
VLSI Implementation of a Real-Time Video Watermark Embedder and
Detector

Nebu John Muthui, Ali Sheikholeslami, and Deepa Kundur
Dept. of Elec. and Comp. Eng., University of Toronto,

10 Kings College Rd., Toronto, Canada M5S 3G4
Email: [mathai@ecf, ali@eecg, deepaacomm) .utoronto.ca

ABSTRACT

This paper describes the hardware design and
implementation of the JAWS (Just Another Watermarking
System) embedder and detector for watermarking of real-
time uncompressed digital video. Our design employs a
Roating point datapath, maximizing dynamic range of the
FIT, frame filtering, and correlation operations. The design,
implemented in a l.SV, 0.18pm CMOS process with a core
area of 3.53 mm2, is capable of watermarking video streams
at a peak rate of over 3 Mpixels/s.

1. INTRODUCTION

Digital watermarking is the process of embedding a
message, called the payload, within the content of a host
message, where the host message can be audio, still images,
or video. Watermarking systems for audio and still imagery
are often implemented in software due to the low data rate of
these signals. For video streams, however, real-time
watermarking is too expensive to implement in software, and
hence there is a strong motivation for hardware
implementation.

This paper describes a VLSI implementation of the JAWS
embedder and detector algorithm [I , 2 , 31. JAWS is a well-
known and respected system that has found interest in both
academic and industrial research circles. Thus, it is an ideal
case study for our implementation.

A testchip is designed in 0.18pm CMOS technology to
embed and detect watermarks in uncompressed real-time
video streams at a rate of 30 framesls and 320x320 pixels/
frame. The testchip is capable of operating at 75 MHz, to
process a peak pixel rate of over 3 Mpixelsls. As this work is
the first step toward analyzing the relationship between
watermarking algorithmic features and implementation cost
for practical systems, this provides us with a useful vehicle
for study without incurring excessive hardware costs.

2. WATERMARK EMBEDDER

The first stage of the JAWS embedder, shown in Figure I ,

This work was supported by NSERC

high-pass filter
~~~~~ ........ ~~~~~~~ ....... ~~~~~ ........ 
j filter coefficients 

output pixels 

1 base 
watermark 

payload modulator 
Figure 1. Watermark Embedder Architecture 

high-pass filters each input frame to determine the regions of 
the image that can be imperceptibly distorted. The input 
payload is used to modulate a pseudo-random noise pattern 
(arranged as a 32x32 pixel matrix and called the primitive 
pattern) to generate a base watermark, which is then point- 
wise multiplied with the filtered output to create an 
imperceptible watermark containing the payload. This final 
watermark is then pixel-wise added to the original video 
frame to generate the output. 

To achieve high throughput, we choose a pipelined 
architecture where the data stream through the pipeline is a 
stream of pixels forming a row-by-row raster of each frame. 

For the filter, a buffer is used to store three rows of pixels 
from the input video frame: the current row and its IWO 

adjacent rows. The input port fills the pixel buffer. Once full, 
the input is stalled, and one row of filtered elements are 
computed. For each pixel, nine elements are read from the 
buffer. multiplied with the appropriate filter coefficient, and 
accumulated. After the entire filtered row has been 
forwarded to the rest of the embedder, the input port resumes 
filling the pixel buffer. 

In JAWS, payload modulation is accomplished by encoding 
the payload data in the positional displacement between two 
patterns generated from the primitive pattern (in the pattern 

U-I12 1-7803-7761-310311s17.00 02003 IEEE 

Authorized licensed use limited to: Texas A M University. Downloaded on December 26, 2008 at 07:24 from IEEE Xplore.  Restrictions apply.



(a) (b) (4 
Figure 2. (a) Unwatermarked image, (b) strongly watermarked 
image (with no filtenng) and (c) imperceptibly watermarked image 

input 
pixels~ 

Figure 3. Watermark Detector Architecture 

buffer). The first pattem is the primitive pattern itself. In the 
second pattern, each pixel of the primitive pattem is displaced 
a certain pixel offset row- and column-wise (these offsets are 
a function of the payload). As the figure shows, two counters 
are used to address the primitive pattern elements. The 
payload data word is then separated into row and column 
components, and added to the row and column counters to 
access the displaced element. The two elements are added 
together to create the modulated pattern which is then 
replicated over the span of the video frame (by counter 
rollover). 

Figure 2(a) shows hardware simulation results of the 
embedder. The first image is the original (unwatermarked) 
image input to the embedder. Figure 2(b) shows the output of 
the embedder with the filter disabled; the regular pattem tiled 
across the image is the result of the payload modulation 
circuit. Finally, Figure2(c) shows the output of the 
watermark embedder with the filter enabled; the embedded 
watermark is imperceptible (the PSNR between this image 
and the original is 40 dB). 

3. WATERMARK DETECTOR 

The detector, shown in Figure 3, filters all frames with a 
whitening filter to improve detector performance [ l ] .  The 
topology of this filter is identical to the high-pass filter of the 
embedder, with the only difference being the filter coefficient 
values. After being filtered, the input stream enters the fold 

Figure 4. IFFT Computation Output 

loop, consisting of an adder and the fold buffer RAM. This 
loop causes primitive pattern-sized blocks of the filtered 
frame to be accumulated into the fold buffer. Once this 
process is complete, the input port is stalled and the rest of 
the detection process begins. 

The Fast Fourier Transform ( F E )  loop is first selected and 
the 2D FFT of the fold buffer is computed. A single 
decimation-in-time butterfly circuit is used for all FFT passes. 
The frequency-domain result is then pixel-wise multiplied 
with the frequency-domain primitive pattern. Finally, the FFT 
loop is selected, but this time the “twiddle” coefficients are 
conjugated to calculate the inverse (IFFT). In  parallel 
with the last pass through the IFFT, the scan hardware is 
enabled. This is a set of two registers that keep track of the 
two highest correlation peaks output by the IFFT. These 
peaks represent the detection of the primitive pattern and its 
displaced version. 

Figure 4 shows the output of the IFFT computation where qx 
and qy denote the number of pixel shifts of the primitive 
pattern in the x and y directions. Two detection ”peaks” are 
observed: one at q, = qy = 0 corresponding to the detection o f  
the primitive pattern, and another corresponding to the 
detection of the displaced pattern. The difference in position 
between these two peaks are used to calculate the payload. 

The detector was run with all three inputs shown in Figure 2. 
The detector correctly detected the absence of payload in the 
unmarked image. For the two marked images, the correct 
payload was detected. 

4. NUMERICAL REPRESENTATION 

One of the main challenges for watermarking algorithm 

Authorized licensed use limited to: Texas A M University. Downloaded on December 26, 2008 at 07:24 from IEEE Xplore.  Restrictions apply.



Figure 5. The effect of floating point precision on the 
perceptibility of the embedded watermark 

design is determining suitable numerical representations for 
the datapath [2]. Due to the large dynamic range required for 
watermarking computations, the word size of the internal 
datapath must be carefully chosen to maximize algorithm 
performance and minimize hardware cost (the area and power 
of the datapath being roughly proportional to floating point 
word size). For flexibility, we choose a floating point datapath 
and use simulation results to determine appropriate word 
sizes. Algorithm performance is evaluated based on the 
imperceptibility of the watermark (measured quantitatively 
by the rms error between the unmarked and marked frames), 
and the detection SNR (where the IFFT detection peaks are 
considered to be the signal, and background detection values 
to be noise). 

To evaluate the effect of word size on the embedder, we vary 
the mantissa width, Wemmt, and exponent width, Weexp, 
indepcndently, and measure the perceptibility of the 
watermark (Figure 5), and the detectability of the embedded 
watermark (Figure 6). These plots show three regions with 
common characteristics. First, there is a region where the 
watermark is most imperceptible (and undetectable). This 
corresponds to where the dynamic range is insufficient to 
represent a strong watermark. Second, there is a region where 
detection is much better, but the watermark is perceptible. 
This corresponds to where floating-point numbers behave like 
fixed point numbers; the poor granularity of the represented 
embedding depths results in a stronger embedded watermark. 
Finally, there is a third region where perceptibility is 
minimized, and detection performance maximized. Also note 
that these performance metrics are roughly constant 
throughout the region. The border of this region and the 

Figure 6. The effect of floating point precision on 
the detectability of the embedded watermark 

Figure I. The effect of floating point precision on detection 

second defines the point beyond which increasing word size 
ceases to enhance performance. 

Word size also plays an important role in the detector where, 
due to the iterative nature of the detection computations, the 
numbers may grow in size. To illustrate the effect of word 
size on the detector, we vary the mantissa width, Wdmmt, and 
the exponent width, W4,,. and measure the performance of 
the detector on a frame where the watermark is imperceptible. 
In Figure I, two regions can be seen: one where the detector 
fails due to insufficient dynamic range, and another where the 
detector succeeds and perfoms the same with further 
increases in precision. 

II-I14 

Authorized licensed use limited to: Texas A M University. Downloaded on December 26, 2008 at 07:24 from IEEE Xplore.  Restrictions apply.



Table 1. Watermarking testchip features 

pixel buffer size 

I clock I75MHz I 

960 word by 16-bits 

1 0 . 1 8 p  CMOS I I process 

fold bumer size 

1 core size I 1.88mm x 1.88mm I 

1024 word by 16-bits 

I power(embedder) I 60mW I 
I power(de1ector) I 100mW I 
I payloadframe I 4bits I 
I eacbframe I 320 x 320 pixels I 
I framerate I 30 Sramesk I 
I max. pixel rate I 3 Mpixelds I 

I pattern buffer size I 1024 word by 16-bits I 

The results of these simulations require a floating point 
representation with a 6-hit exponent and 8-bit mantissa 
to attain the highest performance (close to  ideal). Since 
our availahle SRAM macro was 16-bits wide, we used 
16-bit floating point words (G-bit exponent, 10-bit sign 
and magnitude mantissa) for the entire datapath of thc 
testchip. 

CONCLUSION 

Wc have demonstratcd a watermarking embedder and 
detector that can process uncompressed digital video in 
real titnc. The testchip die photo indicating the blocks of 
the emhedder and detector is shown in Figure 8, along 
with a summary O S  the testchip features in Table 1 

ACKNOWLEDGMENTS 

The authors would like to thank CMC for facilitating the 

Figure 8. Watermarking testchip die photo 

chip fabrication, and NSERC of Canada for financial 
support. 

REFERENCES 

/ I ]  T. Kalker. G .  Depovere, I. Haitsma, and M. Maes. "A 
video watermarking system for broadcast monitoring," Pmc. 
SPIE, Security and Wnrennarking of Multimedia Cottiem. 
Vol. 3657, pp. 103-1 12. Jan. 1999. 

(21 L.De Strycker, P. Termont. J .  Vandewege, J.  Haitsma, T, 
Kalker, M. Maes, and G. Depovcrc. "Implementation of a real- 
time digital watermarking process for broadcast monitoring on 
a TriMedia VLlW processor", IEE Proc. !&ion, hnage and 
Signal Processing, Vol. 147, August 2000. 

[31 M. Maes, T. Kalker, J. Haitsma, and G. Depovere. 
"Exploiting shift invariance to obtain a high payload in digital 
image watermarking," Proc. IEEE h r .  Conference on Image 
Processbig, Vol. 2, pp. 7-12. October 1999 

[41 G. Petitjean. J .  L. Dugelay, S. Gabriele. C. Rey and J.  
Nicolai. "Towards Real-Time Video Watermarking for 
System-on-Chip", Proc. IEEE lnr. Cor$ on Mulrbnedia and 
E~rpo, 2002.10 appear. 

11-775 

Authorized licensed use limited to: Texas A M University. Downloaded on December 26, 2008 at 07:24 from IEEE Xplore.  Restrictions apply.


