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Abstract—Today’s power grid is provisioned conservatively
for rarely occurring demand peaks. These peaks are served by
flexible generation systems that are typically costly and have
significant carbon footprint. Distributed power sources such as
wind turbines and solar panels are sustainable but unreliable as
these have inherently variable generation capacities. An effective
power dispatch management system is necessary to harness the
significant generation potential of these intermittent systems. In
this work, a novel scheme is proposed which leverages upon
the recent cyber-enablement in the power grid to distributively
dispatch a large number of strategically interacting small-scale
variable generators. We incorporate evolutionary game theoretic
techniques into the formulation of the dispatch strategy as
it provides an opportunity to model the aggregate behaviour
of tactical agents making inter-dependent decisions and aids
with establishing deterministic steady state predictions of the
system state. Numerical and theoretical results presented in this
work show that the proposed strategy is highly scalable and
enables real-time power dispatch of intermittent systems while
maintaining low computational overhead.

I. INTRODUCTION

The power grid is composed of a diverse mix of energy
generation systems designed to provision for all types of
consumer power demands. Highly fluctuating peak demands
are typically served by natural gas or coal plants as these can
rapidly ramp up or down generation as needed. Unfortunately,
these flexible generation systems typically incur high capital
costs, fuel costs and carbon emissions [5]. Alternate renewable
systems such as wind and solar power generators are green en-
ergy sources with lower levelized costs [4]. These Distributed
Generation (DG) systems can be deployed in large numbers at
close proximity to consumers - increasing power efficiency due
to reduced transmission line losses. Many positive attributes
such as these indicate that DGs will play a significant role in
future power systems. For example, in Ontario, the provincial
government has aimed to reduce CO2 emissions from a high
of 35 MegaTonnes in 2005 to 6 MegaTonnes in 2025 [11].
In order to achieve this goal, the provincial government has
currently phased out all coal plants and constructed a long term
energy plan that mandates renewable generation to account for
46% of overall generation capacity in 2025 [11].

In order to harness the full generation potential of DGs, it
is imperative for the Electric Power Utility (EPU) to utilize
an effective power dispatch management strategy that can dy-
namically manage and balance aggregate demand with variable
generation capacity in a real-time manner. Many innovative

power dispatch algorithms have been proposed in the existing
literature which can be classified as centralized, decentralized
or distributive techniques. Centralized dispatch strategies in
[1], [8], [17] and [16] construct a dispatch optimization prob-
lem which grows exponentially in complexity as the number
of DGs increase in the system. Decentralized and distributed
schemes such as [7] and [6] have convergence characteristics
that render these unsuitable for real-time dispatch.

In this paper, we leverage upon the recent cyber-enablement
and open framework of the power grid to propose a distributed
power dispatch algorithm that enables DGs to intelligently
configure their own power dispatch based on interactions
with other DGs and simple downlink signals broadcasted
by the EPU. This scheme completely abstracts the EPU
from local conditions of the DGs and relieves it from the
arduous task of allocating power dispatch to every partici-
pating DG with variable generation capacites. Issues such as
computational intractability and slow convergence identified
in schemes proposed in the existing literature are overcome in
this dispatch scheme. Comprehensive theoretical and numer-
ical results presented in this work indicate that our scheme
is highly scalable, real-time and entails low computational
overhead for participating entities. The proposed scheme is
a novel application of Evolutionary Game Theory (EGT) for
distributed power control. EGT is typically employed in the
energy management literature for pricing scheme adoption
analyses (e.g. [2], [9]). EGT is suitable for the dispatch
problem considered in this work as it offers a comprehensive
framework to model the aggregate behaviour of strategically
interacting entities in a system from which deterministic static
and dynamical properties of the system can be established.

The remainder of this paper is organized as follows. In
Section II, the system model is presented. Formulation and
theoretical analysis of the proposed dispatch algorithm is de-
tailed in Section III. In Section IV, numerical implementation
of the proposed scheme in a realistic environment is presented
to further strengthen theoretical results developed in Section
III. Finally, the paper is concluded in Section V.

II. SYSTEM MODEL

An EPU will aim to minimize dependence on peak-serving
generation systems when sufficient sustainable generation ca-
pacity exists to meet a subset if not all aggregate demand
in the system. Entities that can participate in the dispatch
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management scheme include all DGs that are part of the
power distribution system managed by the EPU. Following
assumptions are made in this work:

1) Aggregate demand and generation capacities of each DG
remain constant for at least 10 minutes.

2) The distribution system is connected to the main grid
which contains negative spinning reserves, synchronized
generation resources and storage systems.

3) The EPU can implicitly measure the deficit or surplus
generation in the system.

4) DGs are equipped with programmable modules, cellular
transmitters and receivers. EPU can transmit downlink
cellular signals.

5) DGs can communicate with one another in an anony-
mous and encrypted manner.

6) Only energy constraint considered is the balance be-
tween demand and generation.

7) Number of DGs in the dispatch system is large.
The first assumption is valid as today’s power dispatch models
are based on constant hourly generation and demand forecasts
[10]. The second assumption is necessary to ensure that all de-
mand can be fully served when aggregate generation capacity
in the system is insufficient. The third assumption is feasible
as the EPU can monitor the power purchased or sold from the
distribution system. The fourth assumption, also made in [7],
is necessary to allow DGs to receive signals from the EPU and
communicate with one another to make intelligent distributive
dispatch decisions. The fifth assumption ensures that security
and privacy is maintained in all communications. The sixth
assumption, also made in many dispatch works such as [6],
simplifies the problem by not taking into account network
flow constraints and system physics. We expect that the final
assumption is practical. For example, in the specific case of the
residential neighbourhood, many DGs can deployed as roof-
top installations.

Next, an overview of the basic notations used in this
work is presented. Given that sufficient generation capacity is
available, a DG can select a strategy ei from the set Ω of size
M and these strategies map to the power commitment levels
defined in y = [y1...yM ]T kW. The empirical distribution of all
strategies in the system is denoted by x = [x1...xM ]T where
xi is the frequency at which strategy ei is used in the system.

III. DISTRIBUTED DISPATCH ALGORITHM

Game theory provides a useful set of tools to model interac-
tions between distributive entities and is therefore well suited
for the dispatch problem considered in this work. Traditionally,
normal form games have been used to model how rational
players interact with one another based on inter-dependent
costs assigned to the actions taken by each participant. In order
to make a rational strategy selection, each player will need
to compute the cost associated with all strategy permutations
which maybe employed by other players and this can be a
laborious task for a large system. In the dispatch context, EGT
offers a theoretical foundation to model a large number of
strategically interacting DGs playing a population game [14].

The population game anonymizes participating DGs and is
only concerned with the aggregate behaviour x of the system
which represents the population state.

Many difficulties encountered in the normal form game due
to the presence of a large number of DGs are eliminated in the
EGT setup. For instance, as there is a large number of DGs in
the system, the decision made by a small set of DGs to switch
strategies will not cause a noticeable impact on the costs of
other strategies. Also, due to the strong law of large numbers,
the stochastic effects of DGs’ actions will be averaged out
and the evolution of the aggregate behaviour x of the system
will be very close to a deterministic system. At equilibrium,
given that sufficient generation capacity exists in the system,
each DG strives to dispatch minimal individual power while
ensuring that the aggregate power dispatched by all DGs meets
overall system demand.

A DG participating in the population game will revise its
current strategy at a random time using an imitative protocol
to make myopic decisions using local interactions with an-
other randomly selected DG in the system. These interactions
result in the deterministic evolution of the population state
x in a manner similar to the biological selection process of
behavioural traits in a population of species. The resulting
state evolution is referred to as the Replicator Dynamics (RD).
Many interesting steady state natural phenomena resulting
from distributive imitative interactions between biological en-
tities have been observed in the past [12] and we show in this
work that desirable stationary results can also be obtained for
the dispatch problem by applying a similar approach.

A. Cost Function
The penalty a DG incurs for selecting a particular strategy

ei depends on the population state x as follows:

J(ei, x) = yi(nx
T y − C) (1)

where yi is the power dispatched when strategy ei is selected,
nxT y is the aggregate power dispatched by all n DGs in
the population and C is the aggregate power demand in the
system. Let the cost for every pure strategy be represented by
the vector J(x) = [J(e1, x)...J(eM , x)]T . As strategies are
present in the population with a frequency x, the average cost
of the game is J̄(x) = xTJ(x).

B. Revision Protocol
Based on these costs, a DG performs imitative revisions

of its current strategy at randomly chosen time. During the
revision process, the DG examines its current strategy and
the strategy of another randomly selected DG. It imitates its
opponent with a probability proportional to ρi,j(x) which is
the conditional switch rate of DGs from strategy ei to strategy
ej given that the population is at state x and is defined as [13]:

ρi,j(x) = xj [J(ei, x)− J(ej , x)]+ (2)

The intuition behind this particular definition is that if the
cost of using one strategy is lesser than the current strategy,
then the rate at which the DG will switch to it will increase in
proportion to the difference in costs and the strategy frequency.



C. Dynamical System Evolution

The resulting dynamical population state evolution when
all DGs use imitative revisions is derived here. The average
rate of DGs switching into strategy ej is

∑M
i=1 xiρi,j(x). The

average rate of DGs switching from ej is
∑M

i=1 xjρj,i(x). The
randomness in the above expression is not considered without
loss of generality as the strong law of large numbers states
that the behaviour of the system will tend to average when
the population size is large. The change dxj in the population
state xj due to these revisions is the net proportion of DGs
switching to and from the strategy ej according to:

ẋj =
M∑
i=1

xiρi,j(x)− xj
M∑
i=1

ρj,i(x)

ẋj =
M∑
i=1

xixj [J(ei, x)− J(ej , x)]+

− xj
M∑
i=1

xi[−J(ei, x) + J(ej , x)]+

ẋj = −xj [J(ej , x)− J̄(x)]

The first line is obtained by simplifying the net proportion
of transitions to and from strategy ej . This expression is
known as the mean dynamics [3]. The second line results
from substituting Equation 2 into ρi,j(x). The last line is
the dynamic resulting from imitative revisions and is derived
by combining the first and last terms of the second line.
This system is also referred to as Replicator Dynamics (RD)
[15]. According to the RD, if the individual cost of selecting
strategy ej is lesser than the overall cost of the game, then
the frequency of that particular strategy will increase in the
system.

D. Static Equilibrium Properties

The game theoretic equilibrium considered in this work is
the Nash Equilibrium (NE). When NE is attained no DG can
deviate from its current strategy without incurring more or
equal cost and this is formally defined in Definition 1.

Definition 1. [12] x is an NE and in 4NE if:

xTJ(x) ≤ yTJ(x) ∀ y ∈ 4 (3)

Stationary points of the RD dynamical system occur when
ẋi = 0 ∀ i ∈M and form the set xeq ∈ 4RD. There exists a
relationship between points in 4NE and 4RD.

Theorem 1. All x ∈ 4NE are Lyapunov stable points of
4RD.

Proof: According to Sandholm, a strict Lyapunov function
V for the dynamical system ẋ exists if ∆V (x)T · ẋ ≤ 0 ∀ x ∈
4 with equality occurring only for x satisfying ẋ = 0 [14]. It
is shown in the following that V (x) = 1

2n (nxT y−C)2 is the
strict Lyapunov function for the RD system. First, it should

be noted that 4V (x) = F (x). Using this and the generalized
mean dynamic, the following is derived:

4V (x)T · ẋ =
n∑

j=1

Fj(x)(
n∑

i=1

xiρij(x)− xjρji(x))

=
n∑

j=1

n∑
i=1

(xiρij(x)Fj(x)− xjρji(x)Fj(x))

= −
n∑

j=1

n∑
i=1

xiρij(x)(Fi(x)− Fj(x))

≤ 0

Line 1 is obtained by substituting the cost function F into
4V (x) and the generalized mean dynamic into ẋ. Since Line
2 contains a double summation, the indices can be re-arranged
to obtain Line 3. According to the definition of the imitative
revision protocol, ρi,j(x) ≥ 0 if Fi−Fj ≥ 0 and 0 otherwise.
As the two positive terms in Line 3 are negated, this expression
is negative. Hence, this shows that V (x) is indeed a strict
Lyapunov function for this system. Next, we demonstrate that
Lyapunov stability implies NE:

∆V (x)T · ẋ ≤ 0→ J(x)T ·∆x ≤ 0

J(x)T · (x− y) ≤ 0→ xT · J(x) ≤ yT · J(x)

The final expression in the above is exactly the condition for
NE listed in Definition 1 .

With the RD system, if the initial population state x0 does
not lie in the interior of the simplex 4 then all unused
strategies will become extinct as xi = 0 → ẋi = 0. The
resulting rest point of the state trajectory may not be an NE.
Work in [14] shows that these rest-points are not Lyapunov
stable. Hence as long as the initial states x0 lie in the interior of
4, the rest-points of the dynamical system are Lyapunov stable
and therefore NEs. So far, the dynamical and static system
properties have been investigated in this section. Next, the
distributive implementation of the proposed dispatch scheme
by DGs is discussed in the following.

E. Distributive Algorithm

Each DG in the population will compute the time τ at which
it will re-examine its current strategy using an exponential
distribution with rate 2s which is the expected communication
delay in the system [10]. The EPU implicitly computes the
surplus or deficit power in the system by measuring the inflow
or outflow of power from the synchronous generators in the
main grid to obtain D = (nxT y − C). The value of D is
sent to all DGs in a periodic manner every 2s. The DG that
is currently re-evaluating its strategy will send a broadcast
requesting for an opponent. Other DGs receiving this request
will choose to respond in a random manner. In order to
preserve security and privacy, responding DGs can encrypt and
anonymize messages. If the initiating DG receives more than
one response, it will select one randomly and compute ρi,j
using D. Based on this switching rate, the DG will randomly
determine whether or not to imitate strategy ej if its generation



capacity is sufficient. In order to ensure that no extinction
occurs in the system, DGs will once in a while select a strategy
randomly instead of imitating. The distributive implementation
is summarized in Table I.

Distributed Algorithm for DG
Initialization:

• Select a strategy ei randomly from M

Algorithm:
1) Compute τ using exponential distribution with rate

R.
2) After τ sec, broadcast request for an opponent and

randomly select one of the responses.
3) Calculate ρi,j based on the strategy used by the

selected responding DG.
4) If current generation capacity is greater than or

equal to yj , switch to strategy ej with probability
proportional to ρi,j > 0 or switch to a randomly
selected strategy ek that meets available generation
capacity with probability ε.

TABLE I: Summary of distributed implementation of dispatch

IV. RESULTS

Numerical results illustrating the effectiveness of the pro-
posed distributed dispatch strategy summarized in Table I is
presented in this section. Unless otherwise mentioned, the sim-
ulation environment contains 1000 agents each representing a
DG with generation capacities that can be one of 1kW, 2kW or
3kW. All numerical results presented in this work are obtained
from implementations in MATLAB.
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Fig. 1: Solution trajectories superimposed with cost contours

Fig 1 illustrates the solution trajectories of the system for
various initial population states. These trajectories are super-
imposed with the average cost of all agents in the population.
All solution trajectories with initial states in the interior of
the simplex reach NE rest-points at which the average cost
of the entire system is the lowest. Non-interior initial states

result in trajectories that are non-Nash and it is evident from
this figure that initially unused strategies have become extinct
as expected. This diagram can also be used to gauge the
convergence speed of the solution trajectories to the NE states.
Solution trajectories that are orthogonal to the level sets of the
average cost of the system have the fastest descent to the NE
states [14]. From Fig 2, it is evident that DGs exhibit the most
orthogonal behaviour when trajectories are closer to the NE
states.
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In the next set of experiments, the ability of agents to
distributively respond to changes in aggregate demand or gen-
eration capacity in the system is investigated. Fig 2 illustrates
the aggregate dispatch of all DGs in the system versus the
aggregate demand C in the system. Overall C and generation
capacity of each DG changes in a random manner. It is evident
that the aggregate dispatch of all DGs are able to rapidly
converge to meet the aggregate demand in the system in a
distributive manner. Between 35 and 40 minutes, the overall
demand is 3500 kW and this is much higher than the maximum
possible generation capacity in the system (1000 DGs * 3kW).
In this case, all DGs operate at maximum capacity. Fig 3
presents the solution trajectories of the three levels of power
dispatch in the system. The aggregate dispatch of all agents
exhibit no oscillatory or divergent behaviour as expected.

In the EGT formulation of the distributed dispatch algo-
rithm, we make a strong assumption that a “large” number of
DGs are present in the system. Next, the impact of the number
of participating DGs on the convergence characteristics of
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overall dispatch is presented in Fig 4. Three systems are
considered in which the first one contains 1000 agents with
C = 2100kW, second contains 100 agents with C = 210kW
and the last system contains 10 agents with C = 21kW.
Results in Fig 4 indicate that larger the number of agents,
the faster and smoother is the convergence rate. Systems with
100 and 1000 agents have similar convergence trends while the
system with 10 agents displays more chaotic behaviour. This
experiment indicates that as long as the number of agents in
the system is not too low (i.e. 10 agents), theory and results
from the original EGT formulation can be preserved.

Next, the convergence and computational overhead proper-
ties of the proposed dispatch scheme are compared with other
dispatch schemes proposed in the literature. For centralized
optimization techniques, the size of the problem increases as
the number of DGs n increase in the system. Centralized
optimization techniques such as the interior point method has
a computational complexity of O(n3) while our scheme has a
complexity of O(1) as all participating entities perform simple
arithmetic computations. According to the work in [7], the
proposed decentralized algorithm requires at least n(n − 1)
exchanges of information for convergence. For a 1000 DG
system, given that the communication delay is about 2s, the
time required for convergence far exceeds the 10 minute
period. Simulations indicate that our scheme requires at most
2 minutes for convergence.

These results show that when the initial population state is
an interior, the proposed distributed dispatch algorithm enables
participating DGs to effectively converge to NE rest-points
which incur the least average population costs. Although it is
fairly simple for the EPU to compute NE population state in
a centralized manner, a major challenge is assigning strategies
to each DG so that this NE population state can be achieved.
The EPU needs to be aware of the local generation conditions
and availability of each DG. The proposed algorithm abstracts
all these details from the EPU. Even if a subset of agents
are unable to participate in the dispatch process, the algorithm
enables the system to react appropriately to changes.

V. CONCLUSIONS

In this work, we propose a distributed dispatch strategy
based on EGT techniques that can be used to effectively

manage DGs so that these can replace some of the tradi-
tionally used costly and unsustainable peak serving generation
systems. We demonstrate that EGT provides a comprehensive
framework to distributively control DGs and model aggregate
behaviour of the system using a deterministic dynamical
process. The imitative revision protocol used by participating
DGs entails low computational overhead and the dynamics of
the system is such that DGs are able to rapidly converge to
the desired aggregate dispatch level when sufficient generation
capacity exists in the system which renders the proposed
strategy suitable for real-time deployment. As future work,
other types of revision protocols which have various degrees of
communication requirements and privacy implications should
be explored as alternatives for the dispatch problem.
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