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Abstract—The proliferation of high powered electric devices
is a driving force in the rising of peak power demand from
electric power utilities. One way to accommodate these rising
consumption patterns involves the deployment of high capacity
dispatchable, but largely unsustainable peak generation systems.
To avert these extravagant costs and the likelihood of grid over-
load, demand response (DR) strategies can be employed to curtail
overall consumption, thus reducing peak patterns. In this paper,
we propose a distributed real-time DR approach. The proposed
method fosters seamless cooperation between DR participants
for rapid convergence to expected aggregate load curtailment,
while accounting for individual consumer satisfaction needs. We
assess this paper through theoretical analysis based on population
game theory and simulations to demonstrate its inherent flexi-
bility, scalability, and resilience making it attractive for practical
widespread deployment.

Index Terms—Demand response, distributed algorithms, cyber-
physical systems.

I. INTRODUCTION

AS PEAK demands rise each year with the increasing pen-
etration of high power-consuming end-devices (such as

plug-in hybrid electric vehicles [1]), Electric Power Utilities
(EPUs) are naturally identifying mechanisms to not just
accommodate, but regulate demand peaks. Demand Response
(DR) schemes are being employed to reduce peak demands
through load shifting and energy conservation. Given that
most consumers can tolerate a certain degree of adjustment
in their energy requirements without affecting service satis-
faction (through, for example, marginally varying thermostat
setpoints, tumble drying, using cooler wash cycles, etc.), there
exists an inherent demand flexibility that can be leveraged
through monetary compensation to limit peak demand. A
major technical challenge in DR is striking a balance between
reducing costs and managing the fluctuating peak demands
of a large number of consumers without negatively affecting
consumer satisfaction.
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Existing DR can be categorized as behavioural or Direct
Load Control (DLC) schemes. Behavioural DR employs pric-
ing to induce consumers to change individual power con-
sumption patterns. On the other hand, DLC requires the EPU
to directly actuate appliances belonging to participating con-
sumers. Behavioural schemes such as Time-of-Use (TOU),
Critical Peak Pricing (CPP) and Real-Time Pricing (RTP) com-
pute prices for power over various time intervals in a day [2].
Given that these computations rely extensively on forecast
models that are subject to inaccuracies that rise as the pre-
diction horizon increases, prices are not representative of the
actual demand-supply state in the grid [3].

In contrast, direct actuation of consumer appliances affords
the EPU a higher degree of control. Smart appliances and
controllable thermostats can be directly actuated via signals
transmitted from the EPU [4]. However, existing DLC schemes
are typically implemented in industrial or commercial set-
tings and are not commonly applied to regulate residential
demand. Since the residential sector is comprised of many
end-users utilizing a diverse set of appliances with widely
varying usage patterns, centrally computing an optimal real-
time load shedding solution for all appliances (e.g., [5]–[7]
focus only on thermostatically controllable loads for DR)
is intractable for the EPU. Keeping track of the ever-
changing properties of every single appliance along with user
preferences for a large number of consumers in a central
repository requires a vast amount of storage and commu-
nication resources. Moreover, centrally solving the typically
non-convex demand response problem constrained by these
highly varying local conditions to obtain the exact opti-
mal load reduction becomes very computationally challenging
especially as the number of participants increases in the
system.

In order to overcome these issues, decentralized and dis-
tributed implementations of DLC that capitalize on the recent
cyber-enablement of the power grid have been proposed in the
literature. One class of these proposals incorporate multi-agent
learning methods such as average consensus protocol, sub-
gradient methods and machine learning heuristics [8]–[11].
Certain limitations that include slow convergence (conver-
gence time increases in proportion to the number of partic-
ipants for consensus based DR presented in [8]), excessive
communication overhead (bi-directional communication flows
are necessary between the EPU and all participants for the pro-
posed DR algorithm in [10]) and radical changes to existing
appliances (direct actuation of inductive and resistive com-
ponents is required for the DR scheme proposed in [11])
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are challenges that restrict practical implementation of these
schemes for real-time DR.

Other proposals leverage game theoretic techniques for
distributed/decentralized DR [12]–[17]. References [12]–[14]
optimize appliance scheduling in participating homes via
price signals. These proposals require scheduling to occur
in advance (e.g., beginning of a day) and every participant
must be aware of the appliances that he or she will be uti-
lizing throughout the scheduling period. Not all appliances
can participate as these schemes focus only on ‘shiftable’
appliances such as dishwashers, dryers, etc. Moreover, results
presented in these papers are based on only a small num-
ber of DR participants. Reference [17] applies evolutionary
game theory to accommodate a large number of DR partici-
pants. However, as the proposed algorithm in [17] results in
non-unique solutions, the system will be subject to signifi-
cant ringing and instability. Other applications of game theory
are not directly used in DR but rather to assess whether there
exist sufficient incentives for major adaptation of the proposed
schemes [15], [16].

In this paper, we aim to address a significant challenge
for DR design as observed earlier in the existing literature:
managing a large number of consumers with highly vari-
able demands in real-time. In particular, we propose a novel
algorithm that is: 1) distributed: computational processing is
offloaded to cyber-physical DR agents located at consumer
premises; 2) consumer-centric: end-users configure load oper-
ation preferences on their respective DR agents based on
comfort requirements; 3) real-time: the EPU broadcasts uni-
directional communication signals employed by DR agents to
elicit load shedding decisions based on current local condi-
tions and these decisions rapidly converge to optimal aggregate
peak reduction; 4) resilient: it is possible to rapidly recover
from system perturbations when a subset of DR agents are
corrupted; 5) scalable: better convergence is achieved with
a larger number of participants. We capitalize on population
games, an extension of Evolutionary Game Theory (EGT), to
construct a theoretical DR framework that effectively defines
strategic interactions amongst DR agents for achieving asymp-
totic convergence at minimal cost to the aggregate demand
reduction goal set by the EPU.

Our contributions include: i) a novel distributed DR strat-
egy with three distinct implementations and corresponding
convergence analysis; ii) practical performance evaluation
including a study of resilience; and iii) a comparative study
of the proposed and existing DR strategies against four
metrics.

This paper is organized as follows. Section II presents the
system model and assumptions. Section III provides a detailed
description of the strategy formulation along with theoretical
system properties. In Section IV, simulation and comparative
results obtained using realistic MATLAB/Simulink implemen-
tations are presented. Final remarks are drawn in Section V.

II. PRELIMINARIES AND SETTING

We present a generalized framework for DR at the distribu-
tion substation level consisting of a diverse set of consumers.

A. Assumptions

We make the following assumptions about the DR system:
1) The EPU is equipped with a cellular transmitter that

broadcasts cost signals in the downlink at 2 Hz;
2) The EPU can measure in real-time the proportion of

power demand reductions resulting from the DR scheme
at the distribution substation level;

3) Each DR participant is equipped with a DR agent
supplied by the EPU at his/her premises that can be
configured with individual load usage preferences;

4) The DR agent is a cyber-physical entity that is retrofitted
with a wireless transmitter and a receiver and has the
ability to directly actuate appliances in its local premise;

5) Each DR agent can commit to one of n power reduction
levels and will automatically schedule local appliances
according to this commitment;

6) There is a large number of DR participants;
7) Sufficient power reduction capacity exists in the sys-

tem after factoring in consumer preferences to meet an
aggregate load reduction of C kW;

8) DR costs are modelled as a strictly convex function;
9) Demand and supply remain constant for 1 minute.

The first, second and fourth assumptions correspond to the
cyber-enabled vision of the smart grid. Standard PMUs typi-
cally transmit at 50 Hz which is a much higher rate than that
required by the EPU in the first assumption [18]. The third
and fifth assumptions abstract local operating conditions of
consumer loads from the EPU. Behavioural uncertainties are
quantified as occurring from a finite set of possibilities remov-
ing humans from the active control loop. A DR agent responds
to signals transmitted by the EPU to make decisions on what
local loads should be stalled or postponed according to the
preference pre-configured by the consumer and the current
appliances that are active. These preferences can be translated
into a comfort budget which is the maximum overall energy
reductions a consumer can tolerate over the course of a day. As
loads consume power at discrete levels, these are generalized
to n power reduction levels. Local wireless signals transmitted
by the DR agent will either directly actuate smart appliances
or indirectly actuate regular appliances via smart plugs using
a smart home energy management system [4]. DR agents can
also support the second assumption via local transmitters as
these can be used to report local load reductions in a manner
similar to smart meters and/or PMUs to the EPU for pricing
purposes. The next three assumptions are necessary for the for-
mulation of the distributed DR problem. The sixth assumption
is practical as the residential sector, for instance, is com-
posed of thousands of consumers. The eighth assumption, also
adapted by many works that include [19], constructs cost of
non-generation resources (i.e., demand response, energy stor-
age, etc.) as a strictly convex function modelling after primary
energy markets (e.g., power generation costs by plants such as
thermal units are considered to be strictly convex and quadratic
in [18] and [20]). A strictly convex cost function effectively
captures greater utilization of these non-generation energy
resources by consumers [19]. The final assumption is reason-
able as the 1 minute interval of supply/demand constancy is



2534 IEEE TRANSACTIONS ON SMART GRID, VOL. 8, NO. 6, NOVEMBER 2017

much smaller than the prediction horizon typically used in DR
to capture transitions in appliance power usage [18].

B. Demand Reduction via Conservation

In this paper, we consider consumer preferences for energy
conservation (i.e., varying thermal setpoints, using cooler wash
cycles, etc.). Although energy conservation is not the pri-
mary goal of many DR schemes, it is implicitly incorporated
into schemes such as TOU. According to [21], TOU induces
short-term behavioural changes in which many consumers use
electric appliances more sparingly and carefully. One study has
concluded that a 3-4% reduction in electricity usage is observ-
able amongst these users [21]. In addition, programs such as
PowerSaver in the U.S. promote energy efficiency by providing
incentives to consumers who retrofit their homes with energy-
saving equipment [22]. Energy conservation is now a natural
option especially when there are many energy saving options in
modern appliances. While energy conservation is one method
to reduce grid overload, rescheduling appliance operations to
flatten power consumption peaks can also be accommodated by
our scheme. Comprehensive storage systems such as Powerwall
by Tesla (home battery that charges via power generated by
local solar panels) are now readily available in consumer mar-
kets [23]. When devices such as these function in tandem with
demand response schemes such as ours, appliances can be
rescheduled without causing rebounding or payback effects.
Storage systems can be activated when demand reductions are
required instead of conserving appliance usage. We consider
these possibilities in future work.

C. Demand Response Problem Formulation

Consider an EPU that employs DR to shave aggregate
demands by C kW during an impending energy strain such
as grid overload or excessive generation costs. To encourage
participation in the DR program, the EPU provides monetary
incentives to consumers for demand reductions. Suppose all
m participating DR agents form the population P. As dis-
cussed in the previous section, each DR agent in P must
select amongst n power reduction strategies denoted by the
set S = {s1 . . . sn} that correspond to n power commitment
levels y = [y1 . . . yn]T ∈ R

n×1 (such that yj ∈ R). Let
z = [z1 . . . zm] ∈ {0, 1}nxm (whereby zi ∈ R

n×1) represent the
associated load shedding matrix such that if DR agent i selects
to reduce power consumption by yj kW within its precinct, the
jth component in zi is set to 1 and all other components in zi

are set to 0. We can therefore denote the power committed by
DR agent i by zT

i y.
Let fo(z) represent the overall cost incurred by the EPU

for imposing a load shedding of z. Thus the EPU is required
to solve the following optimization problem PC to achieve a
desired aggregate demand reduction while minimizing com-
pensation costs and preserving consumer preferences:

(PC) min
z

fo(z)

subject to
m∑

i=1

zT
i y = C

0 ≤ zT
i y ≤ min {pi, li} ∀ i = 1 . . . m

(1)

where pi and li denote the maximum power reduction possible
given the remaining comfort budget and the power currently
consumed, respectively, by consumer i. The equality (cou-
pling) constraint requires aggregate power reductions by all
DR agents to meet the targeted value of C. The inequality con-
straint ensures that the power committed by DR agent i meets
the pre-configured consumer preference pi given that the cur-
rent consumer demand li is sufficient for the reduction. At the
beginning of a day, pi is set to the comfort budget the consumer
has configured in his/her DR agent. As the day progresses,
reductions made by the DR agents are taken into account by
reducing the comfort budget accordingly. This ensures that
a consumer does not experience more power reductions than
what they prefer.

We observe that PC is an integer programming problem,
given the discrete nature of the variables for optimization.
Integer programming problems fall under the NP complexity
class [24]. Complexity of an NP problem increases expo-
nentially with the problem size (i.e., number of participating
DR agents in our case) [25]. Moreover, taking into account
each consumer’s current load conditions and highly fluctuat-
ing operation preferences imposes significant communication
overhead. In the next section, we propose a distributed DR
scheme that aims to address these challenges.

III. DISTRIBUTED DEMAND RESPONSE

We assert that a distributed strategy in which participat-
ing DR agents respond to real-time cost signals from the
EPU to compute their own load shedding commitment iter-
atively will eliminate pervasive practical challenges in DR
schemes. DR agents are representatives of the EPU that reside
at local premises of consumers. It is important to note that the
compensation paid by the EPU to a consumer for reducing
consumption by a particular level is reflected in fo(z) and this is
not the same as the cost signals broadcasted by the EPU. Cost
signals transmitted by the EPU foster cooperation amongst
the DR agents so that the cumulative load shedding decisions
of these agents ensure that minimal costs are incurred by the
EPU while heeding local consumer preferences and appliance
operating statuses.

In this section, to reformulate the new DR problem, we first
shift the local inequality constraints in PC to the corresponding
DR agents and apply a change of variables to form P′

C that
only consists of the coupling constraint. Then, the dual PD

of P′
C is constructed to form an optimization problem with-

out the coupling constraint. We observe that a globally unique
solution exists for PD such that the EPU can achieve an aggre-
gate demand reduction of C at minimal cost if there exists
sufficient demand reduction capacity overall. If user prefer-
ences are overly restricting then PC may become infeasible.
In the proposed algorithm, each agent will select a strategy
based on best-effort that heeds local constraints while attempt-
ing to achieve reductions that are close to C as discussed in
Section III-C. Moreover, the objective function of PD is used
to compute strategy costs periodically to foster coordination
amongst DR agents for selection of strategies that result in
overall power reduction of C. As we see, such a distributive
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selection strategy by a large number of DR agents naturally
defines a population game that is used for analysis.

A. Computation of Cost Signals

To maintain fairness, the EPU does not discriminate
amongst DR agents and is therefore concerned with the cumu-
lative effective of DR (in terms of overall cost and aggregate
demand reduction) opposed to the individual strategies of each
DR agent. Let xi represent the fraction of DR agents in P that

select strategy si (i.e., xi = # agents using si
m = ∑m

j=1
zT
j ei

m
where ei is a unit vector in which the ith element is 1). We
introduce the vector x = [x1 . . . xn] ∈ � that necessarily takes
on values in the simplex � = {x | ∑n

i=1 xi = 1, 0 ≤ xi ≤ 1}
since every DR agent in P will select one of n available
strategies. We reformulate PC of (1) in terms of x as follows:

(P′
C) min

x∈�
fo(x)

subject to m xTy = C.
(2)

The inequality constraints in PC are removed and incor-
porated into DR agent cost signal responses discussed fur-
ther in Section III-C. Complexity of the newly formulated
P′

C is dependent only on the number of strategies n and
does not change with the population size m. Without loss
of generality, fo(z) is defined to be a quadratic function
1
m (

∑m
i=1 zi)

TY(
∑m

i=1 zi). Quadratic cost functions are com-
monly used in DR works such as [19]. Y is a diagonal matrix
with strictly positive diagonal entries. Diagonal entry Yii is the
compensation paid by the EPU to the DR consumer for select-
ing si and committing to a yi kW reduction. It is clear that the
change of variable from z to x results in the transformation of
the objective function to:

fo(x) = m
1

2
xTYx = 1

2
m

n∑

i=1

x2
i Yii (3)

Even if the decision variables are different, the objective val-
ues of fo(z) and fo(x) are the same when z is mapped to x.
As Y is a diagonal matrix with strictly positive diagonal
entries, Assumption 8 is satisfied (i.e., fo(x) is a strictly convex
function).

We note that P′
C is a strictly convex optimization problem

consisting of only continuous decision variables (i.e., x) and a
strictly convex objective function with linear constraints (these
define the simplex � that x can take values from). Thus, it is
efficiently and uniquely [26] solved by the EPU to obtain x∗,
the distribution of DR agents in P resulting in the lowest cost.
It is straightforward for the EPU to compute x∗, but a practi-
cal challenge lies in assigning available strategies to specific
DR agents to achieve distribution x∗ while adhering to local
operating constraints.

In our formulation, the EPU will use real-time cost signals
to facilitate coordination amongst all DR agents so that their
individual strategy selections iteratively converge to the opti-
mal load shedding solution x∗. At this stage, the aggregate load
would be reduced by at least C kW when sufficient shedding
capacity exists or by the maximum commitment possible that
is less than C kW when shedding capacity is insufficient.

To compute these cost signals, the Lagrangian dual PD of
P′

C is considered:

(PD) max
v

min
x∈�

fd(x)

where fd(x) = m
1

2
xTYx + v(C − m xTy)

(4)

where v ∈ R is the Lagrangian multiplier associated with con-
straint m xTy = C. It is clear that fd(x) is strictly convex (thus
representing a potential function [27]) for fixed v given that it
is a linear combination of strictly convex fo(x) and the linear
function v(C−m xTy) [26]. Moreover, PD is a simplistic prob-
lem that can be easily solved by the EPU via standard solvers
available to solve Quadratic Problems (QP) [18] to obtain the
optimal value v∗ by fixing x to the optimal x∗ obtained by solv-
ing P′

C. Cost Fi assigned to strategy si by the EPU is dynamic
and depends on the current distribution x as follows:

Fi(x) = m(Yiixi − yiv
∗) (5)

where Fi(x) is strictly increasing and continuous in x and is
precisely the gradient of fd(x) (i.e., Fi(x) = ∂fd(x)

∂xi
) thus defin-

ing the opposing direction in which the global minimum of
the objective function resides allowing DR agents to select less
costly strategies that reduce the potential of the system. The
EPU computes Fi(x) at every signalling iteration. The current
value of x is available to the EPU according to our second
assumption in Section II.

B. Potential Game Setup

DR agents are local EPU-coordinating entities that make
strategic decisions based on the real-time cost signals broad-
casted by the EPU at every signalling iteration. As DR agents
will behave in a rational manner to achieve minimal individual
costs, these entities may be considered to participate in a pop-
ulation game ϑ where the state of the population is adequately
captured by x. The game ϑ is completely specified by x and
Fi ∀ si ∈ S. Theorem 1 shows that the unique structure of Fi

allows ϑ to be classified as a full potential game [27] that has
several desirable properties pertaining to the state dynamics
resulting from the distributive strategy selections by the DR
agents highlighted in the subsequent sections.

Theorem 1: The population game ϑ defined by F : x → R
n

where F = [F1, . . . , Fn] is a full potential game as it satisfies
the following full externality symmetry [27]:

∂Fi

∂xj
= ∂Fj

∂xi
, ∀si, sj ∈ S

Proof: The partial derivatives of Fi defined for ϑ are

∂Fi

∂xj
= 0,

∂Fj

∂xi
= 0 ∀si 	= sj

One can intuitively relate the potential function and popula-
tion game as follows. Suppose a fraction of DR agents ε make
a switch from a more costly strategy sj to a less costly one
si, then ∂f

∂u = Fi(x) − Fj(x) < 0 where ∂u is the displacement
vector representing the fraction of DR agents switching from
si to sj. From this observation, it is evident that when strategy
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switches are cheaper, the potential (i.e., the overall cost) of the
game reduces. Hence, all “reasonable” strategy changes result
in reducing the potential of the game and cost incurred by
each DR agent. DR agents will repeatedly switch their strate-
gies according to a revision protocol [28] until all DR agents
reach a population state x∗ where any further changes will
result in increased cost. This point of stationarity is referred
to as the Nash Equilibrium (NE), formally defined as:

NE = {x ∈ �|xi > 0 → Fj(x) ≥ Fi(x); ∀si, sj ∈ S} (6)

When x∗ ∈ NE, strategies si that are in use (i.e., xi > 0)
incur the same minimal cost and all other unused strategies
sj (i.e., xj = 0) have higher costs. There exists a relation-
ship between the unique solution of PD and the NE achieved
through distributed revisions and this is stated in Theorem 2:

Theorem 2: The NE of the population game ϑ is identical
to the global minimum of PD for fixed v∗ and is unique.

Proof: The optimal solution x∗ of PD is unique as the prob-
lem is strictly convex. This global minimum x∗ must satisfy
all of the Karush-Kuhn-Tucker (KKT) conditions [26]. These
conditions reduce to exactly the necessary and sufficient con-
ditions of NE in a game as listed in Eq. 6 (please refer to
the Appendix for this proof). Hence, the global optimum x∗
is indeed the NE of the game ϑ .

Local asymptotic stability properties of the unique NE pro-
vide insights to whether the distributed DR scheme will be
robust. Suppose that after the DR agents reach the NE through
“reasonable" distributed strategy revisions, a fraction ε of DR
agents behave in an irrational manner and select strategies that
are more costly. This situation is entirely possible if a subset
of DR agents were compromised and forced to behave in a
malicious manner. If the system is able to return to the original
NE even after these perturbations, then the population game
can be considered robust and the associated NE results in an
Evolutionary Stable State (ESS) [27]. Theorem 3 indicates that
a global ESS exists for the game ϑ and is precisely the NE.

Theorem 3: The unique NE of the potential game ϑ is the
global ESS of the game.

Proof: As the game ϑ has a strictly convex potential func-
tion, it satisfies the relation (y − x)′(F(y) − F(x)) > 0 ∀ x 	=
y and this is the condition necessary for a strictly stable
game [29]. x∗ is an ESS if it satisfies the following condi-
tions: (y − x∗)′F(x∗) ≥ 0 and if (y − x∗)′F(x∗) = 0 then
(y−x∗)′F(y) > 0. The first condition dictates that x∗ is an NE
according to an alternative definition of NE in [30]. As ϑ is a
strictly stable game, the second condition is naturally satisfied
when (y − x)′F(x) = 0.

C. DR Agent Decisions and State Dynamics

We have established the static properties of existence and
uniqueness of the NE and ESS in a population game. In this
section, the dynamical evolution of the population state x when
DR agents use various revision protocols to make distributive
strategy selections is studied. We investigate the modified ver-
sions of revision protocols proposed in reference [27] as the
objective in this paper is to minimize costs incurred by the
agents whereas the objective in the reference is to maximize

agent payoffs. In the distributed implementation, at a randomly
selected time, each DR agent uses a probability proportional
to a conditional rate ρi,j(F(x), x) which is a function of the
current strategy costs and system state to switch from si to sj.
As strategy revisions occur randomly according to a particular
probability (and not all at the same time) and the population
of DR agents is large, changes in the state and strategy costs
occur in the overall system gradually due to these switches.
The larger ρi,j(F(x), x), the higher the rate that DR agents
will switch from strategy si to sj. It has been shown that the
net change in the population state xi when strategy revisions
are made according to ρi,j(F(x), x) is dictated by the mean
dynamics [27]:

ẋi =
n∑

j=1

xjρj,i(F(x), x) − xi

n∑

j=1

ρi,j(F(x), x). (7)

The first and second terms of Eq. 7 represent the overall inflow
rate of DR agents selecting si and the overall outflow rate of
DR agents switching from si to other strategies, respectively.
Although xi is a random variable, since the population P is
assumed to be large, the law of large number applies and we
expect the population state will converge to the mean. The
value taken by ρi,j(F(x), x) depends on the particular revision
protocol used by the DR agents. In this paper, three revision
protocols with various degrees of information requirements
and convergence characteristics are considered.

In the original problem formulation PC, certain constraints
were removed in order to decouple the EPU from consumer
preferences and local appliance operating conditions. These
local constraints are incorporated into the decision-making
process of DR agents. If a DR agent i uses a particular revi-
sion protocol and selects sj but local constraints are such
that yj ≥ min{pi, li}), then local power consumption will be
reduced to max{yk} ≤ min{pi, li}. Since it is assumed that
the population is large and there exists sufficient capacity in
the system, these deviations can be considered to be a minor
reduction in the population size. Hence, the large scale of the
DR problem is leveraged to accommodate limitations caused
by local constraints. In Section IV, we investigate the impact
of these restrictions on convergence and steady state behaviour.

The first type of revision protocol is imitative (I) [27]:

ρI
i,j(F(x), x) = xj[Fi(x) − Fj(x)]+ (8)

A DR agent will randomly communicate with another oppo-
nent DR agent in the same population requesting the strategy
the opponent is currently using. The probability that the DR
agent will encounter an opponent using strategy sj is xj. The
DR agent will then switch to the opponent’s strategy with a
probability that is proportional to the amount by which its
current strategy cost exceeds the latter’s strategy cost. The
population state dynamic resulting from imitative revisions,
derived by substituting (8) into (7), is:

ẋi = xi(F̄(x) − Fi(x)) (9)

where F̄(x) = ∑n
i=1 xiFi(x) is the average cost incurred by

all DR agents in the population. Eq. 9 is referred to as the
replicator dynamic. When strategy si is completely unused
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(i.e., xi = 0), then it becomes extinct. If the cost of the incum-
bent strategy is lower than the average cost of the population,
then the rate at which that strategy is adapted is positive. Work
in [14] proposes appliance scheduling via replicator dynam-
ics and this is one of the closest works in the literature to
that of this paper that uses EGT techniques for DR purposes.
Hence, the replicator dynamic is our benchmark in this paper
for comparison purposes.

The second type of revision protocol involves the pairwise
comparison (PC) of strategies [27]:

ρPC
i,j (F(x), x) = [Fi(x) − Fj(x)]+ (10)

Evolutionary behaviour resulting from this pairwise compari-
son revision is called the Smith dynamic (Eq. 11) and is derived
in a manner similar to the replicator dynamic.

ẋi =
n∑

j=1

xj[Fj(x) − Fi(x)]+ − xi

n∑

j=1

[Fi(x) − Fj(x)]+ (11)

The conditional switch rate depends only on the cost of indi-
vidual strategies. Unlike imitative revisions, even if strategies
are not present in the system, the conditional switch rates to
these will not be forced to 0.

The third revision protocol relies on deficit costs (DC):

ρDC
i,j (F(x), x) = [F̄(x) − Fj(x)]+ (12)

A DR agent using si will switch to sj at a higher rate if the cost
of sj is less than the average cost incurred by all DR agents
in the system. This revision protocol results in BNN dynamic
derived in a manner similar to the above:

ẋi = [F̄(x) − Fi(x)]+ − xi

n∑

j=1

[F̄(x) − Fj(x)]+ (13)

It is clear from the following table that the information
requirement for the PC revision protocol is the least:

Table I summarizes the distributed strategy selection pro-
cess of each DR agent. In this algorithm, at the beginning of a
day, the DR agent i initializes Ei (which represents the energy
budget available to the consumer) with the total energy con-
servation ci preferred by the consumer for a day and tcong with
the maximum time allocated by the consumer for conservation
during a day. li is the sum of reducible power consumption by
active appliances that have been given permission by the con-
sumer to conserve (more details are provided in Section IV-B).
Each DR agent randomly selects a strategy from y at the begin-
ning of the first signalling. Then during congestion (as price
signals are broadcast), a DR agent selects an exponentially
distributed random time τi to revise its current strategy. When
the revision time arrives, the DR agent updates Ei, tcong, pi

accordingly and proceeds to revise its current strategy using
the latest signal broadcast by the EPU. This is repeated until
the current strategy cannot be further revised without incur-
ring more cost and/or the exhaustion of comfort budget. The
EPU stops broadcasting the cost signals when the optimal x∗
is achieved by distributive strategy selections in the system.
The EPU will be able to infer this via Assumption 2.

TABLE I
SUMMARY OF DISTRIBUTIVE DR SCHEME

D. Convergence Properties

The state dynamic resulting from each revision protocol
has various convergence characteristics. For instance, if the
dynamic has limit cycle behaviour, the system may not con-
verge to an equilibrium. On the other hand, when the system
does converge, the equilibrium point may or may not be an NE.
Two properties that are vital in identifying convergence charac-
teristics for the three dynamics are Negative Correlation (NC)
and Nash Stationarity (NS) defined as follows [27]:

NC: VF(x) 	= 0 implies thatVF(x)′F(x) < 0

NS: VF(x) = 0 if and only if x ∈ NE(F)

where VF is the right hand side of the dynamical equation ẋ.
NC indicates that the growth rate of the population state is neg-
atively correlated with the corresponding costs and NS requires
that all restpoints are precisely the NEs of the system. The NC
and NS characteristics corresponding to the three dynamics
considered in this work are listed in Lemma 1 and the proofs
for these can be found in [27].

Lemma 1: For a full potential game, all dynamics resulting
from the three revision protocols satisfy NC and the rest-
points of the dynamics induced by the three revision protocols
include the unique NE of the game ϑ .

Replicator dynamics resulting from imitative revisions will
include restpoints that are not NE. For instance, suppose that
one particular strategy is not used by any DR agent in the
system. Since DR agents use imitation to switch strategies, the
strategy not in use can never be imitated. Work in [27] shows
that these equilibria are locally unstable and when the initial
population state is an interior (i.e., x ∈ �), the system always
converges to the unique NE. Two other dynamics satisfy NS
as the system equilibrium always coincides with the NE [27].
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Fig. 1. Load profile in a home during a summer day.

Theorem 4: All three dynamics starting from any initial
condition have unique trajectories that converge to the cor-
responding restpoints. Specifically, Smith and BNN dynamics
converge to the global ESS.

Proof: The following holds for all three dynamics due
to NC:

VF(x)′F(x) ≤ 0 ⇔ VF(x)′∇f (x) ≤ 0.

The above expression is equal to 0 only when x is one of
the restpoints of VF(x). This is precisely the requirement
for the existence of a strict Lyapunov function L(x). From
the above expression, it is clear that L(x) is fd(x). Lyapunov
theory can now be evoked to conclude that all three dynam-
ics resulting from the potential game will always converge to
its restpoints [31] with no divergent or limit cycle behaviours.
Since the Smith and BNN dynamics satisfy NS, the trajecto-
ries of these systems will globally asymptotically converge to
the unique NE which is also the global ESS.

IV. RESULTS

The theoretical properties introduced earlier on perfor-
mance, convergence and robustness of the proposed DR
strategy are evaluated in this section using MATLAB/Simulink
for practical systems and models that mimic realistic scenarios.

A. System Modelling

Household demands are influenced by many factors such
as diurnal events, seasonal changes, penetration rates of appli-
ances and appliance usage patterns. To capture the complexity
encountered in a large system with many consumers and
appliances, we consider DR for a residential neighbourhood
consisting of 1000 homes. In [2] and [32], authors have sum-
marized demand and appliance statistics for regions such as
Ontario, France, India and Quebec to define penetration rates,
power consumption patterns of common home appliances and
probability of active appliance usage based on time of day and
season. In our simulations, we use these parameters (specifi-
cally those provided in [2]) to generate demand profiles during
the summer for homes located in a residential neighbourhood
of Ontario consisting of washing machine, dryer, dishwasher,
electric stove, oven, freezer, fridge, water heater and/or air con-
ditioner. Fig. 1 illustrates the load profile of one such home
over a day; reader is referred to [2] for more details.

B. Incorporating Consumer Preferences

Each participating home is fitted with a DR agent that
can choose from one of three power commitment levels
(i.e., n = 3) corresponding to y = {0.0001 0.1 1} kW. As
mentioned in Section II-B, we consider conservation of appli-
ance operation for demand reductions. Consumers have the
ability to incorporate their appliance operation preferences by
configuring their comfort budget pi and power conservation
preferences into their DR agent. The comfort budget trans-
lates to the maximum energy reductions the consumer will
tolerate per day. This ensures that the consumer will not be
subjected to too much power reductions throughout the day.
Consumers can also configure their preference on how their
appliances should operate in conservation mode. In [2], authors
have outlined that resistive heating elements in appliances typ-
ically consume the most power. Hence, in conservation mode,
consumers can select options that reduce the activation of these
heating elements. For instance, a washing machine can operate
using cold water cycles. A dryer can operate in tumble drying
mode. A dishwasher can operate using only cold water. An
air conditioner can operate at a higher setpoint (on-cycles are
less frequent) or not operate at all until the comfort budget is
exhausted. The consumer may not want certain appliances to
operate at reduced mode. In this case, the DR agent will update
li (which represents the total active power currently available
for reduction) at every signalling iteration by subtracting from
the aggregate active power consumption in home i by the
power consumption of all non-conservable local appliances
that are active.

For simulations presented in this paper, the comfort bud-
get allocated to every DR agent is 1 kW for a maximum of
1 hour per day. During conservation periods, appliances con-
taining resistive components are assumed to operate according
to the load profile information provided in [2] for the region
Ontario with a slight modification. Resistive phases (i.e., time
periods in the load profile in which a resistive element is acti-
vated) in these load profiles are configured in our simulations
to randomly reduce power consumption by up to 90% during
efficient operation modes. This captures various conservation
operation modes manufacturers can equip appliances with. Air
conditioners, fridges and freezers are appliances consisting of
only inductive components. Fridges and freezers operate regu-
larly (i.e., these do not reduce power consumption) and on the
other hand air conditioners do not operate during congestion
periods until comfort budgets are completely exhausted. These
assumptions hold for most of our simulations with the excep-
tion of simulations conducted for obtaining results in Fig. 4b.
For these simulations, we randomly vary the comfort budget,
reduction of power drawn by resistive elements and frequency
of on-cycles of inductive loads to assess the limitations of
consumer preferences on aggregate demand reduction in the
system.

EPU broadcasts cost signals every 0.6 seconds. A DR cycle
lasts for 1 minute coinciding with the constant intervals of
demand and supply. The cost function fo(x) represents the
amount of compensation the EPU provides to a consumer for
various levels of power reductions. This cost is completely
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Fig. 2. Solution trajectories for the three revision protocols.

Fig. 3. Ability of the proposed algorithm to maintain demands around a specific setpoint.

defined by the Y matrix according to the definition of fo(x)
in Eq. 3. As Y is a diagonal matrix with strictly positive on-
diagonal elements, strict convexity holds for fo(x). To preserve
this structure, we select Yii to be a random strictly positive
value that increases with i so that higher power reductions
will lead to more penalty for the EPU.

C. Convergence Characteristics

First, we assess the impact of initial strategy distribution on
the convergence behaviour of the three revision protocols. To
explore all possible strategy distributions, it is assumed that
all homes have been consuming more than 1 kW. Fig. 2a-2c,
illustrate the resulting state trajectories for one DR cycle.
State x remains within the simplex and exhibits no diver-
gent or limit cycle behaviour. Trajectories generated by DC
and PC revisions always converge to the optimal state x =
{0.3636 0.3182 0.3182} to achieve the expected aggregate
reduction of 350 kW. Trajectories initialized at the boundary
of the simplex for I revisions remain there and do not con-
verge to the global optimum. This is not true for DC and PC
revisions. This is expected as the replicator dynamic corre-
sponding to I revisions does not satisfy NS whilst the Smith
and BNN dynamics resulting from PC and DC revisions do
satisfy NS as theoretically proven in Section III-D.

Next, the speed at which these systems descend to sta-
tionarity is investigated. Convergence speed is highest when
system trajectories are orthogonal to the level sets of fd(x).

From Fig. 2a-2c, it is apparent that PC trajectories are more
orthogonal to the level sets of fd(x) than the other two systems.
We consider aggregate demands during three consecutive DR
cycles in Fig. 3a to gauge the adaptability of the DR sys-
tem to changes in demands. As expected, PC revisions enable
DR agents to rapidly respond to demand variations (a com-
parison with existing literature as discussed in Section IV-E
illustrates this) and DC revisions result in the slowest conver-
gence speed. In this paper, as mentioned earlier, the I protocol
is our benchmark. It can be concluded that I revisions are not
suitable for DR as it does not always converge to optimal-
ity. Also, the communication overhead for I protocol is high
as DR agents are required to exchange information with one
another to obtain the opponent’s strategy whereby privacy can
be compromised. For these reasons, only the PC protocol is
considered in the remainder of this paper.

In our final convergence study, the DR system is examined
for an entire day for two different aggregate load shedding
goals. In Fig. 3b, the EPU is striving to maintain aggregate
demands at 220 kW (i.e., peak-shaving attempt by the EPU to
reduce power consumption when energy prices are high). Due
to Assumption 9, the EPU will recompute C every minute so
that even when there are fluctuations in demand and supply the
overall demand in the system is maintained around the setpoint
220 kW. It is clear that all 1000 DR agents are able to distribu-
tively converge to the desired aggregate demand setpoint and
consistently maintain this throughout the day. In Fig. 3c, the
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Fig. 4. Performance of DR scheme under system limitations and perturbations.

demand setpoint is 120 kW. Excessive demand reduction by
all DR agents is required to achieve this. As the comfort bud-
get becomes exhausted, aggregate demand gradually increases
until no more reduction is possible. As DR agents are still
able to maintain the demand setpoint for a small fraction of
the day, the EPU can use this DR strategy to buy time during
contingency periods.

D. Robustness Under System Limitations and Perturbations

Figs. 3b and 3c illustrate that although our DR strategy
is highly scalable, it is subject to limitations induced by the
availability of comfort budgets and demands. In the following,
various limitations and perturbations are applied to the system
to evaluate the robustness of the proposed DR strategy.

First, we relax our assumption on the number of DR agents
participating in the system and assess the impact of varying
participants by one order of magnitude in Fig. 4a. This assess-
ment is important as it allows us to gauge the impact of various
reductions in population size that can occur when DR agents
are unable to participate due to consumer preferences or inad-
equate local power demands. The ratio of actual and expected
demand shed in the system remains at one when there are 100
or 1000 DR agents. However, when there are 10 DR agents,
the system exhibits some oscillatory behaviour. This indicates
that there is a tolerance of up to 90% reduction in population
size for the convergence properties established in Section III-D
to hold.

Next, we consider the effect of user preferences on the
ability of the DR agents to meet EPU’s load shedding goals.
If a DR agent is unable to commit to a particular strategy
without heeding comfort budget requirements, it will not par-
ticipate. As outlined in Section IV-B, consumers may have
various preferences for appliance operation in conservation
mode. This can directly affect the cumulative effect of overall
demand reductions. For instance, certain consumers may prefer
increasing their thermal setpoint as a form of conservation and
this translates to a decrease in the number of active cycles
of air conditioners. Preferences such as these will directly
impact the availability of DR agents for reduction in power
consumption. In order to understand the limitations caused by
consumer preferences, we have simulated the DR algorithm
for various comfort budgets and appliance preference configu-
rations that directly translate to the availability of DR agents.

Supposing that the EPU has set a cumulative load shedding
goal of 350 kW, results in Fig. 4b illustrate what fraction of this
goal can be achieved for various availabilities of the DR agents.
In this particular case, the EPU’s goal can be achieved when
almost 60% of the DR agents are able to participate. Hence,
as consumer preferences can vary significantly, it is imperative
that the EPU maintains a careful balance while setting demand
reduction goals.

Our DR strategy relies extensively on cyber-physical inter-
actions in the grid. A DR agent is a cyber-physical entity that
has the ability to process communication signals to actuate
loads under its control. Just like any other cyber device, DR
agents are also prone to many well-documented vulnerabili-
ties. A malicious adversary who successfully compromises a
subset of DR agents through these vulnerabilities can perpe-
trate insidious attacks on the EPU. For instance, forcing these
DR agents to choose expensive strategies incurs unnecessary
costs for the EPU. Fig. 4c illustrates the evolution of states
in a DR system where 20% of the DR agents (i.e., 200 DR
agents) are forced to switch to the costliest strategy (i.e., 1kW)
in the midst of a DR cycle. Unattacked DR agents are able
to sense this discrepancy through cost signals transmitted by
the EPU and react so that the system is able to recover imme-
diately after the attack as indicated in Fig. 4c and return to
the original optimal state. This example reinforces the validity
of the theory introduced earlier which asserts that the global
minimum is in fact an ESS for a system driven by the PC revi-
sion protocol. Massive system disruption is only possible if a
large number of DR agents are compromised. More specif-
ically, suppose that the number of DR agents compromised
is c and these aggressively choose the most expensive strat-
egy (i.e., max(y)). If c > C/max(y), then it is not possible
for other DR agents to re-adjust their strategies to offset the
adverse effects of the attack as a surplus cost resulting from
c × max(y) − C will always remain in the system. However,
compromising DR agents to this extent is next to impossible as
significant resources will be required to breach a vast number
of geographically dispersed DR agents.

E. Performance Comparison With Other DR Schemes

Here, we compare the performance of the DR scheme
proposed in this paper against other DR schemes.
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We utilize population games in EGT to construct distributed
DR. Work in [12] and [14] propose DR schemes that utilize EGT
for distributed appliance re-scheduling over an extended period
of time (i.e., not real-time). Reference [14] leverages a replica-
tor dynamic based revision protocol for appliance scheduling
throughout the day. We have implemented the imitative revision
protocol that generates replicator dynamics used by authors
of [14] for our real-time DR and this protocol serves as our
benchmark. From the results presented in Section IV-C, we
have concluded that PC revision results in better convergence
and equilibrium properties which are suitable for real-time DR
in comparison to I revisions. Work in [12], on the other hand,
proposes day-ahead appliances scheduling via best-response
dynamic. According to [27], there are two main issues with
this dynamic. First, its convergence characteristics cannot be
established using traditional analysis (similar to that presented
in Section III-C) as the trajectories consist of differential inclu-
sions. Secondly, as the state trajectories are not unique, the
system state can cycle in and out of Nash Equilibria. As we
are concerned with robustness and stability in our system,
best-response dynamic is also not suited for real-time DR.

In order to directly compare the performance of our DR
proposal with another distributed real-time DR scheme that
attempts to meet goals similar to ours in the literature, we
have implemented the DR technique outlined in the work
authored by Deng et al. in [9]. This DR scheme utilizes a
combination of dual decomposition, sub-gradient method and
binary search to enable distributive and real-time DR. Like our
proposal, authors of [9] have decoupled the main DR prob-
lem into master and slave problems which are solved by the
EPU and DR agents respectively. However, unlike our pro-
posal, the EPU iteratively improves cost signals based on the
sub-gradient (SG) method in [9]. The convergence speed to
optimality of distributed decisions made by DR agents depends
on the step-size selected for the SG method. In order to directly
compare the convergence properties, we have implemented
this DR algorithm and our PC algorithm for the same sys-
tem consisting of 1000 DR agents. Results are illustrated in
Fig. 5. The original aggregate demand in the system is 800 kW
and suppose that the setpoint decided upon by the EPU is
500 kW. Our algorithm enables convergence within a small
number of iterations. However, the SG method exhibits very
slow convergence for a step size of α = 0.0001 and oscilla-
tory behaviour for α = 0.0024. Significant oscillations such as
these may cause system and load damages. We have shown via
extensive simulations and theoretical derivations that our PC
algorithm always asymptotically converges to optimality with
no cycling behaviour no matter what the initial conditions are
and is therefore ideally suited for real-time and distributed DR.

For more general conclusions on our proposed DR strategy,
we make comparisons with other existing DR schemes against
four performance metrics in Table II. We compare our proposed
strategy with three general classes of DR strategies which are
centralized real-time, offline and decentralized real-time. In
these classes, the main differences are the time horizons over
which computations occur (i.e., hourly or day ahead intervals)
and whether computations are conducted by a central entity or
in a distributed manner by all participating entities.

Fig. 5. Comparison between PC protocol and SG method.

TABLE II
COMPARISON OF DISPATCH METHODS

First, we consider the communication cost of DR schemes
falling under these classes. The recent cyber-physical inte-
gration in the grid (supported by Assumptions 3 and 4
in Section II-A) enables various entities such as the EPU
and DR agents to exchange information in order to facili-
tate DR. However, the more the information is exchanged,
the greater will be the resulting communication overhead.
In Table II, we use the O notation as this aptly describes
the limiting communication cost in terms of n which is
the number of DR agents in the system [33]. In our pro-
posal, the communication overhead is constant (i.e., O(1))
and is independent of n for the following reasons. The EPU
broadcasts the cost of strategies to all DR agents. As these
costs F(x) and/or F̄(x) are the same for all DR agents,
these can be broadcast to all DR agents. Since commu-
nication occurs over the wireless channel for our proposal
(according to Assumptions 3 and 4) and this is a broadcast
medium, there is no need for the EPU to form individual
downlink connection with every DR agent [34]. A single
general broadcast of the cost to all DR agents is sufficient.
If the communication network is not dedicated to only the
DR participants, then additional mechanisms such as encryp-
tion will ensure that this broadcast can be deciphered only
by authorized entities (i.e., DR agents). On the other hand,
DR agents do not initiate communications with the EPU as
these use the latest cost information transmitted by the EPU
to make DR decisions based on local constraints. Moreover,
as we consider only PC revisions after Section IV-C, no
information exchange is required between the DR agents.
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This is only required for I revisions which we do not con-
sider due to undesirable properties as extinction identified in
Sections III-D and IV-C for this revision protocol. Hence, com-
munication is uni-directional and only occurs in the downlink
for our strategy. For this reason, the communication cost is
constant O(1).

Centralized real-time schemes such as that proposed in ref-
erence [7] depend on updates from participating DR agents
about local state (e.g., temperature, appliance operation, etc.)
for computations. Also, as the central coordinating entity
transmits signals containing information about how to adjust
various local configurations of appliances (e.g., temperature
setpoint) for every DR participant, these are specifically tai-
lored for every DR agent and therefore cannot be broadcast to
all participants. As communication occurs between the EPU
and the DR agents in both the uplink and downlink directions,
at least 2n information exchanges are necessary resulting in
the communication cost being O(n). Offline strategies, such
as the day-ahead pricing schemes referenced in [11], use only
forecast models (i.e., no need for information from consumers)
to compute price of electricity. This price is common to all
participating consumers and can be broadcast. Hence, the com-
munication cost is constant O(1). Finally, decentralized real-
time schemes such as the consensus-based strategy proposed
in reference [8] require information exchanges between par-
ticipating agents. As presented by the authors of reference [8]
themselves, this cost is O(n).

Dispatch error from forecast is the second performance met-
ric that we consider. This error is non-existent in the proposed
and decentralized real-time schemes as prediction models are
not employed. Centralized real-time schemes are typically con-
ducted over hourly intervals and offline schemes are based
on day-ahead forecasts. Errors resulting from these prediction
horizons are calculated based on [3].

Solution Optimality is the third performance metric consid-
ered. This is always guaranteed for the proposed DR strategy
when PC protocol is in effect as shown earlier via theoretical
proofs and simulations. This is also the case with decentral-
ized real-time solutions as proven in reference [8]. Centralized
real-time solutions may not be optimal as overcoming com-
putational overhead which increases exponentially with the
number of participants can be difficult with time limitations.
On the other hand, as offline schemes typically use facilities
equipped with powerful computational resources with no time
pressure, optimality is feasible.

Resilience is inherent in our DR strategy as shown via
theory and simulations. Decentralized systems are vulnera-
ble as false information can be propagated by compromised
agents to other agents which can result in incorrect decisions.
Centralized schemes that depend on bi-directional information
transfer are subject to single point of failure attacks (attack on
the central coordinating entity) or false information attacks on
measurement data sent by consumers. Offline schemes, on the
other hand, depend on forecast models for the computation of
pricing signals and therefore are not dependent on feedback
from participants. As pricing information can be made avail-
able from multiple sources, issues with single point of failure
can be averted as well.

V. CONCLUSION

In this paper, we have proposed a distributed real-time DR
strategy that harnesses the cyber-enabled vision of the grid to
facilitate a highly scalable, flexible and versatile DR program
that efficaciously meets EPU goals while encompassing a large
range of consumer preferences. Resilience is integrated into
the core of the strategy design rendering it an inherently robust
and secure solution. EGT is leveraged to model distributive
interactions between participants by constructing an elegant
dynamical systems framework from which we have established
important convergence and optimality properties. Comparative
analysis shows that our scheme outperforms state-of-the-art
DR solutions as it incurs minimal communication and com-
putational overhead while efficiently utilizing system resources
due to reduced prediction errors. We therefore assert that the
proposed scheme has potential for practical implementation to
minimize grid overload and encourage grid sustainability while
also preserving consumer satisfaction. As future work, we
intend to analyze our proposed strategy for smart home energy
management systems that allow both energy conservation and
appliance rescheduling.

APPENDIX

In this Appendix, a proof of Theorem 2 is provided. The
Lagrangian of PD and the associated first order Karush-Kuhn-
Tucker (KKT) conditions necessary for the minimization of
fD(x) are as follows:

L(x, μ, λ) = fD(x) + μ

(
1 −

n∑

i=1

xi

)
−

n∑

i=1

λixi

(1) Stationarity:
∂L

∂xi
= 0 → Fi = μ + λi ∀ i ∈ S

(2) Primal Feasibility:
n∑

i=1

xi = 1, xi ≥ 0 ∀ i ∈ S

(3) Dual Feasibility: λi ≥ 0 ∀ i ∈ S

(4) Complementary Slackness: λixi = 0 ∀ i ∈ S

x∗ satisfying the KKT conditions is the global minimum of
PD as this problem is a strictly convex optimization problem.
It can be shown that any x∗ satisfying the KKT conditions
also satisfies the necessary and sufficient conditions needed
for an NE. For all strategies in use (i.e., xi > 0), condition 4
requires that the corresponding λi = 0. This results in condi-
tion 1 of all strategies i that are in use reducing to Fi = μ.
This implies that the cost of all of these strategies in use are
the same and is μ. For all other strategies j not in use, from
condition 1 Fj = μ + λj and it is clear that μ + λi ≥ μ as
λi ≥ 0 due to condition 3. As the cost of these strategies are
greater, these are not in use. This shows that the cost incurred
by the incumbent strategies are indeed minimal and the same.
Hence the unique x∗ satisfying the KKT conditions is also the
NE of the game ϑ .
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