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1 Introduction
Wireless ad-hoc sensor networks (WSNs) consist of ran-

domly and densely deployed nodes which self-organize to
cooperatively maintain multi-hop network connectivity [1].
The nodes act as both environmental sensors and network
routers. The ability to set up distributed sensor networks in-
expensively, in large-scale, quickly, and without fixed infras-
tructure makes them a promising candidate for a host of ap-
plications, including military surveillance and disaster relief.

Recently, there has been increased interest in an emerg-
ing subclass of WSNs known as directional sensor networks
(DSN) [1, 2] consisting of nodes that employ a directional
communication paradigm. Two common scenarios where
DSNs occur are; (1) directional radio frequency employing
directed antennas, and; (2) free space optical employing di-
rectional line-of-sight lasers.

Directional communication has a number of advantages
over omni-directional communication in ad hoc networking,
including significantly increasing network lifetime by reduc-
ing communication energy and multi-path components [1].
Randomly deployed DSNs however pose additional chal-
lenges to network connectivity, due to link directionality.

Connectivity, defined to mean that a path exists between
any pair of network nodes, is of particular significance in or-
der to maintain communication among nodes. One important
approach to connectivity analysis of ad hoc networks studies
the conditions under which isolated nodes occur in the net-
work. Even though ensuring that no isolated network node
occurs is a necessary albeit insufficient condition for con-
nectivity, recent studies show that for dense networks with a
large number of nodes n, with high probability the network
is connected at the moment it achieves no isolated node [3].
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This key result implies that the probability that no iso-
lated node occurs pd provides a tight upper bound for the
probability that the network is connected pc, for large n and
probabilities close to one [3], and motivates our study of
the relationship amongst network parameters that guaran-
tee with high probability a ”no isolated node” property for
DSNs. The fundamental question we address in this paper,
and which is of practical importance in network-level simu-
lation of DSNs, is: How may network parameters be chosen
so that with high probability pd , there is no isolated node?

2 Directional Sensor Network Model
We assume a set Sn = {si : i = 1,2, · · ·n} of n directional

nodes, are randomly and densely deployed in a given two di-
mensional region according to a Uniform distribution. Each
node si ∈ Sn has an equal and independent likelihood of
falling at any location ϒi ∼ Uniform(0,1)2 and facing any
orientation Θi ∼ U(0,2π]. The resulting n-node multi-hop
DSN, defined by parameters n,r and α has been modeled [2].

DSN nodes employ a directional transmitter. Conse-
quently, each node si can send data within a contiguous, ran-
domly oriented sector −α

2 + Θi ≤ Φi ≤ +α
2 + Θi of radius r,

and fixed angle α∈ [0,2π] radians, as depicted in Figure 1(a).
Therefore a sector area of communication Φi defined by the
4-tuple (ϒi,Θi,r,α) is associated with each node si.

The receiver is omni-directional so that si may directly
talk to s j (denoted si → s j) if and only if ϒ j ∈ Φi. However,
s j can only talk to si via a multi-hop back-channel or reverse
route, with other nodes acting as routers along the reverse
path (unless of course ϒi ∈ Φ j). Figure 1(b) illustrates the
reverse route: s j → sa → sb → sc → si. The case α = 2π
represents the conventional omni-directional communication
paradigm, modeled as a random geometric graph (RGG).

We model the DSN topology as a directed graph
Gn(Sn,E) consisting of a vertex node set Sn and edge set
E , where every edge is an ordered pair of distinct nodes.
The edge matrix E(i, j)1≤i, j≤n = 1 if ϒ j ∈ Φi (i.e., si → s j);
and 0 otherwise, represents the n× n Adjacency matrix of
Gn(Sn,E) with one row and one column for every node. Fig-
ure 1(c) depicts a simulated 200-node DSN.

Unlike the RGG, the directional paradigm requires that
two distinct sets of neighbors be defined for each node. The
set of si’s successors Si =: {sk},∀k : E(i,k) = 1 of cardinal-
ity δ+

i consisting of nodes si transmits to, and the set of si’s

predecessors Pi =: {sh},∀h : E(h, i) = 1 of cardinality δ−i
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(a) Node si transmits within sec-
tor Φi defined by the 4-tuple
(ϒi,Θi,r,α). Node si → s j if s j ∈
Φi, but s j → sa → sb → sc → si.

(b) A simulation scenario
200-node DSN in a square
region area 1m2, with r =
0.2m and α = 40o

Figure 1.

consisting of nodes si receives from. Node si is termed f-
isolated if δ+

i = 0, otherwise it is f-connected; and similarly

it is b-isolated if δ−i = 0, otherwise it is b-connected. A node
is connected if it is both f-connected and b-connected, else it
is isolated (i.e., either f-isolated, b-isolated or both).

3 Analysis on Probability of Node Isolation
We denote pi

f = Pr[δ+
i > 0] and pi

b = Pr[δ−i > 0] as the

probability that node si is not f-isolated and b-isolated re-
spectively. Node si is connected (not isolated) if it is both
f-connected and b-connected with probability

pi
d = pi

f ∩ pi
b = pi

f .p
i
b| f (1)

where ∩ is the intersection operator and pi
b| f is the probabil-

ity that si is b-connected, given that it is f-connected.
Evaluating pi

f : Employing spatial point statistical meth-

ods [3], it is known that the number of nodes k located in Φi

follows a Poisson ∼ nαr2

2 , so that δ+
i has the pdf (for n large):

Pr[δ+
i = k] =

e
−nαr2

2

(
nαr2

2

)k

k!

and pi
f = Pr[δ+

i ≥ 1] = 1−Pr[δ+
i = 0] = 1− e

−nαr2

2 (2)

Evaluating pi
b| f : Assume si is f-connected (ϒ j ∈ Φi) so

that Si 	= /0. For independently deployed nodes, let us fix a
node s j ∈ Si, j ∈ {1,2, · · ·n}, j 	= i, and consider two events

(A and B) such that pi
b| f = Pr[A]∪Pr[B].

(1) Pr[A]: Considering nodes outside Φi, pi
b equals pi

f .

(2) Pr[B]: Given si → s j, then Pr[s j → si] = α
2π , and Pr[at least

one of k nodes in Si is in Pi] = 1− (1− α
2π )k. Then Pr[B] =

Pr[k nodes ∈ Si]× Pr[at least one of the k nodes ∈ Pi] is:

Pr[B] =
n−2

∑
k=1

Pr[δ+
i = k]−

n−2

∑
k=1

Pr[δ+
i = k](1− α

2π
)k+1

= 1−
(

1− α
2π

)n−2

− e
−nαr2

2

(
1− α

2π

)[
e
(

nαr2

2 − nα2r2

4π

)
−1

]

Substituting pi
b| f = Pr[A]+Pr[B]−Pr[A].Pr[B] we obtain:

pi
b| f = 1− e

−nαr2

2

(
1− α

2π

)n−2
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Figure 2. pd for varying r and α with n = 500

−e−nαr2
(

1− α
2π

)[
e
(

nαr2

2 − nα2r2

4π

)
−1

]
(3)

Evaluating pi
d : Substituting Eqn. 2 and 3 into Eqn. 1 yields:

pi
d =

[
1− e

−nαr2

2

][
1− e

−nαr2

2

(
1− α

2π

)n−2

−e−nαr2
(

1− α
2π

)(
e
(

nαr2

2 − nα2r2

4π −1
))]

(4)

Concluding, pd = (pi
d)

n, where pi
d is derived in Eqn. 4. Our

result extends the work of [3], yielding the relationship be-
tween n,r,α, and pd for general sensor networks Gn(Sn,E).

4 Simulations and Discussions
For our simulations, we employ a uniform random gener-

ator to randomly position and orient n = 500 nodes in a unit
area square region. With r varying and α set at representa-
tive values of 40o,90o (Fig. 2(a)) and 180o,360o (Fig. 2(b)),
we employ Euclidean distance metric to obtain E , and count
the number of isolated nodes nI of the resulting Gn(Sn,E).
We then compute pd(Euc) as 1− nI/n. Repeating the ran-
dom topology simulations 1000 times and averaging yields
an acceptable confidence for the empirical pd . To eliminate
border effects [3], we conduct a second set of similar simu-
lations using Toroidal metric to compute E and pd(Tor).

Fig. 2 depicts the analytical and simulation (Euc. and
Tor.) pd plots. We observe that our simulations follow the
analytical curves closely, while the Toroidal metric mitigates
border effects quite well. However, we note that as α → 0
the disparity between analytical and simulation pd grows.
PROPOSITION 1. Let rc and rd denote the minimum r at
which Gn(Sn,E) is connected and attains no isolated node
respectively. Then Pr[rc = rd ] → 1 as n → ∞ and α → 2π.
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