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Hardware Implementation Perspectives of Digital
Video Watermarking Algorithms
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Abstract—We consider hardware implementation aspects of
the digital watermarking problem through the implementation of
a well-known video watermarking algorithm called Just Another
Watermarking System (JAWS); we discuss the time and area
constraints that must be satisfied by a successful hardware
implementation. A hardware architecture that implements the
algorithm under the constraints is then proposed. The architecture
is analyzed to gain an understanding of the relationships between
algorithmic features and implementation cost. Some general find-
ings of this work that can be applied toward making algorithmic
developments more amenable to hardware implementation are
finally presented.

Index Terms—Digital video watermarking, hardware imple-
memtation, JAWS, real-time robust data hiding, VLSI.

I. INTRODUCTION

D IGITAL watermarking is the process of embedding a mes-
sage within the content of another message. The initial

focus of digital watermarking research was on the development
of robust methodologies for copyright protection applications;
several algorithmic and performance-enhancing approaches
were proposed. More recently, a theory of watermarking has
emerged in which analytic tool-sets are borrowed from areas
including data communications, statistical signal processing,
information theory, and cryptographic protocols. The multi-
disciplinary nature and underlying themes of the research area
have unfolded, as witnessed in many recent books addressing
the topic [1]–[4]. There is now a trend toward application of the
technology to novel problems such as “self-healing” media in
which data that has been tampered can later correct itself, signal
tagging in which region-of-interest coordinates or value-added
information is embedded in hypermedia content, among others.

The current focus in algorithm development has involved im-
proving robustness primarily through the use of sophisticated
perceptual models [5]–[7], interference and attack modeling for
advanced detector design [8]–[10], appropriate transform do-
mains for superior modulation [11]–[13], and powerful error-
correction codes [14].
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Most measures used to evaluate performance involve robust-
ness and imperceptibility. To characterize robustness, we often
use the bit error rate of the extracted watermark, similarity
measures between the embedded and extracted watermark
such as the correlation coefficient, the theoretically maximum
amount of information that can be reliably hidden (called the
watermark capacity), and the probabilities of false positive
and false negative detection. To evaluate imperceptibility,
measures of mean squared error (MSE) between the original
and watermarked image, or peak signal-to-noise ratio (PSNR),
as well as qualitative assessments are employed.

In this paper, we add a third dimension—implementation
cost—to this measure of performance. In particular, we focus
on hardware complexity. Our overall objective is to identify
those algorithmic performance improvement approaches that
are disproportionate to the design effort and cost of imple-
mentation and, hence, exhibit a poor performance compromise
when cost is taken into account.

A. Hardware versus Software

A watermarking system can be implemented with either
software or hardware. In a software implementation, the
algorithm’s operations are performed as code running on a
microprocessor. For example, high-level scripts written for a
symbolic interpreter running on a workstation or machine code
software running on an embedded processor are both classified
as software implementations. Software-based watermarking
also provides the following:

• Abstraction of the implementation from any hardware de-
tails.Thus, instead of being concerned with elements such
as flip-flops, RAMS, and gates, the designer focuses on
implementation of the algorithm at a much “higher” level.

• Availability of software tools to aid in realizing various
data operations.For instance, software designers have li-
braries of common processing functions so that they may
borrow, to a large extent, from past implementations.

• Limited means of improving area and improving time com-
plexity (speed) of the implementation.The software de-
signer does not have direct control over the way RAM and
processor interact, posing a limit on speed. To reduce area,
(s)he must try to limit the total amount of RAM required.
This is in contrast with hardware where there is full control
over timing of operations into the RAM and direct control
over the usage of expensive hardware resources.

Conversely, ahardware-based implementation is one where
the algorithm’s operations are fully implemented in custom-de-
signed circuitry. The overall advantage is that hardware con-
sumes less area and less power.

1053-587X/03$17.00 © 2003 IEEE
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Fig. 1. Overview of the JAWS embedder. The algorithm takes three inputs: the video stream frame~F , the payload~i, and the global embedding depthd . The
video frame matrix is highpass filtered and then multiplied by the global embedding depth to create the embedding depth matrix~D. ~D is pixel-wise multiplied
with ~R, which is the payload-specific watermark, to create the final watermark~W . ~W is pixel-wise added to~F to produce the watermarked frame~F .

Although it might be faster to implement an algorithm in soft-
ware, there are a few compelling reasons for a move toward
hardware implementation. In consumer electronics devices, a
hardware watermarking solution is often more economical be-
cause adding the watermarking component takes up a small
dedicated area of silicon. In software, implementation requires
the addition of a dedicated processor such as a DSP core that
occupies considerably more area, consumes significantly more
power, and may still not perform adequately fast. In this paper,
our hardware-level design offers many more options to reduce
area and improve speed than software-level design.

B. Contributions of This Paper

In this paper, we mainly focus on hardware-design aspects
of Just Another Watermarking System (JAWS) [15]. Through
this case study, we illustrate implementation challenges, costs,
and tradeoffs of different components of a video watermarking
scheme. Due to similar structure, the design insights provided
in this paper are applicable to other watermarking algorithms.
In JAWS, the embedding occurs on the raw data and not on
compressed data so that there is no sharing of components with
a codec that would complicate our cost analysis. Furthermore,
JAWS is an established algorithm that targets real-time appli-
cations where frame-rate is an issue. A software-solution for
JAWS using a Trimedia DSP platform has been already imple-
mented and tested [16]. In this work, we go beyond this imple-
mentation and propose a fully integrated hardware solution.

The objectives of this paper are two-fold:

1) To identify hardware-friendly strategies that improve the
performance of video watermarking algorithms.Perfor-
mance tradeoffs with complexity are investigated through
simulations. Watermarking design is studied from the per-
spective of hardware figures-of-merit and tool-sets.

2) To present a state-of-the-art VLSI architecture for the
JAWS algorithm in order to illustrate the design issues
at the hardware level.To the best knowledge of the au-
thors, this is the first standalone video watermarking chip
developed in a 0.18-m CMOS technology.

It should be mentioned that for simplicity, this paper fo-
cuses on the nonideal effects on the performance of video
watermarking algorithms due to practical implementation
constraints. We do not include, in this work, the additional
effects of attacks on the watermarked video.

The remainder of this paper is structured as follows. Section II
provides a primer on JAWS and a description of basic hard-
ware implementation constraints. Section III proposes a novel
architecture illustrating hardware design issues related to video
watermarking applications. Section IV deals with the issues of
complexity and cost. The relationship between various algo-
rithmic parameters and features to the tradeoff between robust-
ness and cost is investigated. The paper concludes with final re-
marks and ideas for future directions.

II. JAWS AND VIDEO WATERMARKING CONSTRAINTS

This section provides a primer on the JAWS embedding and
detection algorithms [15]–[17] and specifies constraints on the
implementation.

A. Embedder: Definition and Constraints

The JAWS embedding algorithm, which is illustrated in
Fig. 1, covertly embeds payload datainto individual frames
of video , where represents a bit string (word) of length

, and the by matrix represents a video frame. Each
element of corresponds to the color value of a pixel in the
frame, represented by a-bit integer. The process of creating a
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TABLE I
LIST OF VARIABLES AND FUNCTION DEFINITIONS FOR THEJAWS EMBEDDING ALGORITHM

*In this work, letters without an overhead denote scalars, uppercase letters with adenote general matrices, lowercase letters with aspecifically denote matrices with a single
row, an overhead denotes the transform-domain of the specified quantity.

payload- and frame- specific watermark is described in the fol-
lowing.

The creation of the payload-specific base watermarkis
shown in Fig. 1 underCalculate Base Watermark. First, a set
of sequences of pseudo-random noise (the primitive pat-
terns ) are modulated by. This modulation is accom-
plished by superimposing shifted versions of the primitive pat-
terns, where the shifts are a function of the payload.1 The result
of modulation (called atile) is then replicated (tiled) over the
same dimensions as the input frame to generate.

If the base watermark were directly superimposed on the
video frame, the watermark may be perceptible. To correct this,
local embedding depths are calculated for each pixel by
highpass filtering2 the video frame, as shown in Fig. 1 under
Calculate Embedding Depth. To control the overall strength
of the embedded watermark, the local embedding depths

1The shifts are further constrained to be over a grid of dimensiona � a

imposed over the span ofq � q . The motivations for this are from practical
considerations at the watermarking system level and are explained in [15].

2The highpass filter serves as a crude model of the human visual system’s
masking characteristics.

TABLE II
SUMMARY OF THE JAWS EMBEDDER ALGORITHM

are scaled by the global embedding depth to create the
embedding depth of the watermark. The base watermark is
then pixel-wise multiplied with to create the final watermark

, which is pixel-wise added with the original video frame to
create the watermarked frame .

The algorithm variables, functions, and basic steps are sum-
marized in Tables I and II.

Constraints: Two emerging applications of digital video wa-
termarking are broadcast monitoring and copy control; a prac-
tical implementation of a watermarking system must conform
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(a)

(b)

Fig. 2. (a) Overview of the JAWS detector. The algorithm takes in the possibly tampered watermarked video stream frame~F extracts an estimate of the payload
bit string~i and makes a decision on the status of whether or not the watermark was detected. (b) Output of theifft calculation for watermark detection where the
payload was “1.”

to the constraints on time (performance) and space (area) de-
manded by these applications.

In broadcast monitoring, the watermark can either be em-
bedded into the media long before transmission or at the time
of transmission (e.g., in a live video feed). It is in the latter case
that a strict real-time requirement must be met: The watermark
embedder must function as fast as the video frame rate. Since

the high cost of broadcast equipment can absorb costs associ-
ated with the embedder hardware, no strict area constraints are
posed by broadcast monitoring.

In copy control, embedding is usually done in the recording
device prior to storage onto the media [18] in a process called
remarking. There may also be applications where remarking oc-
curs in the playback device. Since video data at these points will
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TABLE III
LIST OF VARIABLES AND FUNCTION DEFINITIONS FOR THEJAWS DETECTORALGORITHM

TABLE IV
SUMMARY OF THE JAWS DETECTORALGORITHM

likely be streaming at the real-time frame rate, there is a per-
formance requirement that the embedder operate as fast as the
frame rate. As copy control schemes will be used in consumer
electronics where low cost is essential, minimizing space com-
plexity is also very important.

We constrain the embedder architecture to satisfy the ag-
gressive requirements that the embedder handle real-time video
frame rates and minimize implementation area.

B. Detector: Definition and Constraints

Fig. 2(a) illustrates the flow of data in the JAWS detection
algorithm where the presence of an embedded watermark in a
suspect frame of video is detected and the payload extracted.

The detection algorithm first filters consecutive frames
by a whitening filter to create filtered frames .
These filtered frames are then folded to form. Next, the cor-
relation between and the primitive patterns (used in the
embedding process) is computed. The result of this correlation
indicates the presence of any primitive pattern or its shifted ver-
sions in . Finally, the payload is extracted from the distances
between adjacent instances of each primitive pattern.

For computational efficiency, the correlation used for payload
detection is computed as a convolution in the frequency domain.
To do this, the fast Fourier transforms ofand each of the prim-
itive patterns (which have also been filtered with ) are calcu-
lated.3 The complex conjugate of each frequency-domain primi-
tive pattern is then pixel-wise multiplied with the frequency-do-
main folded image. Then, the inverse fast Fourier transform of
the product is applied. The result will be a series of spikes in-
dicating the presence of primitive patterns from which the pay-
load can be derived; this is illustrated in Fig. 2(b) for ,

.
The algorithm variables, functions and basic steps are sum-

marized in Tables III and IV.
Constraints: As with the embedder, the applications of

broadcast monitoring and copy control are used to obtain
constraints for architecting the detector.

In broadcast monitoring, several channels of video data are
monitored simultaneously and checked for the presence of wa-
termarks. Due to the large amount of real-time video data that
must be processed (continuous streams over many channels),

3Since the computation of the fast Fourier transforms of the primitive patterns
is independent of any input to the detector, they can be precomputed and con-
sidered constants to the process.
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Fig. 3. Proposed hardware architecture for the JAWS embedder.

detection at the frame-rate of video is required to ensure thor-
ough monitoring; at a slower rate, portions of the video streams
would have to be dropped. For copy control, as with the em-
bedder, detection can be done at the frame rate of the video as
video data is being streamed. Hence, both applications pose the
requirement for detection at the frame rate of video.

As with the embedder, the detector space complexity is of
no consequence in broadcast monitoring; however, with copy
control, due to the need to minimize economic cost, a small
implementation must be targeted.

Hence, the detector’s architecture will be under the con-
straints of maintaining real-time performance and minimizing
area.

III. H ARDWARE ARCHITECTURE

This section details architectures that implement the em-
bedder and detector algorithms under the constraints defined in
Section II. Unlike the previous implementation of JAWS [16],
this work implements JAWS in custom hardware.

A. Watermark Embedder

We assume in our implementation that the input video to the
embedder is provided as a stream of pixel data. That is, the ele-
ments of are provided one row at a time, beginning with the
first row and ending with the last. The data rate is assumed to
be consistent with the frame rate of real-time video. Referring
to Fig. 1, there is a unidirectional flow of data from the input
to the output. Each block simply processes a few elements of
data (pixels) and forward the results to the next block—there
are no iterative operations. This makes the algorithm very

amenable to an implementation known aspipelining, where
each block (stage) completes one operation and submits its
output to the next stage in the pipeline. Pipelines allow for high
data throughput as long as each stage only adds some delay
(latency) to the data stream but does not block it.

Fig. 3 illustrates the embedder architecture. The hardware to
perform the two main operations of calculating the embedding
depths and calculating the base watermark and the final gener-
ation of the watermarked frame are described in the following.

Calculating the Embedding Depths:The main computation
in calculating the embedding depths is the highpass filtering
of the input frame. Due to the 33 dimensions of the filter
( ) and the row-by-row format of the input stream, filtering
requires at least three consecutive rows of frame data. There-
fore, incoming pixels are stored into a pixel buffer until three
rows are available. At that point, one row of filter data will be
computed. For each element of the row, nine pixels are read
from the buffer, multiplied with the appropriate filter matrix
element (from ) and accumulated. It is apparent that this
part of the embedding algorithm impacts the pipeline in two
ways: First, it adds some delay to the data stream exiting the
embedder, and second, it may block the pipeline for some du-
ration. Latency does not disturb the overall throughput of the
pipeline; however, blockage may disrupt real-time operation. To
prevent blockage, the rate of processing of the embedder (clock
frequency, ) must satisfy a constraint defined by the fol-
lowing equation taking into account the frame size ( ),
frame rate ( ), and the number of memory accesses per
pixel ( ) for the filtering process:

(1)
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where is an implementation-specific constant. As an ex-
ample, if a single-port RAM4 is used to implement the pixel
buffer, then ten memory accesses (there is one clock cycle per
access) are required per pixel computation: one to write the pixel
to the buffer and nine to read pixel values from the buffer to cal-
culate the filtered value.

Calculating the Base Watermark:To calculate the base wa-
termark, a payload-specific tile is created and then tiled over
the span of the image frame. Creating the primitive tile requires
a means to generate the noise sequences that will serve as the
primitive patterns and a means to modulate the primitive pat-
terns by payload data.

A variety of methods are available to generate the noise
sequence, such as linear feedback shift registers (LFSRs) or
table lookup where precomputed noise sequences are stored
in a buffer. The former method is considerably cheaper than
the latter, as table lookup requires large silicon to implement.
Lookup tables, on the other hand, provide a trivial solution
to modulation, where indexing into arbitrary points of the
noise sequence is needed; LFSRs do not offer such solutions.
Another advantage of table lookup is that each element of the
noise sequence can be directly set so that the statistics of the
sequence can be contrived in any manner. For these reasons,
in our architecture, a lookup table is used to store the noise
sequences for the primitive pattern. Both modulation of the
noise sequences by payload data and tiling are accomplished
at negligible cost (in area and time) by the use of a counter
and adder to generate the addresses to the noise buffer. The
counter, by nature, implements the tiling function as it counts
modulo and over the range of and . At each step
in the count, two reads from the noise buffer occur: one at the
count and another offset (by a function of) from the count; the
offsetting of two identical primitive patterns byaccomplishes
modulation.

Generating the Final Watermarked Frame:Having the two
major embedder functions architected, the remainder of the ar-
chitecture consists of relatively small hardware to multiply the
watermark by the depths and add the result to the original pixels.

Real-Time Performance:Only the constraint defined in (1)
must be satisfied to maintain real-time performance as the fil-
tering hardware is the only place in the embedder architecture
where data flow is blocked.

B. Watermark Detector

As with the embedder, the detector is architected to func-
tion as a stage in a system-level pipeline designed to process
real-time video data, with the same input data stream character-
istics. However, in contrast to the embedder, the detection algo-
rithm is considerably more complex. As Fig. 4 illustrates, detec-
tion consists of a series of computations that operate on an en-
tire matrix, as opposed to elements of a data stream. Moreover,
the computations themselves are iterative. Both of these aspects
will result in prolonged calculations and potential blockage; the
architecture must compensate to prevent the blockage from ad-
versely affecting the real-time performance.

4A single-port buffer only allowseithera single writeor a single read to be
performed on the RAM at a time.

Fig. 4. Sequence of processes and flow of data involved in detection.

Fig. 5. Proposed hardware architecture for the JAWS detector.

Fig. 5 illustrates the detector architecture. A first-in first-out
(FIFO) buffer at the input port prevents blockage in the system-
level pipeline by buffering pixels at the input port while the de-
tection process is occurring. The whitening filter at the output
of the FIFO drains the pixels of the FIFO, filters them, and for-
wards the filtered result to the fold hardware. The fold hardware
accumulates the filtered results into a matrix (the fold buffer).5

Then, thefft, pwm, ifft, andscanblocks sequentially operate on
the fold buffer to detect and extract any payload. At any one step
in the detection process, only one of the computational blocks
(fft, pwm, ifft, or scan) is actively operating on the contents of
the shared fold buffer; this is enforced by themultiplexorat the
input of the fold buffer that selects the currently active path into
the buffer.

Filter and Fold Process:The topology of the detector’s
whitening filter is identical to the highpass filter of the em-
bedder (shown in thehighpass filtersection of Fig. 3), the
only difference being that the elements of are used in the
detector instead of . Fig. 6 illustrates the fold datapath;
input operand 1is obtained from the filter,input operand 2is
obtained from the previously folded value in the fold buffer (it is
0 for the initial iteration), andop is addition. From the detailed
discussion on the filter (Section III-A) and the unidirectional

5Due to the linearity of the filtering process, another possibility would be
to first fold the frames and then filter the result. This would save area, at the
expense of increased detection time.
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Fig. 6. Basic topology of fold and pwm data path.

Fig. 7. Basic topology of fft data path.

flow of folding, no blockage to the pipeline occurs due to this
step.

Fast Fourier Transform Hardware:Fig. 7 illustrates the
topology of the radix-2 butterfly that implements the in-place
decimation-in-time -point fast Fourier transform for both the
fft and ifft operations6 ( for the remainder of
this paper). The same butterfly is used for all iterations of the
transform. The duration of the overall calculation is defined in
units of clock cycles by the following equation in terms ofand
the number of cycles to compute one butterfly
(an implementation-specific constant):

(2)

Point-Wise Multiplication: Fig. 6 illustrates the topology of
thepwmcomputation, whereinput operand 1is obtained from
the fold buffer,input operand 2is the corresponding value in the
frequency domain pattern buffer, andop is a complex multipli-
cation. The operation is iterated over the entire fold buffer. The
duration of the calculation is defined in units of clock cycles by
the following equation in terms ofand the number of cycles re-
quired to compute one point-wise multiplication (an
implementation-specific constant):

(3)

6Optimizations that were possible with thefft due to the real-valued data on
which it operates were not considered since they only contribute a constant re-
duction in the latency and no reduction in the area cost.

Fig. 8. Basic topology of scan data path.

TABLE V
TIME AND SPACE COMPLEXITY OF THE EMBEDDER

Scan: Thescanoperation, shown in Fig. 8, scans the buffer
and stores the magnitudes and positions of the two largest dis-
tinct values in the fold buffer. At the end, it computes the abso-
lute distance between the two positions and returns this as the
detected payload. The scan operation works in parallel with the
last iteration ofifft and does not contribute to the duration of de-
tection.

Real-Time Performance:Real-time performance is main-
tained by ensuring that the detector does not block the stream
of pixels. Due to the shared fold buffer in the architecture,
pixels cannot be processed byfold while the fold buffer is being
used by thefft, ifft, andpwmoperations; this blockage must be
compensated for by properly sizing the input FIFO. The total
duration during which pixels cannot be processed is

(4)

and the incoming pixel rate is

(5)

Hence, to ensure real-time performance, the input FIFO must
be large enough to buffer pixels. Alternatively,
rather than buffering the pixels, they could simply be dropped.

IV. A RCHITECTURECOMPLEXITY

Our perspective in this paper, in part, highlights the practical
application-specific requirements of a video watermarking
system. Many tradeoffs may be needed to create a water-
marking system that is constrained by the often conflicting
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TABLE VI
TIME AND SPACE COMPLEXITY OF THE DETECTOR

requirements of the application and economic cost. To create
an optimal solution, analysis must be performed to balance
the benefits of algorithmic features with the implementation
costs involved. This section creates a basis for cost-benefit
analysis of watermarking schemes implemented in hardware. It
presents the hardware costs associated with various algorithmic
features, with some assessment of the “algorithmic benefit”
obtained from each feature. It concludes with a discussion of
strategies to improve general watermarking schemes and the
associated implementation perspectives.

A. Complexity of Algorithmic Features

From a signal processing perspective, the objective of a wa-
termarking scheme is to achieve high data rate of the embedded
payload such that perceptual distortion is minimized and the de-
tectability of the watermark (“robustness”) is maximized. When
implementation is considered, real-time performance and reduc-
tion of area also become important.

To measure the benefit of algorithmic features, a software
model (in C) of the watermarking system was created to allow
quick simulation of different cases; this model is completely
identical, bit-for-bit, to the hardware description code (RTL)
that implements the architecture. The simulations were run on
a 350-MHz Pentium II system running Linux with 256 MB of
RAM. The metric we use to measure perceptibility of the em-
bedded watermark is the root mean square error (RMSE) be-
tween the watermarked frame and the original unmarked
frame , as defined by

RMSE (6)

The metric we have used to measure robustness of detection is
the signal-to-noise ratio (SNR) of the correlated output of the
detector (i.e., the output of theifft), where we considered the

“signal” to be the correlation peaks that the detector used to ex-
tract payload information and “noise” to be the remaining corre-
lation values that the detector ignored. The following equation
defines the calculation of the metric:

SNR (7)

To arrive at some conclusions on the cost of the algorithmic
features of JAWS, we treat the hardware components of the em-
bedder and detector separately. The following discussion reports
the results of our complexity analysis and is summarized in Ta-
bles V and VI as well.

1) Achieving High Data Rate:JAWS achieves high data rate
by modulating a set of primitive patterns by payload data [17].
The number of bits that can be embedded per primitive pattern
( ), the number of bits that can be embedded in a frame using

primitive patterns ( ), and the time rate of data of the video
( ) are defined in the following equations in terms of the de-
sign parameters , , and and the application-derived frame
rate (note that is a constant defined in Table I):

(8)

(9)

(10)

(We will not consider for now since from Tables V and VI it is
clear that does not impact area.) Equations (8)–(10) show that
the data rate varies with . From Tables V and VI, we
see that the implementation cost in terms of area varies with
(for expensive RAM) and (for the relatively inexpensive
ROM to store primitive patterns). The cost in terms of detection
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Fig. 9. Improvement in detection performance and its relative cost with
increasingq.

time varies with . Hence, can be increased
at less cost and provide more benefit than.

To gain some more perspective on the limits to whichcan be
varied, we measure the performance of the detector with varying
. Fig. 9 shows the results of this simulation along with the as-

sociated cost due to; we see that reducing tends to impair
detector performance. In addition to this limit on the degree to
which can be reduced, [17] reports that the degree thatcan
be increased is limited due to increased perceptual distortion.

2) Minimizing Perceptual Distortion:The JAWS embedder
employs a highpass filter to allow the imperceptible addition of
relatively strong watermarks; however, the filter is quite expen-
sive. To gain a quantitative measure of the importance of the
highpass filter, we simulate the watermarking system with and
without the filter with varying global embedding depth. Without
the filter, only very weak watermarks can be added; however,
the detection of these watermarks is quite robust as they are
present with constant strength throughout the entire image. With
the filter, very strong watermarks can be imperceptibly added to
portions of the image selected by the filter; the high strength of
the watermark allows very robust detection as well. Considering
the results of this simulation, the use of perceptual models does
not seem to offer a significant benefit in the cost-benefit com-
promise; however, this simulation only illustrates the case for
passive watermarking applications where a degradation attack
is not a serious threat.

We can view practical floating-point precision effects as
an “attack” on the watermarked signal. We simulate this by
varying the floating-point parameters 7 of the embedder
(Section IV-A4 will discuss this in detail) and measuring
the perceptibility of the embedded watermark and detector
performance. Figs. 10 and 11 are plots of the perceptibility
of the embedded watermark with the corresponding detector
performance, with the high-pass filter disabled. Figs. 12 and 13

7In this paper, W denotes the precision of the mantissa
and W denotes the precision of the exponent, such that
W = W + W . The x subscript specifies whether
the parameter applies to theembedder ordetector.

Fig. 10. Influence of floating-point precision on the perceptibility of the
embedded watermark; the highpass filter of the embedder is disabled.

Fig. 11. Influence of floating-point precision on the detectability of the
embedded watermark; the highpass filter of the embedder is disabled.

are plots of the perceptibility of the embedded watermark with
the corresponding detector performance, with the highpass
filter enabled. Considering the size of the “flat” region of the
plot that includes the high-precision floating-point result (the
high-precision result represents ideal performance), we can
gain an appreciation of how resilient the system is against the
attack. It is clear that with the filter enabled, the embedder is
able to generate imperceptible and detectable watermarks over
a much wider range of the “attack” than with the filter disabled.

3) Maximizing Robustness of Detection:In terms of imple-
mentation, the JAWS detector uses a fairly complex process
to detect watermarks. Although the area complexity (due to
buffers) is directly proportional to as discussed above, the
very requirement for the costly buffers is posed by the iterative
and block-based computations in detection. Iterative computa-
tions require storage of intermediate values, and block-based
computations require large amounts of storage to represent the
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Fig. 12. Influence of floating-point precision on the perceptibility of the
embedded watermark; the highpass filter of the embedder is enabled.

Fig. 13. Influence of floating point precision on the detectability of the
embedded watermark; the highpass filter of the embedder is enabled.

values (which are matrices, rather than elements). In addition to
requiring blocks of storage for the computations, detection also
incurs long latencies; as discussed in Section III-B, the addition
of a buffer is required to maintain real-time performance in the
presence of long latencies. Given that such large time and space
complexity is inevitable with a JAWS-like detection sequence,8

we can attempt to ensure that hardware utilization is maximized.
From Table VI, the fold process latency is ; the con-
stant of proportionality is a multiple of the frame rate .
If the detection processes were to occur in parallel with the fold
process, the detection process would complete faster than fold
as it runs at the rate of the system clock , which is many
times faster than . Hence, thisslack in time can be uti-
lized to increase the complexity of detection with no additional

8It is out of the scope of this work to modify the core algorithmic nature of a
JAWS-like scheme.

Fig. 14. Influence of floating-point precision on detection.

time complexity penalties; in light of the enormous sizes of the
buffers (which are required), any additional data path and con-
trol hardware would certainly be minimal. In Section IV-B, pos-
sible improvements to exploit slack are discussed.

4) Floating-Point Representation:An important parameter
that impacts the efficacy of the aforementioned algorithmic fea-
tures and the area complexity is the floating-point representa-
tion, as represented by and .

In the embedder, impacts the area of the pattern buffer,
as well as the sizes of datapath elements such as multipliers and
adders. To evaluate the influence of on the embedder, we
independently vary and and measure
the perceptibility of the watermark (see Fig. 12) and the de-
tectability of the embedded watermark (see Fig. 13). For these
measurements, we keep all other parameters in the embedder
and detector constant and set the detector to use high-precision
floating-point parameters. These plots show three regions
with common characteristics. First, there is a region where
the watermark is most imperceptible—and undetectable. This
corresponds to where does not have enough dynamic range
to represent a strong enough watermark. Second, there is a
region where detection is much better, but the watermark is very
perceptible. This corresponds to where floating-point numbers
behave like fixed-point numbers; the very poor granularity in
the represented embedding depths causes stronger watermarks
to be embedded. Finally, there is a third region where percepti-
bility is minimized, and robustness of detection is maximized.
Moreover, these performance metrics are roughly constant
throughout the region; the border of this region and the second
define the point beyond which increasing ceases to increase
algorithmic performance.

In the detector, also plays an important role since the
choice of will restrict the dynamic range available to the
detection computations, where, due to the iterative nature, there
is a possibility that the numbers will grow in size. To understand
the influence of on the detector, we vary and

and measure the performance of the detector on a
frame where the watermark is imperceptible. In Fig. 14, two
regions can be seen: one where the detector fails because
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TABLE VII
SUMMARY OF COST-BENEFIT RELATIONSHIPS

had insufficient dynamic range and another where the detector
succeeds and performs the same with further increases in.

Although two separate binary representations were used for
the detector and embedder of this work, all hardware internal
to the detector used a uniform representation, as did all hard-
ware internal to the embedder. However, to aggressively max-
imize the dynamic range in each computation, a wide variety
of number representations such as various forms of fixed-point,
floating-point, and block floating-point or number systems such
as logarithmic, residue, and anti-tetrational, might be used to op-
timize the dynamic range ofeachcomputational element with
implementation cost. Future work can undertake a more com-
prehensive analysis of a watermarking system with locally op-
timized binary number representations. In addition, investiga-
tions into more suitable number systems for watermarking al-
gorithms can be done.

B. More General Implications

Throughout this paper, we have employed JAWS as a
case-study to gain insight into “hardware-friendly” approaches
for watermark performance improvement. Table VII summa-
rizes the cost-benefit relationship among various features of
the system. In this section, we attempt to generalize this cost
analysis to assess the potential of various popular signal pro-

cessing performance-enhancing strategies in terms of hardware
implementation constraints.

1) Perceptual Models:Masking characteristics of human
perception are often employed during the watermark embed-
ding phase to increase the energy of the mark and, hence,
improve robustness during detection. Although sophisticated
perceptual model are available in the human factors literature,
it has been demonstrated that in practice, moread hocmeasures
may outperform in terms of watermarking reliability [6]. For
video watermarking, it follows that perceptual models used
for image watermarking could be combined with temporal
masking measures to make more efficient use of the perceptual
room available for data hiding.

From an implementation perspective, the ideal perceptual
model involves the computation and buffering of few elements
to obtain a metric used to adapt the watermark for impercep-
tible embedding. Employing sophisticated models, in which
spatially global or temporal masking measures are employed,
could often require buffering the video frames, which is
impractical. This occurs if the energy of the watermark in a
pixel of a frame at time is dependent on the characteristics of
the video at other time instants, say to for .
A buffer is required to store all intermediate elements from

to so that these elements are available together
for watermark adaptation for time. Furthermore, there is an
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increase in the latency of the calculation since the result for the
element of time is only available after the last element at time

has been processed.
Buffering is also required to employ spatial masking if the

entire frame must be first processed before the watermark can
be adapted for embedding into that frame. A way in which
buffering requirements can be reduced for this case is to assume
a temporal perceptual invariance. That is, the perceptual char-
acteristics of a past frame can be used to adapt the watermark
for embedding in the next one. In such a scenario, the previous
frame can be processed in real time to generate a perceptually
adapted watermark that is embedded into the subsequent one.
If the perceptual characteristics do not significantly change
from frame to frame, the watermark should remain invisible.
This procedure is only efficient in terms of implementation if
the perceptual characteristics in a frame can be represented
concisely. The perceptual parameters dictate the size of the
buffer required to carry forward the values required to adapt
the watermark for embedding in the next one.

2) Attack Modeling: Two main approaches have been pro-
posed in the watermarking literature to address the issue of ro-
bustness to specific attacks. In the first case, the watermark is
embedded in an attack-invariant domain so that the mark can
still be reliably extracted in the face of the specified degrada-
tion [19]. In the second, a reference or template watermark is
embedded along with the payload watermark to help charac-
terize and undo the attack at the detector [9], [20].

In the former approach, transforms such as the
Fourier–Mellin have been proposed [19] to make the wa-
termark invariant to a certain class of geometric attacks. Such
transforms and watermarking domains have been found to be
numerically sensitive. A hardware solution to this approach
could be more fruitful than software because it is possible in
hardware to increase the precision of the computations at an
incremental cost.9

The latter technique involving the embedding of a secondary
watermark for attack characterization involves using the addi-
tional mark to estimate the attack during the detection phase.
The estimated parameters of the attack can be used to partially
undo the degradation for more reliable payload detection. Al-
ternatively, the parameters could provide insight into ways to
process the watermarked signal for more optimal detection. The
advantage of using such an approach in terms of hardware im-
plementation is that many of the components used for the pay-
load watermark could be borrowed for this stage of the attack
characterization. As long as the attack characterization is per-
formed on spatially local parts of the video frame, excessive
buffering is not required.

3) Transforms: Some early work in the field of water-
marking involved selection of appropriate domains to embed
the watermark. For implementation in a video watermarking
application, care must be taken to guarantee the real-time per-
formance of the system. Some techniques such as JAWS embed
the watermark in the spatial domain to avoid the transform
processing. Others borrow the transforms used for different

9The precision can be scaled with more granularity in a hardware solution
compared with software. In addition, one can be selective in varying the preci-
sion in order to optimize the cost for a given overall accuracy.

processing stages such as lossy compression [21] to keep costs
down. Recent work [22] has demonstrated that use of the
same domain for both watermarking and lossy compression
results in good performance. Thus, this solution of “borrowing”
components of the codec for data hiding has potential in terms
of both cost and performance.

V. CONCLUSION

In this work, we consider hardware implementation aspects
of the digital watermarking problem; at this moment, this is
still largely undiscovered territory. Our aim is to bridge the gap
between watermarking algorithm design and hardware imple-
mentation. For watermarking technology to gain popularity in
commercial applications, it is necessary to characterize the fea-
sibility and cost of implementation. The degree of success of
digital watermarking in emerging applications is somewhat in
question so it is of value to provide a realistic assessment of the
practical potential of the area.

Three general directions for “hardware-friendly” develop-
ment are seen, which are the following:

• Eliminating costly hardware elements by investigating
alternatives to current methods.For example, methods
of payload modulation that do not involve arbitrarily
indexing into a pseudo-random sequence would greatly
reduce the need for expensive hardware in the JAWS
embedder.

• Reducing the amount of expensive hardware resources by
balancing the algorithmic performance obtained from a
watermarking design parameter with the associated im-
plementation costs.For example, varying the number of
primitive patterns and the primitive pattern dimensions in
accordance with their cost and benefit functions can max-
imize overall performance and minimize cost.

• Shifting the algorithmic “burden” to minimize cost.
For example, with JAWS, there is a very robust but
expensive detection process. However, the incremental
cost of adding more processing to the detector to further
increase robustness is low since the overhead costs have
been absorbed by the existing detection hardware. If the
embedder is made less robust to reduce cost, additional
robustness can be added to the detector to compensate—at
low cost. Hence, in this case, shifting the burden from
the embedder to the detector can minimize overall cost
without degrading performance.

We hope that through effective communication between the
signal processing and hardware implementation communities,
more effective and practical video watermarking algorithms
can be developed.
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