In addition, its hybrid model was reliant on 
client-server technology - if the server became unavailable the 
discovery mechanism used to find content was lost.  

Another hybrid protocol, similar to Napster called iMesh [3] uses 
a centralized server, to which clients connect to in order to search for 
content. The iMesh model differs somewhat to Napster in two 
respects. First, it allows any content to be shared including MP3 audio 
files. Second - the reason why iMesh has not been subjected to the 
same legal problems as Napster - it has a mechanism to remove 
copyrighted files from the network. 

Computational expense and scalability issues associated with the 
above mentioned models are well documented, which has resulted in 
new P2P networks devoid of any centralization. The most popular 
being the Gnutella protocol [4]. Like iMesh it provides a generic file 
sharing mechanism that allows any digital media content to be shared. 
However it differs from iMesh and Napster because the Gnutella 
protocol uses a purely decentralized model, which is not reliant on 
any centralized authority. 

The search mechanism used by Gnutella adopts a different 
approach to Napster in that it does not require any centralized server 
to manage the location of content within the network. Search packets 
containing text queries are used with predefined TTL values, the 
default value being 7, which corresponds to the number of hops the 
message can take. The packet is passed to all the immediate peers’ the 
querying peer is connected to, which in turn is passed to all the peers 
the peer is connected to. The Horizon as defined by Kan [1], given a 
TTL of 7 encompasses about ten thousand nodes. If a node is found 
with a file name matching the query, the information is routed back to 
the querying peer. The file can then be downloaded directly from the 
target node. This is commonly referred to as blind search. 

Unlike Napster, it is difficult to disrupt the network because no 
one single node is responsible for creating it. If any given node is lost 
it does not affect the overall search mechanism of the Gnutella 
network. The worst case is that you only lose the content provided by 
that node. Consequently Gnutella provides mechanisms to counteract 
some of the limitations associated with Napster. As such many 
Gnutella clients have been developed since the protocol was first 
released in 2000, including Bearshare [5] and Shareaza [6]. 

The FastTrack protocol claims to be better than Gnutella and its 
variants. A number of popular applications such as Kazaa [7], 
Morpheus [8] and Grokster [9], use the FastTrack protocol which 
divides users into two groups. The first group contains supernodes 
and the second contains ordinary nodes. Supernodes are defined as 
computers with significant computation, network and bandwidth 
capabilities. All supernodes are connected together to create an 

4041-4244-1017-7/07/$25.00 ©2007 IEEE ICME 2007

Authorized licensed use limited to: Texas A M University. Downloaded on December 23, 2008 at 06:35 from IEEE Xplore.  Restrictions apply.



overlay network that acts as a hub processing all data requests 
received from ordinary nodes within the network, which are 
inherently less capable nodes. 

When a node wants to share or search for a file a request is 
submitted to the supernode, which in turn submits it to all other 
supernodes, which in turn propagate the request to the ordinary nodes 
they are servicing. Like Gnutella, messages are configured with a 
TTL value of 7, ensuring that message propagation is terminated once 
seven hops have been reached. 

Once the content has been found it is transferred directly from the 
target node to the querying node using the HTTP protocol, without 
using the supernode. There is a subtle distinction between the 
FastTrack model and that of Napster in that the Napster server 
managed an index of audio file information thereby breaching 
copyright laws. The FastTrack protocol avoids this problem because 
it only manages a list of supernodes and not information regarding the 
content itself. Supernodes are ad hoc in nature and are free to join and 
leave the network at any time. So information about supernodes held 
by the FastTrack servers continually changes. This abstraction 
detaches the FastTrack protocol, including the applications that use 
the protocol, from media content and thus some believe that 
FastTrack-based applications do not aid copyright infringement. 

The difficulty with protocols such as Gnutella and FastTrack is 
that they rely on flooding or random walking for content search, with 
messages propagated to every peer. This results in increased costs and 
network traffic. Wang et al. [10] aim to alleviate these limitations 
using their proposed Differential Search (DiffSearch) algorithm. They 
claim DiffSearch improves search efficiency of unstructured P2P 
networks by giving higher querying priority to peers with high 
query/reply capabilities, known as ultrapeers. Ultrapeers form an 
overlay and serve visiting peers known as leaf nodes. The indices of 
leaf nodes are uploaded to ultrapeers allowing all shared content to be 
searched within what they call the first round. Based on test using 
Gnutella, Wang argues that 1% of peers answer the main portion of 
queries. Consequently by routing queries to these peers it is possible 
to save up to 90% of query traffic. Using counters to track which files 
answer queries, which they call effective files, a matrix is created 
allowing ultrapeers to be self-aware by counting the number of shared 
files which have been visited. If the number of shared files exceeds a 
threshold, a peer can promote itself to ultrapeer status. This results in 
an overlay where members have higher priority depending on where 
they reside in the hierarchy. To further decrease traffic, DiffSearch 
hitchhikes query/response messages to perform network management 
task. For example, allowing ultrapeers to advertise themselves to leaf 
nodes and vice versa.  

The Foreseer P2P system aims to address various limitations 
using distributed indices [11]. Cai et al. claim their approach 
improves efficiency in decentralized unstructured P2P systems using 
two orthogonal overlays, which they term neighbor and friend 
overlays. To use their example, everyone has neighbors and friends 
which form part of an individual’s social network. People tend to get 
to know their neighbors over time as they become more settled within 
their environment and make friends through social interactions. 
Implementing this scenario in Foreseer, friend nodes can serve future 
requests with a high probability (temporal locality), whilst neighbor 
nodes can offer quality of service, such as fast responses and low 
resource consumption if they are able to carry out the request 
(geographical locality). Locality is also discussed in Datta et al. [12], 
where it is considered important for scalability in data mining – the 
same principles apply to Foreseer.  

Extending this scenario content is searched for using a collection 
of business cards provided by all neighbor and friend nodes. Finding 
content is as simple as sending/receiving a request. Using each 
business card, the node checks to see if a peer exists capable of 
service the request. If a suitable node is found the node in question is 
contacted. However, if the request cannot be serviced the request is 

passed to all its neighbors and friends. In Foreseer, business cards 
refer to a peer's content filter, which is derived using the Bloom filter 
on all the content it shares. It is therefore only able to address text-
based content. 

A by-product of the neighbor and friend overlays is that it 
provides an efficient search direction, where random walking or query 
flooding is unnecessary. Query requests contain one or more terms 
and it is these terms that are compared to the content filters for the 
neighbors and friends the node is aware of. In local matching a node 
computes the query filter by mapping the query terms and comparing 
it with the content filter of each node it has routing information about. 
If a match is found it indicates that a node may contain all the key 
words with high probability. If the local matching fails the query is 
selectively forwarded based on the results obtained from the first 
approach. The query in this instance is forwarded along the neighbor 
and/or friend links where local matching is performed. 

Taking an opposing view, efficiency in P2P network has been 
addressed using different techniques, where processes are more finely 
controlled so that structure can emerge. Many approaches use 
Distributed Hash Tables to achieve this. Chord [13][14] is one such 
protocol that adopts these principles where order emerges using their 
DHT routing algorithm. Its basic structure forms a ring topology, 
whereby each node only has to establish one connection. A consistent 
hashing function, such as SHA-1, is used to generate node and object 
identifiers known as keys. The node identifier is created using the IP 
address and port. The object identifier, which can be any kind of 
shared content, is created using the data to be shared within the ring. 
Node identifiers are arranged in a circle modulo 2m, where m is the 
length of the hash value. Every key k is assigned to the node whose 
identifier n is larger than or equal to the hash value of k. The node the 
key belongs to is called the successor. In Chord, node identifiers 
increase clockwise and keys are assigned to the first nodes that reside 
closest to them clockwise. Chord uses a hashing function designed to 
distribute keys evenly throughout the ring topology, whereby all 
nodes roughly receive the same number of keys. 

Every node is aware of their successor and as such queries are 
passed from successor to successor. When a node is reached that has a 
hash value greater than or equal to the hash value of the key, this node 
can map the query to the key. In order to overcome the need to 
traverse every node, a node can attempt to find the predecessor of 
some key k using a finger table. Node n achieves this by searching its 
finger table for some node x that immediately precedes some key k. If 
it finds node x then it queries it to determine which node is closet to k. 
By repeating this process n moves the query closer and closer to k. In 
Chord this is called iterative routing.  

CAN [15] is similar to Chord and also uses the DHT concept to 
self-organize, share content and route queries. CAN forms a P2P 
overlay network that stores chunks of a distributed hash table, known 
as zones. The protocol is based on a virtual d-dimensional Cartesian 
coordinate space. This space is dynamically partitioned among all the 
nodes in the system, so that every node owns its own zone within the 
global coordinate space. This space stores key-value pairs where k1 is 
mapped onto a point p in the space using a uniform hashing function. 
The key-value pairs are stored on the node that owns the zone in 
which p resides. To discover the values of some key k1 any node can 
use the hash function to map k1 onto p and retrieve the contents from 
p. This may be the content or a pointer to the content. If the p is not 
owned by the querying node or its neighbor, then the request is routed 
towards the node where p resides.  

Pastry [16] is not too dissimilar to Chord and CAN in that it also 
uses a DHT-based protocol to form a self-organized overlay network. 
Pastry nodes are identified in the network space using a 128 bit 
identifier, known as the nodeId. The nodeId indicates a node’s 
position in the circular nodeId space. The nodeIds themselves are 
assigned randomly when the node first connects to the Pastry 
network. Several mechanisms can be used to derive the nodeId, 

405

Authorized licensed use limited to: Texas A M University. Downloaded on December 23, 2008 at 06:35 from IEEE Xplore.  Restrictions apply.



however typical implementations use the node’s public key or IP 
address to create a hash. In Pastry nodeIds are thought of as a 
sequence of digits in base 2b. Nodes within Pastry maintain their own 
routing table, which is organised into 128/2b columns. As well as the 
routing table, each node also maintains a neighborhood set M 
containing the nodeIds and IP addresses of the M nodes closest to the 
local node. The set is not used for routing, but rather for maintaining 
locality properties [17]. Nodes also maintain a leaf set L containing 
the set of nodes with numerically closest but larger nodeIds and 
numerically smaller nodeIds, relative to the present nodes nodeId. 
The leaf set is used when messages are routed. When a node receives 
a message it first checks to see if the key falls within the range of 
nodeIds covered by its leaf set. If it is, the message is forwarded 
directly to the destination node. If the key is not covered by the leaf 
set, the routing table is used and a message is forwarded to the node 
that shares a common prefix with the key by at least one more digit. 

DHT-based P2P protocols are said to provide considerable 
benefits over previous generations, providing emergent behaviors that 
support order and increased performance. However, they are 
expensive to maintain because the network topology is continually 
changing. Consequently managing a consistent DHT requires 
considerable effort. In an attempt to leverage the benefits of DHT, but 
also minimize some of its inherent limitations the JXTA [17] 
specification have tried to create a balance by creating a hybrid 
system that uses a loosely consistent DHT [18]. Whilst protocols such 
as Chord rely on more costly mechanisms to keep the network view 
consistent, JXTA uses a less costly mechanism that ensures the 
network view is only loosely-consistent. The advantage with this 
approach is that it is less expensive to maintain, however the 
disadvantage is that it may be temporarily or permanently 
inconsistent. 

Yang et al. [19] enhances the DHT-based P2P networking 
approaches discussed above by proposing a keyword search scheme 
called Proof that utilizes advances in information retrieval research. 
The Proof protocol reduces network traffic, decreases search latency 
and provides high quality search results. The Proof system comprises 
a crawler, a database, an index generator, and a distributed P2P 
system. The crawler collects web pages and extracts hyperlink 
information for computing page rank values, whilst the index 
generator produces new index structures and publishes them to the 
P2P system. The P2P system itself assumes N peers are contained and 
uses a consistent hash function to assign an identifier to each peer. 
The system contains documents and a vocabulary, which contains all 
of the keywords in the documents. Each document is composed of 
several keywords, which are a subset of the vocabulary. Given a 
query containing several keywords, a subset of the vocabulary and a 
user-specified result threshold, the search problem is defined in terms 
of finding the top relevant documents that contain all the query 
keywords. 

While many interesting solutions have been proposed in both 
structured and unstructured P2P networks, Ahmed et al. [20] believe 
that flexibility and efficiency remain unsolved problems. To address 
these challenges Ahmed proposes their Distributed Pattern Matching 
system (DPMS). DPMS is based on Bloom filter based pattern 
matching distributed throughout the P2P network. Given a search 
pattern Q, DPMS tries to find peers containing some pattern P that 
matches Q, i.e. the 1-bits of Q for a subset of the 1-bits found in P. 
DPMS peers can act as either a leaf peer or an indexing peer where 
the former resides at the bottom level of the indexing hierarchy. This 
type of node advertises its indices representing the content the peer 
wishes to share. Whilst, indexing peers store indices received from 
other peers - these peers may be leaf peers or indexing peers. Peers 
join different levels within the hierarchy and can act both as a leaf 
peer and an indexing peer. Within this hierarchy indexing peers 
disseminate index information using repeated aggregation and 
replication. Replication is used for disseminating patterns from leaf 

peers to a large number of indexing peers. To overcome increased 
traffic load, DPMS combines replication with lousy-aggregation. 
Advertisements provided by different peers are aggregated and 
propagated to peers in the next level along the aggregation tree. Based 
on repeated lousy aggregation, information content of the aggregates 
is reduced as you move towards the top of the indexing hierarchy. 
This helps balance the system and improve fault tolerance. 
Furthermore, peers can route queries towards a target without having 
any global knowledge of the overlay topology. It also helps minimize 
query forwarding traffic.  

The query life-cycle can be divided into three phases: ascending 
phase, blind search phase and descending phase. Using the ascending 
phase, an initial (or intermediate) peer checks its local information for 
the existence of a match. If a match is found the query is forwarded to 
the matching child, otherwise it is forwarded to any of its parents. 
This process continues until a query hits a peer with a match or 
reaches the highest level peer. Blind search is executed by a highest 
level peer receiving a query (from a child) that does not match any 
aggregate in its aggregate lists. This peer floods the query to all other 
peers in its group. If no peer in a group at the highest level contains a 
match then the search fails. When a peer hits a peer containing the 
matching aggregate, it enters the descending phase. The query is 
forwarded to the child peer advertising the matching aggregate. This 
process continues until the query reaches a leaf peer. 

Today, more and more P2P systems are seeking to support more 
powerful queries. Joost, a broadcast quality Internet TV service, for 
example supports phrase queries, wildcard queries, proximity queries, 
range queries and more. An algorithm that supports range queries 
over DHT is proposed in [21]. It implements range queries over DHT 
via a trie-based scheme in which every vertex corresponds to a 
distinct prefix of the data domain being indexed. A range query can 
be performed via longest common prefix search followed by a parallel 
traversal in the P2P network to retrieve all the desired items. 
 

3. CONTENT-BASED SEARCH 
 

Most existing P2P systems provide very limited content search 
capabilities, for example, search based on document title, author 
names, keywords, or descriptive text. To retrieve the relevant content 
more effectively, we need an approach that provides richer searching 
features. Content-based search is essential for querying textual 
documents, and it is also desirable for querying multimedia data 
when text annotations are nonexistent or incomplete.  

Multimedia content indexing and retrieval has been an 
active field for more than a decade. It draws tremendous 
research effort from the academia, the industrial, and the 
standard organizations. For example, MPEG-7 is a standard 
sponsored by the International Organization for 
Standardization for describing the multimedia content. It 
provides support to a broad range of applications, and it will 
make the web as searchable for multimedia content as it is 
searchable for text. The evolution of the World Wide Web, 
including the introduction of Rich Site Syndication (RSS), 
Web 2.0, and the semantic web, enables the web information 
be machine processable (rather than being only human 
oriented), thus permits browsers or other agents to find, 
share and combine information more easily. In this section 
we will briefly describe a few examples of content-based 
search in P2P systems. 

Tang et al. [22] proposed PeerSearch, an efficient P2P 
information system that supports content and semantic search. 
PeerSearch extends existing information retrieval methods: the vector 
space model (VSM) and the latent semantic indexing (LSI) to work 
with the efficient routing mechanisms in a Content Addressable 
Network (CAN). Basically, LSI uses singular value decomposition to 

406

Authorized licensed use limited to: Texas A M University. Downloaded on December 23, 2008 at 06:35 from IEEE Xplore.  Restrictions apply.



transform and truncate a matrix of document vectors computed from 
VSM to discover the semantics underlying terms and documents. The 
authors used the semantic vector of a document as the key to store the 
document index in CAN, such that the indices stored nearby in CAN 
are close in semantics. The same technology can be applied to audio 
or video data, where the semantic vectors have to be extracted from 
audio or video data. 

Lu and Callan [23] explored content-based resource selection and 
document retrieval algorithms in hybrid P2P networks. In their 
approach, the leaf node determines the retrieval results for certain 
query using probabilistic information retrieval algorithm, and the 
directory node (supernode) builds a unified content model for all of 
its leaf nodes and a set of neighboring directory nodes. The content 
model is used for routing query messages. 

Yang [24] described a content-based music retrieval system in 
P2P environment. Each audio document is converted into a stream of 
characteristic sequences, where each sequence is a vector representing 
a short segment of music data. All characteristic sequences are 
indexed using Locality-Sensitive Hashing scheme, such that similar 
(in term of human perception) vectors can be hashed into the same 
hash value with high probability. Given a query audio, the retrieval 
procedure is to find a list of matches on characteristic sequences with 
the tolerance of tempo changes. To improve the search efficiency in a 
P2P environment, a two-phase search protocol was proposed. In the 
presearch phase, the query peer broadcasts a small subset of query 
vectors to all potential peers. In the actual search phase, peers with a 
higher chance of a hit will conduct the more rigorous search. 

In [25], Lee and Guan presented a content-based image retrieval 
system over a P2P network. Each peer in the system maintains two 
look-up tables, one for generic neighbors which are typically the 
neighbors with the least physical hop counts, and the community 
neighbors which share common interests at the image content. The 
system uses the historical retrieval results to identify the community 
neighbors, such that the subsequent retrieval within the community 
neighbors will result better retrieval precision. The adopted visual 
features include color, color moments, object shape, and texture. 

 

4. WHAT’S NEXT 
 

With the recent merging of content acquisition, communication 
networking and computation to form emerging multimedia sensor or 
surveillance systems, the need for advanced content mechanisms is 
paramount.  Many of these systems are predicted to have P2P 
communication architectures [26] necessitating efficient P2P content-
based search for higher-level content retrieval and understanding. 
Imagine a world in which multimedia sensor networks (interpreted as 
sensor databases containing time critical information) are employed 
to detect emerging natural disasters or terrorist activities.  The utility 
of such systems is, in part, determined by the ability to effectively and 
efficiently retrieve information for a given application given often 
incomplete or vague information queries. 

Furthermore, for such multimedia database systems security and 
privacy issues are paramount [27][28][29]. Research into security 
policy development, security architectures, authenticated querying, 
privacy protection, and access control for information retrieval are 
essential during system inception in order to guarantee the most 
seamless, cost-effective and robust solution.  
 

REFERENCES 
 

[1] A. Oram et al., Peer-to-Peer: Harnessing the Power of Disruptive 
Technologies, 2001, O'Reilly.  

[2] J. D. Gradecki, Mastering JXTA: Building Java Peer-to-Peer 
Applications. 2002, Wiley Publishing, Inc. 

[3] http://www.imesh.com/. 
[4] The Gnutella Protocol Specification v0.4, Gnutella, http:// 

www9.limewire.com/developer/gnutella_protocol_0.4.pdf. 

[5] http://www.bearshare.com/. 
[6] http://www.shareaza.com/. 
[7] http://www.zeropaid.com/kazaalite/. 
[8] http://morpheus.com/. 
[9] http://www.grokster.com/. 
[10] W. Wang and L. Xiao, “An Effective P2P Search Scheme to 

Exploit File Sharing Heterogeneity,” IEEE Transactions on 
Parallel and Distributed Systems, 2007. 18(2), pp. 145 - 157. 

[11] H. Cai and J. Wang, “Exploiting Geographical and Temporal 
Locality to Boost Search Efficiency in Peer-to-Peer Systems,” 
IEEE Transactions on Parallel and Distributed Systems, 2006. 
17(10): pp. 1189 - 1203. 

[12] S. Datta, K. Bhaduri, C. Giannella, H. Kargupta, and R. Wolff, 
“Distributed Data Mining in Peer-to-Peer Networks,” IEEE 
Internet Computing, 2006. 10(4): pp. 18-26. 

[13] J. Eberspacher, R. Schollmeier, S. Zols, and G. Kunzmann, 
“Structured P2P Networks in Mobile and Fixed Environments,” 
HET-NETs ‘04, 2004, West Yourshire, UK.   

[14] F. Dabek, E. Brunskill, F. Kaashoek, and D. Karger, “Building 
Peer-to-Peer Systems with Chord, a Distributed Lookup 
Service,” HotOS-VIII, 2001, Germany, pp. 81-86. 

[15] S. Ratnasamy, P. Fancis, M. Handley, and R. Karp, “A Scalable 
Content-Addressable Network,” ACM SIGCOMM 2001, San 
Diego, California, USA: ACM Press, pp. 161-172. 

[16] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed 
Object Location and Routing for Large-scale Peer-to-peer 
Systems,” IFIP/ACM International Conference on Distributed 
Systems Platforms (Middleware), 2001, Heidelberg, Germany. 

[17] L. Gong, “JXTA: A Network Programming Environment,” IEEE 
Internet Computing, 2001. 5(3): pp. 88-95. 

[18] B. Traversat, M. Abdelaziz, and E. Pouyoul, “Project JXTA: A 
Loosely-Consistent DHT Rendezvous Walker,” URL: 
http://www.jxta.org/docs/jxta-dht.pdf. 

[19] K. Yang and J. Ho, “Proof: A DHT-Based Peer-to-Peer Search 
Engine,” WI 2006, Hong Kong, pp. 702 - 708. 

[20] R. Ahmed and R. Boutaba, “Distributed Pattern Matching: A 
Key to Flexible and Efficient P2P Search,” IEEE Journal on 
Selected Areas in Communications, 2007. 25(1): pp. 73-83. 

[21] S Ratnasamy, J Hellerstein and S Shenker, "Range queries over 
DHTs," IRB-TR-03-009, June, 2003,available at http:// 
berkeley.intel-research.net/sylvia/range.pdf 

[22] C. Tang and Z. Xu and M. Mahalingam, “PeerSearch: Efficient 
Information retrieval in Peer-Peer Networks,” 2002, Hewlett-
Packard Labs: Palo Alto. 

[23] J. Lu and J. Callan, “Content-Based Retrieval in Hybrid Peer-to-
Peer Networks,” Proceedings of ACM CIKM’03, New Orleans, 
LA, Nov. 2003. 

[24] C. Yang, “Peer-to-peer Architecture for Content-based Music 
Retrieval on Acoustic Data,” WWW 2003, Budapest, Hungary, 
May 20-24, 2003. 

[25] I. Lee and L. Guan, “Content-based Image Retrieval with 
Automated Relevance Feedback Over Distributed Peer-to-peer 
Network,” ISCAS 2004, Vancouver, Canada, May 23-26, 2004.  

[26] D. Kundur and W. Luh, Encyclopedia of Multimedia. Springer 
2006, ch. Multimedia Sensor Networks. 

[27] B. Thuraisingham, “Security and Privacy for Sensor Databases,” 
Sensor Letters, vol. 2, no. 1, pp. 37-47, March 2004. 

[28] W. Luh and D. Kundur, “Distributed Privacy for Visual Sensor 
Networks via Markov Shares,” Proc. 2nd DSSNS, Columbia, MD, 
April 2006. 

[29] W. Luh, D. Kundur and T. Zourntos, “A Novel Distributed 
Privacy Paradigm for Visual Sensor Networks Based on Sharing 
Dynamical Systems,” EURASIP Journal on Applied Signal 
Processing Special Issue on Visual Sensor Networks, vol. 2007. 

407

Authorized licensed use limited to: Texas A M University. Downloaded on December 23, 2008 at 06:35 from IEEE Xplore.  Restrictions apply.


