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Abstract

Visual sensor networks (VSNs) can be used to acquire
visual data (i.e. images) for applications such as military
reconnaissance, surveillance, and monitoring. In these ap-
plications, it is of utmost importance that visual data be pro-
tected against eavesdropping to uphold confidentiality and
privacy rights. Furthermore, protection mechanisms for
these sensor nodes must be efficient and robust to node cap-
ture and tampering. This paper considers a distributed ap-
proach to privacy in which highly correlated images within
a dense sensor cluster are obfuscated. The particular ap-
proach, in which nodes within a cluster work together to
create and transmit shares (called Markov shares) makes
it necessary for an attacker to capture several correlated
visual nodes and/or shares in order to gain improved se-
mantic information of the observation area. The proposed
technique does not require that the individual sensor node
readings be exactly registered, nor the correlation model be
known a priori. Simulation results based on a cluster of
18 nodes show: (1) most Markov shares use fewer bits per
pixel than the original image hence providing compression
capability; (2) a denial of service attack on a single node
(e.g., corrupting a region of interest) has minimal impact on
the reconstructed data at the sink; (3) five or more Markov
shares need to be intercepted by an attacker before the se-
mantic content of the desired image can be understood; (4)
authorized reconstruction of unregistered individual images
with random rotation transformations up to 10 degrees is
possible.

1 Introduction

Visual sensor networks (VSNs) are a form of distributed
networked sensors in which a subset of the nodes collect
visual data. Such perceptually rich data is more accessible
to human sinks for greater interactivity. For applications in-
cluding healthcare surveillance, environmental monitoring,

and vehicle control, visual data provides crucial signatures
for monitoring. In addition, VSNs are a convenient frame-
work to interface emerging scalar wireless sensor networks
(WSNs) with existing (wired or wireless) video surveillance
infrastructure. The proliferation of low-cost portable off-
the-shelf media sensing devices has motivated the recent
development of VSN architectures, systems, and testbeds.

Widespread public adoption of VSNs rests on the abil-
ity of developers to address privacy concerns. The recent
domestic eavesdropping program has resuscitated the call
for privacy rights. Furthermore, given the use of video
footage by authorities in the recent London bombings, it
is likely that such information systems will become a tar-
get of future terrorist attacks. It is, therefore, imperative
that issues of VSN protection be addressed. Previous tech-
niques for sensor network security implicitly assume low-
bandwidth scalar sensor readings and RF communications
and are not directly applicable to VSNs for the following
reasons: (a) the value of raw scalar sensor readings is often
considered to be much lower than the value of raw visual
data in VSNs which require privacy protection, (b) the high
bandwidth of visual data requires protection mechanisms
that are lightweight to be suitable for sensor networks, (c)
visual data protection often has different objectives for pri-
vacy; for example semantic or subject privacy goals require
that a selected portion of the content be confidential in com-
parison to scalar data in which often the entire stream needs
to be secured. Techniques for security of traditional visual
surveillance systems are also not applicable because: (a)
trusted-third-party (TTP) infrastructure may not be avail-
able due to the highly distributed architecture of VSNs, (b)
the high probability of physical compromise of some nodes
makes it necessary to incorporate mechanisms that can dis-
till the impact of node capture, as well as overcome insider
attacks at all hierarchical levels in the VSN, (c) wireless
communications and battery/solar powered visual nodes are
likely limiting computational and communication capabil-
ity at the nodes.

The unique characteristics of VSNs necessitate new se-
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curity paradigms that effectively exploit their inherent char-
acteristics. In this paper, we consider an approach to pro-
viding distributed privacy that is more robust to node com-
promise and insider attack that leverages visual obfuscation
to provide confidentiality. Distributing trust is an approach
that has shown great promise for security in scalar sensor
networks [4] and obfuscation, which is the art of complicat-
ing data semantics without changing functionality has re-
ceived attention for software and multimedia protection as a
promising lightweight security mechanism [1]. We demon-
strate within the context of visual secret sharing how dis-
tributed trust and obfuscation of content lends itself to a
solution for privacy in VSNs. To the best of the authors’
knowledge, this is the first contribution that looks at dis-
tributed privacy in VSNs.

In the following subsections, we describe the general
problem setup along with assumptions and constraints on
our VSN architecture. We then outline existing work that
has inspired the proposed solution, and point out necessary
extensions offered by our approach.

1.1 General

The general VSN set-up is summarized in Figure 1. N
densely deployed sensors equipped with digital cameras
(with image and/or video acquisition facility) and limited
video processing capabilities are in close proximity to one
another [6] such that they can record the same scene, but
from slightly different perspectives. These nodes are said
to form a cluster. These N sensors cooperate (with lim-
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Figure 1. General setup

ited communications) to compress and obfuscate the images
they acquire so that they are unintelligible. The resulting
compressed and “secured” images (see Section 1.2 for the
specific security requirements), which we call shares, are
then sent to M (preferably close to N ) distributed storage
stations, which may be in close proximity to the visual node
(e.g., attached to it), in the same building, or significantly
physically separated.

We assume that there is a common image scene, called

the representative image, that is acquired by each of the N
sensors. To distribute trust, obfuscation occurs such that
each of the sensor outputs is unintelligible and only when
approximately all N distinct shares are available, can the
representative image be reconstructed by the sink (who has
access to all M storage locations). Figure 2 shows the gen-
eral reconstruction process. For an attacker to get signifi-

Share 1

Share 2

Share N

...
Reconstruction

Representative
Image

Figure 2. Reconstruction

cant information of the common scene viewed by the visual
sensors, (s)he would have to intercept a large number of
shares while in transit to the storage stations or at their dis-
tributed storage locations. This raises the level of effort re-
quired to overcome privacy and increases the robustness to
insider attacks which would require that a large number of
nodes be compromised without knowledge to the network
administrator.

We outline other goals that a solution should strive for:

(1) Compression is performed at each sensor node using
side information communicated from only one other
node in the cluster.

(2) Each sensor node within the cluster obfuscates its im-
age using side information from only one other node
in the cluster. This requirement should be achieved
jointly with the requirement above for efficiency.

(3) Distinct keying information known only to each node
is distributed across the sensors within a cluster, so that
a capture of one node will not reveal all the keys (i.e.
parameters) necessary for reconstruction.

(4) Keying information is distributed across the M storage
stations, to hinder insider attacks.

Minimizing the number of bits transmitted in Goal 1 is
necessary in any sensor network, in particular VSNs, to
minimize bandwidth and storage usage. Goal 2 provides
security against eavesdropping. Goal 3 protects the net-
work against node capture, since distributing key informa-
tion across several nodes will minimize the impact of a sin-
gle node capture.
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1.2 Security requirements and assump-
tions

In generating the N shares, each share must satisfy the
following security requirements:

(1) Each share does not fully reveal, visually, the original
image. Some minor details are permitted [12].

(2) Given only one share, and any parameters used to cre-
ate the share, an attacker cannot derive a visual ap-
proximation (see Requirement 1) of the original image
without heavy computational complexity.

(3) If a region of interest of one share is maliciously cor-
rupted, the other N−1 shares should still be able to vi-
sually recover the corrupted region of interest. In other
words, a local corruption of data in one node should
have minimal impact on the reconstructed data at the
sink.

Also, given a threshold T , an attacker with T or fewer
shares cannot derive a good visual approximation of the
representative image. Requirements 1 and 2 deal with the
privacy/confidentiality problem, while Requirement 3 deals
with the different problem of tampering. Next we impose
limitations on the attacks:

(1) The attacker can only intercept a small number of
shares, and capture a small number of nodes.

(2) Node capture is defined in this paper to be the physical
removal of a node from its cluster. Once a node is re-
moved, it cannot rejoin the VSN. The VSN is also able
to re-organize its logistics to cope without the missing
node.

(3) The attacker cannot electronically wiretap a node,
meaning, (s)he cannot internally eavesdrop on a node’s
internal memory and processor from some distance.

Constraint 2 is to avoid an attacker capturing a node and all
its keying information, and then throwing it back into the
cluster. This kind of attack is best left to sensor network key
management [5]. Constraint 3 may seem stringent, how-
ever if an attacker could eavesdrop internally, then (s)he
could essentially intercept the representative image before
it is obfuscated.

To the best of the authors’ knowledge, no existing so-
lution fulfills all the above (Sections 1.1 and 1.2) require-
ments.

1.3 Previous work

In this section, which is not intended to be an exhaustive
survey, we outline the body of existing work that inspired

our approach, and point out where we extend them. We em-
phasize that a solution to our problem is meant to compli-
ment existing work and vice versa. For example, traditional
encryption techniques can further be applied to each of the
N shares to force attackers to not only acquire almost all N
shares, but in addition require an attacker to capture all key
information as well.

Secret sharing [13] is a cryptographic technique, in
which a trusted third party, called the dealer, encrypts a
plaintext with a key K , hence producing a ciphertext. The
dealer then distributes N keys {Ki}N

i=1, called shares to
N users, called participants, such that certain subsets A ⊆
{Ki}N

i=1 can be used to reconstruct the key used for de-
cryption; this key is K for symmetric key cryptography.
Unauthorized subsets cannot be used to reconstruct the de-
cryption key. For example, the secret sharing algorithm can
require that all N shares be available to reconstruct the de-
cryption key. Hence if any one, two, or fewer than N shares
are captured, the ciphertext cannot be decrypted. This is es-
sentially what we require of a solution to our distributed pri-
vacy problem. However, traditional secret sharing requires
a TTP, the dealer, who not only creates the shares, but actu-
ally encrypts the plaintext. In our VSN, each node creates
its own share, hence traditional secret sharing as is, does not
suffice to solve our problem.

In visual secret sharing (VSS) [10, 2, 7, 8], the same TTP
architecture is used, except that each participant receives
an unintelligible shadow image, such that when a subset of
shadow images is combined (such as OR for binary images)
without the use of a key, the original image is approximately
reconstructed. In VSS, the dealer creates shadow images
via a homophonic substitution cipher [10], and hence the
homophonic function needs to be kept safe from attackers.
Unfortunately this homophonic function has the same im-
portance as a key, and is susceptible to capture under our
hostile assumption. Furthermore, early VSS schemes cre-
ate shadow images larger in size than the original image,
and hence opposes compression.

We therefore consider a secret sharing methodology
based on a discrete-time Markov chain system. This ap-
proach detailed in the next section provides a method that
makes it feasible to have a distributed obfuscation method
which is naturally robust to model mismatch (e.g., for un-
registered data), is easy to implement because it is based on
well-founded theory, and provides semantic or subject pri-
vacy with compression because perceptual and energy con-
straints can be simultaneously incorporated into the formu-
lation. The keys or homophonic functions in secret sharing
and VSS that are traditionally located at the TTP can now
be distributed across the VSN, hence having the ability to
distill the impact of a single node capture.

Finally, we point out that a coding approach to our prob-
lem, such as the use of symmetric rate Slepian-Wolf codes
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[14] is plausible. In this paper, we present a signal process-
ing approach to our problem, and show that our approach
does not require a priori knowledge of the sensor correla-
tion model, nor the attack model to some extent. This is in
contrast to a coding approach, for example using syndromes
for Slepian-Wolf coding [11], in which a sensor correlation
model and attack model are required; often it is difficult to
predict the attack model. We are currently researching a
solution which combines coding and signal processing to
provide a tradeoff between robustness and efficiency.

2 Secret sharing using Markov shares

In this section, we first motivate our approach, then
present the general idea behind our approach, and finally
provide security and implementation insights.

2.1 Motivation

As mentioned in Section 1.3, traditional secret sharing
schemes have a centralized architecture in which a TTP
generates the shares and transmits these shares to N nodes.
The TTP is a single point of vulnerability to attacks, and
hence we strive to distribute the approach to distill this vul-
nerability. We see from Figure 3 that N communication ar-
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Figure 3. Classical secret sharing architec-
ture (parallel communication arrows) vs. dis-
tributed architecture (serial communication
arrows)

rows fan-out from the TTP in a parallel manner in classical
secret sharing. It is then natural that to achieve the kind of
distribution required, the communication arrows could be of
a more serial structure as seen on the right side of Figure 3.
Our method is based on this chain structure, which lends
itself to algorithms that make use of the state equations of
dynamical systems. Systems described by such state equa-
tions are privileged with well-known control methods that
are robust to noise, for example due to lack of registration or
denial of service attacks, which are of interest in our prob-
lem. This is the motivation behind adopting the method de-
scribed in the next section.

2.2 General idea

First we assume that all our sensors capture identical
grayscale images1, which we write as a column-vector,
x (after having performed a column-wise raster scan of
its image matrix), and that there exists a central author-
ity that creates the N shares. Essentially, x can be per-
ceived as our representative image. The central authority
creates shares through controlling (regulating) a discrete-
time Markov chain system, ΣMarkov, described by the state
equation in Equation 1.

ΣMarkov : xk+1 = fk(xk,uk,wk) (1)

Let x0 represent the initial state of the system ΣMarkov, then
xk is the state of ΣMarkov at time k. Also ΣMarkov takes an
external input/control at each time instance, so that uk is
the input/control at time k. wk is some random perturba-
tion drawn from a fixed distribution, which can account for
a lack of synchronization of the images captured by differ-
ent sensors, as well as from attacks. The central authority
designs fk a priori so that it is controllable, and so the se-
curity requirements in Section 1.2 are satisfied. Figure 4

...x0

Initial state

x1

u0

x2

u1

xN-1 xN

uN-1

Figure 4. Discrete-time Markov chain system

shows the states of ΣMarkov evolve over time. Suppose we
wish to drive ΣMarkov from the initial state x0 (drawn inde-
pendently of x), to the image x; that is, we wish xN ≈ x in
Figure 4. In doing so, if the central authority distributes the
N controls {ui}N−1

i=0 , and discards all intermediate states
xi, 1 ≤ i ≤ N , then these N controls can be used as the N
shares, provided that they satisfy the security requirements
in Section 1.2. We call these shares, Markov Shares (or
MarS), since they are generated from ΣMarkov.

To reconstruct the representative image x, we note that
xN ≈ x. Hence given the initial state x0, and MarS,
{ui}N−1

i=0 , one can retrace the state evolution from x0 to
xN ≈ x, thereby obtaining an approximation of the repre-
sentative image.

We briefly describe the security, and defer the details to
Section 3.2, where we study the security for a specific sys-
tem fk. If an attacker is able to intercept one MarS, ui,
retracing the state evolution is not possible if ΣMarkov is not
fully known and the intermediate states are also not known.

1We relax the identical image assumption later in the simulation results.
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2.3 Generation of Markov shares

We now describe the procedure behind generating MarS.
In order to quantify xN ≈ x, we define d(xi,x) to be a cost
metric measuring the distance between state xi and repre-
sentative image x. In order to collectively minimize the
number of bits of the MarS, we define E(ui) > 0 to mea-
sure the size of each ui. Generation of MarS is described
by the optimization problem in Equation 2.

arg min
{ui}

E

{
d(xN ,x) +

N−1∑
k=0

{d(xk,x) + E(uk)}
}

(2)

In Equation 2, the expectation E is over the random vari-
ables wi. In addition to xN ≈ x, we wish the collective
size of all the MarS to be minimized, which is accounted
for by E(uk) inside the sum. We note that d(xN ,x) is not
inside the sum, because there is no matching uN ; the last
MarS is uN−1. We also note that E(·) should be designed
appropriately to prevent xi from converging to xN too soon;
this scenario would cause the remainder MarS to be 0. The
solution to Equation 2 under the Markov assumption can
be derived using dynamic programming [3]. The complex-
ity of the dynamic programming solution depends on the
ΣMarkov as well as the cost metrics.

2.4 Distributing Markov share generation

The formulations above require a central authority to
generate the MarS. We now discuss how it is possible to ful-
fill the distributed requirements mentioned in Section 1.1.
We note that our approach is geared towards visual data
such as natural images, in which large noise variations can
be tolerated without completely compromising the seman-
tics of the data. Again we assume for the time-being that all
sensor nodes are capturing the representative image x, i.e.
they are all capturing the identical image.

Suppose each of the N nodes is associated with a node
number 0 to N − 1. Let the initial state x0 be stored on
Node 0. Let Node 0 have the necessary parameters required
to create u0 and hence also create x1. In doing so, Node
0 then encrypts x1 using a symmetric key it shares with
Node 1, then transmits the encrypted x1 to Node 1, upon
which x1 is removed from Node 0’s memory . Node 1 will
decrypt the encryptedx1, and then use x1 and any necessary
parameters to create u1, and hence also create x2, which is
similarly encrypted and sent to Node 2, upon which x1 and
x2 are removed from Node 1’s memory. In general, Node
k will share a unique symmetric key with Node k + 1 for
0 ≤ k ≤ N − 2; for any Node i, 1 ≤ i ≤ N − 2, Node i:

(1) receives from Node i − 1, the encrypted x i, which is
decrypted and used to create its share ui;

(2) creates xi+1 from Equation 1, setting wk = 0;

(3) sends encrypted xi+1 to Node i + 1;

(4) removes the states xi and xi+1 from memory if they
are still present.

For the last node, Node N −1, only Steps 1 and 4 above are
applied. We note that Step 4 is required because the security
is intrinsically tied to the attacker not having the intermedi-
ate states, hence it is vital that these states are removed from
a node’s memory in case of node capture.

2.5 Security primitives

First, we give our definition of a capture attack in Defi-
nition 1.

Definition 1 (Capture Attack) A capture attack is one in
which an attacker obtains all necessary keys or secret pa-
rameters through node capture, and solves for x.

We show that if the attacker has captured a specific subset
of nodes, and further intercepts exactly one share, then the
attacker can solve for x simply by solving one equation with
one unknown.

Proposition 1 Let each share be created as in Equation 3.

ui = μi(xi,x) (3)

We assume that given ui and xi, we may solve for (i.e. com-
pute) a unique x. If the attacker knows x0, {μ0, . . . , μi},
{f0, . . . , fi−1}, and ui, then (s)he may derive x, for any
1 ≤ i ≤ N − 1.

For the trivial case when i = 0, we have u0 = μ0(x0,x),
and since the attacker knows x0, μ0, and u0, (s)he may
solve for x. We use induction to show that Proposition 1
is true for any 1 ≤ i ≤ N − 1.

Proof 1 Consider i = 1 as the base case in Equation 4.

u1 = μ1(x1,x) (4)

Since we can write x1 = f0(x0, μ0(x0,x)), we can substi-
tute this back into Equation 4. Now since the attacker knows
x0, {μ0, μ1}, f0, and u1, (s)he may solve for x the remain-
ing unknown in the associated equation.2 So the case i = 1
is true. Let the case i − 1 be assumed to be true as our in-
duction hypothesis. This implies that the attacker may solve
for x given x0, {μ0, . . . , μi−1}, {f0, . . . , fi−2}, and ui−1

in Equation 5.

ui−1 = μi−1(fi−2(xi−2, μi−2(xi−2,x)),x) (5)

2In this paper, we assume the best case scenario for the attacker in
which the attacker may solve an equation with a single unknown.
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We now prove the induction step for the case i. Here the
attacker knows x0, {μ0, . . . , μi}, {f0, . . . , fi−1}, and ui.
We can expand ui as follows.

ui = μi(xi,x) (6)

= μi(fi−1(xi−1,ui−1),x) (7)

= μi(fi−1(xi−1, μi−1(xi−1,x)),x) (8)

If we substitute xi−1 = fi−2(xi−2, μi−2(xi−2,x)) into
Equation 8, then the attacker may solve for x, since x i−2

is not a function of ui−1 and by the induction hypothesis
the term fi−2(xi−2, μi−2(xi−2,x)) could be used to solve
Equation 5. �

In terms of distributing the Markov share generation pro-
cess, Proposition 1 tells us that if we create shares using
μi as in Equation 3, then we must ensure that μi cannot
reveal x0, {μ0, . . . , μi−1}, {f0, . . . , fi−1}. If μi does re-
veal these functions, then an attacker who intercepts u i and
captures the corresponding Node i, thus obtaining μ i stored
on-board, may use Proposition 1 to solve for x.

Definition 2 (Unrevealing Share Generating Function)
μi, a function generating share i is said to be an unre-
vealing share generation function if μi does not reveal
{μ0, . . . , μi−1}, {f0, . . . , f1}.

In Definition 2, we do not stipulate that μi does not reveal
x0, because most μi do not do so anyway. x0 is usually
stored exclusively in Node 0. Also, we note that unreveal-
ing share generating functions are necessary for security,
but not sufficient; that is implementing unrevealing share
generating functions does not guarantee security from all
possible capture attacks, but at least it will prevent the spe-
cific attack in Proposition 1.

Creating a bad μi essentially means we are not spread-
ing key information across the nodes in a cluster as required
in Goal 3 in Section 1.1. Finally we see that if an attacker
intercepts u0 and captures Node 0, then an attacker can al-
ways solve for x when μ0 is as in Equation 3. In Section 3.2,
we propose discarding (i.e. never transmitting) u0 to avoid
making Node 0 a single point of failure, and in the simu-
lation results, we show that reconstruction is not adversely
affected by this missing share.

3 Example system

In this section, we demonstrate an example of ΣMarkov,
fk, and cost metrics, which is also used in the simulation
results. We note that there is a large class of ΣMarkov, fk, as
well as cost metrics for which our approach can be applied.
Suppose ΣMarkov is given in Equation 9.

ΣMarkov : xk+1 = Akxk + uk + wk (9)

Here Ak is a matrix of appropriate size, and therefore fk is
linear. ΣMarkov can be controlled if the pair (Ak, I), where
I is the identity matrix of the same dimensions as Ak , is
controllable.

Next, we define our metric d(·, ·) in Equation 10.

d(xi,x) = (xi − x)T Qi(xi − x) (10)

Here Qi is positive semi-definite symmetric, so that
d(·, ·) ≥ 0. Finally, we define E(·) to measure the size of
each MarS in Equation 11.

E(ui) = uT
i Riui (11)

Here, Ri is positive definite symmetric. Equation 11 es-
sentially measures the energy of ui. This is somewhat pro-
portional to the number of bits that will eventually encode
ui, because minimizing the energy effectively minimizes
the dynamic range of values that ui can take on. For ex-
ample, a number b will require more bits to encode than
a number a, when |b| � |a|, and both are equally proba-
ble. Our optimization problem in Equation 2 now becomes
a quadratic cost optimization problem in Equation 12.

arg min
{ui}

E

{
(xN − x)T Qi(xN − x) +

N−1∑
k=0

{
(xk − x)T Qk(xk − x) +

uT
k Rkuk

}}
(12)

The reason for our choice of the system and cost metrics
is because the solution to the optimization problem of Equa-
tion 12 given ΣMarkov of Equation 9 is well-known from dy-
namic programming, and has a closed-form expression [3].
Equations 13 to 17 show the solution to Equation 12.

uk = Lk(xk − Λkx) (13)

Λk = A−1
k A−1

k+1 · · ·A−1
N−1 (14)

Lk = −(Rk + Kk+1)−1Kk+1Ak (15)

KN = QN (16)

Kk = AT
k (Kk+1 − Kk+1(Kk+1

+Rk)−1Kk+1)Ak + Qk (17)

Looking at Equation 13, we see that each MarS is a function
of the representative image, and one state - the same form
given by Equation 3.

3.1 Implementation insights

For the particular system and cost of our example in
Section 3, we address the implementation issues. First we
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note, that each Node k will have Lk and Λk stored on the
sensor node. These matrices are computed ahead of time,
and hence the sensor nodes do not concern themselves with
Equations 14 to 17. For our simulations, we choose the
matrices Ak to be diagonal, and have non-zero diagonal
elements. It is easy to see that this ensures that the pairs
(Ak, I) are controllable. In addition, we choose the diag-
onal entries from the open interval (1, 2) for convergence
reasons. The matrices Qk and Rk are also chosen to be di-
agonal matrices with non-zero positive diagonal elements.
This ensures that they are positive semi-definite and posi-
tive definite symmetric respectively. In our simulations, we
set all Qk to the identity matrix, and we vary Rk logarithmi-
cally over k to control the size of uk over k. In addition, in
choosing our matrices to be diagonal, matrix multiplication
and inverse degenerates to that of element-wise multipli-
cation and division, which are computationally feasible for
sensor nodes with image processing capabilities; essentially
processing is performed on a pixel-by-pixel basis.

Also, since these matrices are constants, the diagonal
matrices of Equation 13 can be stored as constant vectors
(i.e. the diagonals) in the nodes.

3.2 Security insights

We need a specific system and cost defined to study our
proposed scheme, and hence in this section we will study
the security specific to the example in Section 3. In particu-
lar, we look at possible attacks to our example. We consider
two types of attacks. In capture attacks (Definition 1), the
goal of the attacker is to capture enough keys or secret pa-
rameters in order to solve for x. Proposition 1 discussed
this type of attack. In heuristic attacks, an attacker does not
have enough keys or secret parameters, and will estimate
these parameters or apply any other means to approximate
x.

3.2.1 Capture attacks

An attacker who intercepts the share u0 and captures Node
0 to obtain x0, L0, and Λ0 can solve for x = Λ−1

0 (x0 −
L−1

0 u0). This means that we cannot transmit MarS u0 with-
out compromising security. We will see in the simulation
results that reconstruction is still possible upon discarding
u0.

In general, when an attacker captures a node, and inter-
cepts that node’s corresponding share, the attacker will have
uk, Lk and Λk (the latter two define μk of Equation 3).
From Proposition 1, we want to check if μk reveals x0,
{μ0, . . . , μk−1}, and {f0, . . . , fk−1}.

Proposition 2 Let μk(xk,x) = Lk(xk − Λkx), where Lk

and Λk are defined by Equations 14 to 17, then μk for k �= 0
is an unrevealing share generating function.

Proof 2 Λk is a function of Ak, Ak+1, . . . , AN−1. It is easy
to see that Lk is also a function of Ak, Ak+1, . . . , AN−1.
Hence to generate μk−1 given μk, one also needs Ak−1,
which is not present in Λk and Lk. In fact, given μk, it
will be impossible to generate all μk−1, μk−2, . . . μ0 via the
same arguments. Now fk−1 is a function of Ak−1, which is
again not present in Λk and Lk. By the same arguments, μk

cannot generate all fk−1, fk−2, . . . , f0. �

The proof above suggests that if the attacker aims for
shares and nodes close to Node 0, (s)he may need to cap-
ture less nodes. In the next section, we show a heuristic
to counter attacks of this form (i.e. capturing nodes close
to Node 0), which also takes care of a specific and related
heuristic attack.

3.2.2 Heuristic attacks

If we look at u1 = L1(x1 − Λ1x), we see that although
an attacker does not have x1, an attacker might be able to
replace x1 in this equation with x0 if the attacker intercepts
share u1, and captures both Node 0 and Node 1, to solve for
a visual approximation of x. Our simulation results show
that if we add some small noise to u1 (i.e. u1 + w1 in
Equation 9), the attacker’s visual approximation will suffer.
Reconstruction does not suffer as much, because we can use
the other MarS to compensate.

Adding noise to obfuscate or even encrypt an object is
not new. The one-time pad [15] essentially adds noise/error
to a plaintext, in which authorized personnel can remove
because they know the exact noise/error added. Shamir’s
threshold secret sharing [13] can be thought of as each
share being created by adding controlled noise to the se-
cret, such that when enough shares are available, one can
solve for the secret, hence removing the noise. Finally,
the McEliece public-key cryptosystem [9] also adds errors
to an error-control-coded plaintext, such that only autho-
rized personnel know the specific error control code used,
and hence can remove the errors. In our case, the use of
a control-theoretic approach provides much wanted robust-
ness against noise/tampering when a large number shares
are available. We exploit this for additional security by per-
turbing the individual shares with random noise in order to
prevent an attacker, who has a small subset of shares and/or
captured nodes from gaining semantic visual data. The ro-
bustness feature, which holds when a large number of shares
are available for reconstruction, does not apply to such prac-
tical attacks providing an additional form of protection.

This is but one heuristic attack. In general, all heuris-
tic attacks cannot be predicted in advance, and hence we
cannot and do not claim that our scheme is secure under
all attacks. We remind the reader that these security issues
are specific to the linear system and quadratic cost used in
our example. Different choices of system and cost metrics
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will result in different security issues, some offering better
security than that of our example.

4 Simulation results

In this section we present the simulation results based on
the example system and cost of Section 3. We choose N =
20, which is an appropriate number of nodes for a dense
cluster capturing highly correlated images. In Figure 5(c),

Figure 5. (a) Original representative image ( c©
come.to/torontobus); (b) Markov share u9; (c)
20 Markov shares

the 4 MarS {ui}4
i=1 have 0-mean, 0.05-variance Gaussian

noise added to inhibit attacks on these 4 MarS (see security
reasons in Section 3.2).

We see that the last MarS u19 in Figure 5(c) cannot be
transmitted, because it reveals too much semantic informa-
tion relating to the original representative image. We see
that the rest of the MarS are visually unintelligible. Upon
discarding u0 (see security insights in Section 3.2) and u19,
Figure 6 shows reconstruction using MarS {ui}18

i=1. The

Figure 6. (a) Reconstruction using 18 Markov
shares; (b) 3× 3 median filtered version of (a)

missing 2 MarS {u0,u19}, and the additive Gaussian noise
induces salt-and-pepper noise in the reconstructed image of
Figure 6(a). Upon applying the 3 × 3 median filter, the re-
constructed image is cleaned up, and reveals enough seman-
tic information. From here-on, we shall apply this median
filter to all authorized and unauthorized reconstructions.

Next we present the reconstructed image when each
MarS is limited to having no more than 8 bits per pixel in-
cluding a sign bit, and 2 floating point digits. We see that
the reconstructed image in Figure 7 is no worse than that
in Figure 6. In addition, there is a 1-bit saving per pixel

Figure 7. Reconstruction using 18 Markov
shares and limiting number of bits per pixel
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Figure 8. Bits per pixel of the bit-limited
Markov shares

for most MarS as seen in Figure 8. Although this compres-
sion is not spectacular, we can increase our bit savings by
lowering the threshold. However using the current param-
eters, we will soon see that robustness to errors from non-
synchronized images, as well as denial of service attacks
can be achieved.

We now relax our assumption that all the images ac-
quired by the 20 sensor nodes are identical. In our simula-
tions, we allowed each image acquired by individual sensor
nodes to be a random rotation up to 10 degrees. We then let
each sensor node create their own MarS without registering
their image with any of the other sensors’ images. Figure 9
shows that reconstruction without registration is feasible. In
the next subsection, we show simulations pertaining to at-
tacks. This will further demonstrate that our signal process-
ing approach is capable of dealing with both unintentional
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Figure 9. Reconstruction using unregistered
Markov shares

and intentional errors.

4.1 Attacks

4.1.1 Single attack

First, we examine single MarS attacks, in which the attacker
with a single MarS tries to recover the representative image
using all necessary parameters. An attacker with MarS u1

can recover the representative image via the technique pre-
sented in Section 3.2. We stated that some light noise (0-
mean, 0.05-variance additive Gaussian) was added to the
first few MarS to hinder the attack. The best possible unau-
thorized approximation is shown in Figure 10. Here we

Figure 10. Unauthorized approximation using
u1

have tried the Wiener and 3 × 3 median filters, with the
latter giving better visual results.

4.1.2 Multiple attacks

Next we examine multiple MarS attacks, in which an at-
tacker has approximately 5 MarS. The attacker’s best attack
is of course to obtain the first 5 MarS. Figure 11 shows

Figure 11. Unauthorized reconstruction us-
ing first 5 Markov shares {ui}5

i=1

the attacker’s best multiple MarS attack using 5 MarS.
Figure 12 shows attacks using 5 to 6 MarS. From our simu-

Figure 12. Unauthorized reconstructions us-
ing (a) u9 to u14; (b) u14 to u19; (c) u2, u5, u10,
u15, u19

lation results, the attacker can gain access to crude semantic
information when the number of MarS intercepted is about
5. For best attack results, the first few MarS need to be ac-
quired. For example, in Figure 12(b), the last 5 MarS are
used, and hence the quality of the attack suffers.

4.1.3 Denial of service attack

Suppose that an attacker is able to place an object to cover
a region of interest of a single sensor node, hence cor-
rupting this node’s MarS. Will the other MarS be able to
correct this corrupted region of interest? When is detec-
tion of such an attack possible? In Figure 13(a) a grizzly
bear is placed to maliciously cover the front of the bus.
First we show that if all MarS are transmitted, including
the insecure first and last ones, then not only will correc-
tion be possible upon reconstruction, but visual detection
is also possible. In Figure 13(b) it is possible to not only
see the front of the bus, but also see the corrupting source
(i.e. the semi-transparent grizzly bear). Hence for an ap-
plication requiring both correction and detection, but not
privacy/confidentiality, Markov shares can be used.

We now examine using only 18 MarS under the same
parameters as all previous simulations. We see from Fig-
ure 14 that in each case the front of the bus is revealed,

Proceedings of the Second IEEE Workshop on Dependability and Security in Sensor Networks and Systems (DSSNS’06) 
0-7695-2529-6/06 $20.00 © 2006 IEEE 

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 23, 2008 at 04:28 from IEEE Xplore.  Restrictions apply.



Figure 13. (a) Corrupted region of interest
(grizzly bear c© Photohome.com) of a single
sensor node (b) detection of corruption us-
ing all Markov shares

Figure 14. Reconstruction given corrupted
MarS (i.e. grizzly bear in front of MarS): (a)
u1; (b) u9; (c) u18

and the corrupting source is removed. However, due to the
noisy reconstruction, the semi-transparent grizzly bear is
no longer visible to flag detection. Hence under our pri-
vacy/confidentiality application, only visual correction is
possible, but not visual detection.

5 Conclusions and future work

We have shown that using only signal processing and
control, a distributed obfuscation scheme for VSNs can be
derived using Markov shares. Furthermore, using Markov
shares offer robustness to both unintentional and intentional
errors, such as non-registration, and tampering attacks re-
spectively for example.

The drawback of our specific example is that the first few
Markov shares are more prone to revealing semantic infor-
mation than the other shares. In addition, reconstruction
is not perfect when counter-measures are taken to hinder
possible attacks against the aforesaid Markov shares. We
envision that a marriage of coding with our signal process-
ing approach would result in better quality reconstruction,
as well as higher protection against the first few Markov
shares, while offering the robustness benefits seen in this
paper.

This paper also does not address security completely. For
example, we focused only on our defined capture attack, and
mentioned one heuristic attack. Future work will consider
a more theoretical approach to addressing security, which
will result in a framework suitable for analyzing security
schemes based on Markov shares. In addition, the fuzzy

definition of whether the semantics of an image are revealed
or not will be addressed formally in future works.

Finally we remind the reader that changing the system
and cost function will result in a different algorithm, one
whose security would need to be studied. Hence there is
potential for deriving a better system and cost metrics to
improve both security as well as reconstruction fidelity.
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