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Abstract—Effective simulation of large-scale power system
disturbances especially those stemming from intentional attack
represents an open engineering and research problem. Challenges
stem from the need to develop intelligent models of cyber-physical
attacks that produce salient disruptions, to appropriately portray
meaningful cyber-physical interdependencies, and balance preci-
sion, scale and complexity. In this paper, we present a foundation
for the development of a class of intelligent cyber-physical attacks
that we term coordinated switching attacks. Our approach, based
on variable structure systems theory, is amenable to implemen-
tation in well known power system simulators. We provide a
method to construct such attack models and demonstrate their
utility in the simulation of extensive system disturbances. Our
results demonstrate the potential for coordinated switch attacks
to enable large-scale power system disturbances.

I. INTRODUCTION

The smart grid promises increased capacity, security and re-
liability through the integration of advanced communications,
computation and control within the power grid. Designing for
a future smart grid is challenging on several fronts. Asset own-
ers must understand how to best prioritize investment while
operators must be aware of emergent behaviors stemming from
the increased dependence on information technology.

Tools for modeling and simulation of such systems are of
paramount importance in enabling the judicious planning and
preparedness for contingencies. It is well known that simula-
tions are a cost-effective and safer alternative to conducting
experiments with prototype or real systems. They can also be
conducted faster than in real-time for efficient what-if analysis.

According to a recent report published by the U.S. Depart-
ment of Homeland Security, Science and Technology Direc-
torate [1] several open challenges exist for developing power
grid modeling and simulation capabilities that can meet known
and emerging challenges. These include:

1) addressing large-scale disturbances such as accidents,
cascading failures and coordinated cyber-physical attacks;

2) accounting for interdependencies between the power grid
and other critical infrastructures; and

3) planning and design of distributed generation sources for
power grid deployment.

In this paper we focus on a component of the first challenge
through the development of intelligent models for coordinated
cyber-physical attacks that are easily amenable to the simula-
tion of worst-case power system disruptions. In particular, we

focus on coordinated switching attacks whereby an attacker
aims to destabilize the power grid by leveraging corrupted
communication channels and/or control signaling to hijack
relevant circuit breakers. Use of such models is imperative
for vulnerability analysis in order for stakeholders to prioritize
system hardening resources.

Existing empirical approaches [2]–[6] that simulate power
system attacks harness well-developed communications and
power systems software. Essentially, these simulators, devel-
oped separately, are combined such that a cyber attack is
implemented in the communication simulator that transfers
synthetic sensor or control data to the power system simulator
which then takes virtual action based on the possibly corrupted
information. Typical power system reliability metrics are then
employed to characterize the effects of the attack.

Such approaches are valuable in providing indications of
attack impacts, but motivations exist for more intelligent
attack models and the tighter integration of the information
technology (cyber) and power system (physical) models. It
is important that the attack models enable worst-case con-
tingency analysis bound impacts and identify critical system
weaknesses. The interface between the information and power
system must be well coordinated to allow for the character-
ization of cyber-physical cascading failures and interactions.
Variable granularity of system description is needed to balance
precision, scale and complexity. Ideally, models should make
use of well developed mathematical constructions in order to
enable fundamental insights such as an understanding of global
stability behavior from local parameters to promote secure
system planning [7], [8].

Our work aims to meet the need for more intelligent attack
models amenable to software implementation and testing. We
model cyber-physical interactions using a class of hybrid sys-
tems known as switched systems. Attacks are constructed by
employing variable structure systems theory such that they are
ideally coordinated to create large-scale system disturbances.
The attacks, easily implemented and tested in simulation for
vulnerability analysis, are low-cost requiring simple computa-
tions on local state information.

The next section provides background and introduces our
coordinated switching attack constructions. Section III demon-
strates the utility of our cyber-physical attack models for
simulating worst-case disturbances in PSCAD simulations.
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Fig. 1. Elementary switched system example. Two different dynamics
describe behavior depending on the status of switch S2.

Conclusions and future directions of research are provided in
Section V.

II. COORDINATED SWITCHING ATTACKS

Switched systems are a type of variable structure system
that consist of a family of subsystems and a rule that governs
the switching among them. For example, the elementary
power system of Fig. 1, which represents a load shedding
scenario, can be described using two different sets of dynamics
depending on the location of the load switch S2. Specifically,
we can write

ẋ(t) =

{
A1(x, t), s(x) > 0

A2(x, t), s(x) < 0
(1)

where x(t) ∈ Rn is the state vector, Ai(x, t) ∈ Rn is the
subsystem dynamics when S2 connects Zi, and s(x) ∈ R;
s(x) = 0 is called the switching surface. For certain system
parameters and selection of s(x) it can be shown that Eq. 1
exhibits a form of emergent behavior known as a sliding
mode [9], [10]. Here, the trajectory of the state x(t) is at-
tracted and subsequently confined to the n-dimensional surface
s(x) = 0, which in the case of a sliding mode is also termed
the sliding surface.

Consider a specific case of Fig. 1 in which we assume linear
models and n = 2; where x = [x1, x2]

T . Suppose,

ẋ(t) =

{
A1x, s(x) > 0

A2x, s(x) < 0
(2)

for A1 =

[
−1 −10
2 −0.2

]
and A2 =

[
−0.2 2
−10 −1

]
and some

s(x). The phase portrait of each individual subsystem ẋ =
Aix, i = 1, 2 is shown in Fig. 2 demonstrating the stability of
the power system example in each static switch position.

We assert that variable structure system theory can be lever-
aged to design a method of switching (equivalent to selection
of an appropriate sliding surface s(x)) to destabilize Eq. 2
even if each subsystem alone is stable. For example, suppose
that the sliding surface is selected to be s(x) = x1 + x2. The
corresponding phase portrait is shown in Fig. 2 demonstrating
the trajectory of the state away from the origin.

This form of attack requires that switching be coordinated
such that it occurs when the state attempts to intersect the
sliding surface s(x) = 0. The attacker must therefore be

Fig. 2. Phase portraits of individual stable subsystems ẋ = A1x and ẋ =
A2x, and unstable switched system for s(x) = x1 + x2; ε = 0.5.

intelligent ideally knowing the local state information in order
to induce a worst-case disruption. To apply a coordinated
switching attack, a sliding surface s†(x) that destabilizes the
switched system must be known to the attacker. The attack
can be orchestrated through a combination of cyber-physical
corruptions that is beyond the scope of this paper.

The stages of such an attack construction can be described
as follows: Step (1): Represent the system under attack as
a switched system whereby s(x) remains general; Step (2):
Determine the phase portraits of each subsystem identifying
stable focii and saddle points (necessary for nonlinear systems)
and overlap them on the same plot; Step (3): Using the over-
lapping phase portrait, search for a sliding surface s(x) = 0
when a sliding mode exists if sṡ < 0. An unstable sliding
mode exists if, in the vicinity of s(x) = 0, the trajectory
vectors of the subsystems point toward the switching surface
in opposite directions and away from the origin; this ensures
that the state trajectory of the switched system will be driven to
the switching surface, will stay within a neighborhood of it and
move away from the origin for instability. The interested reader
is referred to [10]; Step (4): Assign the identified unstable
sliding surface to s†(x) for attack implementation or modify
it systematically in simulation to identify a worst-case attack
impact. The latter may be necessary when the model of Step
(1) is distinct from (i.e., usually lower order than) the simulator
models.

When implementing the attack, switch “chattering” will
result, which is not realistic for circuit breakers that exhibit
practical delays and hysteresis between switching. Thus, we
employ a boundary layer for switching [11]. Here, for ε > 0,
an attack is implemented as follows:

ẋ(t) =

{
A1x, s†(x) > ε

A2x, s†(x) < −ε
. (3)

The sliding mode trajectory in Fig. 2 makes use of ε = 0.5.

Although general nonlinear switching surfaces are possible,
for simplicity, we focus on identification of linear sliding
surfaces. We next go through the steps of attack construction
for an example system.
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Fig. 3. Single machine infinite bus system used for attack construction.

Fig. 4. Overlapping phase portraits of system A1 and A2.

III. ATTACK CONSTRUCTION: CASE STUDY

Step (1): During attack construction, we consider the single
machine infinite bus (SMIB) system model of Fig. 3 with
a switch at load PL. It is straightforward to show for an
appropriate parameter set and from the swing equations that
a switched system representation is given by:

A1 :

{
δ̇1 = ω1

ω̇1 = −10 sin δ1 − ω1
if PL connected

A2 :

{
δ̇1 = ω1

ω̇1 = 9− 10 sin δ1 − ω1
if PL not connected

where the system state [δ1 ω1]
T represents the phase angle

and frequency of Generator G1.
Step (2): Setting the left hand side of the dynamics to

zero, the equilibrium points of A1 and A2 are found to
be (2kπ, 0), (2kπ + π, 0), and (2kπ + 1.1198, 0), (2kπ +
2.0218, 0), respectively, for any integer k. Employing Jaco-
bians and system separatrices, the appropriate stable equilibria
and saddle points are found to determine the overall phase
portrait shown in Fig. 4.

Step (3): Observation of the overlapping phase portraits as
detailed in Section II reveals a sliding mode surface of the
form:

s = δ1 + ω1. (4)

To model breaker delays and hysteresis, we employ ε = 0.2

Fig. 5. System trajectory of coordinated switching attack of Eq. 5.

Fig. 6. Load switch status for system of Eq. 5; 0 represents open switch
(i.e., PL not connected) and 1 represents closed switch (PL connected).

implementing the switching attack for s† = δ1 + ω1:

δ̇1 = ω1

ω̇1 =

{
−10 sin δ1 − ω1, s† > ε
9− 10 sin δ1 − ω1, s† < −ε

(5)

Fig. 5 presents the corresponding phase portrait showing the
unstable system trajectory away from the origin. The load
switch status is shown in Fig. 6. Switching occurs from 0 to 2.5
seconds, which drives the system over the stability boundary
of A2. At this point, the attacker may continue to apply the
switching attack or to save effort may leave the switch open;
to minimize cost, the latter is applied.

Step (4): Thus, s† = δ1+ω1 is identified as an unstable slid-
ing surface for the SMIB switched system of Fig. 3. The sec-
ond order swing equations have been used for system modeling
during this attack construction phase and MATLAB/Simulink
is employed for the phase trajectory plots. In the next section,
we demonstrate how for more realistic simulators such as
PSCAD, the identified s† = δ1+ω1 represents a search starting
point to identify a severely disrupting attack during simulation.

IV. PSCAD SIMULATION

In this section we study two power system examples that
can be modeled as the SMIB switched system of the previous
section. Thus, we start with the unstable sliding mode s†

constructed in the previous section and modify it through
search (specifically through slope modification) to account for
the high order system differences.
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Fig. 7. One line diagram of the Case 1 study power system. The dashed
rectangle can be approximated as an SMIB system.

TABLE I
GENERATOR PARAMETERS FOR FIG. 7 SYSTEM.

Name Parameter Value
Rated RMS Line-Line Volatge Vgl−l 13.8 kV
Active Power Pg 36 MW
Power Factor pfg 0.8
Frequency f 60 Hz
Armature Resistance @ 95◦C Ra 0.010 Ω
Potier reactance Xp 0.17
Direct axis unsaturated reactance Xd 1.55
Direct axis unsaturated transient
reactance Xd’ 0.22
Direct axis unsaturated sub-transient
reactance Xd” 0.14
Direct axis open circuit unsaturated
transient time constant Tdo’ 8.95 sec
Direct axis open circuit unsaturated
sub-transient time constant Tdo” 0.036 sec
Quadrature axis unsaturated reactance Xq 0.76
Quadrature axis unsaturated transient
reactance Xq’ N.A
Quadrature axis unsaturated sub-transient
reactance Xq” 0.20
Quadrature axis open circuit unsaturated
transient time constant Tqo’ N.A
Quadrature axis open circuit unsaturated
sub-transient time constant Tqo” 0.12 s
Inertia Constant H 0.5 sec

A. Case 1 Study

Consider the system of Fig. 7 where we assume that the
inertia of Generator G1 is smaller than that of Generators G2,
G3 and G4. Thus, in contrast to G1 the total system inertia
is large and can be approximated as an infinite inertia system.
Thus, the overall system of Fig. 7 can be modeled as the SMIB
switched system of Fig. 3 and the attack construction of Sec-
tion III represents a starting point to search for an appropriate
s† in PSCAD simulation for system destabilization.

The system of Fig. 7 is modeled and simulated in PSCAD
using the generator parameters of Table I. The transmission
line connecting the generator and the infinite bus is modeled
using an inductor with inductance 0.014 H and the local load
PL is chosen as 32.4 MW modeled as a constant resistor.
Varying the slope of the candidate unstable sliding mode of
Section III reveals that the following switching logic serves to
destabilize the system for a large-scale system disruption:

s† = δ1 + 0.2 · ω1. (6)

Fig. 8. System trajectory of the the switched system of Fig. 7 in the presence
of a coordinated switching attack using s† = δ1 + 0.2 · ω1.

Fig. 9. Load switch status of Fig. 7 in the presence of an attack with
s† = δ1 + 0.2 · ω1; 0 represents open switch (i.e., PL not connected) and 1
represents closed switch (PL connected).

The parameter ε = 0.2 is employed to model breaker delays
and hysteresis. The coordinated switching attack is applied
from 0 to 0.7 seconds which drives the system across the
stability boundary of subsystem A2 (i.e., when the switch is
open and no load is connected). At this time the state trajectory
approaches infinity as demonstrated in the phase portrait of
Fig. 8 generated from the PSCAD simulation. The switch
status of the load, system frequency and output voltage are
shown in Figs. 9, 10 and 11, respectively, demonstrating the
disruptiveness of the attack. As can be observed, the frequency
and voltage were unstable after the coordinated switching
attack was applied to the system.

Fig. 10. Generator frequency of G1 of Fig. 7 in the presence of an attack
with s† = δ1 + 0.2 · ω1.
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Fig. 11. Generator G1 of Fig. 7 output voltage in the presence of an attack
with s† = δ1 + 0.2 · ω1.

Fig. 12. One line diagram of revised WECC system.

B. 3-Generator, 9-Bus Case Study

We also demonstrate of the ability of the coordinated
switching attack to cause large-scale disruptions a variant
of the well-known Western Electricity Coordinating Council
(WECC) 3-machine, 9-bus system [12]. Based on the WECC
system, we add a transmission line, a local load, and a gas
turbine generator to produce the revised WECC system shown
in Fig. 12. Here, the base MVA is 100, the system normal
frequency is 60 Hz. and the generator parameters are shown
in Table II. The transmission line connecting Generator G1 and
the infinite bus is modeled using an inductor of 0.014 H. The
local load PL is chosen to be 32.4 MW modeled using constant
resistor. The PSCAD step size was chosen to be 50 µs. We
assert that the insights from the SMIB system can also be
employed to determine a unstable sliding mode in this case.

Using a similar procedure to Section IV-A the following
unstable sliding mode has been found in simulations (by
varying the slope of linear switching surface in increments)
to destabilize the system:

s† = δ1 + 0.1 · ω1. (7)

Employing ε = 0.05 the coordinated switching attack of Eq. 3
is applied. The switching attack is applied from 0 to 0.7
seconds, which drives the system trajectory across the stability
boundary of the subsystem A2 (i.e., PL not connected). The
attacker then switches to subsystem A2 at 0.7 seconds to
destabilize the system. Generator G1 is tripped at 1 second
causing a significant disturbance. The system state gradually
approaches infinity as shown in Fig. 13. The switch status,
Generator G1 frequency and output voltage are shown in

TABLE II
GENERATOR PARAMETERS FOR FIG. 12 SYSTEM.

Name Parameter Gen 1 Gen 2
Rated RMS Line-Line
Volatge Vgl−l 13.8 kV 16.5 kV
Active Power Pg 36 MW 100 MW
Power Factor pfg 0.8 0.8
Frequency f 60 Hz 60 Hz
Direct axis unsaturated
reactance Xd 1.55 0.146
D axis unsaturated
transient reactance Xd’ 0.22 0.0608
D axis open circuit
unsaturated transient
time constant Tdo’ 8.95 sec
Q axis unsaturated
reactance Xq 0.76 0.0969
Q axis unsaturated
transient reactance Xq’ N.A 0.0969
Q axis open circuit
unsaturated transient
time constant Tqo’ N.A 0.31
Inertia Constant H 0.5 sec 23.64
Name Parameter Gen 3 Gen 4
Rated RMS Line-Line
Volatge Vgl−l 18.0 kV 13.8 kV
Active Power Pg 163 MW 85MW
Power Factor pfg 0.8 0.8
Frequency f 60 Hz 60 Hz
Direct axis unsaturated
reactance Xd 0.8958 1.3125
D axis unsaturated
transient reactance Xd’ 0.1198 0.1813
D axis open circuit
unsaturated transient
time constant Tdo’ 6.0 5.89
Q axis unsaturated
reactance Xq 0.8645 1.2578
Q axis unsaturated
transient reactance Xq’ 0.1969 0.25
Q axis open circuit
unsaturated transient
time constant Tqo’ 0.539 0.6
Inertia Constant H 6.4 3.01

Figs. 14, Figs. 15 and 16, respectively. The frequency and
voltage of Generator G1 destabilized after the coordinated
switching attack was applied to the system. As shown in
Fig. 17, the frequency of Generators G2, G3 and G4 exhibit
large oscillations due to the instability of Generator G1 prior
to tripping. After Generator G1 was tripped at 1 second, the
frequency of G2, G3 and G4 gradually converged back to 60
Hz.

V. CONCLUSIONS

This paper introduces a class of coordinated switching
attacks to enable the modeling and simulation of large-scale
disruptions due to coordinated cyber-physical attacks. Attack
construction makes use of variable structure systems theory
in order to produce a state-dependent switching rule to im-
plement the attack. The potential of this class of attacks in
the simulation of system disturbances is shown through study
of two systems including a variant of the WECC 3-maching,
9-bus system.

This paper represents a work in progress toward the de-
velopment of a class of attacks to aid in contingency and
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Fig. 13. System trajectory of the switched system of Fig. 12 in the presence
of a coordinated switching attack using s† = δ1 + 0.1 · ω1.

Fig. 14. Load switch status of Fig. 12 in the presence of an attack with
s† = δ1 + 0.1 · ω1; 0 represents open switch (i.e., PL not connected) and 1
represents closed switch (PL connected). To reduce effort the attack is only
applied from 0 to 0.7 s after which the system destabilizes tripping G1.

Fig. 15. Generator frequency of G1 of Fig. 12 in the presence of an attack
with s† = δ1 + 0.1 · ω1. G1 destabilizes tripping out at 1 second.

Fig. 16. Generator G1 of Fig. 12 output voltage in the presence of an attack
with s† = δ1 + 0.1 · ω1.

Fig. 17. Frequencies of G2, G3 and G4 before and after G1 tripping.

vulnerability analysis of current and future power systems.
Future work will extend the attack for multiple switches
and generalize the theory to develop necessary and sufficient
conditions for a system to be susceptible to such attacks. In
addition, we will test larger test systems in DSAToolsTM.
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