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Abstract—In designing wireless multihop sensor networks, determining system parameters that guarantee a reasonably connected

network is crucial. In this paper, we investigate node isolation in wireless optical sensor networks (WOSNs) as a topology attribute for

network connectivity. Our results pertain to WOSNs modeled as random-scaled sector graphs that employ directional broad-beamed

free space optics for point-to-point communication. We derive a generalized analytical expression relating the probability that no node

is isolated to the physical layer parameters of node density, transmitter radius, and angular beam width. Through simulations, we

demonstrate that for probability values close to 1, dense networks, and increasing beam width, the probability that the WOSN is

connected is tightly upper bounded by the probability that no isolated node exists. In addition, our study demonstrates conditions for

probabilistic K-connectivity guarantees and provides empirical insights on the impact of clustering on connectivity by employing

simulations to validate analytical derivations. Our analysis provides a methodology of practical importance to choosing physical layer

parameter values for effective network level design.

Index Terms—Wireless optical sensor networks, node isolation, K-connectivity, hierarchical random-scaled sector graph.
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1 INTRODUCTION

THE need for untethered communications and computing
continues to drive advances in mobile communications

and wireless networking. To serve this purpose, wireless
sensor networks (WSNs) have been envisioned to consist of
groups of lightweight sensor nodes that may be randomly
and densely deployed to observe data within a physical
region of interest. The nodes form an ad hoc multihop
network, communicating their sensor readings to a base
station. The connectivity of these self-organizing WSN
systems is critical for reliable sensing and inference
capabilities [1].

Conventionally, sensor network research has focused on

nodes that transmit (and receive) data via omniangle radio

frequency (RF) technology. Modeled as a geometric random

graph (GRG), two nodes si and sj establish a bidirectional link

or edge denoted as si  ! sj, if they are within a fixed

placement distance r (known as communication radius) [2].

Recently, however, there has been increased interest in the

development of wireless optical sensor networks (WOSNs) [3],

[4], [5], [6] composed of nodes whose point-to-point com-

munication paradigm employs directed broad-beam free

space optics (FSO); WOSNs transmit by scanning a direc-

tional line-of-sight (LOS) laser beam over a “pie-shaped”

angular sector. WOSNs have recently been modeled as a
random-scaled sector graph (RSSG) [7]. Here, a directed link or
edge denoted as si ! sj is established from node si to sj if and
only if sj falls within si’s communication sector. A path from
sj to si may likely consist of a multihop reverse back channel
denoted as sje>si, which employs a sequence of other nodes
acting as routers.

Interest in WOSNs is motivated, in part, by increased
spatial reuse for communications, smaller node size, ultra-
high bandwidths, and reduction in interference and ex-
pended energy for the same transmission radius (thus
increasing network lifetime and throughput). Furthermore,
security is enhanced due to the reduced spatial signature for
communications making eavesdropping more difficult. One
of their biggest challenges, however, involves establishing
network connectivity especially for random deployments.
While solutions have been proffered for random RF WSN
connectivity, to the best of our knowledge, the correspond-
ing problem for WOSNs has not been previously addressed.
This paper seeks to address the WOSN connectivity
problem, and present analytic results that yield constraints
on physical layer parameters of WOSN nodes such that
probabilistic connectedness of the network is guaranteed.

1.1 Ad Hoc Network Connectivity and Node
Isolation

Connectivity is often viewed as a metric for the robustness,
survivability, or fault tolerance of networks, and has also
been related to the value of a network [8]. Traditionally, a
network is said to be connected if, for every possible node
pair, there exists at least one path (sequence of nodes and
edges) connecting them. For a directed network, which is
composed of directed edges, a strongly connected network is
one in which, for every node pair ðsa; sbÞ, both paths sae>sb
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and sbe>sa exist [9]. In this paper, unless ambiguous, we
shall refer to the “strongly connected” property of WOSNs
simply as “connected.”

For randomly deployed ad hoc networks, an exact
closed-form expression relating physical layer parameters
to the degree of connectivity remains an open problem. A
more tractable approach relates the conditions under which
there is no isolated network node to network connectivity;
this has been studied for RF WSNs [10], [11], but not
directional networks. Obviously, the occurrence of isolated
nodes undermines the goal of achieving a connected
network; the existence of even a single isolated node
implies that the network is necessarily disconnected. Thus,
a connected network implies that there are no isolated
nodes; however, the converse is not true. Fig. 1 demon-
strates how for WOSNs even though there are no isolated
nodes, the network is not connected due to link direction-
ality and partitions; for example, sbe>sa does not exist, even
though sa ! sb exists, and nodes in the partition cannot
communicate to other nodes in the network. Therefore,
guaranteeing that no isolated node exists provides only a
necessary condition for connectivity albeit it is an important
starting point.

Recently, it was demonstrated for RF WSNs that the
probability that no isolated node occurs is a tight upper
bound for the probability that the network is connected as
the number of nodes n!1 and for probabilities close to 1
[10], [11]. This result further motivates our study of network
conditions and parameters that ensure a “no isolated node”
property, and its relevance to network connectivity for
WOSNs. One issue we address in this paper is whether the
results of [10] for RF WSNs also apply to the WOSN
network model.

1.2 Contributions

We employ probabilistic methods to address the parameter
assignment problem for a WOSN. We study how the number
of nodes n, communication radius r, and communication
laser beam width � should be selected to guarantee with
high probability that there is no isolated WOSN node, and
how the results relate to actual connectivity. First, we
introduce the notion of two distinct neighborhoods for each
WOSN node facilitating the derivation of an analytical

expression for the probability pd that no isolated node
occurs as a function of n; r, and �. Second, we compare our
analytic expressions with empirical results to demonstrate
that similar properties presented in [10] for omnidirectional
RF WSNs also hold for WOSNs as �! 2�. Third, we
analyze the impact of hierarchy on WOSN connectivity as a
function of the fraction of cluster head nodes to empirically
show that clustering improves connectivity. The WOSN
analysis also relates, in part, to emerging hybrid RF/FSO
and directional RF networks [12]; thus, our discussion of
connectivity for WOSNs also serves as a first step to the
analysis of such emerging ad hoc networks.

The next section presents related work, while Section 3
introduces the WOSN network model. Section 4 presents a
probabilistic analysis and simulations for the WOSN node
isolation property. Section 5 provides insights into the
probability of connectivity for the WOSN and its relation to
node isolation, and explores the impacts of clustering on
hierarchical connectivity. Concluding remarks are pre-
sented in Section 6.

2 WSN CONNECTIVITY

In general, a connected network is desirable for optimal
functioning of mechanisms such as neighborhood discov-
ery, routing, and clustering. Equally important for net-
work performance are issues involving energy constraints
and shared communication medium. For this reason,
connectivity analysis often involves identifying minimum
values for communication range r and/or number of
nodes n that guarantee a connected network. Minimizing r
effectively minimizes the energy expended by each node
for communications optimizing network lifetime, while
minimizing n reduces interference from neighboring nodes
optimizing throughput.

Formally, this analysis is related to the range assignment
problem defined as follows for RF WSNs: given a set of
n nodes randomly deployed in a geographical region of fixed
area, all having the same r, what is the minimum value of r that
ensures the resulting GRG network is connected? The solution
is crucial for defining WSN design guidelines that
minimize cost answering questions as to the type of
transceiver that should be employed in each node
(classified by the value of parameters such as r) and the
number of nodes that should be dispersed. Other general-
ized variants of the problem (in which the transmission
range is different for each node) exist that are shown to be
NP-hard, but we do not consider them.

One approach to the RF WSN range assignment problem

applies asymptotic reasoning to provide connectivity assur-

ances as the region size or n grows to infinity. In a pioneering

paper on the critical node transmit power to ensure a

connected network, Gupta and Kumar [2] employ results

from continuum percolation theory and random graphs to

derive a sufficient condition on r as a function of n. They

show that for n nodes uniformly deployed in a planar unit

area disk, if r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞþcðnÞ

�n

q
, then the GRG network is

asymptotically almost surely (a.a.s.) connected (as n!1
with probability 1), only if limn!1 cðnÞ ¼ þ1, where cðnÞ is

a constant. In [13], Santi and Blough present related
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Fig. 1. The WOSN has no isolated nodes since every node has both an

incoming and an outgoing link. However, the overall network is not

(strongly) connected due to the network partition and link directionality.



connectivity results for sparse networks by introducing a

geometric parameter that bounds the deployment area.
Other papers have analyzed asymptotic connectivity of

the GRG with respect to the minimum number of neighbors
required by each node in a k-neighbor model. In [14],
Kleinrock and Silvester optimize an objective throughput
function based on the average number of neighbors, and
suggest that a fixed magic number of neighbors equal to six
is sufficient to guarantee network connectivity, regardless
of the value of n. Takagi and Kleinrock [15] later revised this
magic number to eight. In [16], Xue and Kumar show that
there is no magic number, but rather that the number of
neighbors required grows as �ðlognÞ. In particular, they
show that this number must be larger than 0:074 logn and
less than 5:1774 logn. In [17], the authors show an improved
lower bound for the number of neighbors of 0:129 logn.

More generally, Penrose studied k-connectivity of GRG
networks deployed in d-dimensional cubes for d � 2 [18].
He proved that for n!1, the minimal r for which the
graph is almost surely k-connected is equal to the minimum
r that ensures with probability one that each node has at
least k neighbors. Thus, to guarantee connectivity in dense
networks, it suffices to adjust r until each node has at least
one neighbor (i.e., no isolated node exists in the network).

Employing a probabilistic approach and nearest k-neigh-

bor methods, Bettstetter [10] showed that for a �-density

network, no isolated node occurs with probability at least p

if r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� lnð1�p1=nÞ

��

q
. Leveraging the results of [18] and

assuming that boundary conditions are compensated for,

he empirically demonstrates that for nodes deployed in a

bounded region, n!1 and p! 1, the probability that no

isolated node occurs yields a tight upper bound on the

probability that the network is connected. A related analysis

of range assignment in the presence of fading links has also

been considered [19].
While prior art provides insightful results, most research

pertains to omnidirectional RF WSNs modeled as GRGs
with the exception in [7] that considers WOSNs. In [7], Diaz
et al. employ asymptotic arguments (n!1) to show that
for the same constraint on r as obtained in [2], with high
probability, any edge in the undirected GRG associated to a
WOSN may be emulated by a path of length at most four in
the directed RSSG induced by the WOSN. They also
provide asymptotic bounds on the expected maximum
and minimum in and out degree of nodes to achieve a
connected WOSN. While of great theoretic interest, the
results lack real-world applicability in WSN scenarios
involving finite-area deployment regions and number of
nodes. For this reason, we consider a probabilistic approach
to network connectivity and the parameter assignment
problem in dense WOSNs.

Our novel analysis follows the probabilistic flavor of [10],
but applied to the RSSG model pertaining to WOSNs. We
also, for the first time, investigate the relevance of node
isolation to network connectivity as in [18], but in regard to
WOSNs. Additionally, we consider the effects of hierarchy
and clustering on the connectivity of heterogeneous
WOSNs that include a sparse subnetwork of randomly
placed FSO cluster heads. We expect that our results will

impact practical neighborhood discovery and routing
algorithms for emerging WOSNs [20], [21].

3 DIRECTIONAL SENSOR NETWORK MODEL

Consider a set Sn ¼ fsi : i ¼ 1; 2; � � �ng of n WOSN nodes,

randomly and densely deployed in a bounded, unit area,

planar square region A ¼ ½0; 1�2 according to a uniform

distribution. Each sensor has an equal and independent

likelihood of falling at any location in A, and facing

any orientation. Let vectors x ¼ ðx1; x2; � � �xnÞ and y ¼
ðy1; y2; � � � ynÞ represent the ðx; yÞ position coordinates of Sn
such that ðxi; yiÞ � Uniformð0; 1Þ2. For ease of reference, let

�i ¼ ðxiyiÞ be si’s point position, where � ¼ ðxyÞ. The vector

� ¼ ð�1;�2; � � ��nÞ depicts the random orientations asso-

ciated with Sn such that �i � Uniform½0; 2�Þ; 8si 2 Sn. The

spatial distribution of the nodes is modeled as a

homogenous Poisson point process [22], [23] of density
n
jAj , where jAj is the area of A, which is unity in our case,

making n the network density of our deployment region.
Directional optical sensor nodes employ a directed

broad-beam FSO transmitter suitable for short-range net-
working applications [24]. By scanning a laser beam across
an angular sector, each node si can send data within a
contiguous, randomly oriented communication sector � �

2 þ
�i � �i � þ �

2 þ�i of radius r and angle � 2 ½0; 2�Þ radians,
as depicted in Fig. 2a, where �i is the orientation of si. The
communication sector �i which is completely defined by the
4-tuple ð�i;�i; r; �Þ is associated with node si. The node’s
receiver is omnidirectional (employing several photodetec-
tors [24]) implying that si may directly talk to sj (denoted as
si ! sj) if and only if �j 2 �i. However, sj can only talk to si
via a multihop back channel or reverse route, with other
nodes in the network acting as routers along the reverse
path, unless, of course, �i 2 �j. In the illustration of Fig. 2b,
an example of a reverse route for sje>si : sj ! sa ! sb !
sc ! si is shown. Naturally, in discovering a multihop-
directed reverse path, the notion of a circuit, first proposed
for routing in [25], results and serves as the fundamental
mechanism for bidirectional communication in WOSNs.

The random multihop WOSN cooperatively formed by
Sn is defined by parameters n; r, and � and is modeled as an
RSSG that is formally defined as follows [7]:
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Fig. 2. (a) Each WOSN node si transmits within a sector �i defined by
the 4-tuple ð�i;�i; r; �Þ. (b) Node sj can only hear node si as it falls into
si’s communication sector; however, sj transmits to si via the back
channel sj ! sa ! sb ! sc ! si.



Definition 3.1. For any natural n, fixed angle � and range r, let

Sn ¼ fsig1�i�n be a sequence of independently and uniformly

distributed (i.u.d.) random vertices in ½0; 1�2, and let � ¼
ð�iÞ1�i�n be a sequence of i.u.d. angles in ð0; 2�� associated

with Sn. Let E represent the n� n adjacency matrix such that

the matrix elements are assigned values: Eði; jÞ1�i;j�n ¼ 1 if

and only if si ! sj exists. Graph GðSn; EÞ is a random-scaled

sector graph.

As common, a fraction of the WOSN nodes play the
functional role of cluster heads (CHs) [26], [27], network
gateways that employ advanced hardware such as passive
corner cube retroreflectors (CCRs) to establish bidirectional
communications with the base station. CHs can send/
receive data directly to/from the base station on behalf of
other nodes in their associated clusters. We mark a node sk,
which is a CH with an asterisk to give s	k, and denote the set
of CH nodes by CH.

3.1 Graph-Theoretic Framework

We model the n-node WOSN topology as a directed random
graph GnðSn; EÞ with vertex set Sn and edge set E, where
every edge is an ordered pair of distinct nodes and E
represents the n� n adjacency matrix [9] such that:

Eði; jÞ1�i;j�n ¼
1; if �j 2 �i

0; otherwise

� �
indicates that si ! sj exists or not, respectively, Eði; iÞ ¼
0 8i disallows self-loops, and directionality implies
Eði; jÞ 66¼ Eðj; iÞ necessarily, 8i; j. We assume that a virtual
bidirectional grid connects all CHs via the base station so
that Eðk; lÞ ¼ Eðl; kÞ ¼ 1; 8s	k; s	l 2 CH. In contrast to the
GRG model [18], the adjacency matrix for WOSNs is
sparser and nonsymmetric.

The directional paradigm necessitates that two distinct
sets of neighbors be defined for each WOSN node:
successors and predecessors. This distinction is significant to
the connectivity analysis of WOSNs since a given node’s
successor may not necessarily be its predecessor (see Fig. 3),
and the probability that a node’s successor is also its
predecessor depends on the value of �, with direct
implications on the connectivity of the WOSN. The set Si
of si’s successors is defined as: Si ¼: fskg; 8k : Eði; kÞ ¼ 1;
and consists of nodes that fall within �i such that si can
transmit data to such nodes. The cardinality of Si is
equivalent to si’s out degree. Similarly, the set Pi of si’s
predecessors is defined as Pi ¼: fshg; 8h : Eðh; iÞ ¼ 1 and
consists of nodes whose communication sectors si fall into,

so that si can receive data from such nodes. The cardinality
of Pi is equivalent to sis in degree [9].

Let us denote �þi ; �
�
i 2 IN (where IN is the set of natural

numbers) as the random variables counting the number of

successors and predecessors of si, respectively. We say that si
is forwardK-isolated or simply fK-isolated if �þi < K, other-

wise it is fK-connected, with bK-isolated and bK-connected

similarly defined with respect to ��i . For example, si is

f1-isolated if �þi ¼ 0, and f1-connected if �þi > 0. A node is

K-connected if it is both fK-connected and bK-connected,

otherwise it is directionally K-isolated (i.e., either fK-isolated,

bK-isolated, or both). In this paper, for ease of reference,

1-connected and directional 1-isolated properties are simply

referred to as connected and directionally isolated, respec-

tively. Note that our definition of a directionally isolated node

encompasses nodes that are only partially connected (i.e.,

either �þi ¼ 0 or ��i ¼ 0) as such nodes are undesirable in our

goal of attaining a strongly connected WOSN. Where there is

no risk of confusion, we refer to a directionally isolated

WOSN node simply as an isolated node.
There is no K-isolated node in GnðSn; EÞ if 8si 2 Sn;

�þi � K, and ��i � K. For a K-connected node, the greater

the value of K, the greater its number of neighbors; Figs. 3a

and 3b illustrate a node si that is f3-connected and b3-

connected, respectively. A greater value of K is attractive

because a network GnðSn; EÞ in which every node has a

minimum threshold of K neighbors has a higher likelihood

of multiple paths between nodes suggesting greater net-

work redundancy for robustness to link or node failure.

4 ANALYSIS ON NODE ISOLATION

Our first task considers the relationship between WOSN

parameters when we require that no isolated node exists

with probability pd. To gain insight, we first consider the

probability pid that a node si 2 Sn is not isolated. Let pif ¼
Pr½�þi > 0� and pib ¼ Pr½��i > 0� denote the probabilities that

si is not f1-isolated and not b1-isolated, respectively. Recall

that the set of directionally isolated nodes consists of the

union of f1-isolated and b1-isolated nodes so that simply:

pid ¼ pif\b ¼ pif :pibjf ; ð1Þ

where \ is the intersection operator, pif\b denotes the
probability that si is both b1-connected and f1-connected
(i.e., not directionally isolated), and pibjf denotes the
conditional probability that si is b1-connected given it is
f1-connected. Our next step then toward determining pid is
to evaluate pif and pibjf . The reader should note that we
choose to conduct our analysis via conditional instead of
joint probabilities because it is easier in the former setting
to model the dependence between �þi and ��i and its
relation to �. For instance, if si has forward (backward)
neighbors, then there is a higher likelihood that it will have
one or more backward (forward) neighbors because it is
known that there are nodes within the r proximity albeit
they may not be at the right angle in relation to si. The
larger the value of �, the greater the dependence/
similarity between �þi and ��i .

1430 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 8, NO. 10, OCTOBER 2009

Fig. 3. Distinct neighborhoods of a WOSN node si. (a) Successors:
sj; sk; sl. (b) Predecessors: sf ; sg; sh.



4.1 Evaluating pif
Lemma 4.1. For n!1 and r
 1, node si is f1-connected with

probability pif given as

pif ¼ Pr½�þi � 1� ¼ 1� e�n�r
2

2 : ð2Þ

Proof. We first consider the probability of the complemen-

tary event that si has no forward neighbors. The random

deployment can be modeled as a Poisson distribution

with a density of n!1 and for r
 1 in the unit area

region. Therefore, on average, the number of forward

neighbors for node si is expected to be n �r2

2 , where, as

illustrated in Fig. 3a, �r2

2 is the pie-shaped sector area

where a node must lie to be a forward neighbor of si.

Thus, the probability that si is f1-connected is: pif ¼
Pr½�þi � 1� ¼ 1� Pr½�þi ¼ 0� ¼ 1� e�n�r

2

2 . tu

4.2 Evaluating pib
Lemma 4.2. For n!1 and r
 1, node si is b1-connected with

probability pib equal to pif .

Proof. The problem is analogous to an area coverage

problem, in which si is “covered” if it lies within the pie-

shaped communication sector of any other node as

shown in Fig. 3b; si is b1-connected if �i 2 �j for any

j 6¼ i. Similar to the proof of area coverage derived for

the general case in [28], we consider the WOSN with

n nodes as points that are uniformly located in a unit

area region. The probability that any point �i does not

fall within an arbitrary sensor’s communication sector

equals ð1� �r2

2 Þ, where �r2

2 is the area of the sector.

Conditioned on the number of nodes n, the probability

that node si does not lie within any node’s communica-

tion sector (i.e., si is not covered) is ð1� �r2

2 Þ
n [22]. For

large n and r
 1, the Binomial is well approximated as

a Poisson distribution so that: Pr½si is not covered� ¼ e�n�r
2

2

and so: pib ¼ 1� e�n�r
2

2 . tu

4.3 Evaluating pibjf
Lemma 4.3. For n!1 and r
 1, node si is b1-connected

given it is f1-connected with probability:

pibjf ¼ 1� e
�n�r2

2

1� e�n�r
2

2

1� �r
2

2

� �n�1

e
½n�r

2ð2���Þ
2�ð2��r2Þ

� � 1

� �
:

Proof. Assume that si is f1-connected so that �þi � 1. We
evaluate pibjf ¼ Pr½��i � 1j�þi � 1�. Following our model
with independently deployed nodes assumed, we con-
sider two disjoint cases for which si may attain b1-conn-
ectivity given it is already f1-connected:

Case 1. The event that si has no bidirectional link with
any of its successors, denoted as “no bi,” implying that of
the �þi ¼ z nodes in �i, none are oriented to cover si. In
this case, si may only be b1-connected if it has established
a link with at least one of the n� z� 1 other nodes not in
�i, termed nonsuccessor nodes.

Case 2. The event that si has at least (a.l.) one
bidirectional link with one of its successors. That is, at
least one successor is also a predecessor so that si is

b1-connected by any of the z successor nodes in �i. We
refer to this event as “a.l. 1 bi,”.

Due to the disjointness of Case 1 and Case 2, we have

pibjf ¼ 1� Pr½��i ¼ 0j�þi � 1�
¼ 1� Pr½��i ¼ 0j�þi � 1; no bi� � Pr½no bi�

�
þ Pr½��i ¼ 0j�þi � 1; a:l: 1 bi� � Pr½a:l: 1 bi�

�
:

ð3Þ

Observe that Pr½��i ¼ 0j�þi � 1; a:l: 1 bi� ¼ 0, as this

statement is contradictory; the case that at least one

bidirectional link exists cannot occur with the event that

��i ¼ 0, so that the equation for pibjf simplifies to:

pibjf ¼ 1� Pr½��i ¼ 0j�þi � 1; no bi� � Pr½no bi�

¼ 1�
Xn�1

z¼1

Pr½��i ¼ 0j�þi ¼ z;no bi�

� Pr½no bij�þi ¼ z� � Pr½�þi ¼ zj�þi � 1�;

ð4Þ

where for (4), we use the fact that ½�þi ¼ z; �þi � 1� ¼
½�þi ¼ z� for z ¼ 1; 2; . . . ; n� 1.

Given our assumption of uniformly random sector

orientations, the probability of a bidirectional link existing

between si and any of its successors sj, denoted as

Pr[sj ! sijsi ! sj], is �
2� ; thus, the probability that no

bidirectional link exists between si and any of its

independently deployed �þi ¼ z successors equals

ð1� �
2�Þ

z. Therefore, given that si is f1-connected:

Pr½no bij�þi ¼ z� ¼ 1� �

2�

� �z
; ð5Þ

for z ¼ 1; 2; � � �n� 1. Also, it is easy to see that given our

unit area deployment region, we have

Pr½��i ¼ 0j�þi ¼ z; no bi� ¼ 1� �r
2

2

� �n�z�1

ð6Þ

and

Pr½�þi ¼ zj�þi � 1� ¼ Pr½�þi ¼ z; �þi � 1�
Pr½�þi � 1�

¼
ðn�r2

2 Þ
ze
�n�r2

2

z!
:

1

1� e�n�r
2

2

for z � 1;

ð7Þ

where we have made use of the fact that

Pr½�þi ¼ z; �þi � 1� ¼
Pr½�þi ¼ z�; for z � 1;

0; for z ¼ 0:

	
Substituting (5), (6), and (7) into (4), yields

pibjf ¼ 1�
Xn�1

z¼1

1� �r
2

2

� �n�z�1

� 1� �

2�

� �z
�
ðn�r2

2 Þ
ze
�n�r2

2

z!
� 1

1� e�n�r
2

2

" # ð8Þ

¼ 1� e
�n�r2

2

1� e�n�r
2

2

1� �r
2

2

� �n�1Xn�1

z¼1

n�r2ð2���Þ
2�ð2��r2Þ

h iz
z!

: ð9Þ
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Employing the series approximation of an exponential
for large n and r
 1, we obtain

pibjf ¼ 1� e
�n�r2

2

1� e�n�r
2

2

1� �r
2

2

� �n�1

e



n�r2ð2���Þ
2�ð2��r2Þ

�
� 1

� �
ð10Þ

as the result of Lemma 4.3. tu
Observe that for the omnidirectional case with � ¼ 2�;

pibjf ¼ 1 as expected. That is, for the GRG model in which all
links are bidirectional, if a node is f1-connected, then, of
course, it is also b1-connected. It is clear that pibjf � pib due to
the possibility of bidirectional links.

4.4 Evaluating pid and pd
Substituting (2) and (10) into (1), and simplifying yields:

pid ¼ 1� e�n�r
2

2

h i
1� e

�n�r2
2

1� e�n�r
2

2

1� �r
2

2

� �n�1
"

� e



n�r2ð2���Þ
2�ð2��r2Þ

�
� 1

� ��
:

ð11Þ

Observe that pif � pid for large n and r
 1 with equality
occurring only when � ¼ 2�.

Theorem 4.4. For n!1 and r
 1, the probability pd that
there is no isolated node in GnðSn; EÞ is:

pd ¼ 1� e�n�r
2

2

h in
1� e

�n�r2
2

1� e�n�r
2

2

1� �r
2

2

� �n�1
"

� e


n�r2ð2���Þ
2�ð2��r2Þ

�
� 1

� ��n
:

ð12Þ

Proof. Assuming statistical independence among the events
that distinct nodes are isolated, Theorem 4.4 follows by
computing pd for n nodes as

pd ¼
n
n

� �
ðpidÞ

nð1� pidÞ
0 ¼ ðpidÞ

n; ð13Þ

where the expression for pid is given in (11), yielding the
result of (12). tu
For � ¼ 2�, we note that pd reduces to ð1� e�n�r2Þn as

obtained by Bettsetter [10]. Equation (12) is the general
expression relating n; r, and � with the probability pd that
no isolated node occurs in GnðSn; EÞ. Fig. 4 presents plots of
pd from (12) for a range of r and � values for different n
values with the line on the r� � plane of each mesh plot
indicating the pair values ðr; �Þ for which with probability
pd ¼ 0:99, no isolated node occurs in the WOSN. We
observe that as node density n increases, network con-
nectivity improves, and for dense networks, e.g., with
n ¼ 100;000, values as small as ðr ¼ :01; � ¼ 6�=25Þ still
yield a network with no isolated node.

Example 1 (simulation study). We perform a simulation-

based study of a WOSN to investigate the connectivity

property. Employing a uniform random generator, we

position n WOSN nodes in a square planar region of

area 1 km2, following our deployment model from

Section 3. We aim to determine minimum parameter

values that achieve a WOSN in which, with high

probability (� 0:99), no node is isolated. Employing

numerical analysis, from (12), we obtain the minimum r

and corresponding � required for pd � 0:99 with n

given, as shown in Table 1. For example, for n ¼ 1;000

and � ¼ 2�=9; pd � 0:99 is achieved with r � 0:184 km.

If, however, the WOSN nodes are only capable of

achieving r ¼ 0:09 km for the same �, then we need at

least � 5;000 nodes, or at design time, we may choose

to increase � to � in order to deploy the same

n ¼ 1;000 nodes and obtain the same confidence for pd.

With n ¼ 500 nodes and � ¼ 2�=9; � ¼ �=2, and � ¼ �,

we obtain pd � 0:99 with r � 0:253 km, r � 0:167 km,

and r � 0:118 km, respectively. This agrees with the
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Fig. 4. Depicting the probability pd that no isolated node occurs in
GnðSn; EÞ for varying node density n. The planar line indicates ðr; �Þ for
which pd ¼ 0:99. (a) n ¼ 100. (b) n ¼ 500. (c) n ¼ 1;000. (d) n ¼ 5;000.
(e) n ¼ 10;000. (f) n ¼ 100;000.

TABLE 1
Minimum Communication Range r for Corresponding
Parameters ðn; �Þ that Achieves pd � 0:99 in GnðSn; EÞ



r � 0:083 km value obtained in [10] for n ¼ 500 nodes in

the GRG omnidirectional RF WSN scenario.

We observe that for the same confidence on pd, doubling

r allows us to reduce � by approximately a fourth. An

interesting study beyond the scope of this work would

involve comparing the practical cost (dollar, energy) of

increasing r while reducing � (or vice versa) to determine

the optimal WOSN node ðr; �Þ-parameter configuration

based on a given cost function.

4.5 K-Isolated Case

It is critical to considerK-connectivity in the design of robust

secure networks that accommodate link and/or node failures

and compromise due to attacks. A K-connected network is

defined as one that remains connected after the failure

of any choice of ðK � 1Þ nodes. To gain insight into

K-connectivity for the WOSN, we first consider the

probability pdK that no directionally K-isolated node occurs,

and its relationship to n; r, and �. By previous reasoning, si
is K-connected (i.e., not K-isolated) with probability:

pidK ¼ p
i
fK\bK ¼ p

i
fK
:pibK jfK ; ð14Þ

where pifK is the probability that si is fK-connected and

pibK jfK is the probability that si is bK-connected, given it is

fK-connected. The probability pdK that no K-isolated node

occurs in the n-node network, assuming independence

among events that distinct nodes are isolated is then

pdK ¼ ðpidK Þ
n. We are left to derive pifK and pibK jfK .

By similar arguments, we easily extend the results of

Lemmas 4.1 and 4.2 for f1- and b1-connectedness to the fK-

and bK-connected cases, respectively, and conclude that the

probability pifK ¼ Pr½�þi � K� that si is fK-connected is

equivalent to the probability pibK ¼ Pr½��i � K� that si is

bK-connected, given as:

pifK ¼ Pr½�þi � K� ¼
Xn�1

m¼K

e
�n�r2

2 ðn�r2

2 Þ
m

m!
¼ pibK ; ð15Þ

while

pibK jfK ¼ Pr½��i � Kj�þi � K� ¼ 1� Pr½��i < Kj�þi � K�: ð16Þ

Equations (15) and (16) yield the basis for deriving pdK by

following similar arguments employed for K ¼ 1. As an

illustration, we derive pdK for K ¼ 2.

4.5.1 Case for K ¼ 2

From (15), we readily obtain that

pif2
¼ Pr½�þi � 2� ¼ 1� Pr½�þi ¼ 0� � Pr½�þi ¼ 1�

¼ 1� e�n�r
2

2 1þ n�r
2

2

� �
;

ð17Þ

since

Pr½�þi ¼ 0� ¼ e�n�r
2

2 and Pr½�þi ¼ 1� ¼ n�r
2

2
e
�n�r2

2 :

From Appendix A, we obtain

pib2jf2
¼ 1�X 1� �r

2

2

� �n�1

eQ �Q� 1

 �

�X �r2

2

� �
1� �r

2

2

� �n�2

� ðn� 1Þ eQ �Q� 1
� �

�QðeQ � 1Þ

 �

�Xn�2r2

4�
1� �r

2

2

� �n�2

eQ � 1
� �

;

ð18Þ

where

X ¼ e
�n�r2

2

1� ð1þ n�r2

2 Þe
�n�r2

2

and Q ¼ n�r2ð2�� �Þ
2�ð2� �r2Þ

 �
:

Observe again that pib2jf2
¼ 1 when � ¼ 2�, as expected,

since in a bidirectional network, given �þi � 2, then with

probability 1, ��i � 2. It is now trivial to obtain the

probability pid2
that si is not 2-isolated as pid2

¼ pif2
:pib2jf2

;

and the probability that no 2-isolated node occurs in the

network assuming independence is then obtained as pd2
¼

ðpid2
Þn by simple substitution. We have omitted the actual

analytical expressions for pid2
and pd2

as they appear

repetitive. For � ¼ 2� representing the omnidirectional

case, pd2
¼ ½1� e�n�r

2

2 ð1þ n�r2

2 Þ�
n.

Example 2 (simulation study). We consider a simulation

setup similar to Example 1 with the aim of achieving a

WOSN in which almost surely no 2-isolated node occurs;

we say that event A occurs almost surely if the

probability of event A, Pr[A] � 0:99. Table 2 presents

the minimum r corresponding to preselected � and n for

which pd2
� 0:99. We observe that for n ¼ 5;000 and � ¼

�=2; pd2
� 0:99 for r � 0:064 km. However, if the nodes

are capable of r up to 0.14 km, then for the same � and

pd2
, we require only 1,000 nodes. On the other hand, if

our nodes are only capable of � ¼ 2�=9 and r ¼ 0:07 km,

then we need at least 10,000 nodes to achieve the same

pd2
. Our expression yields r � 0:093 km for the omnidir-

ectional network scenario, with n ¼ 500 as observed in

[10]. Compared to the K ¼ 1 case, larger values for the

corresponding minimum r and � are required to achieve

the same pd2
.

4.6 Simulations and Discussions

In this section, we perform a simulation-based study to

empirically determine pd (Sim) and compare it with
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TABLE 2
Minimum Communication Range r for Corresponding

Parameters ðn; �Þ that Achieves pd2
� 0:99 in GnðSn; EÞ



analytical curves for pd (Anal) obtained for K ¼ 1; 2. We

employ MATLAB software to simulate a WOSN in which

the set Sn of n WOSN nodes is randomly positioned and

oriented according to a uniform distribution in a planar

square region of unit area 1 km2. For n ¼ 500 nodes, we

employ six representative � values ð2�9 ; �2 ; 3�
4 ; �;

3�
2 ; 2�Þ, and r

ranging from 0 to 0.2 km (except for � ¼ 2�
9 , where we have

used a wider range of r values from 0 to 0.4 km in order to

observe salient changes in pd). We then obtain the adjacency

matrix E of the resulting WOSN employing the conven-

tional euclidean distance metric to determine the successors

and predecessors of each node, and study the node isolation

property of GnðSn; EÞ by observing the neighborhood

relationships reflected in E. Note that it is sufficient to

compute successors of each node in populating E, as

predecessor relationships are derived by reversing succes-

sor links. Analysis to determine the successors of a node is

presented in the Appendix. For each set of network

parameters, our simulations are repeated 1,000 times to

yield an acceptable statistical confidence of the obtained

results, and pd measured for each random network

topology. We obtain an empirical average of pd by counting

the number of directionally isolated nodes nI in each

simulation scenario and computing pd as ð1� nI
n Þ, averaged

over the 1,000 random trials.
We conduct a second set of simulations in which E is

computed using the Toroidal distance metric to obtain pd

without border effects. With the Toroidal metric, nodes at a
border of the deployment region are modeled as being
adjacent to nodes at the opposite border, creating a wrap
around effect so that the flat simulation area becomes a
torus. In our plots, we refer to pd-Eucl and pd-Toro as
simulation plots obtained for pd employing the euclidean
and Toroidal distance metrics, respectively. We also
conduct a third set of simulations to investigate the
directional 2-isolation property of WOSNs, and derive
empirical curves for pd2

-Eucl and pd2
-Toro to compare with

analytically derived pd2
.

Fig. 5 depicts plots of pd and pd2
, illustrating the

simulation results qualitatively follow the analytical plots,
with pd-Toro almost exactly matching pd-Anal as expected.
We observe that pd-Eucl does not exactly coincide with
pd-Anal due to adverse border effects and a finite simula-
tion region; and for smaller � values, the disparity between
pd-Anal and pd-Eucl grows, due to the border effects
becoming more severe, as nodes at the boundary become
isolated with a higher probability than for larger � values.
Compensating for this boundary effect with pd-Toro, the
desired result of an excellent matchup with pd-Anal occurs.
Also, we note that as n grows to form a denser network, the
analytical and simulation plots agree more closely, due to
the approximations made for n!1 in the analytic
derivations. Observe that the pd2

curves perform similarly
so that as �! 2�, the simulation pds more closely approach
analytical pds, more so for K ¼ 2 than K ¼ 1. In both cases,
however, eliminating border effects results in a high degree
of matchup to analytical predictions.
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Fig. 5. Analytical pd (Anal), simulation pd for euclidean (Eucl), and Toroidal (Toro) metrics for K ¼ 1; 2; n ¼ 500, with varying r and �; pd-Anal, pd-Eucl,
and pd-Toro represented by solid, solid-square, and closed-circle annotations, respectively; pd2

-Anal, pd2
-Eucl, and pd2

-Toro represented by dash-dot,
dash-dot-circle, and diamond annotations, respectively. (a) � ¼ 2�

9 . (b) � ¼ �
2 . (c) � ¼ 3�

4 . (d) � ¼ �. (e) � ¼ 3�
2 . (f) � ¼ 2�.



5 EMPIRICAL STUDIES

5.1 WOSN Connectivity and Node Isolation

In this section, we investigate the relationship between the
connectivity property of the WOSN and the node isolation
property. As previously noted in Section 4, recent work [10]
has shown that for large n, the probability pc that the RF
WSN is connected is tightly upper bounded by pd for n!
1 and probabilities close to one. We empirically verify this
property that also holds for WOSNs modeled as RSSGs,
while studying the effect varying r and � values have on pc.

To determine pc by simulations, we obtain the number of
nodes nc in the WOSN’s largest strongly connected component
(SCC) Gc

nðSn; EÞ � GnðSn; EÞ as a fraction of n. The directed
subgraph Gc

nðSn; EÞ forms the largest connected partition of
the WOSN such that any pair of nodes in Gc

nðSn; EÞ are
pairwise connected. Fig. 6 depicts examples of the SCC of
two 5-node directed graphs A and B, with pc equivalent to 3

5

and 4
5 , respectively. We employ the well-known Kosaraju’s

algorithm [29] which efficiently implements a depth-first-
search (DFS) algorithm [30] to determine Gc

nðSn; EÞ in our
simulations. Kosaraju’s algorithm uses the fact that the
transpose graph of a directed graph has exactly the same
SCC as the original graph.

Similar to the MATLAB simulation scenario used to study
node isolation in Section 4.6, we first generate an n-node
random topology of the WOSN over a square region of unit
area 1 km2. For n ¼ 500, six representative � values, and r
varying, we repeat our simulations 1,000 times to yield an
acceptable confidence of obtain results. We measure empiri-
cal values for pc as the ratio nc=n for each trial, averaged over
the 1,000 random topologies, where Gc

nðSn; EÞ is obtained
using Kosaraju’s algorithm. Because Kosaraju’s algorithm is
OðjEjn lognÞ, extensive simulation time is required to
determine pc, even with the use of supercomputing facilities
especially for large r and � values for which E is dense.

In Fig. 7, comparing plots of empirically derived pc
(using both an euclidean and a Toroidal distance metric),
with pd-Anal and pd-Sim, for preselected � values, we
observe that for probability values close to 1, the property

that pc � pd holds, when the Toroidal distance metric is

used to compensate for boundary effects. This implies that

for probabilities larger than about 0.96, parameter values

obtained for the curve of pd serve as a good approximation

for attaining the same pc confidence. In a real-world

application, this approximation would hold true with dense

networks and large deployment regions that minimize

boundary effects. It is noteworthy that our results are

consistent with the conclusions of [10]. That is, for WOSNs,

pd is a tight upper bound for pc for n!1 and probabilities

close to 1, with the bound getting tighter as � increases.

That is, as �! 2�; pc does a much better job at approaching

pd, especially for probability values close to 1.
An interesting phenomenon observed for pd and pc is their

decreasing “phase transition” or percolation region as

�! 2�. In the phase transition phenomenon, typically

observed for random graphs [9], pc transitions rapidly from

0 (i.e., network is disconnected with probability 1) to 1 (i.e.,

network is connected with probability 1). For example, for

� ¼ 2�
9 ; � and 2�, while pc ¼ 0 for r ¼ 0:20, 0.08, and 0.06 km,

respectively, pc ¼ 1 for r ¼ 0:35, 0:18, and 0.12 km, respec-

tively. That is, for � ¼ 2�
9 ; � and 2�, the “phase transition”

spans a distance of 0.15, 0.10, and 0.06 km, respectively. In

conclusion, we state the following:

Lemma 5.1. For n WOSN nodes randomly distributed and

oriented on the planar unit area square according to a

uniform distribution, let rc and rd denote the minimum r at

which the network graph GnðSn; EÞ is connected and attains

no isolated node, respectively. Then, with high probability,

Pr½rc ¼ rd� ! 1 as n!1 and �! 2�.

We conclude this section by summarizing insights on the

node isolation and connectivity properties for WOSNs

gained from our analysis and simulations, compared to

the � ¼ 2� case.

1. A linear change in r produces a more significant
impact on pd than a linear change in �.

2. Similar to the � ¼ 2� case, there is a critical value of r
above which the network will almost surely have no
isolated nodes. This natural trend is preserved for
RSSG networks as it is for GRG networks. We also
observe that the “phase transition” regions of pc and
pd versus r increases as � gets smaller.

3. For K-connectivity of the WOSN, as K grows, it can
be projected that significantly larger values of r will
be required to maintain connectivity for lower
values of �. For WOSNs in which a fraction of
nodes may fail or be corrupted, such performance
motivates the need for a hybrid or clustered
heterogeneous paradigm.

4. The results of this paper have demonstrated prac-
tical design solutions for node isolation and network
disconnectedness, which has been one of the major
hurdles for the deployment of WOSNs. The potential
for guaranteeing connectivity in WOSNs provides
further support for random deployment of emerging
hybrid RF/FSO or directional RF systems [12].
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Fig. 6. SCCs. (a) For graph A, pc ¼ 3=5. (b) For graph B, pc ¼ 4=5.



5.2 Impact of Hierarchy and Clustering

An evaluation of the impact of clustering on the connectivity
of WOSNs is motivated by the naturally hierarchical
communication model of WOSNs, consisting mainly of either
base station-to-nodes or nodes-to-base station traffic [27]. In a
cluster-based WOSN as previously described, a fraction of the
nodes act as CHs that send and receive data directly to and
from the base station, respectively, on behalf of the other
(non-CHs) nodes [26]. The CHs may have different hardware
requirements than the non-CH nodes, but it is possible that
any node can become a CH with a bidirectional link to the
base station by using hardware such as CCRs [26].

Hierarchically, the base station forms the highest layer,
the CHs constitute the middle layer, while the non-CHs
form the lowest layer of the WOSN. Clustered RF WSNs
have been studied with regard to improving energy, power
and topology control, scalability, load balancing, data
aggregation, and fault-tolerance and routing efficiency
[31], [32], [27], [33], [34].

Recall that by employing the base station as a “middle
man,” we assume that a virtual backbone grid connects all
CHs via the base station so that Eðk; lÞ ¼ Eðl; kÞ ¼
1; 8s	k; s	l 2 CH. We define the WOSN hierarchical connectiv-
ity (H-connectivity) property as the connectivity of the

supergraph Gs
nðSn; EsÞ  GnðSn; EÞ formed by adding edges

[18] between all pairs of nodes in CH. In this model, the
CHs are equivalent to articulation nodes which form a cut set
for the SCC of Gs

nðSn; EsÞ with high probability. This
implies that removal of the set CH will most likely result
in disconnection of Gs

nðSn; EsÞ. An implication of an
H-connected WOSN is that all nodes can send and receive
data with the base station, conforming to the desired traffic
pattern of WSNs.

Within this context, the question we answer is, what is the
impact of the fraction of CH nodes pCH on the H-connectivity
property ofGnðSn; EÞ? More specifically, how can we choose
pCH such that with a given probability pH , the network is
H-connected. The answer to this question is crucial in
determining the fraction of “special” nodes that must be
manufactured and deployed as CHs during design phase, to
achieve a desired pH , where pCH is then an additional tunable
network parameter to achieve a more flexible network design.

We empirically evaluate the effect of clustering on
H-connectivity. Similar to previous simulations, 1,000
random topologies of a 500-node network are generated
and evaluated to yield acceptable confidence on obtained
empirical results. In this scenario, nodes are designated as
CHs with probability pCH set to three representative
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Fig. 7. Probability pc that the network is connected and the probability pd that there is no isolated network node for both analytic and simulated cases;

pd-Anal, pd-Eucl, pc-Eucl, and pc-Toro are represented by the solid, solid-open circle, solid-closed circle, and dash-dot-diamond annotations,

respectively. (a) � ¼ 2�
9 . (b) � ¼ �

2 . (c) � ¼ 3�
4 . (d) � ¼ �. (e) � ¼ 3�

2 . (f) � ¼ 2�.



values of 10, 25, and 40 percent, and the adjacency matrix
of Gs

nðSn; EsÞ is obtained by updating E to reflect the
additional links between all CHs. We compute pH as the
ratio of the number of nodes in the SCC of Gs

nðSn; EsÞ to
n, and obtain empirical values for pH as the average
across the 1,000 trials.

Fig. 8 depicts plots of pH compared to pc for the different
PCH values. We observe that for all � values, clustering
remarkably improves network connectivity. For example,
for � ¼ 2�

9 , we observe that pc ¼ 0:33 for r ¼ 0:25, while
pH ¼ 0:52, 0.72, and 0.85, respectively, with corresponding
pCH values of 10, 25, and 40 percent. Consider, for example, a
WOSN deployed within a unit area (1 km2) planar region.
The network owner can only afford to deploy a limited
number of nodes, say 500 nodes, each node possessing a
communication radius r and angle � of 0.15 m and �

2 ,
respectively. Under this scenario, he is only guaranteed
network connectivity of about 20 percent. If, however,
25 percent of nodes are equipped to function as CHs, the
connectivity of the network improves to 60 percent. Further,
with 40 percent of nodes designated as CHs, the network
connectedness attains almost 80 percent (see Fig. 8b). Future
work for practical cost may consider the trade-off between
enhancing a node’s capability to function as a CH versus
deploying more of the lower level nodes be considered. We
will also address the problem of determining analytic
bounds relating the likelihood of connectivity to pCH and
intend to consider the problems of connectivity in hierarchal
mobile WOSNs employing the concept of dynamic GRGs [35].

6 CONCLUDING REMARKS

In this paper, we employed a probabilistic approach to
investigate the node isolation property for WOSNs and its
relation to the connectivity of the network. We derived an
analytical expression giving the relationship among the
physical layer network parameters r, n, and � of a WOSN
such that with high probability pd, an isolated node does not
occur in the network. Our results are particularly significant
in view of recent work [10] which has shown that the
probability that there is no isolated node provides a tight
lower bound to the probability that the network is connected.
We showed that a similar conclusion is applicable to the
WOSN modeled as an RSSG, and is especially valid as

�! 2�. The results of this paper are vital as a starting

platform toward determining practical parameter design

values in order to achieve a highly connected network.

APPENDIX A

EVAULATING pib2jf2

We employ the following argument to derive pib2jf2
, where

we denote the event that si has exactly one bidirectional link

as [1 bi], and the event that si has at least two bidirectional

links as [a.l. 2 bi]:

pib2jf2
¼ Pr½��i � 2j�þi � 2� ¼ 1� Pr½��i < 2j�þi � 2�
¼ 1� Pr½��i ¼ 0j�þi � 2� þ Pr½��i ¼ 1j�þi � 2�

� �
¼ 1� Pr½��i ¼ 0j�þi � 2; no bi� � Pr½no bi�

�
þ Pr½��i ¼ 1j�þi � 2; no bi� � Pr½no bi�

�
� Pr½��i ¼ 0j�þi � 2; a:l: 1 bi� � Pr½a:l: 1 bi�
�

þ Pr½��i ¼ 1j�þi � 2; 1 bi� � Pr½1 bi�
�

� Pr½��i ¼ 1j�þi � 2; a:l: 2 bi� � Pr½a:l: 2 bi�:

But again, due to contradicting events, Pr½��i ¼ 0j�þi � 2;

a:l: 1 bi� ¼ Pr½��i ¼ 1j�þi � 2; a:l: 2 bi� ¼ 0, so that:

pib2jf2
¼ 1� Pr½��i ¼ 0j�þi � 2; no bi� � Pr½no bi�
� Pr½��i ¼ 1j�þi � 2; no bi� � Pr½no bi�
� Pr½��i ¼ 1j�þi � 2; 1 bi� � Pr½1 bi�:

ð19Þ

To obtain the accurate analytical representations, we expand

the three parts of (19) for z ¼ 2; 3; � � �n� 1 as follows:

pib2jf2
¼ 1�

Xn�1

z¼2

Pr½��i ¼ 0j�þi ¼ z;no bi�
�

�Pr½no bij�þi ¼ z� � Pr½�þi ¼ zj�þi � 2�
�

�
Xn�1

z¼2

Pr½��i ¼ 1j�þi ¼ z; no bi�
�

�Pr½no bij�þi ¼ z� � Pr½�þi ¼ zj�þi � 2�
�

�
Xn�1

z¼2

Pr½��i ¼ 1j�þi ¼ z; 1 bi�
�

�Pr½1 bij�þi ¼ z� � Pr½�þi ¼ zj�þi � 2�
�
:

ð20Þ
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Fig. 8. Plots of phc compared to pc for varying pCH ; pc (no clustering), pH (pCH ¼ 0:1), pH (pCH ¼ 0:25), and pH (pCH ¼ 0:4) are represented by the

diamond, square, open circle, and dotted annotations, respectively. (a) � ¼ 2�
9 . (b) � ¼ �

2 . (c) � ¼ �. (d) � ¼ 2�.



There are four terms in (20). The first term is 1, the second,

third, and fourth summation terms are denoted as T2, T3,

and T4, respectively.
We know the closed-form expressions for the following

probabilities, for z ¼ 2; 3; . . .n� 1:

Pr½no bij�þi ¼ z� ¼ 1� �

2�

� �z
; ð21Þ

Pr½1 bij�þi ¼ z� ¼ z
�

2�
1� �

2�

� �z�1
; ð22Þ

Pr½��i ¼ 0j�þi ¼ z;no bi� ¼ 1� �r
2

2

� �n�z�1

; ð23Þ

Pr½��i ¼ 1j�þi ¼ z;no bi� ¼ ðn� z� 1Þ �r2

2

� �
� 1� �r

2

2

� �n�z�2

;

ð24Þ

Pr½��i ¼ 1j�þi ¼ z; 1 bi� ¼ 1� �r
2

2

� �n�z�1

; ð25Þ

and

Pr½�þi ¼ zj�þi � 2� ¼ Pr½�þi ¼ z; �þi � 2�
Pr½�þi � 2�

¼
ðn�r2

2 Þ
ze
�n�r2

2

z! 1� e�n�r
2

2 ð1þ n�r2

2 Þ
h i ; ð26Þ

where

Pr½�þi ¼ z; �þi � 2� ¼ Pr½�þi ¼ z�; for z � 2;
0; for z ¼ 0; 1;

	
and

Pr½��i ¼ k� ¼
n� z� 1

k

� �
�r2

2

� �k
1� �r

2

2

� �n�z�1�k
:

Substituting (21), (23), and (26) into the second term of

(20), we obtain

T2 ¼ X
Xn�1

z¼2

1� �
2�

� �z
1� �r2

2

� �n�1�z
n�r2

2

� �z
z!

¼ X 1� �r
2

2

� �n�1Xn�1

z¼2

n�r2ð2���Þ
2�ð2��r2Þ

� �z
z!

¼ X 1� �r
2

2

� �n�1Xn�1

z¼2

Qz

z!

¼ X 1� �r
2

2

� �n�1

eQ �Q� 1
� �

;

ð27Þ

where

X ¼ e
�n�r2

2

1� ð1þ n�r2

2 Þe
�n�r2

2

and Q ¼ n�r2ð2�� �Þ
2�ð2� �r2Þ

 �
;

and the series approximation of the exponential is employed

assuming large n and r
 1. Similarly, substituting (21), (24),

and (26) into the third term of (20) and simplifying, we obtain

T3 ¼ X�r2

2
1� �r

2

2

� �n�2

� ðn� 1ÞðeQ �Q� 1Þ �QðeQ � 1Þ
� �

:

ð28Þ

Again, we substitute (22), (24), and (26) into the fourth term

of (20) and simplify to obtain for large n and r
 1 that:

T4 ¼ X �

2�

Xn�1

z¼2

z 1� �
2�

� �z�1
1� �r2

2

� �n�z�1
n�r2

2

� �z
z!

¼ Xn�2r2

4�
1� �r

2

2

� �n�2

eQ � 1
� �

:

ð29Þ

Substituting expressions for T2; T3, and T4 into (19), we

finally obtain

pib2jf2
¼ 1�X 1� �r

2

2

� �n�1

eQ �Q� 1

 �

�X �r2

2

� �
1� �r

2

2

� �n�2

� ðn� 1Þ eQ �Q� 1
� �

�QðeQ � 1Þ

 �

�Xn�2r2

4�
1� �r

2

2

� �n�2

eQ � 1
� �

:

ð30Þ

APPENDIX B

DETERMINING SUCCESSOR RELATIONSHIPS

Consider a reference origin (0,0) and reference orientation,

denoted as N in Fig. 9. The euclidean distance between two

nodes si and sj is

dðsi; sjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2

q
;

and the angle between si and sj is

�T
ij ¼ min j�i ��ijj; j�i þ 2���ijj; j�i � 2���ijj


 �
;
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Fig. 9. Geometry for computing successors (si ! sj) based on nodes’

relative position and orientation.



where

�ij ¼ arccos
dðyj; yiÞ
dð�j;�iÞ

:

Then, si ! sj illustrated in Fig. 9 if dðsi; sjÞ � r and

j�i ��T
ijj � �

2 .

APPENDIX C

COMPUTING TOROIDAL DISTANCES

The Toroidal distance metric is employed to eliminate

border effects [10]. If dððxiyiÞ; ð
xj
yj
ÞÞ denotes the usual euclidean

distance between two point ðxiyiÞ and ðxjyjÞ on a bounded area

½0; xmax�½0; ymax�. Then, the Toroidal distance dT ðs1; s2Þ
between nodes s1 and s2 equals:

min

"
d

xi
yi

� �
;
xj
yj

� �� �
; d

xi þ xmax
yi

� �
;
xj
yj

� �� �
;

d
xi � xmax

yi

� �
;
xj
yj

� �� �
;

d
xi

yi þ ymax

� �
;
xj
yj

� �� �
; d

xi
yi � ymax

� �
;
xj
yj

� �� �
;

d
xi þ xmax
yi þ ymax

� �
;
xj
yj

� �� �
;

d
xi þ xmax
yi � ymax

� �
;
xj
yj

� �� �
; d

xi � xmax
yi þ ymax

� �
;
xj
yj

� �� �
;

d
xi � xmax
yi � ymax

� �
;
xj
yj

� �� �#
:

Note that dT ðsi; sjÞ � dðsi; sjÞ, and si ! sj if dT ðsi; sjÞ � r
and j�i ��T

ijj � �
2 .
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