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Special Section Correspondence

Distributed Secret Sharing for
Discrete Memoryless Networks

William Luh and Deepa Kundur

Abstract—This correspondence studies the distributed secret sharing
problem which is a twist of the classical secret sharing problem. In this new
problem, each user needs to encode his or her own unique secret message
without collaboration with other users and without the use of any common
secret materials or cryptographic keys. The goal is to ensure that an
adversary without access to all of the encoded messages learns as little as
possible about the secret messages, while a legitimate joint decoder with all
the encoded messages can decode all of them without cryptographic keys.
Furthermore the users do not know the channels that will be compromised
ahead of time, and thus must protect all channels. Specifically, we study
two related variants of this problem. The first problem deals with source
coding and secrecy, while the second problem deals with channel coding
and secrecy. From the results of these two problems, we conclude that
interference is necessary for unconditional secrecy.

Index Terms—Information–theoretic cryptography, secret sharing,
wiretap channel.

I. INTRODUCTION

This correspondence considers a twist on the classical secret sharing
problem. The challenges in this twist are that we introduce multiple
encoding entities, which we call users, each of whom must encode
a different (possibly correlated) secret message without collaborating
with one another and without using any common secret materials, such
as cryptographic keys. As such, encoding is not performed jointly but
rather in a distributed manner which is suitable for a distributed net-
work scenario.

In this correspondence, we present theoretical results that outline the
fundamental possibilities and impossibilities for different scenarios. In
particular, we study two variants of the problem. The first variation is a
multiterminal source coding (MSC) problem with secrecy constraints,
while the second problem is an interference coding problem with joint
decoding and an unconditional secrecy constraint. In both variations,
an eavesdropper is permitted to intercept only a proper subset of signals
received by the joint decoder.

A. Prior and Related Works

As mentioned in Section I, the first problem variation studied in this
correspondence utilizes techniques from MSC [1]. More recent works
dealing with secrecy and source coding include [2] and [3].

Our second problem variation uses techniques from wiretap channel
theory. The proof techniques encountered in this correspondence are
standard in the wiretap channel repertoire. More recent wiretap chan-
nels that are related to our work include [4]–[7].

Manuscript received October 15, 2007; revised May 22, 2008. First published
July 25, 2008; last published August 13, 2008 (projected).The associate editor
coordinating the review of this manuscript and approving it for publication was
Dr. Christina Fragouli.

The authors are with the Department of Electrical and Computer Engineering,
Texas A&M University, College Station, TX 77843 USA (e-mail: luh@ece.
tamu.edu; wluh@ieee.org; deepa@ece.tamu.edu).

Digital Object Identifier 10.1109/TIFS.2008.927422

Fig. 1. Distributed source coding for secrecy with the distortion criteria model.

In all of the wiretap channels mentioned before, the particular
channel that the wiretapper is exploiting is fixed and known ahead
of time to the encoders. In our work, any of the legitimate channels
may become a wiretap channel, and the specific channel that will
be exploited by the adversary is unknown to the encoders. A second
major difference is that in each of the wiretap channels mentioned
before, there is at least one legitimate channel that is known to be
unexploited. In our work, any of the legitimate channels may become
a wiretap channel since it is not known which channels are exploited
and which are unexploited.

II. PROBLEM FORMULATION

This correspondence consists of two similar and related problems
corresponding to a negative and positive result regarding distributed
secret sharing. The negative result deals with source coding with dis-
tortion criteria and the positive result deals with channel coding with
interference and joint decoding.

A. Distributed Source Coding for Secrecy With Distortion Criteria

Fig. 1 summarizes the source-coding-only (negative) aspect of our
problem. Let ��� � �

�
� and ��� � �

�
� denote Alice’s and Bob’s mes-

sages, respectively. Alice’s and Bob’s messages are generated by a
joint discrete memoryless source (DMS) given by (1)

�
�
� �� �

�
�� �

�
� �

�

���

�� �� ������ ������ (1)

Alice and Bob are to encipher their ���, ��� separately without coop-
eration, creating �� � �� and �� � �� , respectively, where
����� are finite sets.

The joint decoder receives�� and�� , and its goal is to reconstruct
��� and ��� within some fidelity criteria that will be discussed. Let the
quadruple ����� �

�
� � �

�
�� �

�
�� denote Alice’s (possibly stochastic) en-

coder, Bob’s (possibly stochastic) encoder, and the decoders to recon-
struct Alice’s and Bob’s messages, respectively. Here, ��� � ��� �

��, ��� � ��� � �� , ��� � �� � �� � ����, and ��� � �� �

�� � ���� , where ���� and ���� are the finite reconstruction alphabets
for Alice and Bob, respectively.

Let 	�� � ��� � ���� �
� be the block distortion measure between


’s (e.g., 
 � � for Alice and 
 � � for Bob) original message block
��� and the decoder’s reconstruction ���� . The block distortion measures
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are defined by single-letter distortion measures �� � �� � ��� �
�

for � � ��� as in (2)

��� ��� � ��
�
� �

�

�

�

���

�������� ������� � � ���� (2)

The distortion pair �	�� 	�� is achieved if for � � ���

��� 
�� � �

�
� � 	� � �� (3)

The (source coding) rates of Alice’s and Bob’s enciphered messages
are defined for � � ��� as

��
�
�

�	
� ��� �

�
� (4)

In Fig. 1, the eavesdropper, referred to as Eve, is allowed to select
either 
� or 
� , but not both. To justify our definition of secrecy, we
require��
�� � ��
��, which would likely be the case if Alice and
Bob were sensing the same phenomenon in the same physical space.
Depending on which enciphered message Eve selects, the equivocation
rates of Eve w.r.t. Alice and Bob are defined for � � ��� as

��
�
�
� 
�� �
�

�
� (5)

A stronger definition of secrecy would be to replace the numerators in
(5) for � � ��� with ��
��� 


�
� �
��; however, (5) is defined to sim-

plify the model and can be justified as follows. Assume Eve intercepts

�, then 
�� � 
�� � 
� forms a Markov chain and using the
data-processing inequality, we can show ��
���
�� � ��
�� �
��,
which means that Eve learns less about 
�� than she does of 
��. The
desired unconditional secrecy under our secrecy definition occurs when

�� � ��
��	 � (6)

for � � ��� and an arbitrarily small � � �, which we can also show,
implies the stronger ��
��� 


�
� �
���� � ��
�� 
��	 �.

Definition 1: A quadruple ���� ��� ��� ��� corresponding to
������ � ��� ��� is achievable w.r.t �	��	�� if a sequence of
encoders and decoders exists ����� �

�
�� �

�
�� �

�
�� such that as � �


�� � �� � � (7)

�� 	 � ��� � �� (8)

for � � ��� and � � � are arbitrarily small and (3) for � � ���
is also satisfied. In addition, all parties—Alice, Bob, and Eve—have
complete knowledge of ���, ��� .

B. Discrete Memoryless Wiretap Channel with Interference
and Joint Decoding

In the previous problem formulation, the channels are noiseless,
which means that the encoded messages never mix as they are
transmitted to the joint decoder. In contrast, the problem formulated
here allows the encoded messages to mix via interference. Fig. 2
summarizes our second problem.

Alice and Bob each process independent and uniformly distributed
messages 
� � �� and 
� � �� , respectively, such that
����� are finite sets. These messages may actually be generated
from the distributed source coding for secrecy described in the previous
section. Let the triple ���� �� � �� denote Alice’s (possibly stochastic)
encoder, Bob’s (possibly stochastic) encoder, and the decoder. Here,
�� ��� � ��

� , �� ��� � ��
� , and � � 

��� 

�� � ���� ��� .

The channel coding rates are defined for � � �,2 by

��
�
�

�	
� ����

�
(9)

Fig. 2. Discrete memoryless wiretap channel with interference and joint de-
coding model.

corresponding to the encoders ��� �� . We use subscripts 1 and 2 to
distinguish this from the source coding rates in (4). For this problem,
we are only interested in rates that achieve unconditional secrecy (max-
imum equivocation), as we shall see this is possible.

Definition 2: A pair ���� ��� corresponding to ���� ��� is achiev-
able if encoders and decoders ���� �� � �� exist such that as ��


�� ��� 	 � (10)
� �
��
� ��

�
� �

�
��� ��� 	 � (11)

� ���
� �� (12)

for � � ��� and � � � is arbitrarily small, where

� ���
� �

�

���	 �	 �

�
�
 �
 ��� ��

�� � �
�� �
�� �� ���� �������� ������� �

(13)

In addition, all parties—Alice, Bob, and Eve—have complete knowl-
edge of ��� �� (except for any locally generated randomness).

Note that the definition of secrecy and unconditional secrecy here is
the standard one. We cannot use the simplification of the first problem
because the Markov chain property is destroyed by the interference.

III. MAIN RESULTS

A. Results for Distributed Source Coding for Secrecy
With Distortion Criteria

The capacity region ��	�� 	�� is defined to be the set
of all quadruples ���� �� � ��� ��� that are achievable w.r.t
to the distortion criteria �	��	��. Outer and inner regions
��	
�	�� 	�� and ����	��	�� are defined to be sets such
that ����	��	�� � ��	�� 	�� � ��	
�	�� 	��. Generally,
����	��	�� �� ��	
�	�� 	�� due to the existing gap between the
outer and inner regions for the MSC problem [1]. However, in some
special cases, the inner and outer regions converge.

Definition 3: Define ��	��	�� as the set of auxiliary random
variables ���� ��� jointly distributed with �
�� 
�� such that:

1) �� � 
� � 
� and 
� � 
� � �� ;
2) functions �� � �� ��� � ��� and �� � �� ��� � ���

exist such that for � � ���

���
� � �
�� � 	� where �
� � ���������� (14)
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Theorem 1 (Outer Region): For a fixed ���� ��� � ����� ���,
define ��������� to be the set of all ���� �� � ��� ��� that satisfy

� � �� ������ (15)

� � �� ������ (16)

�� � �� ������������������ �� ���� ��� (17)

�� � �������� �� ���� (18)

�� � �������� �� ���� (19)

�� � �� � ����� �� ���� ��� (20)

�� � �� ������ (21)

�� � �� ������	 (22)

Then

�������� ���
�
�

�� �� ����� �� �

������ ���

is an outer region.
Theorem 1 is proved in [8].
Theorem 2 (Inner Region): For a fixed ������� � ��������,

define ��������� to be the set of all ���� �� � ��� ��� that satisfy

� � �� ������ (23)

� � �� ������ (24)

�� � �� � �������� �������� � ���

��������� ��� (25)

�� � ������� � ������ (26)

�� � �������� �� ���� (27)

�� � �� ������ ����������� � ���

��������� ���	 (28)

Then

����������
�
�

�� �� ����� �� �

������ ���

is an inner region.
Theorem 2 is proved in Appendix A, which is a simpler version of

the one found in [8].

B. Results for Discrete Memoryless Wiretap Channel With
Interference and Joint Decoding

Similar to the previous negative results, we derive sufficiency and
necessity theorems. The outer region is now denoted ���� while the
inner region is denoted by ���.

Theorem 3 (Outer Region): Let ���� be the set of ��	� �
� that satisfy
(29), as shown in the equation at the bottom of the page, where the
distribution factors are


��	 �	 �
 �
 �� �� ��� ��� � 
�
	 ��
	 ��

	

 �	 

 �	 
� �� �
 �
 
 �� �� 
 �� �� 	 (30)

Then, ���� is an outer region.

Theorem 3 is proven in Appendix B and uses standard wiretap
channel proof techniques such as in [4]–[7].

Theorem 4 (Inner Region): For a fixed 
��	 �	 �
 �
 factored
as


��	 �	 �
 �
 � 
�
	 ��
	 ��

 �	 

 �	 (31)

where �����
�
��	 �	 �
 �
 � is defined as the set of all ��	� �
� such
that

�	 � � ��	 � �	�
� (32)

�
 � � ��
 � �
�
� (33)

�	 � �
 
����� �� � ���� ��� ���� ����� �� ������ (34)

and

�
�	
����� ����� � �� (35)

�
�

���� ������� �� (36)

����� �� ��������
�	 � �

����� �� ������ (37)

�
 ��	
����� ��� �� ��� � �� (38)

�
 ��

���� ���� �� ���� �� (39)

�
 ��	� ��

����� �� ���� �� ��� (40)

for � � ���. Then

���
�
�

�

�����
 �
��	 �	 �
 �
 � (41)

where the distributions factor as in (31) is an inner region.
Theorem 4 is proved in Appendix C and uses standard wiretap

channel proof techniques, such as in [4]–[7].

IV. DISCUSSION AND INTERPRETATION

A. Distributed Source Coding for Secrecy With Distortion Criteria

From Theorems 1 and 2, we can conclude that unconditional se-
crecy is impossible. Also, in general, the outer and inner regions do not
match. The capacity region is a 4-D hyper-polygon for each �������.
Since we are interested in the amount of equivocation (secrecy) that is
achievable, Fig. 3 depicts a 2-D projection of the general hyper-polygon
onto the variables of interest 	��	� ; the polygons are the achiev-
able equivocation rates for Alice and Bob parametrized by their source
coding rates ��� �� (this relation is not shown in Fig. 3) for various
cases.

The worst case (corresponding to the smallest triangle region) oc-
curs when Alice and Bob process different (but correlated) messages
under a zero-distortion criterion (i.e., the joint decoder is required to
reconstruct each of Alice’s and Bob’s messages �
�� �



� perfectly).

Neither Alice nor Bob can achieve unconditional secrecy since the di-
agonal line corresponds to �� � �� � ����� ���, which is strictly
less than ����� for � � ��� required for unconditional secrecy [cf.
(6)]. Also, the less correlated �
�� �



� is, the smaller the equivoca-

tion rate region is. Note that Alice and Bob can achieve the diagonal

�	 � �
 � 
��



����	 �	 ���
 �
 ���� �� ��� �� ��� � ����� �� �
���� ��� ���� ����� �� � �������



����	 �	 ���
 �
 ���� �� ��� �� ��� � ����� �� �
���� ��� ���� ����� �� � ��� ����



����	 �	 ���
 �
 ���� �� � ����� ��� ��� �� ���� ����� �� �������



����	 �	 ���
 �
 ���� �� � ����� �� � ��� �� ���� ����� �� ��� ���

(29)
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Fig. 3. Equivication rate regions.

Fig. 4. (a) Binary erasure wiretap channel. (b) Comparison of achievable rate
regions.

line �� � �� � ����� ��� simply by applying Slepian–Wolf source
coding.

Under a zero-distortion criterion, when the correlation is “perfect”
in the sense that Alice and Bob are processing the same message (i.e.,
��� � ��� ), the corresponding equivocation rate region is the largest
triangular region. In this case, Alice or Bob may achieve unconditional
secrecy, but not simultaneously [e.g., if Alice achieves unconditional
secrecy, then Bob has no secrecy (zero equivocation)].

Whereas in the aforementioned two zero-distortion cases, the inner
and outer regions match, in general, given nonzero distortion criteria,
the inner region does not match the outer region. By allowing distortion
upon decoding at the joint decoder, the equivocation rate region be-
comes a pentagon, with the inner region’s smaller pentagon becoming
a subset of the outer region’s larger pentagon. Increasing distortion in-
creases the vertical and horizontal lines in the pentagon, while reducing
the length of the diagonal line.

When the distortion is maximal, the outer region pentagon degener-
ates (i.e., diagonal disappears) to the square in which case the desired
maximum equivocation for Alice and Bob (i.e., unconditional secrecy)
is included in the outer region. This shows that unconditional secrecy
may be achieved only when the distortion is maximal, which implies
nothing useful is sent from Alice and Bob. However, for the inner re-
gion when the distortion is maximal, the inner region pentagon does
not degenerate to the square. Since the inner region was constructed
by source coding alone (as in the aforementioned two zero-distortion
cases), we can also conclude that in the general distortion-varying case,

it may be possible to do better in terms of secrecy than simply source
coding via the MSC described in [1].

B. Discrete Memoryless Wiretap Channel With Interference
and Joint Decoding

Theorem 3 suggests there may be (since the result is an outer re-
gion) rates that achieve unconditional secrecy. From Theorem 4, it is
difficult to see by visual inspection if there are actual rates that do
achieve unconditional secrecy. We demonstrate an example using the
binary erasure wiretap channel (BE–WC). Let the channel input al-
phabet be � � ��� �� for both users, and the channel output alphabet
be � � ��� �� ��. Let the overall channel be given by

�� ��� ��� (42)

�� ��� ��� (43)

where �� is the binary complement of �� and addition is the real
addition, not the binary field addition. Fig. 4(a) depicts the BE-WC,
where the “c” box denotes the complement.1 For simplicity, we do not
include the additional noisy channels �������� �������. Table I shows the
input–output relationship of this BE–WC. Clearly, the joint decoder is
able to decode any messages without error since all pairs of ���� ���
in Table I are unique; the capacity region for this two-output MAC is
described using ��� for Alice’s rate and ��� for Bob’s rate. Next, Eve
sees either the MAC of (42) or (43). Both of these MACs are statisti-
cally identical if we choose 	
��� � �� � 	
��� � �� � �	�.
The capacity region for these one-output MACs is described using 
�

for Alice’s rate and 
� for Bob’s rate. Setting the random variable �
constant, and using the deterministic channels �� �� , �� �� , the
capacity regions for the two-output and one-input MACs can be de-
rived and found to be

��� � � 
� � �

��� � � 
� � �

��� � ��� � � 
� � 
� �
�

�



Furthermore, by (37), we choose 
� � 
� � �	�, then the corre-
sponding inner region (rates that achieve unconditional secrecy) can
be derived using Theorem 4 and found to be

���� ��� � �� � �� �� � �� �� � �� �
�

�



For example, to achieve ���� ��� � ��

� ��, choose ��� � ��� � �
and 
� � �

, 
� � � (which satisfies 
� � 
� � �

), thus �� �
��� 	 
� � �

 and ��� � �� 	 
� � � according to Theorem 4. To
achieve ���� ��� � ��
�
��
�
� [the middle point on the diagonal of
the triangle, see Fig. 4(b)] choose ��� � ��� � � and 
� � 
� � �
�

(which satisfies 
��
� � �

), thus �� � ���	
� � �
�
 and ��� �
�� 	 
� � �
�
 according to Theorem 4. To conclude this example,
we contrast the achievable rate regions for the binary erasure networks
for no secrecy and perfect secrecy in Fig. 4(b). Not surprisingly, the
achievable rate region for the perfect secrecy case is a subregion of that
without secrecy. Note that Fig. 4(b) is not to be compared with Fig. 3
since the axes are different.

1Without complementation, the two outputs would be identical and, thus, one
copy would be useless for decoding. This is only the case because the channel
is deterministic, which is used in this example for simplicity.
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TABLE I
INPUT–OUTPUT TABLE FOR THE BINARY ERASURE

WIRETAP CHANNEL

V. CONCLUSION

We have shown that in noiseless as well as noisy (but noninterfering)
environments, unconditional secrecy is unachievable.2 Upon showing
this negative result, interference is then shown to be necessary for un-
conditional secrecy. Our coding strategy is restrictive in the sense that
both of Eve’s channels must be statistically identical, but permits both
users to send secret messages.

APPENDIX

A. Proof of Theorem 2

Equations (26)–(28) are directly from [1]. Equation (25) arises from
simply MSC, and then sending the source-coded messages without fur-
ther secrecy coding. The secrecy for Alice and Bob then comes from
what was cropped out due to MSC, which are the bracketed terms in
(�)

�� ���

���
� ���������� � ����������
���

� ����� ������������ ���

�������� � ��� ��������� ��� (44)

where ��� follows since approximately ������� � ��� bits (for �
sufficiently large) are unknown to Eve given that she possesses the ���

bits of ��, and similarly ������� � ��� bits for Bob; �	� follows
from (28). The reader can verify that (44) is equivalent to (25).

B. Proof of Theorem 3

The proof makes use of the following lemma.
Lemma 1 (Lemma 4.1 [9]): For arbitrary random variables
� � and

sequences of random variables � �� 
�, the following is true:

��
 �� ��� �� ��
 �
��� �

�

�

���

��
 �����
���

� 
���� � � � � 
�� � �

���
 �
���
���

� 
���� � � � � 
�� � � (45)

where � ��� � ���� � � � � �����.
There are a total of four bounds for the sum of the rates. We prove

the first of the two pairs in Theorem 3

���� ����

� ��������

� � ����� � ��
�
� � ��

�
� � � ����� � ��

�
� � ��

�
�

���

� ��� � � ��� �� � ��
�
� � ��

�
�

���
� � ����� � ��

�
� � ��

�
� � � ����� � ��

�
�

� � ��� �� � ��
�
� � ���

2Stochastic encoding can be modeled by virtual noisy channels within the
encoders.

���
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�
� � ��

�
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�
�
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�
� � � ���

���

� � ����� � ��
�
� � ��

�
� � � ����� � ��

�
�
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�	�
�

�

���

� ��� �� � ���
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�� ��
���
� �
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� � ���
���� � � � � ���
�

� � ��� �� � ���
�� ��
���
� � �� ���

� �

���
���� � � � � ���
� � ���� ���

���
� �

�

���
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� ������� � ���
�� ���
������ � ��

�������� � ���
������ � �� � ���� ���

� �

�

���

	
�� � ��

� ������� � ���
�� ���
������ � ��

�������� � ���
������ � �� � ���� ���

���
� � ������� � ���
�� ���
�������

������ �� � ���
������� � ���� ���

�
�
� � ����� �� � ���� ��� ���� ����� �� � ������

� ���� ���� (46)

The explanations are as follows: ��� Fano’s inequality from (12); ���
data-processing inequality on the Markov chain �������� � �

� �
�� �
� ; ��� unconditional secrecy requirement if Eve intercepts � �

� [see
(11)]; ��� use of Lemma 1; ��� by defining

��
�
� �� ���

� � �� ���
� � ���
���� � � � � ���
� (47)

and defining a uniform RV � � �� � � � � � that is independent of all
other RVs; ��� definition of conditioning; ��� by defining

���
�
����
�� ���

�
� ���
�� ��

�
���
�� ��

�
���
�� ��

�
���
��

��
�
���
�� �

�
�������� ��

�
����� ��� ��

�
���� � ���

Finally, it is easily seen that

� � ���� ���� �������� ���� ���� � ���� ����

and �� � � � �� (48)

form Markov chains where the last chain follows since ����� are
independent.

On the other hand, adding and subtracting ������� � ���� in �	�
instead of ������� � ���� yields a different bound

�� ���� ����� �� � ���� ��� ���� ����� �� � ��� ��� � �� ��

with the same Markov chains (48) and the same distribution
factorization.
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The other pair in Theorem 3 is derived in a similar manner with slight
differences outlined

�����������������

�� ������ ��
�
� � �
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�
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�
� � �
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�
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�
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�
� � �

�
� ��� ������ ��

�
� �

� ������

���
�� ���	�� 	� ���� �� �
����	�� 	� ����
��

� ��������

The explanations are as follows: ��� is the data-processing inequality
on the Markov chain ������� � �� �

� � �
�
� � � � �� �

� �
�� �
� � �
�

Fano’s inequality; ��� is the unconditional secrecy requirement if Eve
intercepts � �

� ; ��� is the same approach as in deriving (46), but now
with the following Markov chain:


 � �	�� 	��� ���� ���� ���� ��� (49)

in place of the first Markov chain in (48).
On the other hand, adding and subtracting ������� � �

�
� � in ���

instead of ������� ��
�
� � gives the final bound

�� ��� � ���	�� 	� ���� �� �
�� ��	�� 	� ��� �
�� � �� ��

with the Markov chain in (49) and the same distribution factorization.

C. Proof of Theorem 4

1) Random Codebook Generation: Randomly generate a typ-
ical sequence �� using the distribution �

	�� �
 ��	� and make
this publically known to all parties including the joint decoder
and Eve. Generate ���

�� ��� sequences ��� using the distribution
�

	�� �
 �
����	��	� and ���
�� ��� sequences ��� using the distribu-

tion �

	�� �
 �
 ����	��	� such that (38)–(40) are satisfied.
Alice’s codebook is then the arrangement of the ���s in a

���� � � ���� ��� table, while Bob’s codebook is the arrange-
ment of the ���s in a ���� � � ���� ��� table such that (32)–(37)
are satisfied if possible. Suppose Alice’s message �� is indexed
such that �� � ��� 	 	 	 � ���� �� and similarly Bob’s message is
�� � ��� 	 	 	 � ���� ��. Thus, each entry in Alice and Bob’s code-
books can be indexed as ������� ��� and ������� ���, respectively. In
addition as � 	 
, the actual rates ��� �� will satisfy the definition
in (10).

2) Encoding: Alice encodes her �� by randomly choosing a code-
word ��� from row�� of her tabular codebook (i.e., randomly and uni-
formly selecting a column index �� resulting in ������� ���). She then
randomly generates��� (to be sent over the channels) using the distribu-
tion �

	�� �� �
 ����	����	�. Similarly, Bob encodes his�� by ran-
domly choosing a codeword ��� from row �� of his tabular codebook
(i.e., randomly selecting a column index �� resulting in ������� ���).
He then randomly generates ��� (to be sent over the channels) using
the distribution �

	�� �� �
 ����	����	�. Thus, the encoders are both
stochastic.

3) Decoding: Let ����
� �
� 	�� 	� � ���� ���� be the set of jointly

typical sequences �
�� 	 �
� � 	

�
� � ��

�
� � ��

�
� �. Upon receiving ������ ��

�
��,

the joint decoder declares the messages � 
��� 
��� as having been sent
if ���� ���� 
��� ���� �

�
�� 
��� ���� ��

�
�� ��

�
�� ��

���
� �
� 	�� 	� � ���� ����

for any ���� ��� if such a � 
��� 
��� exists and is unique.
4) Probability of Error Analysis: Define the event ����

�
�

����� ������ ���� �
�
��
� ���� ��

�
�� ��

�
�� � �

���
� �. By the symmetry of

the codebook construction, we can assume without loss of generality
that the messages ���� ��� � ��� �� were sent. Thus

�
���
� ��� �error����� ��� � ��� ���

��� �
�
����

� �����

�����
������

����� ����

��� �
�
�������� ��� � ��� ��

�
���� �

�� ���������� ��� � ��� ���

�
���� �

�� ���������� ��� � ��� ���

�
���� ���� � �

�� ���������� ��� � ��� ��� (50)

by the union bound. The first term tends to 0 as �	
 by the asymp-
totic equipartition theorem (AEP). The second term is bounded as fol-
lows:
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�
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� �
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� ������
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� ������
 	 �� �
 �
��� �� (51)

Using the AEP, the other probabilities are

���������������������� ����������
 	 �� �
 �
��� �

������������������ ������� ����������
 �
 	 �� ��� �
��� �

thus recalling the size and dimensions of the codebooks yields

�
���
� � � � ���

�� ���������
 	 �� �
 �
��� �

� ���
�� ���������
 	 �� �
 �
��� �

� ���
�� 
�� ���������
 �
 	 �� ��� �
��� �� (52)

Therefore, if (38)–(40) are satisfied, then the bound in (52) approaches
0 as � 	 
.

5) Secrecy Analysis:
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where �
� is the first term resulting from ������� � �
�
� � �

�
� ��

�� �
��� �

� � �
�
� ��

�� (property of entropy) and the second term is from the
encoding process (i.e., knowledge of � �

� implies knowledge of ��)
and similarly knowledge of � �

� implies knowledge of �� ; ��� since
��� �

� � �
�
� ��

�� � ��� �
� ��

�� ���� �
� ��

�
� � �

�� and � �
� � �� �

� �
� forms a Markov chain from the codebook generation; ��� is from

the codebook generation; ��� since �� � �� � ����� �� � �
�
� ��

�� is
true from (37), and using the definitions of �� and �� from (32) and
(33) yields �	� � �� � �	� � �� � ����� �� ��

�
� ��

�� � �; ��� is
from the floor operation in the codebook generation; ��� when Eve is
given �� and �� , she has knowledge of the rows of the codebooks
in which the codewords � �

� and � �
� were randomly chosen in the en-

coding process. This reduces the codebooks in which she must search
(by using joint typical decoding with her eavesdropped � �

� ) from the
two codebooks in its entirety to just one row of each codebook. Using
the same technique as in the Appendix, it can be shown that Eve’s av-
erage probability of error (which we denote by � ���

� ) is also bounded
by quantities that vanish to 0 as ��� based on the random codebook
generation if the upper bounds in (35)–(37) are satisfied. Therefore, by
Fano’s inequality

� �� �
� � �

�
� ���� �� � �
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� � �
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