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Secure Distributed Source Coding with Side-Information
William Luh and Deepa Kundur

Abstract— This letter develops codes for the scenario in which
users with correlated messages are to encipher and compress
their messages without collaboration and without the use of
cryptographic keys or other secret materials. We consider an
eavesdropper that has access to an encoded message and in
addition, some side-information in the form of uncoded symbols
corresponding to the encoded message. Our codes are an exten-
sion of distributed source coding using syndromes (DISCUS) with
the additional requirement of providing secrecy for the scenario
described above. We state a secrecy condition that the subcodes of
DISCUS must satisfy, and develop a general encoding algorithm
meeting these conditions. We analyze the performance of the
proposed code for the case of multiple eavesdropped messages.

Index Terms— Security, distributed source coding, Reed-
Solomon codes.

I. INTRODUCTION AND BACKGROUND

THIS letter extends and generalizes the problem in which
two nodes with correlated messages wish to encipher and

source code their messages without collaboration and without
the use of cryptographic keys. An eavesdropper with access to
only one encoded message learns as little as possible about that
message, whereas a joint decoder with all encoded messages
can decode the messages without error.1 In [2] we derived the
capacity region, i.e. the set of all possible source coding rate
pairs and equivocation rate (our measure of secrecy) pairs.
The capacity region showed that simply applying Slepian-
Wolf (SW) encoding simultaneously achieves the optimal
equivocation rates.

Although SW encoding alone suffices to achieve the optimal
equivocation rates (a result of the capacity region), and there-
fore any distributed source code may be applied, in practice
the resulting secrecy is mediocre, giving the eavesdropper
too much information concerning the message without the
eavesdropper having to do any work. Thus in [2] we defined
a different measure of secrecy that not only resolves the
shortcomings of simply using equivocation as the measure of
secrecy, but also accounts for the possible scenario in which
the eavesdropper has access to uncoded symbols from the
message in addition to intercepting the corresponding encoded
message (similar threat model as [3]).

In [2] we gave a simple two-user example to demonstrate
that the latter strong definition of secrecy is plausible. In this
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1This problem has for example applications in sensor networks in which

energy-limited nodes must encode separately without collaboration [1]. Fur-
thermore, node deployment in hostile envrionments makes cryptographic keys
prone to capture or exposure and we thus avoid their use in our problem.

letter we derive general codes for any number of users, as
well as analyze the case when the eavesdropper has access
to multiple encoded messages. While the exploration of the
capacity of various wiretap channel models has recently re-
ceived much attention, practical coding for these models are
emerging [3]–[7].

II. SYSTEM MODEL

We define the problem for m users who have random mes-
sages (column vectors of elements from Galois field GF (q))
Uk

1 , . . . , Uk
m ∈ (GF (q))k such that they are marginally uni-

formly distributed. On the other hand, the collection of all m
messages obeys the correlation model

w(Uk
1 + · · · + Uk

m) ≤ t, (1)

where w(·) is the Hamming weight, and addition is over
GF (q) [8]. The m users are to separately and linearly
encode (jointly encipher and source code) their realizations
uk

1 , . . . , uk
m, resulting in Galois vectors xn1

1 , . . . , xnm
m , respec-

tively, via the relationship

xni
i = Hiu

k
i (2)

for i = 1, . . . , m such that His are ni × k matrices.2 Given
all xni

i , i = 1, . . . , m, the joint decoder is to reproduce all uk
i ,

i = 1, . . . , m without error.
The eavesdropper is permitted to have at his disposal only

one xni
i ; we later generalize this to include the case when the

eavesdropper has multiple xni
i . In addition the eavesdropper

is also permitted to have αi uncoded symbols from uk
i if he

intercepts xni
i . These extra uncoded symbols (similar threat

assumptions as in [3]) are the eavesdropper’s side-information.
The goal is to design an encoding and decoding scheme
for the above system model, such that the eavesdropper
cannot uniquely solve for any other symbols in uk

i , nor any
uk

j , j �= i given that he has xni
i and the corresponding side-

information. Formally, let ui,j be the jth symbol of the ith

user’s message. Then if the eavesdropper wishes to reveal ui,j

(assuming he does not have ui,j as side-information already),
the eavesdropper is faced with choosing ui,j ∈ S, such that
S ⊆ GF (q) and its cardinality is at least 2 (i.e. |S| ≥ 2), and
all elements in S are equally likely from the eavesdropper’s
point of view. This level of secrecy is not unconditional, but
may be satisfactory for certain applications, e.g. lightweight
video encryption.

2Consideration of nonlinear codes are beyond the scope of this letter. In
practice nonlinear codes may offer better protection against a wide assortment
of cryptanalysis attacks. However the security of nonlinear codes are in
general difficult to prove mathematically, while linear codes are amenable
to analysis.
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III. RESULTS

Our codes belong to the class of distributed source coding
using syndromes (DISCUS) [9]. In the DISCUS scheme, a
supercode with the capability of correcting t-errors (the same
t as in Eq. 1) is partitioned into m subcodes (where m is the
number of users). The parity check matrices of these subcodes
are then used in Eq. 2 to encode each of the user’s messages,
respectively.

A. Secrecy Condition on Subcodes

While the supercode requirement of being t-error-
correctable aids decodability [9], in [2] we showed that secrecy
(as defined above) can be achieved by imposing that the
subcodes are maximum distance separable (MDS) codes; this
is re-iterated explicitly in Theorem 1 along with restrictions on
the quantity of side-information available to the eavesdropper.

Theorem 1: If αi < k−ni and the subcodes are each max-
imum distance separable, then the eavesdropper cannot solve
for any symbols other than those given as side-information in
uk

i for each i = 1, . . . , m.

B. Code Construction

We have conditions on the supercode (error correction
capability equal to correlation [9]) and the subcodes (MDS
from Theorem 1) for DISCUS with secrecy. However, simply
choosing MDS subcodes will often result in unacceptable
supercodes. Similarly, choosing an acceptable supercode and
arbitrarily partitioning the supercode into subcodes will often
result in non-MDS codes, e.g. in [2] we showed this is the
case for the DISCUS codes in [8]. This section derives codes
that satisfy both conditions.

Algorithm 1 provides a method of constructing DISCUS
codes that are both decodable (zero errors), and secure in the
sense developed in Section II.3 An example for two users is
given in [2].

Theorem 2: If Hi, i = 1, . . . , m are selected using Algo-
rithm 1 and the eavesdropper has side-information restricted
to αi < ai (ai from Algorithm 1), then the encoding scheme
is secure and uniquely decodable.

Proof: Matrix A is the generator matrix of a Reed-
Solomon code with minimum distance dmin = k − (2s) + 1.
Defining t �

⌊
k
2 − s

⌋
satisfies the requirement k ≥ 2(s + t),

and unique decodability is possible given the correlation
model, Eq. 1, and given that the Slepian-Wolf (SW) constraints
are satisfied.

Since Hi is a (k − ai) × k matrix from Algorithm 1,
the side-information constraint αi < k − (k − ai) = ai

follows from Theorem 1. Furthermore, since each symbol in
a message is independent over GF (k + 1), the source coding
rate given by Eq. 6 and constrained by Eq. 7 is simply the
Slepian-Wolf theorem. Therefore we have proved that zero-
error decodability is achieved given the above constraints are
satisfied.

Next we must check that the His are parity check matrices
of MDS codes for all i = 1, . . . , m (to satisfy Theorem 1). In

3As in the original DISCUS, the drawback is that these codes do not always
exist for all parameters.

Algorithm 1 Finding Secure Parity Check Matrices
Require: Hi for all i = 1, . . . , m.
Ensure:

(i) Symbols for all messages are from GF (k +1) where
k+1 is a power of a prime number and k ≥ 2(s+ t);

(ii) Eq. 1 is satisfied;
(iii) ξ is a primitive element in GF (k + 1) and

A =

⎛
⎜⎜⎜⎝

1 ξ ξ2 · · · ξ(k−1)

1 ξ2 ξ4 · · · ξ2(k−1)

...
...

...
. . .

...
1 ξ2s ξ4s · · · ξ2s(k−1)

⎞
⎟⎟⎟⎠

1: Partition the matrix A =

⎛
⎜⎝

A1

...
Am

⎞
⎟⎠ such that the Ais

are ai × k matrices, and

Ri � k − ai

k
log2(k + 1) (6)

for all i = 1, . . . , m satisfy
∑
i∈S

Ri ≥ H
(
(Uj)j∈S | (Uj)j∈{1,...,m}−S

)
(7)

for all S ⊆ {1, . . . , m}. If this is not possible, then these
rates cannot be used.

2: Select His such that AiHT
i = 0 for all i = 1, . . . , m.

general, partitioning a MDS code may not result in MDS sub-
codes. However, the choice of starting with A in Algorithm 1
facilitates the generation of MDS subcodes as we show. The
parity check polynomial corresponding to the generator matrix
Ai is equal to

hi(x) =
a+

i∏

l=a−
i

(x − ξ−l) =
a+

i∏

l=a−
i

(x − ξk−l) =
k−a−

i∏

l=k−a+
i

(x − ξl)

(3)
where

a−
i =

⎛
⎝

i−1∑
j=1

aj

⎞
⎠ + 1, a+

i =
i∑

j=1

aj . (4)

Therefore the generator polynomial corresponding to genera-
tor matrix Ai is given by

gi(x) =
xk − 1
hi(x)

=
k−a+

i −1∏
l=1

(x − ξl)
k∏

l=k−a−
i +1

(x − ξl)

=
2k−a+

i −1∏

l=k−a−
i +1

(x − ξl) (5)

where the final equality follows since ξk+l = ξl. Since the
generator polynomial has roots that are consecutive powers of
the primitive element ξ, the code it generates is by definition
Reed-Solomon, which is MDS.

C. Example

We illustrate a numerical example for two users. In Al-
gorithm 1 let s = 2, t = 5, k = 15, so k ≥ 2(s + t) is
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satisfied. Matrix A is then a 4 × 15 matrix. If we partition
matrix A equally so that a1 = a2 = 2, then both users
have the same rate of R1 = R2 = k−ai

k log2(k + 1) = 52
15 .

Then note that H(U1, U2) = (1 + t/k) log2(k + 1) = 16
3 ,

and H(U1|U2) = H(U2|U1) = t
k log2(k + 1) = 4

3 , thus the
SW constraints (Eq. 7) are satisfied as the reader may verify.
To complete the example, the reader may derive parity check
matrices H1 and H2, corresponding to generator matrices A1

and A2, respectively. Finally Eq. 2 can be applied to get the
encoded messages.

D. Multiple Eavesdropping

Algorithm 1 only allows the eavesdropper to have ac-
cess to one encoded message with some corresponding side-
information. We now analyze the above code for the case when
the eavesdropper has access to multiple encoded messages.

Proposition 1: If the eavesdropper has access to µ encoded
messages {xnj1

j1
, . . . , x

njµ

jµ
} for 1 < µ < m, and any amount

of side-information, then the scheme of Algorithm 1 is not
secure. If the eavesdropper has no side-information, then the
scheme of Algorithm 1 is secure.4

Proof: Given {xnj1
j1

, . . . , x
njµ

jµ
}, we can write

⎛
⎜⎜⎝

x
nj1
j1
...

x
njµ

jµ

⎞
⎟⎟⎠ =

⎛
⎜⎝

Hj1 0 0

0
. . . 0

0 0 Hjµ

⎞
⎟⎠

⎛
⎜⎝

uk
j1
...

uk
jµ

⎞
⎟⎠ . (8)

Eq. 8 will be conveniently denoted by

x = Hu. (9)

It can easily be seen that H is no longer the parity check
matrix of a MDS code, since its minimum distance is strictly
less than the Singleton bound. This is proved by considering
H as a generator matrix; thus the codewords generated by
H are precisely the concatenation of codewords generated by
Hj1 , . . . ,Hjµ

. Therefore the codewords generated by H must
have minimum distance

dmin = min{dmin,j1 , . . . , dmin,jµ
} (10)

where dmin,ji
is the minimum distance of the code corre-

sponding to generator matrix Hji
. Therefore the code gener-

ated by H is not MDS, and neither is its dual, thus it is not
secure when side-information is available.

However, when the eavesdropper does not have side-
information, we show that H is secure. Now if there exists a
1 × (nj1 + · · · + njµ

) row vector bi such that

bix = biHu = Iµk
i u (11)

where now Iµk
i is a 1×µk row vector with 1 in position i and 0

elsewhere, then the eavesdropper can solve for the ith symbol
in u. Eq. 11 is equivalent to Iµk

i ∈ rowspace(H). Thus if
we show that Iµk

i /∈ rowspace(H) for all i = 1, . . . , µk, then
the eavesdropper cannot solve for any symbols in u. First it
is easy to see that the rows of H are independent, since the
rows of each Hj1 , . . . ,Hjµ

are independent

4All the codes in this letter are also secure against the more general scenario
in which the eavesdropper has access to αi linear combinations of symbols
of the uncoded message uk

i .

Now suppose for some arbitrary Iµk
i , column i runs through

Hr in H. Therefore Iµk
i is not in the rowspace consisting of

all rows in H with matrices Hl, l �= r, since the ith element
in each of these Hl is 0, while it is 1 in Iµk

i .
Thus we only have to check that Iµk

i is not in the rowspace
consisting of the rows in H with matrix Hr, i.e.

Iµk
i /∈ rowspace

(
0 · · · 0 Hr 0 · · · 0

)
. (12)

Truncating H to yield Hr, and similarly truncating Iµk
i to

yield the corresponding 1 × k row vector Il, l ∈ {1, . . . , k}
proves Eq. 12 since Il /∈ rowspace(Hr) from the proof of
Algorithm 1.

There is one final technical point that we must prove. We
have been assuming that all u realizations in Eq. 9 are equally
likely. This is true so long as µ < m (where m is the total
number of users). If µ = m, i.e. if the eavesdropper has access
to all encoded messages, then by the correlation model (see
Eq. 1), some u realizations (in Eq. 9) are impossible. On
the other hand if µ = m − 1, then there is no constraint on
{uk

j1
, . . . , uk

jµ
}; only the mth uk

jµ+1
would have to be chosen

so that all m messages satisfy Eq. 1. Thus as long as the
eavesdropper has fewer than m encoded messages, all u’s (in
Eq. 9) are equally likely to the eavesdropper.

IV. CONCLUSION

In this letter we generalized DISCUS with secrecy to
multiple users. We showed our general code is secure (viz.
Section II) when the eavesdropper has one encoded message
with corresponding side-information, and when the eavesdrop-
per has multiple encoded messages without side-information.
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