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Abstract— In this paper, we investigate the fundamental prop-
erty of connectivity in a hierarchical ad-hoc optical sensor
network (OSN) communicating with broad beam lasers. The OSN
is modeled as a random sector graph, in which the randomly
deployed sensors can send data within a contiguous and randomly
oriented sector of communication. Hierarchy is achieved by em-
ploying passive and active free space optical devices. Connectivity
analysis in this hierarchical network model is vital in order to
assess the feasibility of routing, security and network protocols.
To this end, this paper provides probabilistic bounds on network
parameters for hierarchical connectivity in OSNs, using a novel
approach that directly considers directionality. In particular, we
prove probabilistic bounds on the jointly minimum radius of
communication as well as angle of the communication sector
(i.e., beam width) required for network connectivity.

I. INTRODUCTION

Optical sensor networks (OSNs) represent a class of sensor
networks that communicate using free space optics (FSO) with
a directed and randomly oriented sector of communication.
OSNs are rapidly gaining visibility due to the advantages that
FSO offers over traditional omni-directional and directional
RF based techniques [1]–[4]. The flat network of the OSN
has been modeled as a directed random sector graph [1],
and hierarchical clustering is easily achieved by utilizing both
passive and active FSO devices [2]–[4].

In an ad-hoc sensor network, connectivity is of particular
significance in order to maintain communication among nodes.
This is especially true for OSNs in which directional commu-
nication has distinct characteristics and effects on connectivity,
coverage, security, quality of service and routing that warrant
novel analysis and insights. To this end, this paper provides to
the best of our knowledge, the first known analysis of network
connectivity for the flat and hierarchical directional OSN
setup. Our analysis is a first step to studying the feasibility
of the OSN, and the network layer protocols that operate on
them. In contrast to several known connectivity analysis [5]–
[7], our contribution leverages directionality.

For our work, connectivity for the directional OSN is
defined in the conventional sense: there exists a directed path
from any node to every other node in the network. Let us
now define the OSN as forward-connected if every node in
the network has a non-empty forward neighborhood, so that
each node can send data to another node, (see Figure 1(a)).
Similarly, the OSN is backward-connected if every node is
covered by the communication sector of at least one other

node, so that every node can receive data from some other
node, i.e., no node is backward-isolated, (see Figure 1(b)). We
note that directed graphs may be forward-connected, but not
backward-connected, and vice versa, and a necessary (albeit
insufficient) condition for the connectivity of the OSN is
that the network is both forward and backward connected,
defined as fb-connected. An fb-connected network may not be
connected due to possible partitioned components, and lack
of bidirectional paths between all node pairs (e.g. in the fb-
connected graph of Figure 1(c) the path Si to Sj (denoted
Si → Sj) exists, however path Sj → Si does not. We define a
BS-circuit as a directed path which starts and ends at the base
station through a sequence of nodes. Hierarchical connectivity
implies that all nodes have both a send and receive path
to/from the base station, and underscores the main objective
of a sensor network.

In this paper, we show that the necessary and sufficient
conditions for OSN connectivity is that the OSN graph is
fb-connected, and every node is contained in at least one
BS-circuit. We derive probabilistic bounds on forward- and
backward-connectivity in terms of node density, angle α and
radius r of a nodes’ communication sector. Results of our
paper gives expressions for the jointly minimal values for
α and r which enable us derive further bounds on network
parameters for flat and hierarchical connectivity. Our paper is
organized as follows: Section 2 discusses related work, while
Section 3 presents preliminaries and network setup. In Section
4 we present our main results for connectivity in the flat OSN.
Section 5 discusses hierarchical connectivity, while Section 6
presents concluding remarks.

II. RELATED WORK

Several connectivity analysis have been proposed based
on the random geometric graph (RGG) model as the basic
network model for packet radio sensor networks [6]–[12]. The
RGG is an r-radius model in which all nodes employ the same
radio power, so that each node Si can establish a direct link
with any other node within a ball B(Si, r(n)) with center Si

and fixed radius r(n), where n is the number of nodes in the
network. Gupta & Kumar [6] show that for such a network
uniformly deployed in a disc of unit area in R2, if r(n) =√

(log(n) + c(n))/πn), the network is a.a.s. connected (as
n → ∞ with probability one), if and only if limn→∞ c(n) =
+∞, where c(n) is a constant. The probabilistic approach
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Fig. 1. (a) A forward-connected OSN which is not backward-connected since node Si cannot receive data from any other node in the
network. (b) A backward-connected OSN which is not forward-connected. Node Sj cannot send data to any other node in the network. (c)
An fb-connected OSN which is still not connected since Sj cannot send data to Si, and a partition exists in the network.

of [7] employs nearest neighbor methods to show that for
a network with node density ρ, with probability at least p, no
node is isolated if r(n) ≥

√
− ln(1 − p1/n)/ρπ.

Hierarchical connectivity analysis for sensor networks has
received almost no attention in the literature. We assume this is
so because of the underlying assumption that if the flat network
of the RGG is connected, so should the hierarchical network.
In addition, the major motivation for hierarchy in the past has
been clustering for scalability, and not to improve connectivity.
In OSNs, due to directionality, flat network connectivity is
more difficult to achieve. If we assume a virtual connection
grid exists between all clusterhead nodes (via the base station),
then hierarchy may be employed to improve connectivity. In
this case, factors such as the density and distribution of the
cluster heads affect connectivity.

Diaz, Petit & Serna [1] provide connectivity analysis for
directional OSNs based on asymptotic reasoning leveraging
the work in [6]. They show that if the underlying RGG
is asymptotically almost surely (a.a.s.) connected with high
probability (w.h.p.), then w.h.p., any link in the RGG can be
emulated with at most four links in the OSN. Our work differs
significantly from [1] as we apply probabilistic reasoning.
Our results are useful in setting practical values for network
parameters such as r, α and n.

III. PRELIMINARIES: NETWORK MODEL

A. Flat Network Setup

Consider an OSN in which a set {Sn} of n nodes, indexed
as Si : i = 1, 2, · · ·n, are randomly and densely deployed
in a given area [0, 1]2 according to a uniform distribution
∼ U[0, 1]2. Such a random deployment may occur in a
scenario where priori knowledge of the field is not available,
or may be the result of the deployment strategies. Let I(.)
be an information assignment function on {Sn}, where I is a
positive real valued mapping from {Sn} to the 3-tuple as:

I(Sn) : {Sn} → (x, y,Θ)

x = (x1, x2, · · ·xn) and y = (y1, y2, · · · yn) represent the x−y
position coordinates of {Sn}, such that xi, yi ∼ U(0, 1] ∀i.
We denote Posi = (xi, yi) as the position of node Si. Under
this assumption, the number of nodes in a given area can be
modeled by a stationary 2-dimensional Poisson point process
Poisson(n), with density equal to the number of sensors
per unit area [8], [13], [14]. The orientation vector Θ =

(Θ1,Θ2, · · ·Θn) of {Sn} is modeled as Θi ∼ U(0, 2π] ∀i.
I(Sn) is called the Information on {Sn}.

Each node Si can orient its transmitting optical laser within
a contiguous angular scanning region −α

2 + Θi ≤ Φi ≤
+α
2 + Θi. Following the model in [1], [2] and as depicted in

Figure 2(a), this means that each node Si can send data over
a randomly oriented communication sector Φi of fixed angle
α ∈ [0, 2π] degrees. The case with α = 2π represents omni-
directional communication for the RGG [5]. The receiving
photo-detector is omni-directional, and thus receives data from
any direction. This implies that node Si may directly talk to
Sj (denoted Si → Sj) if and only if Posj ∈ Φi. However, Sj

can only talk to Si via a multi-hop back-channel or reverse
route, with other nodes in the network acting as routers along
the path (unless of course Posi ∈ Φj). In the illustration of
Figure 2(a) this reverse route is: Sj → Sa → Sb → Sc → Si.
Figure 2(b) simulates a sample flat OSN with n = 500
nodes, α = 2π/9 radians, r =

√
log(n)/n as suggested

in [1], and deployment region [0, 1]2. Note that communication
sectors outside the deployment region are ignored, and do not
contribute to network connectedness.

B. Hierarchical Network Setup and Clustering

Hierarchy in the OSN is achieved by employing a pas-
sive optical device known as the corner cube retro-reflector
(CCR) [4]. A CCR is a simple optical device composed of
three mutually perpendicular mirrors, which reflects incident
light back to source. By mis-aligning one mirror of the CCR,
a sensor node can transmit an on-off keyed signal to the base
station [2]. When used to modulate an interrogating beam from
the base station, the CCR yields huge energy savings compared
to active laser communication [3]. CCR communication is
passive and bi-directional between a node and the base station,
and is especially attractive because all the optical energy for
communication is supplied by the base station, with negligible
energy used for the modulating circuitry of the CCR on the
node. CCRs are great for OSNs due to their small size, ease
of operation and negligible power consumption.

In addition to optical trans-receivers, all the OSN nodes are
equipped with CCR’s. After random deployment, a fraction
of nodes {CH} ∈ {Sn} called cluster heads, will have their
CCR’s oriented such that they have a communication (line-
of-sight) path with the base station, and can thus employ
their CCR’s to exploit the advantages of passive bi-directional

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings. 
 

3528

Authorized licensed use limited to: Texas A M University. Downloaded on December 24, 2008 at 03:28 from IEEE Xplore.  Restrictions apply.



−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Exit cluster 
head

Optical sensor nodes

Links

BS-Circuit

Entry cluster 
head

Base
Station

Si

Down-link
to Si

Up-link
from Si

Fig. 2. (a) Node Sj can only hear node Si if it falls into Si’s communication section. (b) However Sj talks to Si via the back channel
Sj → Sa → Sb → Sc → Si. (c) An Optical Sensor Network graph showing connectivity and coverage concepts for n = 500 nodes.
(d)Illustrating the BS-circuit path with the down-link from the base station to node Si via the entry clusterhead, and the uplink path from
Si to the base station via the exit clusterhead.

communication with the base station (see [2] for details). Let
PCH be the probability that a node is a cluster head. There
are m ∼= nPCH cluster heads, and we designate cluster head
nodes S∗

i as CHj : j = 1, · · ·m. Without loss of generality,
assume CCRs are oriented in the same direction as a nodes
communication section. The random orientation of a node and
the location of the base station determines the set of cluster
heads {CH}, which are uniformly distributed in the network.

Cluster heads (CHs) forward/receive data to/from the base
station without adversely depleting their energy resources.
This leads to a natural hierarchy in which nodes route data
to the upwards ’closest’ CH for onward forwarding to the
base station (uplink), or receive data or broadcasts from the
base station (downlink) via another downwards closest CH.
All the possible uplink and downlink paths through any node
constitute the node’s BS-circuits. Figure 2(c) illustrates uplink
and downlink paths from/to a Si through the exit/entry CHs.

C. Graph Theoretic Setup

We model the n-node OSN topology as a directed graph
Gn = (Sn, E ,Θ, r, α) consisting of a vertex node set Sn and
edge set E , where every edge is an ordered pair of distinct
nodes. E is represented as the n × n adjacency matrix of Gn

with one row and one column for every node, where:

E(i, j)1≤i,j≤n = 1 if Posj ∈ Φi.

= 0 otherwise.

indicates that there is, or there is not, an edge between Si and
Sj . E(i, i) = 0 ∀i disallows self loops, and directionality
implies E(i, j) �= E(j, i) necessarily, ∀i, j. Θ represents the
orientation vector of Sn, while r and α (assumed to be the
same for all nodes) are the respective radius and angle of Φ.

Let us define node Si’s forward neighborhood {S+
i } as the

set of nodes that Si can talk to, i.e., {S+
i } = {Sk},∀k :

E(i, k) = 1 or Si → {Sk}. Nodes in {S+
i }) are called Si’s

successors, and the cardinality, #S+
i is equivalent to Si’s out

degree. Si is forward-isolated if #S+
i = 0. The expected out

degree of Gn denoted as S+ is E(S+
i ) 	 1/n

∑n
i=1 #S+

i as
n → ∞, where E(.) is the expectation operator. Similarly,
Si’s predecessors are nodes in its backward neighborhood,
i.e., nodes who Si can hear, defined as {S−

i } = {Sh},∀h :
E(h, i) = 1. The cardinality #S−

i is to S′
is in degree, and Si

is backward-isolated if #S−
i = 0. The expected out degree of

Gn is S− = E(S−
i ). The out and in degrees of Si is the sum

along the ith row and ith column of E respectively.

IV. CONNECTIVITY ANALYSIS

A. Forward Connectivity Analysis

Consider the following r and α assignment problem for the
OSN: Given Gn, the objective is to find values of r and α,
such that with at least probability pf , Gn is forward-connected.
LEMMA 1: Gn is forward-connected with at least probability
pf if area of the communication sector A(Φ) is bounded as:

αr2

2
≥ − ln(1 − p

1/n
f )

n
(1)

PROOF: We employ quadrat statistical methods which is an
approach taken to quantify spatial point patterns (see Chapter 8
of [13])1. Under this model, quadrats of random location and
orientation are sampled, the number of events in the quadrat
are counted, and statistics derived from the counts. It is well
known [13] that the number of points located in a region A,
follows a Poisson distribution of parameter λ|A|, where |A|
represents region A’s area, and λ is the intensity of the Poisson
process. In the OSN with Φ as quadrats, the number of sensors
located in Φ has a Poisson distribution with mean αnr2

2 , so
that the probability distribution function (pdf) of the number
of nodes in each node’s communication sector (i.e., #S+) is:

2P (S+ = k) =
e

−αnr2

2

(
αnr2

2

)k

k!
(2)

and the probability that each node has at least one node in its
communication sector (i.e. P{S+

i } �= null ∀i) is:

P (S+ ≥ 1) =
∞∑

k=1

e
−αnr2

2 (αnr2

2 )k

k!
= 1 − e

−αnr2

2 (3)

Assuming statistical independence of quadrats3, the probability
that all n nodes have at least one forward neighbor pf is:

pf =
(

n
n

)
P (S+ ≥ 1)nP (S+ = 0)0 = (1−e

−αnr2

2 )n (4)

Lemma 1 follows by a change of subject for A(Φ) in Equation
4, and generalizes the results of [7] for α = 2π.

1Quadrats are bounded regions of any possible shape including Φ.
2derived by employing series representation of the exponential function.
3Statistical independence of quadrants is reasonable since for numbers a

and b the events S+
i ≤ a and S+

j ≤ b,∀i, j are independent.
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B. Joint Minimization of r and α

Consider the following r and α assignment problem: Given
Gn, the objective is to find the jointly minimum sector range
rmin and angle αmin, such that with probability at least
pf , Gn is forward-connected. One motivation for jointly
minimizing α and r is to minimize the cost of the optical node
such that Gn is forward-connected with at least probability pf .
This is because energy dissipated at the optical transmitter is
proportional to both the radius and angle of communication,
since the received power at the optical receiver is [3]:

Prec′vd = Ptrans′d × A2
ν × 10−a.ν/10

[A2
t + αν]2

(5)

where Ptrans′d is the transmitter power, a is atmospheric
attenuation factor based on environmental conditions, Ar and
At are the receiver and transmitter aperture diameter, α is
beam divergence, and ν ≤ r is the distance between optical
transmitter and receiver. All the factors except r and α
are controlled by the system designer or obtained from site
measurements. The only tunable parameters are r and α,
both of whose squared values are approximately (inversely)
proportional to Ptrans′d.

Jointly minimizing r and α results in the transmit energy
being diffused in the smallest area, while maintaining connec-
tivity. In addition, small beam angles are desirable as they yield
higher security gains by reducing the risk of signal interception
or denial of service attacks [15]. Previous work has considered
optimizing r for an n-node RGG, and in a directional net-
work [1] using a pre-determined α, usually chosen arbitrarily.
In comparison, our approach yields an overall optimal system
in terms of energy as seen from Equation 5.
LEMMA 2: Given that A(Φ) in Gn is constrained as in
Lemma 1, the jointly minimum values for r and α of Φ are:

rfmin =

[
−4 ln(1 − p

1/n
f )

n

] 1
3

αfmin =

[
−4 ln(1 − p

1/n
f )

8n

] 1
3

(6)
PROOF: Out of the set of values (α, r) that satisfy the

constraint A(Φ) =
− ln(1−p

1/n

f
)

n for connectivity of the OSN,
we seek the one which gives the least value for both α and r.
This translates to a constrained minimization of the absolute
value of the difference |r − α|. Since r and α are positive
real numbers, we can minimize the sum of the two variables
subject to the constraint. The minimax optimization is stated:

min
(r,α)

max r + α subject to
αr2

2
+

ln(1 − p
1/n
f )

n
= 0 (7)

To solve this problem, we construct the Lagrange function
L(α, r) employing the Lagrange multiplier β as:

L(α, r) = r + α + β

(
αr2 +

2 ln(1 − p
1/n
f )

n

)
(8)

The simultaneous equations for solutions αmin and rmin are:

∂L

∂α
= 0 = 1 + βr2 and

∂L

∂r
= 0 = 1 + 2αβr (9)

in which a simple change of variables yields αmin = 1
2

√
− 1

β

and rmin =
√
− 1

β . We obtain the value of β by substituting
for αfmin and rfmin in the constraint of Equation 7, to obtain:

β = −
[

4 ln(1 − p
1/n
f )

n

]−2/3

(10)

Simple substitutions of Equation 10 into Equation 9 give the
desired minimal values for rfmin and αfmin in Lemma 2.

C. Backward Connectivity of the OSN

The backward connectivity problem is analogous to an area
coverage problem, in which a location is covered by a node
if it lies within the nodes communication sector. Obviously, a
covered node is backward-connected, (i.e., {S−

i } �= 0,∀ i).
LEMMA 3: Gn is backward-connected with probability at
least pb exactly equal to pf .
PROOF: The proof of lemma 3 is constructed from concepts
in stochastic geometry [14], similar to the proof of area
coverage for RGG’s in [8]. The probability that a point does
not lie within any of the n sensor node’s communication sector
Φ is (1 − A(Φ))n [14]. For [0, 1]2 and r << 1, we have that
P (a point in Gn is not covered) is:

E(1 − A(Φ))n ∼= e−A(Φ).E(n) = e
−nαr2

2 (11)

Therefore, the probability that a node in the OSN is backward-

connected is: pb = 1− e
−nαr2

2 = pf Even though analytic re-
sults give pb = pf , simulations show that number of backward-
isolated nodes is always less than or equal to the number of
forward-isolated nodes. We believe this is due to boundary
effects, which has more impact on forward connectivity [15].

D. fb-connectivity: Necessary but insufficient condition for
connectivity of the OSN

LEMMA 4: Gn is fb-connected with at least probability

pfb = pf ∗ pb =
(
1 − e

−nαr2

2

)2n

, with corresponding jointly
minimum values of r and α.
PROOF: Result follows from product of Lemmas 1 and 3.

V. HIERARCHICAL CONNECTIVITY: SUFFICIENT

CONDITION FOR CONNECTIVITY OF THE CLUSTERED OSN

Connectivity in ad hoc networks ensures the existence of a
path between any two nodes in the network. However, the
communication model for sensor networks is mainly base
station-to-nodes (flooding) or nodes-to-base station (gather-
ing) [15]. Therefore, connectivity in sensor networks should
be hierarchical to reflect this property. In this section, we show
that BS-connectivity is sufficient for OSN connectivity.

A. BS-circuit connectivity

Gn is defined as BS-connected if every node is included
in at least one BS-circuit. Practically, we interpret a BS-
connected OSN as one in which with high probability, every
node has at least one uplink path to a cluster head (uplink
connectivity), and one down-link path from a cluster head
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(down-link connectivity). BS-connectivity analysis is useful
in providing bounds on node connectivity, and in security
analysis that evaluate the effect of a compromised node its
descendants or members of its BS-circuit.

We define Gn as δ-uplink/downlink connected if for every
node, there exists at least one descendant/ancestor within δ
generations, which is a CH . That is, Si /∈ {CH} is δ-uplink
connected if it has at least one uplink path to an exit cluster
head within δ hops. δ-downlink connected is similarly defined.
The constant δ represents the network diameter, used to avoid
excessively long paths. Obviously, if Si ∈ {CH}, then it
is connected and we are done. If none of Si’s descendants
(within δ generations), is a CH,Si cannot possibly find any
uplink path to the base station and is disconnected from
the network. Given δ and PCH , our goal is to determine
pu, the probability that Gn is δ-uplink/downlink connected.
We provide analysis for the uplink connectivity and then
generalize for the downlink.

We employ the Galton-Watson Branching Process [16]
(GWBP) to model the uplink tree rooted at any arbitrary
node. GWBP were introduced by Francis Galton in 1889 as a
mathematical model for the propagation of family names. Let
Si independently give rise to the set of forward neighbors
{S+

i } with cardinality ξ1 ≡ #S+
i . The ξ1 nodes are Si’s

first generation (level L1) offspring. Let the ξ1 successors of
Si independently give rise to ξ2 second generation level L2

offspring of Si, denoted {S+
i }2, and so on. We denote ξk as

the number of Si’s kth generation offspring with the set of
nodes {S+

i }k, where k = 1, 2, · · · δ. Let Di =
∑

ξk be the
total number of Si’s descendants.

The random variables ξi for i = 1 · · · δ represent-
ing the offspring distribution P (ξi = K) of nodes for
generation Li, form a discrete-time Markov chain (since
P (S+k

i |S+(k−1)
i · · ·S+1

i ) = P (S+k
i |S+(k−1)

i ), which takes
values in the set of nonnegative integers with transition prob-
abilities P (ξi+1 = k|ξi = m) = P (ξ1 = k)∗m. Here P (ξ1 =
k)∗m denotes the mth convolution power of P (ξ1 = K).
Therefore, conditional distribution of ξi+1 given ξi = m is
the distribution of a sum of m i.i.d. random variables each
with distribution P (ξi). In our case, we can build the GWBP
tree using ξ1, since we know P (ξ1) ∼ Poisson(nαr2

2 ).
Now, considering the occurrence of a successor in each

generation as independent events (since nodes may repeat),
the probability that at least one of Si’s level L1 offspring is a
CH is:

∑∞
k=0 P (ξ1 = k).[1 − P ({S+

i } /∈ {CH}|ξ1)]

=
∞∑

k=0

[
e−λ (λ)k

k!
1 − (1 − PCH)k

]
(12)

Similarly, for the second generation, the probability that at
least one of Si’s level L2 offspring is a CH is given as:∑∞

m=0

∑∞
k=0 P (ξ1 = k).P (ξ2 = m|ξ1 = k)×[

1 − P (
⋃2

i=1{S+
i }i /∈ {CH}|ξ1 = k, ξ2 = m)

]

=
∞∑

m=0

∞∑
k=0

e−λ(m+1)
(
mλ2

)k
k!2

[
1 − (1 − PCH)k+m

]
(13)

Therefore, for path lengths ≤ δ, the probability that Gn is
δ−uplink connected pu = [P (∃ at least one

⋃δ
i=1{S+

i }i ∈

{CH})] for all n(1 − nPCH) non cluster head nodes is:

∞∑
kδ=0

· · ·
∞∑

k2=0

∞∑
k1=0

e
−λ(
∑δ−1

p=1
kp+1)

(∏δ−1
p=1 k

kp−1
p λ2

)
k2
1!
∏δ−1

p=2 kp!

×
[
1 − (1 − PCH)

∑δ

p=1
kp

]n(1−PCH)

(14)

Note that PCH → 1 leads to the trivial sufficient condition
that Gn is uplink-connected. Similar analysis for downlink
connectivity with pb = pf ,yields that the probability that
Gn is δ−downlink connected pd equals pu. A necessary and
sufficient condition for Gn to be hierarchical connected is
that the network is both downlink and uplink-connected with
probability p ≤ pd × pu, easily derived from Equation 14.

VI. CONCLUSIONS

This paper provides analytical insights for probabilistic
bounds on network parameters for hierarchical connectivity
in OSNs. Our novel approach considers directionality. We
have derived expressions for the probability of the hierarchical
connectivity of the OSN and jointly minimized r and α values.
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