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The design of a screw-type chaotic system in R3 is presented whereby the dynamical

equations are constructed using geometric methods that produce a vector field with the

desired properties. We utilize piecewise linear and constant dynamics for simplicity; the

piecemeal dynamics are combined using switching functions. An analysis of the system

shows invariance and the absence of equilibria — implying the existence of limit cycles

and strange attractors; a bifurcation diagram confirms the existence of these behavioral

modes and that the system undergoes a period-doubling cascade to chaos. We finally

present a hardware realization of this system, and oscilloscope traces showing a chaotic

system trajectory.
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1. Introduction

Systems exhibiting complex dynamics such as chaos are finding application in a
variety of contexts. For instance, the application of chaos to cryptography is dis-
cussed in [1, 2], while [3] considers its application to communications. The use of
complex dynamics to enable computation over the real numbers through the embed-
ding of a R2 discrete dynamical system (which encodes a Turing machine) within a
continuous R3 flow is discussed in [4, 5]. Further, the application of chaotic neural
network models in parallel distributed computation is presented in [6]. Hence, there
is considerable motivation to study methods of synthesizing dynamical systems with
specific properties that are amenable to implementation.

Rössler’s work in the 1970s produced some of the earliest studies of chaotic
systems in R3 from the perspective of designing them. In [7], Rössler modifies
a dynamical primitive for periodic oscillation to obtain chaos. Specifically, after
system trajectories rotate out of a region of state space (e.g., due to an unstable
focus), they are reintroduced (reinjected) back into the rotational region; the result
is a dynamical system whose flow embeds Smale’s horseshoe map — leading to
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chaos [8]. Beyond this, [9] presented several additional prototypes of chaotic motion,
including a mode Rössler termed “screw-type” chaos.

A survey of the literature yields a large body of more recent work pertaining to
the engineering of chaotic systems, of which a sample can be found in [10–18]. The
focus of these works include extending the types of attractor structures that could be
designed (e.g., multi-scroll and multi-screw attractors), exploring nonlinearities that
are more amenable to implementation (e.g., piecewise linear, piecewise constant,
and switching functions), electronic circuit implementation perspectives, and the
development of design and analytical techniques for chaotic systems.

Methods that use piecewise-linear or piecewise-constant dynamics to realize non-
linear systems are of particular interest due to the potential for economical imple-
mentation. Not only are the linear and constant “pieces” straightforward to realize,
but they can also be easily “stitched” together via switching and Boolean circuits to
construct the overall system. Moreover the simplified linear and constant dynamics
(leading to trajectories in state space that are exponential and linear, respectively)
makes these systems conducive to analysis (e.g., enabling the derivation of explicit
return maps) [14].

1.1. Contributions and outline of the paper

In this work we consider the development of a novel screw-type chaotic attractor
from a geometric perspective where the equations of motion are formed by con-
structing a vector field to realize the desired behavior. We address a realization for
screw-type chaos due to the relatively sparse treatment of circuit implementations
for screw-type chaos in the literature. Piecewise linear and constant dynamics are
used to implement the vector field in piecemeal fashion; Boolean functions are used
to stitch the pieces together to form the overall system. Section 2 explains the design
of our system, while section 3 presents some properties of the system such as in-
variance and bifurcation phenomenon (including the emergence of chaos). Section 4
presents our circuit realization and an oscilloscope trace from our implementation.
We conclude with some remarks on future work.

2. Vector Field Design of the Proposed System

2.1. Vector field design

Given the dynamical system ẋ = f(x), x := (x1, x2, x3) ∈ R3, the right-hand side
f : R3 → R3 defines a vector field over R3 such that at each state, x, the system
evolves according to the instantaneous velocity given by f(x). In this work we design
our system by first identifying the structure of the desired flow through state space,
from which the qualitative geometry of the vector field we wish to realize can be
obtained. We then develop a corresponding map that yields a vector field with this
geometric structure.

2.2. Screw-type chaos

In Rössler’s studies of chaotic dynamics, a suite of systems, each exhibiting different
prototypical chaotic modes were developed [9], including screw-type chaos. With
screw-type chaos, trajectories rotate along a quasi-cylindrical region (the “screw”
from which this mode of chaos derives its name [19]) of R3 until they exit from one
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end–the “top”–of the cylinder and reinject back into the “bottom” of the cylinder.
Figure 1 illustrates the structure of a vector field over R3 that yields a screw type
flow. The screw occupies the subsets labeled S+ and S−, while the reinjection
takes place through the subsets H1, H2 and H3. A typical system trajectory, Γ, is
indicated on the figure.

Fig. 1. Vector field structure of the proposed system. Horizontal vectors specify the x1 component

of motion, slanted vectors show the x2 component perpendicular to the page, and vertical vectors

show the x3 component. The curved vectors indicate rotation parallel to the x1 − x2 plane. Note:

the x2 > 0 region is behind the plane of the page.

2.3. Vector field design of screw-type chaos

Figure 1 illustrates the structure of a screw-type flow. The overall motion can be
divided into two submodes, rotation and reinjection, suggesting a piecewise con-
struction of the corresponding vector field, f : R3 → R3. Accordingly, we partition
the state space into disjoint, connected subsets, S := S− ∪ S+ (the screw, within
which rotation occurs) and H := H1 ∪ H2 ∪ H3 (within which reinjection occurs)
where:

S− = {x : x1 ≥ 0, x3 < 0}
S+ = {x : x1 ≥ 0, 0 ≤ x3 ≤ h3}
H1 = {x : x1 ≥ 0, x3 > h3}
H2 = {x : x1 < 0, x3 ≥ 0}
H3 = {x : x1 < 0, x3 < 0}

In Fig. 1, the black-on-grey and white-on-black labels denote various partitions of
R3 and the associated vector fields therein.

Within S, the dynamics in the x1 − x2 plane are decoupled from the dynamics
along the x3 axis and are those of a system oscillating sinusoidally about G := {x ∈
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S : x1 = c1, x2 = 0}. The dynamics in the x3 direction within S is constant and
positive, bringing the flow upwards towards H1. This is shown on the black-on-grey
labels in the figure. The following dynamical equations implement this behavior:

ẋ1 = −ωx2

ẋ2 = ω(x1 − c1)
ẋ3 = +v3

(1)

where ω sets the frequency of the x1 − x2 sinusoidal oscillator, c1 sets the bias of
the oscillator in the x1 direction, and v3 sets the speed of system trajectories in the
x3 direction.

The dynamics in H have a dual purpose:

• contracting the flow in the x2 direction

• reinjecting the flow from the top of S back into the bottom of S

Flow contraction is achieved by setting the x2 dynamics to asymptotically stabilize
the x2 = 0 plane (i.e., setting ẋ2 = −k2x2). To achieve reinjection, we design the
system using piecewise-constant dynamics to steer the flow and take trajectories
out of the “top” of S+ at x3 = h3 through H1, H2, H3, and back into S−. In H1

we allow the flow to continue in the +x3 direction while switching the x1 dynamics
to flow in the −x1 direction, bringing the system to H2. Within H2, the x1 motion
remains unchanged while the x3 motion switches to the −x3 direction. Arriving at
H3, the system maintains its x3 motion while switching the x1 component to flow
in the +x1 direction — towards the x3 < 0 part of S. This behavior is implemented
by the following dynamical equations:

ẋ1 =
{

+v1, x ∈ H3

−v1, x ∈ H1 ∪ H2

ẋ2 = −k2x2

ẋ3 =
{

+v3, x1 ≥ 0
−v3, x1 < 0

(2)

where v1 and v3 set the speed of trajectories in the x1 and x3 directions.
We can now combine the separate pieces of f defined above in (1) and (2) to

compose the overall dynamical system:

ẋ1 =




+v1, x ∈ H3

−v1, x ∈ H1 ∪ H2

−ωx2, x ∈ S

ẋ2 =
{

ω(x1 − c1), x ∈ S
−k2x2, x ∈ H

ẋ3 =
{

+v3, x1 ≥ 0
−v3, x1 < 0

(3)
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Fig. 2. Illustration of the vector field that gives rise to a sliding mode along the plane Σ (note:

x3 < 0).

3. Properties

3.1. Analysis

Lemma 3.1 (Subspace Transition Order). System (3) never remains in any one
subset indefinitely; transitions between subsets occur according to the following mech-
anism:

S+

�� ��

S−

��

��

H1
�� H2

�� H3

��

Proof. We have f(x) �= 0,∀x ∈ R3, precluding the existence of equilibria. As
well, the linear and constant dynamics that govern the system do not exhibit finite
escape times. In H, the result follows directly from the solution of (3) in H:

x(t) =


 x1(t)

x2(t)
x3(t)


 =


 x1(te) − v1(t − te)sgn(x3(t))

x2(te)e−k2(t−te)

x3(te) + v3(t − te)sgn(x1(t))




where the system enters subset He at time te (for e ∈ {1, 2, 3}), and xi(te) denotes
the coordinate of the ith state at time te (for i ∈ {1, 2, 3}). In S−, the system can
move to H3 since ẋ1 < 0 on the interface x1 = 0 for x2 > 0; otherwise, the solution
x3(t) = x3(te) + v3(t − te) ensures the system will reach S+ in finite time. Finally,
in S+ the system can move to H2 since ẋ1 < 0 on the interface x1 = 0 for x2 > 0;
otherwise, the solution x3(t) = x3(te) + v3(t− te) ensures the system will reach H1

in finite time.

The existence of a sliding mode. We note the existence of a sliding mode
(indicated above by H3 � S−) along the plane Σ := {x : x1 = 0, x2 > 0, x3 < 0}
between H3 and S− in which the x1 component of the vector field on both sides
of Σ point towards it. Figure 2 illustrates the vector field that points towards
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Fig. 3. Structure of the bounding region D.

Σ; as the figure indicates, and the equations of motion specify, on Σ, ẋ2 = −ωc1

(setting x1 = 0 in (3)), and hence will bring the x2 component of trajectories on
Σ to x2 = 0 in finite time. Hence trajectories sliding along Σ will reach the line
L := {x : x1 = 0, x2 = 0} � Σ in finite time, thus exiting the sliding mode.
Trajectories which reach L satisfy (x1 − c1)2 + x2

2 = c2
1 and hence will only return

to the plane {x ∈ S : x1 = 0} when x2 = 0 (i.e., they will not1 hit Σ again, nor will
they exit to H2 from S+).

Definition 3.1. Consider the regions of R3 illustrated in Figure 3; for x = (x1, x2, x3) ∈
R3, we define:

DH1 ={x : 0 ≤ x1 ≤ ξ2, |x2| ≤ c1, h3 < x3 ≤ −v3

v1
x1 + ξ3}

DH2 ={x : −ξ1 ≤ x1 < 0, |x2| ≤ c1, 0 ≤ x3 ≤ +
v3

v1
x1 + ξ3}

DH3 ={x : −ξ1 ≤ x1 < 0, |x2| ≤ c1,−v3

v1
x1 − ξ3 ≤ x3 < 0}

DS+ ={x : (x1 − c1)2 + x2
2 ≤ c2

1, 0 ≤ x3 ≤ h3}
DS− ={x : x1 ≥ 0, (x1 − c1)2 + x2

2 ≤ 2c2
1,−ξ3 ≤ x3 < 0}

D =DH1 ∪ DH2 ∪ DH3 ∪ DS+ ∪ DS−

C ={x : x1 ≥ 0, (x1 − c1)2 + x2
2 ≤ 2c2

1, 0 ≤ x3 ≤ ζ3}
CT ={x : x1 ≥ 0, (x1 − c1)2 + x2

2 ≤ 2c2
1, x3 = ζ3} ⊂ C

where:
ξ1 =

v1

v3
h3 + ξ2, ξ2 = 2c1, ξ3 = h3 +

v3

v1
ξ2, ζ3 =

2πv3

ω

1We note, however, that in the case of systems realized physically (as opposed to systems simulated

via numerical integration where tests for equality can be done accurately), effects such as non-ideal

switching may cause these transitions to occur.
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Further, we denote the surface of D ∪ C by surf(D ∪ C).

Lemma 3.2 (Surface Vector Field). Let nl(x) denotes the family of vectors (pa-
rameterized by l > 0) normal to surf(D ∪ C) − CT at x. Then:

pl(x) = nl(x) · f(x) ≤ 0, ∀x ∈ surf(D ∪ C) − CT

Proof. On the curved surfaces of DS− , DS+ and C:

pl(x) = l


 x1 − c1

x2

0


 ·


 −ωx2

ω(x1 − c1)
v3


 = 0

while on the x3 = −ξ3 face of DS− :

pl(x) = l


 0

0
−1


 ·


 −ωx2

ω(x1 − c1)
v3


 = −lv3 < 0

On the |x2| = ±c1 planes bounding DH1 , DH2 and DH3 :

pl(x) = l


 0

sgn(x2)
0


 ·


 ±v1

−k2x2

±v3


 = −lk2|x2| < 0

while on the slanted planes:

pl(x) = l


 v3sgn(x1)

0
v1sgn(x3)


 ·


 −v1sgn(x3)

−k2x2

v3sgn(x1)


 = 0

and on the x3 = h3 face of DH1 :

pl(x) = l


 0

0
−1


 ·


 −v1

−k2x2

v3


 = −lv3 < 0

Theorem 3.1 (Invariance). Let h3 > ζ3. For any state in D, the system will
forever remain within D ∪ C.

Proof. By Lemma 3.2, no trajectory started in D ⊂ D ∪ C can leave through
surf(D ∪ C) − CT since the vector field never points out of this surface. Thus, the
only mechanism for escape is through the unaccounted surface, CT .

By Lemma 3.1, solutions entering C must enter from DS− at x3 = 0 and satisfy
(x1 − c1)2 +x2

2 ≤ 2c2
1. The dynamics in the x1 −x2 plane in S causes trajectories to

rotate about G with period 2π
ω . For (x1 − c1)2 − x2

2 ≤ c2
1, the system will remain in

DS+ , by definition. Otherwise, if c2
1 < (x1 − c1)2 − x2

2 ≤ 2c2
1, the system will enter

x1 = 0 with 0 < x2 ≤ c1 prior to executing a full rotation (i.e., ∆t < 2π
ω ); since, in

this region, ẋ1 < 0 and |x2| ≤ c1, the system will then move to DH2 , by definition.
As ẋ3 = v3 and ∆t < 2π

ω , this exit from C to DH2 occurs at x3 < 2πv3
ω = ζ3 which

is strictly below CT .
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Fig. 4. Bifurcation diagram for the system with parameters (v1, v3, c1, h3, k2) = (1, 1, 5, 10, 1) and

initial state (0.1, 0.1, 0.1); the ω axis has a step size of 0.0005. The simulation was run for 4000 s

and the local maxima of x3 were plotted on the vertical axis (the first half of the set of maxima

were discarded to remove transients).
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(a) Period-one cycle (ω = 0.7)
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(b) Period-two cycle (ω = 0.55)

−20 −15 −10 −5 0 5 10
−5

0

5

−20

−15

−10

−5

0

5

10

15

20

x
2

x

x 3

(c) Chaotic (ω = 1)

Fig. 5. Behavioral modes.

3.2. Bifurcation diagram and behavioral modes

The results of the previous section indicate that under appropriate conditions the
system stays confined to a bounded region of state space. In R3, this implies
the existence of stable limit cycles, strange attractors or quasiperiodic trajectories
(equilibria being precluded by Lemma 3.1). To investigate the change in system
behavior as ω is varied, we generated the bifurcation diagram of Fig. 4. We see
that as ω is varied, the system undergoes a period-doubling cascade into chaos [20].
That chaos should manifest itself is not surprising since various features of chaotic
systems are present including the reinjection of flows that have been rotated [9] and
dissipation (controlled by k2). Three behavioral modes are shown in Figs. 5(a)-5(c).



October 1, 2009 12:29 WSPC/167-FNL 00504

Vector Field Design of Screw-Type Chaos L377

Fig. 6. Hardware topology for the proposed chaotic system.

4. Implementation

Figure 6 illustrates the architecture of our circuit realization, where the Boolean
function, g(x), is defined as:

u1[0] =(x1 < 0) ∩ (x3 < 0)
u1[1] =¬(u1[0])∩

¬{(x3 > h3) ∪ [(x3 ≥ 0) ∩ (x1 < 0)]}
u2 =(x1 ≥ 0) ∩ (x3 ≤ h3)
u3 =x1 ≥ 0

and ¬, ∩, and ∪ represent logical NOT, AND, and OR, respectively.

Fig. 7. Circuits used to realize the architecture.

Using the circuits of Fig. 7, the system was constructed. Figure 8(b) shows an
oscilloscope trace for the projection of a chaotic system trajectory on the x1 − x3

plane.
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(a) x1 − x2 projection (b) x1 − x3 projection (c) x2 − x3 projection

Fig. 8. Oscilloscope traces.

5. Conclusion

We presented the vector field design of a novel dynamical system that exhibits screw-
type chaos. The behavior of the system is confirmed via numerical simulations and
experimental results from an electronic circuit realization. Future work will extend
the approach to the design of more general structures such as multi-screw and
multi-scroll attractors.
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[19] C. Letellier, E. Roulin and O. Rössler, Inequivalent topologies of chaos in simple
equations, Chaos, Solitons and Fractals 28 (2006) 337–360.

[20] K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos: An Introduction to Dynamical
Systems, Springer-Verlag, New York (1996).


