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Abstract—This paper presents the detection and identification
of cyber attacks in phasor measurement unit (PMU) data using
the expectation-maximization algorithm. Power systems today
is prone to malicious cyber attack with its greater complexity
and dependence on PMUs. While the conventional power system
estimation is very advanced and robust, this paper will extend
the power system estimation to inherently consider the possibility
of malicious cyber attack. The detection is incorporated into the
estimation problem in our approach, which will be solved by the
EM algorithm. The proposed algorithm is applied on an IEEE
14-bus system to illustrate the performance of the algorithm.

I. INTRODUCTION

The introduction of smart grid brings great opportunity
in increasing the efficiency and reliability of the electric
transmission system using information and communication
systems (ICSs). As part of implementing the smart grid, the
phasor measurement units (PMUs) are deployed in the electric
grid to measure the bus voltage and phasor angle. The phasor
angle plays a significant role in power systems studies, such
as solving the optimal power flow and system estimation
problem. The availability of PMU data real-time has provided
opportunities for enhanced applications and has been studied
for system estimation, dynamic security assessment, and sys-
tem awareness [1], [2]. The use of PMU has become practical
in the past decade, and the applications of PMUs are extended
to protection, control and wide-area monitoring of electric
grids [3]-[5]. As more applications of phasor measurement
have emerged, the prominence of information has become
greater.

Additionally, PMU data are realized to be useful for in-
vestigating blackouts and disturbances. A number of major
North American blackouts are identified to be caused by a
lack of system awareness, and a reliable measurement system
is clearly essential [6]. PMU has unique capability to provide
real time synchronized measurement, which provides not only
insight into the grid operation, but also it promises improved
reliability and efficiency of operation. However, the integration
of PMUs brings new vulnerabilities in malicious cyber attack,
which can result in physical consequences.

The control and operation of electricity system is based on
real-time information acquisition and communication devices.
The information is sent to the Supervisory Control and Data
Acquisition (SCADA) system, which can host potential mali-
cious cyber attacks or unintended failures in ICS [7]. PMUs
are part of SCADA measurement and thus, the information
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is prone to cyber attack. The physical consequences have
been studied for cyber attack [8], and there exist classical
state estimation methods, which eliminate the contaminated
data [9]-[11]. Although those methods are very well studied
and robust, cyber attack is not well incorporated in the power
system estimation. Our work will focus on the cyber attack of
phasor measurements and propose a novel way to inherently
model the malicious cyber attack inside the system estimation
using the Expectation-Maximization (EM) algorithm. We ap-
proach the detection and estimation problem by solving them
in parallel from sampled data. We assume Gaussian model to
PMU data because of its known simplicity that makes solving
the problem more tractable [12]. One of the relevent work
that has similar problem formulation is [13], but we solve the
problem with EM algorithm in our approach.

The EM algorithm is used to find missing data and to
optimize intractable likelihood function [14]. It is a very
efficient and powerful tool and has been applied to various
applications including power systems [15]. For our application,
the presence of malicious cyber attack is the hidden variable
that we would like to estimate using the observed data. We
illustrate the cyber attack detection algorithm in an IEEE
standard 14-bus system.

II. BACKGROUND
A. DC Power Flow

In this section, we present a common formulation of DC
state estimation. In DC state estimation, the resistance is
ignored since the line impedance between buses have high
reactance relative to the resistance. The bus voltage is assumed
to be constant in normal operation and the voltage phase
difference between two buses is small. The transmission power
is approximated with the following equation:
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Py =

)

where 0; is the voltage phase angle at bus 4, and X;; is the
reactance of the transmission line between bus ¢ and bus j.

We assume that phasor measurements are available at every
bus. We can represent the relationship between phasor angle
and power injection at every bus as:

BO = Py, 2
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where B € R™ ™ represents the branch admittance, ® =
[61,62,...,0,]T € R™ represents the system phasor, and
P;,; € R™ represents the power injection at every bus in
matrix form. We assume we have generation and load data so
that P;,; is already known without any malicious bias. Our
approach employs the DC power flow equation to design a
prior potential function needed for the EM algorithm, which
will be discussed in the later section.

B. PMU and False Data Injection Model

We assume that all PMU measurements are prone to Gaus-
sian white noise with probability density function, p(z) =
N(0,0?%), where z is the PMU measurement, and o is the
variance of PMU data. We assume that the variance of the
PMU data depends on the type of device and is already
available. The false data is represented as a bias on true phasor
angle:

p(x) =N(© +B,X?), 3)

where x € R”™ is the observed phasor measurement after
the attack, B € R" is a malicious bias injected into phasor
measurement, and X is the variance of PMU data. We note
that there is a cyber attack if B # 0. Based on this Gaussian
model of PMU data, we model the variance and uncertainty
of the measurements.

C. EM algorithm

Expectation-Maximization (EM) is an iterative algorithm
for parameter estimation and incomplete point estimation by
maximum likelihood. Given a set of observable variables,
and latent variable z, we want to estimate the parameters ~y in
the model. The EM algorithm consists of two steps:

E step : Q(117")) = Elz|z,v®] log p(, 2|)
M step : 7} = argmax, E[z[z,v®]log p(, z|y).

The missing data is estimated given the observed data and
current estimate of the model parameter in the E step. In the M
step, the likelihood function is maximized under assumption
that the missing data is known. The likelihood increases every
iteration, and the convergence of EM algorithm is guaranteed.

D. Problem Formulation

In this section, we will formulate our problem, which
incorporates detection and identification of cyber attack in
the power system estimation problem. We consider PMU
data that are attacked by malicious users discussed in the
previous section. We attempt to find the set of malicious
data that attempts to attack the system. In order to solve this
problem in real time, we need an algorithm that is efficient
and easy to implement. The EM algorithm is a popular tool
in statistical estimation problem that meets the requirements
for this application.

Our goal is to find the true phasor, ®, and to identify
the attack set, z € (}), where k is the number of attacked
measurements. We let p(z; = 1) = m;, where m; is the
probability that measurement x; is attacked. Figure 1 shows
the Bayesian network of the formulated problem. In the next
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Fig. 1. Illustration of problem formulation using graph.

section, we will discuss the mathematical formulation of
solving the described problem.

IITI. FALSE DATA INJECTION DETECTION ALGORITHM

The false data injection detection and identification al-
gorithm is developed in this section. Firstly, the model is
framed to be suitable for EM algorithm. Then, the potential
function will be employed to find the true phase angle with
cyber attack parameter estimation. The construction of the
potential function is dominated by physical dynamics of the
power systems, which in this case is the DC power flow

approximation.
Let us define the parameter for the model, T' = [II O],
where I = [my,7o,...,m,]T is the vector that defines the

probability of a cyber attack at every bus. I' is what we want to
estimate using the EM algorithm. Maximum likelihood (ML-
EM) is applied to II, and maximum a posteriori (MAP-EM)
is applied to ®. The objective of our problem is to find the
parameter,

A

I' = argmax log p(x, O|IL, X). 4
r

By maximizing the likelihood, we reveal the hidden cyber
attack in phasor measurement. In the following section, we
will model the system based on the background.

A. System Model

We assume the bias can be any value in the event of an
attack. If there is no attack, we take the potential function to
evaluate the probability. Thus, the following probability for
observing data if formulated:

Lo~ (@i=0:?/207 if o — 0
—e i if z; =
P(xl|9“zl) = 7i 2‘”1 . (5)
0i,maz—0i,min if z; = 1.

In our approach, we use the fact that the power should be
balanced at every bus and we design a potential function that
penalizes unbalanced power. From Equation 2, we define the
potential function between phasor angles using the DC power
flow equation:

P(O) = ¢~ (BOPw,) T2, (BO-Pinj) (6)
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where g is the variance of the potential function. This
potential function is used to compute the distribution of O,
which is used to compute the probability of a cyber attack at
each bus. We can rewrite the potential function equation as:

a;024b;6;+c;

(@) =c * )

1)’ 1\?
- (Te) () w
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2
0, — O
a=-> (> - — Pinjaq
Xgm

qeQ \meM
2 2
0. —06
(Z X — Pzng,z) — Z (Z Xck k _ Pzn]C) .
ceC \kek
(10)

ceC
Bus ¢ is connected to bus ¢, and k is connected to bus
c. Bus ¢ is the bus other than bus ¢ and ¢, and bus m is
connected to bus ¢. In mathematical notation, C = {c: X;. #
0}, K ={k: X # 0k £ 4}, Q = {q: q # i,c}, and
M = {m : X,, # 0}. Based on the system model, we
compute the parameters to maximize the likelihood in the next

section.

B. Computation

We want to complete the data set {x,®,z} using the
observed data set x and the potential function ®. Based on
how the model is constructed, it is easy to apply EM algorithm
to solve the problem. Firstly, the probability of observing data,
given all the other parameters can be computed as below using
equation 5:

1 Zq 1 Zi)
{M} W (il i, 07)) 7).
(11

We apply Baysian probability to compute the probability of
the states and measurements given the parameter:

H<I>

where N is the normalizing constant to make the probability
sum to one, ®;(0) and p(z;|60;, z;, ;) are defined in Equation
6 and 11 respectively, and p(z;) is ;. The EM algorithm is

p(x40s, 23, m5) =

(X @ Z|H %‘emzz,ﬁz)p(ZiL (12)

used to maximize the following log likelihood expectation of
sampled data:

(F‘F(t ) p(ZI.L (1)) log Hp X (-)k k|H)]

k=1

13)

where k is the index for sampled data and m is the total
number of sampled data. Using Bayesian probability, we
compute the expectation for the cyber attack:

91@] = p(zilzi,vi)

p(xi|vis zi)p(2i)

E[Zl|l‘“

Z;:o p(xilvi, zi)p(2:) 14
Wi(ai,max - ai,min)71
(0 maz — Gimin) "'+ (1 — )N (2:]60;,02)

We take the derivative of @ to compute 7(**1) and §(*+1),
increasing (). We first find the optimal 7 and 6 that maximizes

Q:

=Y

(zilzi, i) (15)
k=1
L W+ (1= BaMah 6 ) 2,
or = (16)

9ak 4 O=BELIzp0r )

We use the steepest descent to reach the maximum () with
learning rate 7). Steepest descent will ensure that the algorithm
does not diverge, and it can be implemented using equations:

) Z®) | o _ o)
9k,(t+1) _ ak,(t) + n(ek,* o ak,(t)).

amn
(18)

To summarize the EM algorithm in our application, we take
the following two steps:
E step : Evaluate the expectation, F[z;|x;, Vft)
1 using Equation 14.
M step : Update the parameters using Equation 17 and 18.

We expect that the EM algorithm will not converge to the
right solution if the cyber attack is too big. In addition, if the
attacker has much control over the measurements, then the
algorithm could converge into a false solution. However, the
classical power system estimation can address this issue since
the attack is very obvious in these cases. Combining this tool
with the classical state estimation method will provide strong
tool for detecting malicious cyber attack.

] for every bus

IV. CASE STUDY

We demonstrate the performance of the detection algorithm
in the IEEE 14 bus system of Figure 2. The phasor measure-
ment data were obtained from Matlab/PSAT, and the cyber
attack was applied at bus 5 with magnitude of -0.5 rad and at
bus 9 with magnitude of 1.0 rad. We obtained 10 sample data
from the simulation. Details of the data and result can be seen
in Table I. The EM algorithm was applied with a learning rate
of 0.1 and an iteration of 10°. The initial parameter for 6 was
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Fig. 2. IEEE 14 bus system under cyber attack at bus 4.

set to the observed data x and the probability of attack 7 was
set to 0.1.

Figure 3 shows the phasor angle distribution of one of the
sampled data using the potential function discussed in the
previous section. The performance of EM algorithm is best
when the portion of missing information is small. We note
that the cyber attack detection could fail if too many data are
corrupted, and the detection using internal data will not work.
However, we consider malicious attacker with limited access
to attack PMU measurements in this paper.

The performance of detection also depends on the sampled
data. In the case of mixed data between attacked data and
normal data, it will result in probability depending on how
many attacked data is sampled. The data is sampled over
attacked period, so we expect the malicious data is present for
signficant amount of time in order to make desired impact.

The result shows that the EM algorithm correctly find the
attacked bus while it estimate the state accurately. Figure 4
shows that the cyber attack detection converges to one for bus
5 and bus 9 where the cyber attack is applied, and zero for
other buses. In addition, the actual state is estimated with error
less than 3% at every bus. In addition, the probability of cyber
atttack, m, can provide a unique information about the system.
Since the value is probability instead of binary, it indicates
our confidence on the measurement data. The algorithm will
be able to detect high variance of the measurement as well as
a cyber attack. It efficiently detects the maliciousness of the
data by embedding the hidden cyber attack class into the state
estimation model.

TABLE I
SUMMARY OF SIMULATION RESULT
Bus Number Phasor Data | Attack Detection Identification
(rad) (rad) (rad)
-0.22209 0 0 -0.0019
-0.15313 -0.5 1 -0.0459
-0.26073 0.1 1 0.0928
11 -0.2581 0 0 0.0004
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Fig. 3. Converged phasor measurement prior distribution
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Fig. 4. Convergence of detection of cyber attack
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Fig. 5. Convergence of phasor measurement with actual phasor marked in
the last iteration

V. CONCLUSION

We have proposed a novel approach for detecting cyber
attacks in PMU phasor measurements using the EM algorithm.
The advantage of an EM algorithm approach is that it embeds
the possibility of cyber attack while estimating the state. While
estimation is based on the physical model of the power system,
the EM algorithm efficiently elimiates the maliciousness of
the data. In addition, the detection of cyber attack in the
probability form gives new insight to analyze the behaviour
of the attacker. Coupling this method with conventional power
system estimation will give better protection against cyber
attack. The future work for the proposed algorithm includes
incorporating non-linear power flow model into the system.
Using more sophisticated model has potential to delivering
more accurate result.
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