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ABSTRACT
This paper examines the problem in which several nodes
sharing highly correlated data, such as visual data, wish to
compress and encrypt their data to provide confidentiality.
The nodes however perform these tasks separately, without
communicating with one another and without the use of
cryptographic keys. The base station (BS) receiving all such
encrypted data, can reconstruct each of the nodes’ data,
whereas a passive eavesdropper who is only allowed a subset
of the encrypted data gleans as little information as possible
about the nodes’ data.

We build on previous results with the goal of increasing
secrecy (measured by Shannon equivocation) by: (1) relax-
ing the BS’s perfect reconstruction criterion thus permitting
non-zero distortion reconstruction; (2) permitting commu-
nication (feedback) from the BS to the nodes. We show that
permitting non-zero distortion reconstruction does increase
secrecy, however unconditional secrecy is still not achievable
unless the distortion is maximal. We also prove that feed-
back from the BS usually (under most practical scenarios)
does not improve secrecy, unless the BS has certain knowl-
edge concerning the eavesdropper.

Finally this paper proposes ideas for applying the results
to images by analyzing the ideal image model to demonstrate
the practical difficulties in achieving provable security for
images.

Categories and Subject Descriptors
H.1.1 [Models and Principles]: Systems and Informa-
tion Theory—Information Theory ; I.4.2 [Image Process-
ing and Computer Vision]: Compression (Coding)

General Terms
Security, Theory
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1. INTRODUCTION AND MOTIVATION
Distributed systems have gained popularity over the years

as CMOS technology nears its limits, thus bounding the
power of individual computing platforms. New paradigms
are being developed for distributed platforms to harness
their full, integral power. One particular type of distributed
network is the sensor network, whose individual nodes lack
the basic computing abilities available on personal comput-
ers a decade ago, but which make up for this deficiency
through node ubiquity.

As sensor nodes are often deployed in a manner that clus-
ter several of them within close physical proximity of one
another, the data they collect are likely to be highly corre-
lated. We consider the scenario in which nodes within such
a cluster cannot communicate with one another, either be-
cause of energy constraints, or perhaps there is some other
reason (either incidental or malicious) preventing them from
communicating with one another. Although explicit collab-
oration does not exist under this scenario, since each node is
aware that other nodes are processing data highly correlated
with its own, this implicit knowledge can be used by a node
to not only effectively compress that node’s data [27], but
also to encrypt the data for some level of confidentiality.1

The security assumption employed in this paper is sim-
ilar to the secret sharing problem [24, 11, 31] in that the
eavesdropper is permitted to eavesdrop on only a small sub-
set of the nodes. The goal is a scheme whereby this small
subset of encrypted data is not enough to reconstruct the
nodes’ data; on the other hand the base station (BS) re-
ceives all the nodes transmissions, and thus can reconstruct
the data. The novelty in this problem is that the nodes
cannot communicate (and must process their own data in-
stead of forwarding data to an aggregator) and do not share
any secret cryptographic keys unknown to the eavesdropper.
The second keyless assumption accounts for the worst-case
scenario in which physically unprotected may be accessed,
and their keys revealed.

1Our notion of distributed is different from the conventional
peer-to-peer systems encountered in network engineering,
and we really mean multiuser when referring to the term
distributed.
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We distinguish between two related subproblems. The
first subproblem is when all nodes have identical data or
messages. We call this problem the distributed secret shar-
ing (DSS) problem, since the original secret sharing prob-
lem also deals with a single message being shared by several
entities. The second subproblem is more general, and con-
cerns the case when all nodes have different but correlated
data. We call this problem the distributed encryption (DE)
problem after [6] who initially introduced the problem. The
analyses of these two subproblems are different and thus
treated separately.

We point out that although no cryptographic keys are
employed in our system, the design may be complemented
with more traditional ciphers/cryptosystems at the cost of
higher complexity, as well as the need for a key distribution
and management system.

1.1 Contribution of Paper
This paper presents novel theoretical models and analyses

for the subproblems stated above. The main novel contribu-
tion in this paper is the analysis of the compression-secrecy
tradeoff when the base station is permitted a non-zero distor-
tion reconstruction of the nodes’ data; this extends our pre-
vious work in which we required perfect reconstruction at the
base station [16, 17]. The extension involves the application
of rate-distortion and multiterminal source coding theory.
We show that by permitting non-zero distortion, secrecy as
measured by Shannon equivocation, can be increased from
the case when perfect reconstruction is required.2 We also
prove that BS feedback usually does not increase secrecy, in
contrast with many multiuser information theory results.

In addition to our novel analysis, we also outline some
fundamental ideas in applying the theoretical results to im-
age data. Specifically, we look at how our coding theorems
fit the more conventional image encryption algorithms de-
signed to date. We outline how to encrypt an ideal image
model using the codes presented in our previous papers [16,
17].

The reason for our current focus on the coding aspects
stems from the following observation. Theoretically, opti-
mal compression can be achieved using coding alone. In
practice, signal processing (a transform) is applied as a pre-
processor to alleviate the complexities of coding [21]. Hence
in practice, both signal processing and coding are employed
to achieve goals such as image compression and watermark-
ing. However since standard transforms are now a common
technology, we focus on the coding aspects of our problem.

2. PRELIMINARIES
To make the analysis tractable, we consider a distributed

system consisting of two nodes (referred to as Alice and Bob)
and one base station. With minimal effort, the results pre-
sented in this paper can be generalized to multiple nodes.

2.1 Notation
Let upper-case letters denote random variables (RVs), e.g.

X, caligraphic upper-case letters denote finite sets, e.g. X ,
|X | denotes the finite cardinality of X , lower-case letters

2Our choice to use Shannon equivocation as the measure
of security opposed to security based on computational and
complexity theory [8] is because the problem can be solved
using public-key cryptography (see Section 3.3).
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Figure 1: Separate Enciphering by Alice and Bob
with Eavesdropping by Eve

denote realizations, e.g. x is a realization of RV X, and su-
perscripted letters denote (column, unless otherwise stated)
vectors, e.g. xn, where the superscript n gives the dimen-
sion of the vector (or number of components in the vector).
The probability mass function (pmf) of X is denoted us-
ing PX . A Markov chain X, Y, Z in that order is denoted
X ↔ Y ↔ Z if and only if the joint pmf can be factored as
PX,Y,Z = PX|Y PZ|Y . H(X) is the entropy of X, H(X|Y )
is the conditional entropy of X given Y , and I(X; Y ) is the
mutual information between X and Y [5]. Matrices are given
by upper-case bold letters, e.g. A.

2.2 Problem Formulation
Let Sk

A ∈ Sk
A and Sk

B ∈ Sk
B denote Alice and Bob’s mes-

sages resp.; in the distributed secret sharing (DSS) problem,

we would have Sk
A = Sk

B � Sk ∈ Sk. Alice and Bob’s mes-
sages are generated by a joint discrete memoryless source
(DMS) given by Eq. 1.

P k
SA,SB

(sk
A, sk

B) =
k∏

i=1

PSA,SB (sA,i, sB,i) (1)

Our problem is summarized in Fig. 1. Alice and Bob are to
encipher their Sk

A, Sk
B separately without cooperation creat-

ing WA ∈ WA and WB ∈ WB resp.
The base station (BS) receives both WA and WB, and

its goal is to reconstruct Sk
A and Sk

B within some fidelity
criterion to be discussed below. Let the quadruple

(fA, fB , ϕA, ϕB)

denote Alice’s (possibly stochastic) encoder, Bob’s (possibly
stochastic) encoder, and the BS’s decoders to reconstruct
Alice and Bob’s messages resp. Here fA : Sk

A → WA, fB :
Sk

B → WB, ϕA : WA×WB → Ŝk
A, and ϕB : WA×WB → Ŝk

B,
where Ŝk

A and Ŝk
B are the reconstruction alphabets for Alice

and Bob resp.
If the encoders fA, fB are stochastic, they can be defined

without loss of generality by deterministic encoders f ′
A, f ′

B ,
where the randomness comes from locally generated RVs
TA, TB resp. as shown below.

WA = fA(Sk
A) = f ′

A(Sk
A, TA) (2)

WB = fB(Sk
B) = f ′

B(Sk
B, TB) (3)

The random variables TA, TB simulate choosing a codeword
randomly from the subsets of WA,WB resp.
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Let ρk
A : Sk

A × Ŝk
A → R

+ be the block distortion measure
between Alice’s original message block sk

A and the BS’s re-
construction ŝk

A; similarly ρk
B : Sk

B × Ŝk
B → R

+ is the block
distortion measure for Bob’s message. Following Shannon
theory, the block distortion measures are defined by single-
letter distortion measures ρj : Sj × Ŝj for j = A, B so that
the block distortion measure is an average of the single-letter
distortion measures as in Eq. 4.

ρk
j (sk

j , ŝk
j ) =

1

k

k∑
i=1

ρj(sj,i, ŝj,i), j = A, B (4)

Hence the BS’s reconstruction distortion criteria can be spec-
ified by two real numbers representing Alice and Bob’s mes-
sages, DA > 0 and DB > 0 resp., such that the expected
distortion is bounded by these two numbers as in Eqs. 5 and
6 for ε > 0 arbitrarily small. The expectation is taken over
all random quantities, such as the original message blocks
Sk

A, Sk
B, as well as the possibly stochastic encoders fA, fB

via TA, TB resp.

E[ρk
A(Sk

A, Ŝk
A)] ≤ DA + ε (5)

E[ρk
B(Sk

B , Ŝk
B)] ≤ DB + ε (6)

In other words, for a distortion pair (DA, DB), the encoders
and decoders (fA, fB , ϕA, ϕB) satisfying Eqs. 5 and 6 are
said to satisfy the distortion criteria (DA, DB).

The (source coding) rates of Alice and Bob’s enciphered
messages are defined as

RA � log2 |WA|
k

(7)

RB � log2 |WB |
k

. (8)

Note that although the definitions of rate do not include
reference to the RVs TA, TB , rate may still be affected by
stochastic encoding. For example, the set Wj may be parti-
tioned into non-overlapping subsets (cosets), such that each
coset is associated with a unique message sk

j , and the RV
Tj randomly chooses a codeword from the coset associated
with the input message [30]. In this case, the encoding maps
one message to many codewords (in which one codeword is
selected randomly by Tj), and thus in this example |Wj | is
affected by Tj .

In Fig. 1, the eavesdropper, referred to as Eve, is al-
lowed to select either WA or WB, but not both. Depending
on which enciphered message Eve selects, the equivocation
rates of Eve w.r.t. Alice and Bob are defined as

∆A � H(Sk
A|WA)

k
(9)

∆B � H(Sk
B|WB)

k
. (10)

Equivocation rates of ∆A = H(SA) for Alice and ∆B =
H(SB) for Bob are desired as this implies H(Sk

j |Wj) =

kH(Sj) = H(Sk
j ) for j = A, B, which means Eve is no

better off with Wj than she was without it. Our defini-
tions of equivocation rate also require H(SA) = H(SB).
This requirement implies that if Eve interecepts WA, then
∆B ≥ ∆A, and if she intercepts WB, then ∆A ≥ ∆B. In
other words, if Eve intercepts Alice’s stream, then she would
learn more about Alice’s message than Bob’s message.

We say a quadruple (dA, dB, rA, rB) corresponding to

(∆A, ∆B, RA, RB)

is achievable w.r.t (DA, DB) if there exists a (fA, fB , ϕA, ϕB)
such that for all ε > 0 (arbitrarily small) and k sufficiently
large the following are satisfied:

RA ≤ rA + ε (11)

RB ≤ rB + ε (12)

dA − ε ≤ ∆A ≤ dA (13)

dB − ε ≤ ∆B ≤ dB (14)

where

WA = fA(Sk
A) (15)

WB = fB(Sk
B) (16)

Ŝk
A = ϕA(WA, WB) (17)

Ŝk
B = ϕB(WA, WB) (18)

and Eqs. 5 and 6 are also satisfied. In addition, all parties,
Alice, Bob, and Eve, have complete knowledge of fA, fB

(except for the possibly locally generated RVs TA, TB), and
any cryptographic keys used.

The DSS problem is a special case of the above formu-
lation of the DE problem, and is formulated similarly by
replacing SA, SB with just S. We make the distinction be-
tween these two problems since their analysis and coding
solutions may be different.

3. ENLARGING THE CAPACITY
REGIONS

In this section we show that permitting non-zero distor-
tion for the BS reconstruction increases the capacity region,
while feedback from the BS generally does not increase the
capacity region, and may in fact hurt secrecy.

The capacity regions for the distributed secret sharing
(DSS) and distributed encryption (DE) cases are different.
The former is based on single-user rate-distortion theory,
while the latter does not have a complete capacity region
characterized. This incompleteness is due to the unresolved
capacity region (inner region not equal to outer region) for
the general multiterminal source coding (MSC) problem [29,
9, 2].

3.1 Capacity Region for DSS
The capacity region RDSS(D) for the DSS problem is de-

fined to be the set of quadruples (dA, dB, rA, rB) that are
achievable w.r.t to D, the distortion criterion between orig-
inal message and BS reconstruction.

Theorem 1. For a given distortion criterion D, the ca-
pacity region is given by

RDSS(D) = {(dA, dB, rA, rB) :

rA ≥ 0,

rB ≥ 0,

0 ≤ dA ≤ H(S),

0 ≤ dB ≤ H(S),

0 ≤ dA + dB ≤ 2H(S) − R(D),

rA + rB ≥ R(D),

rA + dA ≥ H(S),

rB + dB ≥ H(S)}. (19)
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In Theorem 1 (proved in Appendix A.1), the rate-distortion
function is given by

R(D) = min
p(ŝ|s):E[ρ(S,Ŝ)]≤D

I(S; Ŝ). (20)

Informally, R(D) is the minimum number of bits per sym-

bol (from Ŝ) such that the reconstruction distortion is (no
greater than) D. This means that ŝk would be approxi-
mately kR(D) bits long given k is sufficiently large.

Theorem 1 also confirms what we intuitively expect: if
Alice and Bob send nothing to the base station, i.e. R(D) =
0, then unconditional secrecy can be achieved (since it is
possible for ∆A = H(S) and ∆B = H(S) while satisfying
∆A + ∆B = 2H(S)). In addition, R(D) = 0 is necessary
for unconditional secrecy, and so although allowing non-zero
distortion does increase secrecy from the distortionless case
(when R(D) = H(S)), it is not for free. Finally Theorem 1
can also be shown to match our previous distortionless result
when D = 0 in [16].

3.2 Outer and Inner Regions for DE
The capacity region RDE(DA, DB) for the DE problem

is defined to be the set of quadruples (dA, dB , rA, rB) that
are achievable w.r.t to (DA, DB), the distortion criteria be-
tween original messages and BS reconstruction. Outer and
inner regions, RDE−out(DA, DB) and RDE−in(DA, DB) are
defined to be sets such that

RDE−in(DA, DB) ⊆ RDE(DA, DB) ⊆ RDE−out(DA, DB).

Due to the existing gap between the outer and inner regions
for the MSC problem [2],

RDE−in(DA, DB) �= RDE−out(DA, DB),

and thus a complete capacity region has not been derived,
although it is conjectured that the outer region in the MSC
problem [29, 9, 2] is the capacity region for MSC.

Definition 1. Define P(DA, DB) as the set of auxiliary
RVs (YA, YB) jointly distributed with (SA, SB) such that:

(i) YA ↔ SA ↔ SB and SA ↔ SB ↔ YB;

(ii) there exist functions FA : YA × YB → ŜA and FB :

YA ×YB → ŜB such that

E[ρA(SA, ŜA)] ≤ DA (21)

E[ρB(SB , ŜB)] ≤ DB (22)

where

ŜA = FA(YA, YB) (23)

ŜB = FB(YA, YB). (24)

Theorem 2 (Outer Region). RDE−out(DA, DB) is
the set of all (dA, dB, rA, rB) that satisfy

0 ≤ dA ≤ H(SA) (25)

0 ≤ dB ≤ H(SB) (26)

dA + dB ≤ H(SA) + H(SB) − I(SA, SB ; YA, YB)(27)

rA ≥ I(YA; SA, SB |YB) (28)

rB ≥ I(YB; SA, SB|YA) (29)

rA + rB ≥ I(SA, SB ; YA, YB) (30)

rA + dA ≥ H(SA) (31)

rB + dB ≥ H(SA) (32)

for all (YA, YB) ∈ P(DA, DB).

Theorem 2 is proved in Appendix A.2.

Theorem 3 (Inner Region). RDE−in(DA, DB) is the
set of all (dA, dB , rA, rB) that satisfy

0 ≤ dA ≤ H(SA) (33)

0 ≤ dB ≤ H(SB) (34)

dA + dB ≤ I(SA; SB) + H(SA|SB , YA)

+H(SB|SA, YB) (35)

rA ≥ I(SA; SB, YA|YB) (36)

rB ≥ I(SB; SA, YB |YA) (37)

rA + rB ≥ H(SA, SB) − H(SA|SB , YA)

−H(SB|SA, YB) (38)

rA + dA ≥ H(SA) (39)

rB + dB ≥ H(SA) (40)

for all (YA, YB) ∈ P(DA, DB).

Theorem 3 is proved in Appendix A.3.
The informal interpretation of the auxiliary RVs YA, YB

found in both Theorems 2 and 3, is that they represent not
only WA, WB resp., but also capture the distortion between
original messages and decoded messages. Therefore if the
auxiliary RVs are chosen YA = SA, YB = SB, then this cor-
responds to the distortionless case [29] and one can verify
that the inequalities in both Theorems 2 and 3 match under
this setting, and in addition also match our previous distor-
tionless result in [17]. In [2], it is shown that the new inner
region for the MSC problem is contained in the outer region,
and thus for our problem, we necessarily have

RDE−in(DA, DB) ⊂ RDE−out(DA, DB)

since Eqs. 36 to 38 are directly from [2].
In order to achieve unconditional secrecy, Theorem 1 shows

that it is necessary for I(SA, SB; YA, YB) = 0. However, this
corresponds to (SA, SB) independent from (YA, YB), and
thus we can expect the distortion to be at least

max
(sj ,ŝj)∈Sj×Ŝj

ρ(sj , ŝj)

for j = A, B, i.e. Alice and Bob send nothing to the BS as
in Section 3.1.

3.3 Feedback from the BS
In both the DSS and DE problems, Alice and Bob are not

permitted to communicate with one another. However since
they can send to the BS, the BS can also send to both par-
ties. We show that BS feedback to the parties generally does
not increase secrecy if all channels including Eve’s channel
are noiseless, even if Eve is permitted to eavesdrop on only
one of the streams from the BS. This is in contrast to the
wiretap channel with feedback results in [14, 10, 18, 1, 3, 13]
in which public feedback does increase secrecy.

There are two types of BS feedback: the BS can send
information to Alice and Bob, ZA and ZB resp., based on the
ŝk reconstructed from WA and WB (true feedback), or the
BS can send arbitrary information independent from what
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Table 1: Different Types of BS Feedback
Yes No

True Feedback? 1 0
Knowledge of Previous Eavesdrop? 1 0

Knowledge of Future Feedback Eavesdrop? 1 0

it received from Alice and Bob (artificial feedback). The BS
may either have knowledge of which Wj , for j = A or j = B,
Eve previously intercepted, or have no such knowledge. The
BS may have knowledge of which Zj , j = A or j = B Eve
will intercept, or have no such knowledge. Therefore there
are eight feedback scenarios summarized in Table 1. We
can systematically analyze all the different feedback cases
succinctly since we are only interested in whether secrecy
capacity may be increased or not. Using Table 1, the case
101 corresponds to: true feedback, no knowledge of previous
eavesdrop, and knowledge of future feedback eavesdrop. The
case *00 corresponds to either true or artificial feedback, no
knowledge of previous eavesdrop, and knowledge of future
feedback eavesdrop.

• Case **1: If the BS knows Eve will not be eavesdrop-
ping on ZB say, then the BS can add a tag to ZB

informing Bob that ZB may be used as a one-time pad
for Bob’s future transmission to the BS, thus secrecy
for Bob is increased via the one-time pad cipher.

• Case 110: Feedback either does not help or can ac-
tually decrease secrecy. The proof is given in Ap-
pendix A.4.

• Case 100: Without knowledge of what Eve possess,
this case performs worst than the case 110.

• Case 0*0: Artificial feedback does not improve secrecy,
nor does it decrease secrecy. The proof is given in
Appendix A.4.

Note that although feedback does not improve secrecy in
the Shannon equivocation sense, feedback can improve com-
putational secrecy, e.g. BS sends the parties its public-key
for asymmetric ciphers [28].

4. SUMMARY OF PRACTICAL CODES
In this section we briefly review some of the coding

schemes that can either achieve or come close to achiev-
ing the capacity regions for distortionless distributed se-
cret sharing (DSS) [16] and distributed encryption (DE) [17]
problems. The interpretation of the proofs in Appendix A
allow us to easily apply these codes to some of the non-zero
distortion cases.

In Section 3 we showed unconditional secrecy is not pos-
sible, unless the allowable distortion is excessively high such
that Alice and Bob send nothing to the BS. Therefore the
codes reviewed in this section relevant to our problem also
cannot have unconditional secrecy. However one assump-
tion that can hinder Eve’s attempts at recovering the orig-
inal messages is the assumption that the RVs SA and SB

are uniformly distributed. When this is the case, Eve may
reduce her uncertainty of the message given Alice’s WA or
Bob’s WB to a smaller message space. However within this
smaller message space, since all the messages are equally
likely, she can only guess at which message is the original

one (similar to the proof in Appendix A.1). Thus we as-
sume that Sk

A and Sk
B (or just Sk for the DSS problem) are

uniformly distributed.

4.1 DSS Codes
A scheme for the DSS problem based on the table con-

struction given in Appendix A.1 is presented. This scheme
was not previously mentioned in [16] due to limited space.

Suppose Sk is a binary string, uniformly distributed over
{0, 1}k. In order to avoid large lookup tables, one can create
a table whose entries are the indices 0 to approximately 2k−
1, sorted in ascending order row-by-row. Each binary string
sk can also be represented by its equivalent decimal number,
which is in one-to-one correspondence with one of the entries
in the table. Alice and Bob’s wA, wB can then be computed
without a lookup table. Suppose the table has a rows and b
columns as in Fig. 4, then encoding is simply

wA =

⌊
decimal(sk)

b

⌋
(41)

wB = decimal(sk) mod a (42)

where 	x
 is the floor operation (largest integer less than x),
and decimal(x) is the equivalent decimal representation of
x. The BS can reconstruct sk via

decimal(sk) = wA · b + wb. (43)

This scheme may be satisfactory for some applications. The
drawback is that if Eve intercepts WA, Eve only needs to
guess from a list of sorted numbers (i.e. from one row of
the table). Most of these numbers in binary form will have
the same most significant bits, and thus although her guess
may not be exact, it could be a good approximation. Any
transformation of this sorted table for the purposes of “un-
sorting it” does not increase the secrecy for Alice, since Eve
can always apply the inverse transformation (the keyless as-
sumption signifies that the transformation is known to Eve).

In [16] we derived a better code that thwarts Eve’s at-
tempts to obtain a good guess of sk. Let Sk be uniformly
distributed over (GF (q))k Let C be the matrix containing
elements from GF (q)

C =




a1 a2 · · · ar 0 · · · · · · 0
0 a1 a2 · · · ar 0 · · · 0
...

. . .
. . . 0

0 · · · · · · 0 a1 a2 · · · ar

b1 b2 · · · bl 0 · · · · · · 0
0 b1 b2 · · · bl 0 · · · 0
...

. . .
. . . 0

0 · · · · · · 0 b1 b2 · · · bl




=

(
C1

C2

)

(44)
such that C1 has αk rows and C2 has (1−α)k rows so that
r = k − αk + 1 and l = k − (1 − α)k + 1. The encoding is
defined as

wA = C1s
k (45)

wB = C2s
k (46)

where the operations are over GF (q). A simple shift-register
implementation can be used to perform the matrix multipli-
cations, since each row is shifted one to the right. Decoding
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is simply

ŝk = C−1

(
wA

wB

)
. (47)

In [16] we showed the following lemma.

Lemma 1. Suppose Eve knows gA < (1 − α)k symbols of
sk given WA, or gB < αk symbols of sk given WB. Then
these gA or gB symbols do not reveal any other symbols if
any αk columns of C1 have non-zero determinant and any
(1 − α)k columns of C2 have non-zero determinant.

Of course the matrix C itself also has to be invertible. We
provided a sufficiency condition in [16] on the field size that
guarantees the existence of codes that satisfy Lemma 1.

This second class of codes (presented above) is useful when
Eve can correctly guess many symbols. For example the
message may be a JPEG encoded image that contains an
abundance of delimiter symbols (e.g. end-of-block symbol)
that may be guessed by Eve. In this case, the JPEG en-
coded image may be partitioned into k blocks of symbols
sk, and the above code may be applied to each sk. With
proper partitioning, it may be possible to prevent Eve from
learning any other symbols via Lemma 1 even if she knows
exactly where some of the delimiter symbols are located in
the stream.

Finally, it is easy to incoroporate non-zero distortion re-
construction into the schemes above. Alice and Bob each
compress sk using the same lossy compressor with the same
compressor parameters, and then apply the above codes to
their compressed result. This matches the two-stage con-
struction discussed in Appendix A.1.

4.2 DE Codes
In [17], we showed that distributed source codes for the

distortionless case using the method of [22] can be secured
practically by careful choice of the parity check matrices.
The same criteria used in Lemma 1 can be applied to each
of the parity check matrices H1 and H2. However, the dif-
ference from the DSS version is that H1 and H2 are cre-
ated from a partitioning of a generator matrix for a linear
code with good distance properties to ensure decodability.
We demonstrated in [17] a method of obtaining H1 and H2

that satisfy Lemma 1 by judiciously partitioning the dual
generator matrix of a Reed-Solomon code.

The extension of the DE code from the distortionless case
to the non-zero distortion case is not a straightforward two-
stage construction as in Section 4.1, since Alice and Bob’s
messages are different. Design of secure non-zero distortion
DE codes is still an open problem the authors are currently
investigating.

5. APPLICATION TO IMAGE DATA
In this section we outline how the codes summarized in

Section 4 may be applied to images. A good review of some
existing encryption techniques for images (and videos) can
be found in [7]. Most of these techniques share a common
architecture illustrated in Fig. 2. Here compression and en-
cryption can be performed jointly, not necessarily in the or-
der depicted in Fig. 2. As we mentioned in the introduction,
the signal processing unit is usually a transform that acts as
a pre-processor to the actual coding (compression, encryp-
tion, watermarking, etc.). The goal of the transform is to

Signal
Processor

(Transform)
Compressor Encryptor

Figure 2: Common Image Encryption Architecture

make coding easier, e.g. reduce the complexity by making
the data amenable to scalar quantization instead of vector
quantization in the case of image compression [21].

5.1 Background
Existing image encryption techniques may be broadly clas-

sified as either selective, naive or a combination of the two.
Selective encryption techniques encrypt select portions of
the signal, while other portions are not encrypted. Selec-
tive encryption provides weak security, but greatly reduces
complexity. Naive encryption techniques treat images no
differently than text data, such that the entire image is en-
crypted using powerful ciphers such as DES or AES.

An alternative approach to the above techniques is to use
powerful ciphers such as DES or AES on a portion of the
image, while applying heuristics to the other portion. In
[23], approximately half of a compressed I-frame is encrypted
using DES, while the other half is added (bit-wise) to the
half to be processed by DES. The authors show that the
addition of the two halves may provide one-time-pad-like
security by showing that the empirical distribution of bytes
for the entire I-frame is approximately uniform. While such
empirical evidence is likely the best statistical information
available, we shall analyze an ideal situation in which such
an assumption is true.

5.2 Proposed Distributed Image Encryption
Following [23], the image is first compressed (in practice

using a standard such as JPEG), and then the resulting
compressed image is fed into the encoders summarized in
Section 4.

5.3 Analysis of an Ideal Image Model
In Section 5.1, we mentioned that [23] used empirical ev-

idence to show that their heuristic may achieve a one-time-
pad-like cipher. This assumption is also necessary in or-
der for our proposed distributed image encryption (cf. Sec-
tion 5.2) to be as secure as possible, since in Section 4 we
assumed the messages are uniformly distributed. In this sec-
tion we demonstrate that in theory, this uniform distribution
assumption requires a substantial compression tradeoff even
under an ideal (unrealistic) image model.

Images are not created from an uniform distribution, thus
we must transform the image data into a form usable by
the encoders in Section 4. Suppose the image data is mod-
eled by a random vector Sk, whose components are jointly
Gaussian RVs with different means and variances, i.e. Si ∼
N (mi, σ

2
i ).3 Suppose the mean vector of Sk is given by mk,

and the covariance matrix is given by K, and are known

3This model does not accurately model the anomalies, i.e
the high frequency components or the edges in an image.
However it is suitable for our analysis. For a more realistic
model see [12].
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by both encoder and decoder. The eigenvector (Hotelling)
transform results in

s̄k = F(sk − mk) (48)

where F is a matrix consisting of the orthonormal eigen-
vectors of K [26]. The components of s̄k are known to be
uncorrelated. Furthermore, since sk is jointly Gaussian and
the transform is linear, s̄k is also jointly Gaussian, and so
the components of s̄k are independent.

Reverse waterfilling is a method to allocate the (theoreti-
cal) minimum number of bits to each component of a vector
of independent zero-mean Gaussian RVs, such that a mean
square error (MSE) distortion criterion is satisfied [5]. If the
variance of a particular RV is below a set threshold, 0 bits
are allocated to that RV. Equivalently, reverse waterfilling
is also a method of determining how much distortion each
component of the said Gaussian vector is to incur in order
to reach a target distortion criterion. The salient point of
reverse waterfilling to our discussion is that it assigns a dis-
tortion to each component of s̄k, and a component whose
variance does not exceed a threshold is allocated 0 bits.

The second interpretation will be used in our discussion by
assigning each component s̄k a target distortion, and then
using an optimal scalar quantizer [15, 19] to reach this tar-
get distortion. Since the quantizer is scalar instead of vector,
the actual rate achieved will be greater than that optimally
predicted by reverse waterfilling, and the distortion will be
slightly higher if 0 bits are allocated to components whose
variances do not exceed a threshold. Since an optimal scalar
quantizer is used, each of the quantizer bins have different
a priori probabilities, thus further Huffman coding of the
bins can reduce the average number of bits. However Huff-
man codes are variable length codes, which means its output
may differ in length depending on its input. If we encode
(viz. Section 4) such quantized and Huffman coded s̄k, vari-
ations in the length may provide information to Eve.

We discuss two methods of equalizing the variations in
length (i.e. eliminating clues for Eve), both of which re-
duce the compression rate. The first method is the obvious
method: pad the output of the compressor with additional
bits such that all possible padded outputs have the same
length. The amount of padding is dictated by the longest
Huffman codeword, so this method is undesirable. Addition-
ally in order to make the padded output look uniform, no
delimiters should be placed between the real Huffman code-
word and the padding. This of course means the decoder
may not know when the true codewords terminate, if the
padding happens to be valid Huffmans codewords.

The second method is to use a quantizer whose quantiza-
tion bins have equal probability. The output of the quan-
tizer will always contain the same number of bits, and each
bit is equally likely to occur. This means Eve’s a priori
knowledge of which bin and even which bits are likely to
be outputted by the quantizer, is now uniform. However
this sacrifices the compression rate since no further Huff-
man coding can be applied. Fig. 3 shows the performance of
the equal probability (deemed “secure”) scalar quantizer for
a zero-mean and unit-variance Gaussian RV compared to an
optimal scalar quantizer and equally-spaced scalar quantizer
[19]. The performance gap widens as finer resolutions are
required (i.e. more quantization bins are required). When
a MSE distortion of 10−2 is desired, on average each bin
of the secure scalar quantizer requires about 1.5 bits more

than the optimal scalar quantizer (see Fig. 3b). This may
be substantial when we are looking at images with around
half a million pixels, which translates to approximately an
additional 92KB (twice the size of an average JPEG image).
However most components in s̄k may not require such a fine
resolution, thus the foregoing estimate may represent a worst
case scenario. The decision levels and reconstruction levels
for the secure scalar quantizer are provided in Appendix B.

This analysis of the ideal case shows that in practice the
heuristic used in [23] may not achieve the one-time pad secu-
rity as desired. The analysis also suggests that in practice,
sacrifice of compression may be required for security. This
kind of sacrifice is common in many secrecy systems, such
as [30] or [20], but is not necessary if the input distribution
is already uniform.

5.4 Summary
Once the quantizer/compressor in Section 5.3 outputs the

equiprobable bits, the codes summarized in Section 4 may
be applied. The encoder will have to group the bits into
equal length, such that each group of m bits represents an
element from GF (2m). The BS decoder can recover the orig-
inal stream of bits, and re-group them to form a quantized
version of s̄k. The inverse transform is applied to retrieve
ŝk. Of course the BS must know in advance the means,
variances, as well as the number of bits allocated to each
component in s̄k.

Eve is permitted to know the number of bits allocated,
which does not help her since each bit appears equally likely
viz. using the secure scalar quantizer. However, if Eve has
the mean and variance of sk, this alone could provide her
sufficient information regarding sk. In practice, the discrete
cosine transform (DCT) or subband transforms (wavelet)
may be used in place of the Hotelling transform, thus true
means and variances are not needed or known by either the
BS or Eve. However, a uniformly distributed output is not
guaranteed when using these more practical transforms.

6. CONCLUSIONS AND FUTURE WORK
This paper reviewed the problem of separately encoding

correlated sources with the goals of compression and confi-
dentiality in mind. A novel analysis is provided that shows
non-zero distortion can increase the secrecy rate, whereas
base station feedback usually does not increase the secrecy
rate in contrast to wiretap secrecy with feedback and other
multiuser information theory results. Further, this paper
addresses the application of simple codes to image data by
analyzing the ideal image model, and showing the difficulty
of achieving the desired assumptions for secrecy.

Our ongoing work examines the problem of codes for dis-
tributed encryption with non-zero distortion. The authors
are also looking at a variation of the problem, whereby the
messages are considered to be noisy versions of one another,
and thus the base station only has to reconstruct one ver-
sion of the messages. This problem is similar to the CEO
problem [4] without the security requirement.
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Figure 3: (a) Number of Quantization Bins vs. MSE Distortion for Standard Normal RV; (a) Entropy vs.
MSE Distortion for Standard Normal RV
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APPENDIX
A. PROOFS

The proofs in this appendix rely heavily on previous work.
We shall only present portions of the proofs that are novel to
this paper, while referencing previous works to avoid lengthy
re-derivations.

A.1 Proof of DSS Capacity Region
The proof of Theorem 1 is based on our previous work

in which reconstruction is distortionless, thus we shall skip
most of the details found in [16] and provide only novel de-
tails pertaining to the addition of the non-zero distortion.

First we show the inequalities defining RDSS(D) are nec-
essary, i.e. a point (dA, dB , rA, rB) achievable w.r.t. D must
be in RDSS(D). In [16] we implicitly showed

H(Sk|WA) + H(Sk|WB) ≤ H(Sk) + H(Sk|Ŝk). (49)

Now

H(Sk|Ŝk) = H(Sk) − I(Sk; Ŝk)

≤ H(Sk) − kR(D) (50)

by using Eq. 20. Substituting Eq. 50 into Eq. 49, using the
definition of equivocation rate (cf. Eqs. 9 and 10) and using
the fact that 1

k
H(Sk) = H(S) since the source is a DMS,

establishes one of the desired inequalities

∆A + ∆B ≤ 2H(S) − R(D). (51)

In [16] we also showed Eq. 52.

RA + RB ≥ 1

k
I(Sk; WA, WB) (52)

(a)
≥

1

k
I(Sk; Ŝk)

(b)
≥ R(D)

sk^

a rows

b columns

i

j

Figure 4: Second Stage of Coding After Compres-
sion

The above inequalities arise from: (a) Sk ↔ (WA, WB) ↔
Ŝk and the data processing inequality; (b) follows Eq. 20.
The other inequalities of RDSS(D) are derived in exactly the
same way as those from [16], while some are basic entropy
inequalities.

Next we show that any point in RDSS(D) is achievable,
i.e. their exists encoders/decoder (fA, fB , ϕ) for any point
in RDSS(D). The encoders are deterministic and follow a
two-stage construction. In the first stage, for a given D,
both Alice and Bob compress their shared message Sk to
the rate-distortion limit. By the proof of the rate-distortion
theorem, as k → ∞, the compressed result Ŝk can be repre-
sented by approximately kR(D) bits, such that each typical
realization ŝk has approximately the same probability (i.e.
almost uniformly distributed).

The second stage is the table construction from [16]. Each
of the (almost) equally likely typical realizations ŝk are ar-
ranged in a table such that the number of rows and columns
define the rates for Alice and Bob. Fig. 4 shows an exam-
ple of the table for the second stage. Let a × b ≈ 2kR(D).
If ŝk is to be sent to the BS, Alice sends index i, giving
a rate of

log2 a

k
and Bob sends index j, giving a rate of

log2 b

k
. If Eve intercepts i, she still has to guess one of the

b columns (along the horizontal gray) bar, and hence her

equivocation rate is ∆A = log2 b

k
+ (H(S) − R(D)). The ex-

tra H(S) − R(D) term arises from the fact that lossy com-
pression removes k(H(S) − R(D)) bits that Eve will never
recover (neither will the BS) [32]. On the other hand if Eve
intercepts j, she still has to guess one of the a rows (along
the vertical gray bar), and hence her equivocation rate is

∆B = log2 a
k

+ (H(S) − R(D)). The reader can check the
rates and equivocation rates satisfy the boundaries (limits
of the inequalities) of RDSS(D). Therefore, any rates and
equivocation rates lying strictly inside RDSS(D) can also be
achieved, since the boundaries denote the optimal operating
scenario.

Interpretation of Proof
Intermediate stages of the necessity proof (not shown above)
resulting only from the use of Eq. 50 and the data processing
inequality are given by the following equations.

∆A + ∆B ≤ 2H(S) − R(D) − 1

k
I(WA; WB) (53)

RA + RB ≥ R(D) +
1

k
I(WA; WB) (54)

Rj + ∆j ≥ H(S) +
1

k
H(Tj|Sk), j = A,B (55)
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However, the inequalities for the capacity region RDSS(D)
differ from Eqs. 53 to 55. It can be seen that by making
I(WA; WB) = 0, the first two inequalities (Eqs. 53 and 54)
are improved (i.e. higher equivocation rates, lower source
coding rates). The interpretation is that optimality is
achieved by making Alice and Bob’s encoded messages in-
dependent. This makes sense since if Eve only intercepts
Alice’s encoded message, its independence from Bob’s mes-
sage imply Eve will be ignorant of Bob’s message. Secondly,
by eliminating statistical overlap, the allocation of bits for
each user’s message results in lower rates; this idea is similar
to the SW theorem [27] in that one user is required to only
code the information not contained in the side-information
present at the decoder.

We can also conclude that stochastic encoders provide us
with no advantage. The equivocation rate is not increased
by TA, TB as seen through Eq. 53, nor does it decrease the
source coding rate as seen through Eq. 54. Thus if the en-
coders are determinstic, we can decrease the lower bound in
Eq. 55.

The two-stage encoding technique outlined in the achiev-
ability proof, i.e. source coding (compression) followed by
secrecy coding, can also be found in [32]. A similar table
construct from the second stage can also be found in [31].
The important aspect of the proof is that practical systems
with non-zero distortion criteria should first compress the in-
put, and then secrecy code the compressed signal. This also
follows the general philosophy in [25] for key-based cryptog-
raphy in which lowering redundancy improves equivocation
of key, i.e. (H(K)−H(K|E) ≤ log2 |M| −H(M), where K
is the key, E is the cryptogram, M ∈ M is the message).

A.2 Proof of the Outer Region for DE
Most of the inequalities in the outer region

RDE−out(DA, DB)

follow from [29, 9] except for Eq. 27. As for the other in-
equalities we only prove that they still hold for stochastic
encoding ([29] proves them for determinstic encoders).

To derive Eq. 27, write

H(Sk
A, Sk

B)

= H(Sk
A, Sk

B |WA, WB) + I(Sk
A, Sk

B; WA, WB). (56)

In [17] we upper bounded the second term in Eq. 56 with
the following inequality

I(Sk
A, Sk

B; WA, WB)

≤ H(Sk
A) + H(Sk

B) − H(Sk
A|WA) − H(Sk

B|WB).(57)

Eq. 56 can also be rearranged as follows.

H(Sk
A, Sk

B|WA, WB) = H(Sk
A, Sk

B) − I(Sk
A, Sk

B ; WA, WB) (58)

In [29] a lower bound for I(Sk
A, Sk

B; WA, WB) is derived for
determinstic encoders as

I(Sk
A, Sk

B ; WA, WB) ≥ kI(XA, XB ; YA, YB) (59)

for some (YA, YB) ∈ P(DA, DB). It can easily be verified
that Eq. 59 also holds for stochastic encoders by proving

(YA,i, YB,i) ∈ P(δA,i, δB,i) where

YA,i � (Si−1
A , Si−1

B , WA) (60)

YB,i � (Si−1
A , Si−1

B , WB) (61)

δA,i � E[ρA(SA,i, ŜA,i)] (62)

δB,i � E[ρA(SB,i, ŜB,i)] (63)

and that RDE−out(DA, DB) is convex (proved in [9]). There-
fore using Eq. 59, Eq. 58 becomes

H(Sk
A, Sk

B |WA, WB)

≤ H(Sk
A, Sk

B) − kI(XA, XB ; YA, YB). (64)

Now combining Eqs. 57 and 64 into Eq. 56 and then rear-
ranging gives

H(Sk
A|WA) + H(Sk

B|WB)

≤ H(Sk
A) + H(Sk

B) − kI(XA, XB ; YA, YB). (65)

Dividing by k yields Eq. 27.
As mentioned above, in order to apply results from [29],

we must prove the inequalities from [29] also apply under
stochastic encoding. Towards this end, we prove

(YA,i, YB,i) ∈ P(δA,i, δB,i)

for all i = 1, . . . , k. First we show (i) in Def. 1 is satisfied.

I(YA,i; SB,i|SA,i)

= I(SB,i; YA,i, SA,i) − I(SA,i; SB,i)
(a)
= I(SB,i; S

i−1
A , Si−1

B , WA, SA,i) − I(SA,i; SB,i)
(b)
≤ I(SB,i; S

i−1
A , Si−1

B , Sk
A, TA, SA,i) − I(SA,i; SB,i)

= I(SB,i; S
k
A, TA) − I(SA,i; SB,i)

(c)
= I(SB,i; SA,i) + I(SB,i; TA|Sk

A) − I(SA,i; SB,i)
(d)
= 0 (66)

The explanations of the above are: (a) from applying Eq. 60;
(b) from applying Eq. 2; (c) the sources are DMS; (d) TA ↔
Sk

A ↔ Sk
B form a Markov chain since TA is locally generated

by Alice. Eq. 66 shows YA,i ↔ SA,i ↔ SB,i forms a Markov
chain (the other Markov chain in (i) can be proved the same

way), thus satisfying (i) of Def. 1. To show (ii), let ŜA,i =
FA,i(YA,i, YB,i) be the ith letter of ϕA(WA, WB), which is
possible to define since YA,i, YB,i contain WA, WB resp. via

Eqs. 60 and 61. Therefore E[ρA(SA,i, ŜA,i)] = δA,i, and us-

ing the same argument E[ρB(SB,i, ŜB,i)] = δA,i. Therefore
by Def. 1 (YA,i, YB,i) ∈ P(δA,i, δB,i) for all i = 1, . . . , k.
Stochastic encoding does not affect the rest of the results
found in [29, 9] required for our proof, thus the proof is
complete by referring to the proofs in [29, 9].

A.3 Proof of the Inner Region for DE
Eqs. 36 to 38 are directly from [2], and since there is no

need to use stochastic encoding as seen in Theorem 2 and
its proof in Appendix A.2, we do not attempt to adapt the
proof for stochastic encoding. Thus only Eq. 35 needs to be
proved.

One can achieve the equivocation sum bound promised
by Eq. 35 without any secrecy coding. If Alice and Bob
each compress their messages to the boundaries promised
by Eqs. 36 to 38 for some (YA, YB) ∈ P(DA, DB), then it is
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easy to see that

∆A + ∆B = H(SA) − RA + H(SB) − RB

= H(SA) + H(SB) − H(SA, SB)

+H(SA|SB, YA) + H(SB|SA, YB) (67)

where the first equality follows since approximately

k(H(SA) − RA)

bits (for k sufficiently large) are unknown to Eve given she
possess the kRA bits of WA, and similarly k(H(SB) − RB)
bits for Bob. The second equality follows by using Eq. 38
with equality. Eq. 67 is also equal to the upper bound in
Eq. 35.

A.4 BS Feedback Proofs

Case 110
For the following discussion, suppose the BS knows Eve in-
tercepted WA, which we will denote as W̃A, where the tilde
is used to indicate a previous round (the reader can prove

the other case when the BS knows Eve intercepted W̃B us-
ing the same method). We put forth a lemma which helps
us show there is no advantage in feedback from the BS to
Alice.

Lemma 2. If

I(S̃k
A; W̃A, W̃B|W̃A) ≤ k∆̃A − H(S̃k

A|W̃A, W̃B) (68)

then feedback from BS to Alice provides no advantage, given
the BS knows Eve possesses W̃A.

Proof. Without feedback, Alice can distill a secret key
(from S̃k

A and W̃A) of length k∆̃A bits that is independent of

W̃A. However since the BS reconstruction is distorted, Al-
ice’s secret key must be reduced by H(S̃k

A|W̃A, W̃B), which
represents the unrecoverable distortion. Thus Alice and the
BS can distill a secret key without feedback of length given
by the right hand side (RHS) of Eq. 68.

Theorem 3 of [1] shows that through feedback from the BS

to Alice, a secret key of maximum length I(S̃k
A; W̃A, W̃B|W̃A)

bits can be established. Thus feedback from the BS to Alice
given the BS knows Eve posses Alice’s W̃A results in a secret
key of maximum length given by the left hand side (LHS)
of Eq. 68.

Clearly, if a secret key derived using feedback has length
less than or equal to a secret key derived without feedback,
then feedback offers no advantage; this represents Eq. 68.
Furthermore, both keys cannot be used at the same time
since they are both derived from S̃k

A and W̃A.

We can show that Lemma 2 is true, and thus feedback pro-
vides no advantage.

I(S̃k
A; W̃A, W̃B|W̃A) = H(S̃k

A|W̃A) − H(S̃k
A|W̃A, W̃B)

= k∆̃A − H(S̃k
A|W̃A, W̃B) (69)

Thus Lemma 2 is true and feedback from the BS to Alice
provides no advantage.

Next, under the same assumption that the BS knows Eve
has W̃A, we show that feedback from the BS to Bob has
no advantage either. Let

m � I(S̃k
B; W̃A, W̃B|W̃A) (70)

where m is the maximum number of bits of secret key that
can be established between the BS and Bob through feed-
back, given the BS knows Eve posses W̃A [1]. In this case, it
can be shown that m does not satisfy a modified Lemma 2
(for Bob instead of Alice). However Lemma 2 (and a mod-
ified version for Bob) provides a sufficient condition only,
and thus failure to satisfy the condition in Lemma 2 does
not imply there is an advantage using feedback.

Again, let tilde variables represent the previous round,
while non-tilde variables represent the current round. To
analyze the benefits of feedback, let kRB ≥ m, which allows
the secret key derived through feedback to be fully used. Let
WB denote Bob’s current enciphered message without feed-
back, and let W F

B denote Bob’s current enciphered message
using feedback ZB . Then

k∆F
B = k∆B + m (71)

which results because the m bits of the secret key can be
used as a one-time pad. For example, suppose WB is in
binary form, and WB,1 is the first m bits of WB, while WB,2

is last kRB − m bits of WB . Then

W F
B = (WB,1 ⊕ KB , WB,2) (72)

where KB is the m-bit key created from feedback.
In order for an improvement in equivocation using feed-

back, we must show

H(Sk
B, S̃k

B |ZB , W F
B , W̃A) > H(Sk

B, S̃k
B |WB, W̃A)

= H(S̃k
B|W̃A) + H(Sk

B|WB).

(73)

The previous message block S̃k
B must be considered since

the feedback ZB is a function of S̃k
B. Next we upper bound

the LHS of Eq. 73.

H(Sk
B, S̃k

B |ZB , W F
B , W̃A)

= H(S̃k
B|ZB , W F

B , W̃A) + H(Sk
B|S̃k

B , ZB , W F
B , W̃A)

≤ H(S̃k
B|ZB , W̃A) + H(Sk

B|S̃k
B , ZB , W F

B , W̃A)

=
(
H(S̃k

B|W̃A) − I(S̃k
B; ZB |W̃A)

)

+
(
H(Sk

B|W F
B ) − I(Sk

B; S̃k
B , ZB , W̃A|W F

B )
)

= H(S̃k
B|W̃A) − I(S̃k

B; ZB |W̃A) +
(
H(Sk

B|WB) + m
)

−I(Sk
B; S̃k

B, ZB, W̃A|W F
B ) (74)

The last equality follows from Eq. 71. Next we bound the
final term in Eq. 74.

I(Sk
B; S̃k

B, ZB , W̃A|W F
B )

(a)
≥ I(Sk

B; KB|W F
B )

(b)
= H(KB|WB,1 ⊕ KB , WB,2)

−H(KB|Sk
B , WB,1 ⊕ KB , WB,2)

(c)
= H(KB|WB,1 ⊕ KB)

−H(KB|Sk
B , WB,1, KB , WB,2)

(d)
= H(KB) = m (75)

The explanations are: (a) from the fact that KB can be

derived from S̃k
B and ZB by Bob; (b) from Eq. 72; (c) WB,2

is assumed to be independent of KB and WB,1, and WB,1
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can be derived from Sk
B (determinstic encoding); (d) KB is

used as a one-time pad [1].
Combining Eq. 75 into Eq. 74 shows Eq. 73 is not satisfied,

thus feedback does not offer any advantage. In fact when
I(S̃k

B; ZB |W̃A) > 0 in Eq. 74, feedback strictly performs
worst than no feedback.

This proves the case when the BS knows Eve possesses
W̃A. The other case when the BS knows Eve posses W̃B can
be proved in the same way.

Case 0*0
We analyze the 010 case, while the result for the 000 case fol-
lows from the 010 case. Suppose the BS knows Eve possess
WA. Theorem 3 of [1] shows that a secret key of maximum
length I(Sk

j ; M |WA) bits may be distilled, where M is a RV
generated by the BS independent of all messages and re-
ceived material. This quantity is 0 since M is independent,
and thus artificial feedback produces no shared secret key.

B. PARAMETERS FOR SECURE
QUANTIZER

The secure quantizer for N (0, σ2) is designed so that all
bins have equal probability. This requirement automatically
gives the decision levels. The reconstruction levels are com-
puted to minimize the MSE distortion given the decision
levels. Since the zero-mean Gaussian distribution is sym-
metric, we provide the decision and reconstruction levels for
the positive side only, following [15, 19].

Let N be the number of desired bins. If N is odd, then
the decision levels can be computed as

x0 = σ
√

2 erf−1

(
1

N

)

xi = σ
√

2 erf−1

(
2i

N
+

1

N

)
, i = 1, . . . ,

N − 1

2
(76)

and the reconstruction levels yi defined to be for the interval
[xi−1, xi] are given by

y0 = 0

yi = σN

∫ xi

xi−1

x
1√
2π

e−
x2
2 dx, i = 1, . . . ,

N − 1

2
.(77)

If N is even, then the decision levels can be computed as

xi = σ
√

2 erf−1

(
2i

N

)
, i = 0, . . . ,

N

2
(78)

and the reconstruction levels yi defined to be for the interval
[xi, xi+1] are given by

yi = σN

∫ xi+1

xi

x
1√
2π

e−
x2
2 dx, i = 0, . . . ,

N

2
. (79)

Fig. 3 is for a zero-mean, unit-variance normal distribu-
tion. To use Fig. 3 for N (0, σ2), the MSE distortion is mul-
tiplied by σ2. The derivation of the above is trivial, thus
omitted.
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