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Abstract—In traditional secret sharing, a central trusted au-
thority must divide a secret into multiple parts, called shares,
such that the secret can only be recovered when a certain
number of shares are available for reconstruction [1], [2]. In this
paper, we consider a secret sharing problem in which each share
must be created separately by independent entities such that
no collaboration or shared cryptographic keys are required; we
call this the distributed keyless secret sharing problem. For this
problem, general tradeoffs between compression and secrecy are
characterized yielding the impossibility result that perfect secrecy
is unachievable. In response to this impossibility, we define a
practical measure of secrecy and design a low-cost solution based
on this measure of secrecy.

I. INTRODUCTION AND MOTIVATION

We consider the sensor network (SN) problem in which
a cluster of sensors compress and encrypt common observed
information and then each sensor relays its encrypted share
to a base station or a local cluster head. We assume that
the sensors cannot communicate with one another (thus they
must encrypt in situ without direct aid from other sensors),
nor do they use any cryptographic keys for encryption. Any
encryption methodology and associated parameters used by
the sensors to separately encrypt the secret information are
known by an eavesdropper, who is able to eavesdrop on only
a small subset of the sensors. This assumption is reasonable
when the legitimate SN is large or the sensors are physically
separated, making comprehensive eavesdropping difficult. In
addition, in the case where the eavesdropper has enough
resources to intercept all legitimate SN communications, the
eavesdropper may as well deploy his own SN instead of
consuming resources in attacking the legitimate SN.

The SN problem presented above is related to the problems
of conventional secret sharing [1], [2] and that of the wiretap
channel II [3], [4]. The main difference is that in our problem
the creation of shares is performed by separate entities that
do not share any keys or common randomness, which is in
contrast to existing research in which a central authority may
exploit randomness to achieve secrecy.

In Sect. II, we introduce notation and formulate the prob-
lem. Sect. III provides novel analysis to study the associ-
ated optimal compression-secrecy trade-off, resulting in an
impossibility statement: perfect secrecy is not achievable.
Sect. IV first presents a practical measure of secrecy given
that Sect. III established perfect secrecy is impossible, then

presents an innovative cost-effective encoder implementation
for this practical measure of secrecy.

II. PRELIMINARIES

A. Notation

Unless otherwise stated, let upper-case letters denote ran-
dom variables, e.g. X , caligraphic upper-case letters denote
finite sets, e.g. X , lower-case letters denote realizations, e.g.
x, and superscripted letters denote vectors, e.g. xn. The prob-
ability mass function (pmf) is denoted using PX . A Markov
chain X,Y,Z in that order is denoted X ↔ Y ↔ Z if and
only if the joint pmf can be factored as PX,Y,Z = PX|Y PZ|Y .
H(X) is the entropy of X , H(X|Y ) is the conditional entropy
of X given Y , and I(X;Y ) is the mutual information between
X and Y [5]. Matrices are given by upper-case bold letters,
e.g. A.

B. Problem Formulation

Consider the simplified scenario with two sensors called
Alice and Bob. Let Alice and Bob share the same message
Sk ∈ Sk created by a discrete memoryless source (DMS) in
(1).

P k
S (sk) =

k∏
i=1

PS(si) (1)

Our problem is summarized in Fig. 1. Alice and Bob are to
each encipher their Sk separately without cooperation creating
Xn

A ∈ Xn
A and XN

B ∈ XN
B , respectively (note, n and N may

be different, and N is not a RV). The base station receives

DMS
Sk
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Encoder
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Fig. 1. Separate enciphering by Alice and Bob with eavesdropping by Eve.
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both Xn
A and XN

B , and its goal is to reconstruct Sk error-
free with high probability. Let the triple (fA, fB , ϕ) denote
Alice’s (possibly stochastic) encoder, Bob’s (possibly stochas-
tic) encoder, and the base station’s decoder respectively. Here
fA : Sk → Xn

A , fB : Sk → XN
B , and ϕ : Xn

A × XN
B → Sk

such that fA, fB do not depend on any shared materials or
common randonmness. The rate of Alice and Bob’s enciphered
messages are defined as

RA � log2 ‖fA‖
k

(2)

RB � log2 ‖fB‖
k

. (3)

Here ‖fA‖ is the notation denoting the number of possible
outputs from Alice’s encoder and similarly ‖fB‖ for Bob’s
encoder.

In Fig. 1, the eavesdropper Eve is allowed to select either
Xn

A or XN
B , but not both. Depending on which enciphered

message Eve selects, the equivocation rate of Eve with respect
to (w.r.t.) Alice and Bob are defined as

∆A � H(Sk|Xn
A)

k
(4)

∆B � H(Sk|XN
B )

k
. (5)

An equivocation rate of H(S) is desired as this implies
H(Sk|Xn

j ) = kH(S) = H(Sk) (last equality follows since
source is a DMS) for j = A or j = B, which means Eve is
no better off with Xn

j than she was without it.
We say a quadruple (dA, dB , rA, rB) (corresponding to

(∆A,∆B , RA, RB)) is achievable if there exists a (fA, fB , ϕ)
such that for all ε > 0 and k sufficiently large the following
are satisfied:

Pr{Sk �= Ŝk} ≤ ε (6)

RA ≤ rA + ε (7)

RB ≤ rB + ε (8)

dA − ε ≤ ∆A ≤ dA (9)

dB − ε ≤ ∆B ≤ dB (10)

where

Xn
A = fA(Sk) (11)

XN
B = fB(Sk) (12)

Ŝk = ϕ(Xn
A,XN

B ). (13)

Knowledge of (fA, fB , ϕ) and any other data stored on Alice
and Bob’s sensors as well as at the base station are known to
all parties including Eve, hence no cryptographic keys of any
sort are allowed.

Ideally one desires (dA, dB , rA, rB) =
(H(S),H(S), rA, rB) for small positive rA and rB ,
because having an equivocation rate of H(S) implies perfect
secrecy, while having small rates means less communications
overhead. However, we shall see that perfect secrecy is
impossible, no matter what finite rates are used by Alice and
Bob’s encoders.

III. THE CAPACITY REGION

The capacity region R, defined to be the closure of the
set of rate quadruples (dA, dB , rA, rB) that are achievable
(see Sect. II-B), is described in Theorem 1 for the general
distributed keyless secret sharing problem.

Theorem 1: The capacity region is given by

R = {(dA, dB , rA, rB) : 0 ≤ dA + dB ≤ H(S),
rA + rB ≥ H(S), rA + dA ≥ H(S), rB + dB ≥ H(S)}. (14)

Theorem 1 also gives us the impossibility result that un-
conditional secrecy cannot be achieved by both Alice and
Bob simultaneously. Fig. 2 shows the achievable (∆A,∆B)
equivocation pair given rates satisfying Theorem 1; if Alice’s
enciphered message is unconditionally secure, i.e. ∆A =
H(S), then necessarily Bob’s enciphered message will have
no secrecy whatsoever, i.e. ∆B = 0 (point A in Fig. 2).

A. Proof of Converse Part of Theorem 1

First we show (15) holds.

XN
B ↔ Sk ↔ Xn

A. (15)

Without loss of generality, let fB(Sk) = f ′
B(Sk, TB) where

f ′
B is a determinstic function, and TB is a random variable

generated locally that may depend on the input sk, but
independent of the stochastic encoder fA in following with
the lack of common randomness assumption. Therefore

H(fA(Sk)|Sk, TB) = H(fA(Sk)|Sk) (16)

and

I(Xn
A;XN

B |Sk)
= I(fA(Sk); fB(Sk)|Sk)
= H(fA(Sk)|Sk) − H(fA(Sk)|Sk, f ′

B(Sk, TB))
≤ H(fA(Sk)|Sk) − H(fA(Sk)|Sk, TB) = 0 (17)

so (15) holds.
Next, assume that some (dA, dB , rA, rB) is achievable such

that (6) to (13) are satisfied with the Markov constraint in (15).

H(S)

H(S)

A

B

A

B

Fig. 2. The capacity region R for rates satisfying Theorem 1.
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Then we shall show that the following bounds

dA + dB ≤ H(S) (18)

rA + rB ≥ H(S) (19)

rA + dA ≥ H(S) (20)

rB + dB ≥ H(S) (21)

are necessarily true.
First we prove (18). To make use of (6), we call upon Fano’s

inequality

H(Sk|Ŝk) ≤ h(ε) + εk log2 |S| � kεk

� kεk (22)

where Pr{Sk �= Ŝk} < ε, kεk → 0 as k → ∞ and h(p) is
the entropy function defined as

h(p) = −p log2 p − (1 − p) log2(1 − p). (23)

H(Sk) = H(Sk|Ŝk) + I(Sk; Ŝk)
(a)
≤ kεk + I(Sk; Ŝk)
(b)
≤ kεk + I(Sk;Xn

A,XN
B )

(c)
= kεk + I(Sk;Xn

A) + I(Sk;XN
B |Xn

A)
(d)
= kεk + I(Sk;Xn

A) + I(Sk;XN
B ) − I(Xn

A;XN
B )

= kεk + H(Sk) − H(Sk|Xn
A) +

H(Sk) − H(Sk|XN
B ) − I(Xn

A;XN
B ) (24)

The above (in)equalities arise from:
(a) Fano’s inequality (see (22));
(b) Sk → (Xn

A,Xn
B) → Ŝk forms a Markov chain and usage

of the data processing inequality;
(c) chain rule for mutual information;
(d) well-known identity I(X;Y |Z) = I(X;Y ) − I(X;Z)

when X ↔ Y ↔ Z.
Now rearranging (24) gives

H(Sk|Xn
A) + H(Sk|XN

B ) ≤ H(Sk) − I(Xn
A;XN

B ) + kεk

≤ kH(S) + kεk. (25)

Dividing by k and noting the definition of eqivocation rate
(see (4) and (5)) results in

∆A + ∆B ≤ H(S) + εk. (26)

Finally employing (9) and (10) gives

(dA − ε) + (dB − ε) ≤ ∆A + ∆B

≤ H(S) + εk (27)

and letting k → ∞ and ε → 0 we obtain the desired (18).
Next we show the rate sum bound of (19). Writing

0 ≤ I(Xn
A;XN

B ) = H(Xn
A) + H(XN

B ) − H(Xn
A,XN

B )
≤ log2 |Xn

A | + log2 |Xn
B | − H(Xn

A,XN
B )

= log2 ‖fA‖ + log2 ‖fB‖ − H(Xn
A,XN

B ) (28)

where the second inequality follows since the maximum
entropy of a set T is log2 |T |. Now dividing by k, and using

the definition of the rate of enciphered messages (see (2) and
(3)) gives

RA + RB ≥ 1
k

H(Xn
A,XN

B )

=
1
k

(H(Sk|Xn
A,XN

B ) + I(Sk;Xn
A,XN

B ))

≥ 1
k

I(Sk;Xn
A,XN

B )

≥ 1
k

(k(H(S) − εk)) (29)

where the last step follows by working from (24b) back to the
start of (24). Finally using (7) and (8) gives

(rA + ε) + (rB + ε) ≥ RA + RB

≥ H(S) − εk (30)

and letting k → ∞ and ε → 0 we get the desired (19).
Finally we show the rate-equivocation sum bound for Alice,

see (20), while noting the same follows for Bob. This follows
simply from the chain rule for entropy

H(Sk) = kH(S)
≤ H(Sk,Xn

A)
= H(Xn

A) + H(Sk|Xn
A)

≤ log2 ‖fA‖ + H(Sk|Xn
A). (31)

Now dividing by k and employing the definitions for rate
and equivocation rate (see (2) and (4)), and then using the
definition of achievability of these rates (see (7) and (9)) gives

H(S) ≤ RA + ∆A

≤ (r1 + ε) + d1 (32)

and letting ε → 0 (since the definition requires for all ε > 0),
the desired (20) is obtained.

B. Proof Sketch of Direct Part of Theorem 1

We will show that any point on the line boundary in Fig. 2
(i.e. ∆A + ∆B = H(S)) along with boundaries RA + RB =
H(S), RA + ∆A = H(S), and RB + ∆B = H(S) of the
overall capacity region are achievable.

We use the fact that when the block length k of Sk ap-
proaches infinity, almost all Sks (approx. 2kH(S)) are strongly
typical and are also almost equally likely [5].

Let us construct a 2nRA × 2nRB table that contains all
(approx.) 2kH(S) typical strings (which implies RA + RB =
H(S)), that is shared by Alice, Bob the base station and
Eve. To share a typical string sk, Alice will send the row
index corresponding to the row that sk is in the table, using
approx. kRA bits, or a rate of RA. Eve who has access to the
enciphered results of either Alice or Bob, but not both, gains
partial information. If Eve intercepts Alice, then ∆A ≈ RB ,
since all typical strings are almost equally likely and indeed
RA + ∆A ≈ H(S). If Eve intercepts Bob, then ∆B ≈ RB ,
and indeed RB + ∆B ≈ H(S). Also, ∆A + ∆B ≈ H(S).

The base station receiving both Alice and Bob’s enciphered
messages can decode by finding the exact entry in the table.
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If sk is not typical, an error is made, but the probability of
this event is negligible as k → ∞.

The encoding strategy of the above proof is not suitable for
low-cost implementation as a table of size of (approx.) 2kH(S)

entries is required. In the next section we provide design rules
for low-cost encoder implementation.

IV. PRACTICAL MEASURE OF SECRECY AND CODES

In the previous section, the capacity region yielded the
impossibility of achieving perfect secrecy. It can be verified
that the capacity region suggests that simply compressing and
splitting the message is sufficient. For instance, Alice may send
the first block of compressed common message and Bob may
send the remaining block. However this is obviously a poor
strategy as the eavesdropper learns a block of the message
without any effort.

In lieu of perfect secrecy, we must define a practical measure
of secrecy that is more reasonable than the above trivial
splitting technique. Our measure of secrecy is based on the
weakly secure network coding problem [6]. This measure of
secrecy is based on the eavesdropper’s inability to solve for
any of the unknown variables in a set of linear equations, even
when he is given the values of some of the unknowns. This
is formally summarized in Lemma 1. Thus the eavesdropper
must guess the unknown variables in contrast to the trivial
splitting technique. Even when the eavesdropper somehow
learns some limited part of the message, his knowledge of
the other parts is not improved, and he still must guess.

In [6], sufficiency results on the field size are derived, but
no simple implementation was provided. We not only derive
a simple convolutional-type encoder (opposed to a matrix
multiplication in [6]), but also derive a new field size condition
that is tighter for our encoder structure.

A. Operational Overview

Let C =
(
C1

C2

)
be a non-singular k×k matrix over GF (q)

(finite field of size q) such that C1 is αk × k, and C2 is
(1 − α)k × k where α is a fraction of the form m

k , 1 ≤ m ≤
k − 1. Let sk, which is to be shared by Alice and Bob, be
a column vector whose components are uniformly distributed
over GF (q). Then Alice sends C1s

k and Bob sends C2s
k.

The base station receives C1s
k and C2s

k or in other

words

(
C1

C2

)
sk = Csk, and can solve for sk by invert-

ing C. Alice sends αk symbols over GF (q) or αk log2 q
bits (since any symbol in GF (q) is assumed to be equally
likely), and so her rate is α log2 q. Similarly Bob’s rate is
(1 − α) log2 q. H(S) = log2 q again since S = GF (q),
and from the uniformity assumption. Therefore we indeed
have RA + RB = H(S). Also since the rank of C1 is
αk, given C1s

k, there are q(1−α)k equally likely sk [3], and
so ∆A = (1 − α) log2 q. Similarly ∆B = α log2 q and so
RA + ∆A = H(S), RB + ∆B = H(S), ∆A + ∆B = H(S),
achieving the optimal tradeoffs as promised by the information
theoretic results.

...

+

open

closed

First r ticks open
Next k-r ticks closed

a1

ar
ar-1 ar-2

…, S2, S1, 0

Fig. 3. Alice’s encoder (switch operates after clock tick).

Let C be defined as follows.

C =




a1 a2 · · · ar 0 · · · · · · 0
0 a1 a2 · · · ar 0 · · · 0
...

. . .
. . . 0

0 · · · · · · 0 a1 a2 · · · ar

b1 b2 · · · bl 0 · · · · · · 0
0 b1 b2 · · · bl 0 · · · 0
...

. . .
. . . 0

0 · · · · · · 0 b1 b2 · · · bl




=
(
C1

C2

)

(33)
where the elements are from GF (q). If C1 has αk rows then
r = k−αk+1 as the reader can easily verify. Similarly if C2

has (1 − α)k rows then l = k − (1 − α)k + 1. Fig. 3 shows
Alice’s encoder, implemented by r − 1 registers capable of
storing a GF (q) element, and the adders and multipliers are
over GF (q). When the encoder first starts, a 0 is padded at the
beginning of the stream, but never inserted again so that the
encoder can run continuously. The registers can be loaded with
any values initially, and never has to reset. The encoder is open
for the first r ticks with the goal to load the symbols into the
registers serially without outputting. Once all s1 to sr−1 are
serially loaded into the register (after the rth tick), the switch
closes (before the (r+1)th tick) to give the dot product of the
first row of C1 with sk. We chose the form in Fig. 3 because
this encoder can also be interpreted as a finite impulse response
(FIR) filter over a finite field with decimator (implemented as
the switch). This implementation is novel to this paper, and
not found in [6], in which the implementation in [6] is a matrix
multiplication with a dense matrix (matrix containing few zero
elements), since the matrix in [6] is generated randomly.

B. A New Sufficiency Condition on the Field Size

Lemma 1 is adapted from [6] for our problem.
Lemma 1: Let Ii be a 1 × k vector of 0s except the ith

position is a 1. If Eve’s number of guesses g is restricted to
g < (1−α)k and g < αk for Alice and Bob’s messages resp.,
and 


C1

Ij1
...

Ij(1−α)k


 (34)
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is full rank for any distinct (1 − α)k Iis, then Eve’s guesses
do not provide her with any additional information; similarly
for C2 using αk Iis (Theorem 2, Lemmas 2 and 3 from [6]).

In [6] the sufficiency condition on the field size is derived
by choosing rows of C one at a time. No restrictions besides
those concerning span and dimensionality were placed on
these row choices. Since we want a convolutional-type code,
we must place further structural restrictions on C (see (33)),
and hence the field size conditions in [6] do not apply. We
further simplify Lemma 1 to Proposition 1 in order to derive
new sufficiency conditions

Proposition 1: The full rank condition of (34) is satisfied iff
any αk columns of C1 has a non-zero determinant; similarly
any (1 − α)k columns of C2 has a non-zero determinant.
The proof is trivial so we omit it. Using Proposition 1, we can
formulate a new sufficiency condition for the C matrix with
structure given by (33). The idea behind our proof is very
different from [6], so we divulge the details.

Theorem 2: If

q > αk

(
k

αk

)
+ (1 − α)k

(
k

(1 − α)k

)
+ max{αk, (1 − α)k}

(35)
then there exists ai, bi ∈ GF (q) from (33) such that Lemma 1
is satisfied.

Proof: First take C1 and choose all possible combina-
tions of αk columns; there are

(
k

αk

)
such combinations. For

every αk columns, we have a square matrix, and this has a
determinant over the ai variables, whose values from GF (q)
we have not yet chosen; this means that the determinant can
be viewed as a multivariate polynomial in the ai variables. It
is easy to show that since there are αk ai for each 1 ≤ i ≤ r,
the maximum degree of this multivariate polynomial does
not exceed αk.1 If we multiply each of the

(
k

αk

)
deter-

minants/polynomials, then the maximum degree is αk
(

k
αk

)
.

This is similarly true for C2, resulting in a polynomial with
maximum degree (1−α)k

(
k

(1−α)k

)
. Finally we need the entire

C itself to be non-singular, so we can take the determinant of
C giving us a new polynomial whose maximum degree can-
not exceed max{αk, (1 − α)k}. Multiplying all polynomials
together results in a polynomial with maximum degree not
exceeding αk

(
k

αk

)
+ (1−α)k

(
k

(1−α)k

)
+ max{αk, (1−α)k}.

In [7] it is shown that for a multivariate polynomial with max-
imum degree d, there exists a non-zero polynomial evaluation
when the variables are chosen from GF (q) with q > d.

Theorem 2 is only a sufficiency condition, and for small
k, smaller field sizes can be found as demonstrated in the
example.
Example: Let ξ be a primitive element in GF (16) and a root
of p(x) = 1 + x3 + x4 a binary primitive polynomial. Then
one can show that for a block length of 8, and symmetric
rates for Alice and Bob, the following C (which we generated

1The maximum degree of a multivariate polynomial is defined as the largest
exponent in the polynomial without regard to which variable this is from.

randomly), is secure in the sense defined above.

C =




ξ4 ξ11 ξ2 ξ13 ξ0 0 0 0
0 ξ4 ξ11 ξ2 ξ13 ξ0 0 0
0 0 ξ4 ξ11 ξ2 ξ13 ξ0 0
0 0 0 ξ4 ξ11 ξ2 ξ13 ξ0

ξ10 ξ4 ξ12 ξ8 ξ5 0 0 0
0 ξ10 ξ4 ξ12 ξ8 ξ5 0 0
0 0 ξ10 ξ4 ξ12 ξ8 ξ5 0
0 0 0 ξ10 ξ4 ξ12 ξ8 ξ5




(36)

We note that if we had just blindly used Theorem 2, we would
be working in a field with more than 564 elements! To give
the reader some idea as to the complexity of this example
encoder, let us process a field element of GF (16) by taking 4
bits per symbol and working in the binary field. The number
of wires required to implement all the multipliers of C1 can
be shown to be 38, while for C2, 51 wires are required. For
each encoder, 36 binary adders are necessary to implement
both the multipliers and the adders. �

Finally from Lemma 1, the protection against the “guess-
based cryptanalysis” is proportional to the number of registers
used.

Proposition 2: Alice and Bob’s encoders protect up to g1 <
r − 1 and g2 < l − 1 resp., where Alice has r − 1 registers,
and Bob has l − 1 registers.

Proof: Easily verifiable by reader.
Increasing the number of registers may also increase the field
size, which augments complexity.

V. CONCLUSION AND FUTURE WORK

We have presented the distributed keyless secret sharing
problem, described a capacity region that characterizes the
compromise among associated parameters, and provided a
low-cost implementation solution. The authors are extending
this work to allow for distortion at the decoder-side by using
rate-distortion theory.
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