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Abstract—We study the modeling of communication routing
strategies in wide area monitoring systems based on flocking
theory. We assert that analogies exist between the flocking prin-
ciples of behavioral transitions, collision avoidance and obstacle
avoidance and the routing goals of adaptability, buffer overflow
management and re-routing in the presence of changing network
conditions. Our model is dynamic and can easily be incorporated
in existing flocking-based models of power system operation to
provide an overall hierarchical cyber-physical model for a smart
grid. Through simulations we show how our model can provide
insight on effective routing strategies to promote the transient
stabilization of faulted power systems in the presence of denial-
of-service attacks on communications infrastructure.

I. INTRODUCTION

Power system transient stability describes the ability of

a power system to remain in synchronism when subjected

to large disturbances, such as transmission line faults and

generator loss [1]. For smart grid systems, achieving transient

stability consists of maintaining both exponential frequency
synchronization and phase angle cohesiveness of its generators

through application of distributed control. Such protection

strategies must therefore make use of information from phasor

measurement units (PMUs) of the associated wide area mon-

itoring system. This strongly couples the success of power

system control and operation to the ability of the underlying

communication network to fulfill stringent timing guarantees.

In this paper we aim to study the interaction of communi-

cation network routing with the ability of distributed control

mechanisms to maintain transient stability. Such a model

must account for varying PMU data rate (and subsequent

network congestion) as a function of power systems state; in

a “stressed” power system state the PMU data rate will likely

be increased to enable advanced compensation strategies. It

must also model communication delays due to congestion and

attacks such as denial-of-service (DoS) and its effect on power

system operation. We build upon our past work on modeling

the interaction between distributed control and physical power

system elements to include the varying dynamics of communi-

cation systems [2], [3]. Specifically, we conveniently employ

biological models based on flocking theory.

A. Flocking for Transient Stability

In a system comprised of a large number of coupled agents,

flocking refers to an aggregate behavior amongst the entities to

achieve a shared group objective. Flocking behavior has been

described by a set of heuristic agent-interaction rules [4], [5]:

1) Flock Centering: agents attempt to stay close to nearby

flockmates,

2) Velocity Matching: agents attempt to match velocity with

nearby flockmates,

3) Goal Seeking: each agent has a desired velocity towards

a specified position in global space,

4) Behavioral Transitions: the history of an agent’s state

influences future collective behavior,

5) Collision Avoidance: agents avoid collisions with nearby

flockmates,

6) Obstacle Avoidance: agents avoid obstacles by steering

away from approaching their goals.

Recently, the authors proposed an approach to flocking-

based distributed control for transient stability of smart power

systems [2] that made use of the first three interaction rules.

Analogies of flock centering to phase angle cohesiveness, and

velocity matching and goal seeking to exponential frequency

synchronization were established to reformulate the transient

stability problem into one of flocking-based multi-agent con-

trol. The cyber-physical control was computed from PMU

information of other generators and was implemented with the

use of an external fast-reacting power source injected at the

corresponding generator bus. To minimize communication and

control overhead, a state-dependent hierarchical framework

was proposed by the authors in [3] whereby agents with high

coherence generators were clustered such that only a “lead”

agent from the cluster was activated for communications and

control while the “secondary” agents were naturally regulated

through their tight physical coupling with their associated lead.

In this work, we extend or model to include the dynamics

associated with communication networking over a multi-hop

mesh network. Specifically we leverage the latter three flock-

ing principles of behavioral transitions, collision avoidance
and obstacle avoidance to model communication network

routing strategies. We assert that the resulting cyber-physical

system model enables the study and design an overall smart

grid that is resilient to both physical faults and DoS attacks.

II. PROBLEM SETTING

We model the cyber-physical interactions within the smart

grid via the two-tier hierarchical multi-agent-based framework

of Fig. 1. Here, an agent consists of both cyber and physical



Fig. 1. Solid (dashed) lines with arrows represent physical (cyber) couplings.
(a) Agent structure, (a) Proposed two-tier hierarchical multi-agent dynamic
system model.

Fig. 2. Wide-area multi-hop mesh network for PMU communications.

elements: (1) a dynamic (physical) generator node, (2) a

(cyber) PMU that acquires data such as phase angle and

frequency from the generator node, and (3) a local (cyber)

controller that, if activated, obtains information from its PMU

and others to compute a control signal that is applied to the

generator node of the same agent. An agent’s frequency, phase

angle and coherency with other agents are determined by that

of its generator. The state-dependent hierarchy is established

as a way to group agents of generators with high physical

coherency together to form a cluster. One “lead” agent within

a cluster is selected such that only its PMU and local controller

are activated for overall cluster regulation. Thus as illustrated

in Fig. 1(b), inter-cluster interactions are cyber-physical (tier-

1) and intra-cluster synergies are physical (tier-2).

Our application focus in this paper is to maintain transient

stability in the face of cyber-physical disturbance through

distributed control that employs fast-reacting external power

sources to achieve generator frequency synchronization. As

such, each cluster includes external source(s) such as battery

storage, renewables, plug-in hybrid electric vehicles (PHEVs)

and flywheels and a phasor data concentrator (PDC) to guar-

antee synchronization of the data flows amongst lead agents.

The effective information (cyber) and power (physical) flows

shown via dashed and solid arrows in Fig. 1(b) are realized by

the power network and wide-area multi-hop network of Fig. 2.

As shown in Fig. 2, the lead agents exchange PMU data

through a multi-hop mesh network recently studied for smart

grid communications [6]–[8]. The network consists of lead

agents representing sources and sinks, relay nodes (RNs) and

finite capacity communication links. In order to enable real-

time guarantees of the time-critical PMU data flow in the

face of network attack, we propose and model the use of a

self-adaptable bidirectional routing protocol over the multi-

hop network, which is the focus of this paper.

A. Hierarchical Flocking-Based Cyber-Physical Control

The focus of this paper is on the modeling of information

flows through multi-hop routing within the smart grid system

of Fig. 1. Thus we refer the reader to [2] and [3] for in-depth

development of the power flow counterpart, a hierarchical

flocking-based dynamical systems model. Here, we provide

a brief overview.

Our dynamical systems model for power flow makes use of

a Kron-reduced topology of the power system that employs the

swing-equation model for each synchronous generator. Such

a physical model has been recently employed to equate the

transient stability mode in a power network to synchronization

of Kuromoto oscillators [9]. As shown in Fig. 1, within this

smart power system model we incorporate PMUs, distributed

control and distributed generation and storage. The use of

such cyber components results in an overall system with both

physical and cyber couplings such that when the physical

system is incapable of achieving transient stability after a

fault is cleared, the cyber couplings can provide enhancement

through cyber-controlled power injection at the generator buses

to encourage synchronization of the generator frequencies.

If the communications infrastructure is assumed to be

lossless with delay τ , the overall cyber-physical dynamics for

power flow can be described as follows [2]:

Miω̇i = −Diωi + Pm,i + αiui,τ − |Ei|2Gii

−
N∑
j=1

Pij sin(θi − θj + ϕij) (1)

where i = 1, · · · , N is the agent’s index, N is the number of

agents, and the parameter αi = 1 for all i and the cyber-control

signal is equal to ui = Pu,i (denoted ui,τ in the presence of

delay τ ). To compute ui to determine the degree of power

injection/absorption at each generation bus, by the external

fast-acting power source PMU data of every generator must

be exchanged via a suitable communications network.

To reduce communication and control overhead, it was

subsequently proposed by the authors that the natural under-

or over-frequency clustering of generators after a fault could

be leveraged to cluster the synchronous generators into high

physical coherence groups. Assuming there are C clusters, the

highest inertia generator of each cluster was then assigned

as the corresponding “lead” generator. In the hierarchical

formulation, the cyber-control is applied only to each of the C
lead generators for transient stabilization of the lead generators

while physical couplings are leveraged for stabilization of

secondary generators. Thus, the overall dynamics of the system

can be described by Eq. 1 above where

αi =

{
1, if the ith agent is a lead agent;

0, otherwise,
. (2)



Fig. 3. The flocking behavior of network routing in the face of DoS attack.

We have shown that the communication delay τ must be

“small” to meet the time requirements to guarantee transient

stabilization [3]. Thus, one way in which an attacker could

disrupt power system operation would be through DoS attacks

on the communication system that would cause excessive

latency or packet dropping. To characterize the effects of

attacks an understanding of communications (via parameter τ )

on transient stability (i.e., synchronization of Eq. 1) is needed.

III. FLOCKING-BASED DOS-ATTACK-RESILIENT

ROUTING PROTOCOL

To better understand the interaction of communication net-

work attacks on transient stability we aim to model the dynam-

ics of communication network routing. Within this protocol,

we denote a packet being processed and transmitted in the

network as active. Packets with the same source-destination

pair are said to comprise a flock with each member being a

flockmate. Figure 3 illustrates a PMU data flock traveling hop-

by-hop from Agent i to j while avoiding a region of DoS.

Each network packet is considered to be generated at a given

time index by its source and released into the network for

propagation to its destination via interaction with the network

infrastructure and other flockmates.

Large flocks in nature exhibit behavioral transitions such

that future collective behavior is dependent on the previous

history of individual orientation and group shape. Biologically

this is important for the survival of animal groups to change

from one type of structure to another in response to internal

or external stimuli. We leverage this concept to model routing

adaptation in the face of localized network attack. Our model

of the network dynamics incorporates the states of both

relay nodes and packets. We consider that each active packet

communicates and interacts with its “predecessors”. We define

predecessors as neighboring flockmates generated at past time

instants that are exactly one hop away or those flockmates

that have just been transmitted from the relay nodes one hope

away.

At the time step t = k, we define the state of the lth relay

node as ζl = {Ql,k,Rl,k} where Ql,k is the queue length

in the node and Rl,k denotes the vector whose ith element

represents the number of remaining hops from this node to

the ith agent. We describe the state (at t = k) of an active

packet generated at t = m that is transmitted from Agent i to

Agent j to be χm
ij (k) = [qc(k), pc(k), Tc(k)] where qc is the

packet’s location described by the number of remaining hops

to reach Agent j, pc is its “routing velocity”, and Tc its hop

count. Thus, a packet’s routing dynamics are described as:⎧⎨
⎩

qc(k + 1) = qc(k) + pc(k),
pc(k) = uc(k),
Tc(k + 1) = Tc(k) + 1,

(3)

where uc(k) is the abstracted routing protocol strategy. Once

a packet is dropped, it is no longer exhibits dynamics.

An active packet’s objective to reach its destination of Agent

j is analogous to goal seeking. In relation to our dynamics,

it suggests a desired velocity of p∗c = −1. Thus we model a

successful routing strategy as one for which the packet will

aim to reduce or maintain its hop count from its destination.

As a result we define uc(k) ∈ {−1, 0} and require that the

next hop is to a relay node fulfils Rl,k+1(j) ≤ qc(k); such

nodes are called possible candidate “hosting nodes.”

As illustrated in Fig. 3, we model the region impacted

by DoS as an obstacle such that routing dynamics must

exhibit obstacle avoidance. The network and packets exchange

state information to communicate the existence of a DoS.

Specifically, at t = k, a packet traversing from Agent i to j
that jumps to a new hosting node l interacts with it as follows:{

Rl,k(i) = Tc(k),
qc(k) = Rl,k(j).

(4)

If more than one packet is transmitted from Agent i to j
at t = k then the minimum Tc(k) will be assigned to

Rl,k(i). Equation (4) describes how the states of the relay

nodes are leveraged such that packets that are traveling from

source Agent j gain insight into the hop count experience

of one another. Thus packets that have traversed through a

region impacted by a DoS will have the opportunity to make

this known to those potentially crossing it form the opposite

direction. Moreover, in our model, neighboring flockmates

interact such that a positive (negative) hop experience of a

predecessor to a given node positively (negatively) influences

the likelihood of a current packet being routed to that node.

In particular, for packet route selection all possible candidate

host nodes for the next hop are classified and prioritized as

shown in Fig. 4 using information from predecessor packets.

To select the next hop, a packet first tries to select a

candidate host from the highest priority class. If multiple relay

nodes exist in this class, then a collision avoidance (here,

“collision” = overflow) strategy is employed by considering

the remaining buffer space of each candidate. At t = k,

we compute the following measure of collision (overflow)

likelihood for the relay node l:

Ml =
ra,k−1 +Qk−1 − rd,k−1

ra,k−1 +Qk−1
, (5)

where ra,k−1 and rd,k−1 are, respectively, the number of

packets arriving at and leaving the relay node at time t = k−1,

and Qk−1 is the queue length of the node at time t = k − 1.

Equation (5) indicates that a relay node with smaller Ml has

lower possibility of overflow at t = k. We also measure the



.

Fig. 4. Classification of the candidate hosting nodes.

alignment between the desired and actual velocity if the packet

is transmitted to the relay node l as follows:

dl =

{
1, if Rl,k(i) < qc(k),
γ, otherwise,

(6)

where γ > 1 is a penalty parameter for not transmitting the

packet closer to Agent j.

To balance the flocking principles of goal seeking (which

promotes aggressive shortest-path routing to reduce latency)

and collision (overflow) avoidance, we measure the desirabil-

ity of a candidate host relay node as follows:

Dl =
1−Ml

dl
, (7)

where the candidate with higher desirability Dl has higher

likelihood of routing the packet. This is implemented by first

ranking the candidate host nodes according to their Dl value.

The probability of then routing to the nth node of the ranked

list is given by pl = β (1− β)
n−1

where the parameter

0.5 < β ≤ 1 controls the degree of randomization of our

routing protocol; a smaller β indicates higher randomization

and implies greater resilience to DoS while β = 1 represents

aggressive shortest path routing with no randomization.

IV. SIMULATION

We demonstrate the performance of our proposed flocking-

based hierarchical cyber-physical control framework with

our DoS-attack-resilient routing protocol in maintaining tran-

sient stability on the 3-generator WECC system of Fig. 5.

MATLAB/Simulink is employed for simulations. In order to

demonstrate the utility of the proposed framework for wide

area monitoring systems, the normalized impedance of the

transmission line is increased from 0.1j (standard for the

WECC system) to 0.35j. The increase in impedance reduces

the physical couplings amongst generators hence making the

transient stability problem more challenging.

Fig. 5. WECC 3-generator power system

Fig. 6. The wide-area multi-hop network topology.

The mesh network of Fig. 6 used in our simulations has a

uniform grid topology consisting of 37 relay nodes which are

marked with their node indices. The buffer capacity of each

relay node is set to 5, network link bandwith to 200 pkts/sec

and the PMU sampling rate to 100 and 200 packets/sec for

low and higher congestion scenarios, respectively.

We assume that a 3-phase short circuit fault occurs on the

middle of Line 4 − 5 of Fig. 5 at time t = 0 s and that

the associated line is removed at t = 0.3 s, after the critical

clearing time. The system behavior is shown in Fig. 7 over

a period of 5 s and, as expected, the system loses stability;

the normalized frequencies, phase angles and phase angle

differences diverge beyond operating limits.

When our proposed flocking-based hierarchical control and

communication framework is applied, we assume that cluster

identification is achieved at t = 0.35 s and conclude that

the physical system can be modeled as a dynamical system

comprised of ϑ = 2 clusters: {G1} and {G2, G3} consistent

with the results of Fig. 7. Figure 8 shows the hierarchy with

Lead Agents 1 and 3. The cyber control is activated at t = 0.4 s

which computes ui = Pu,i for each Lead Agent i.

The two routing control parameters γ designed to control

“greediness” and β designed to control “randomization” of

the protocol are varied. Figure 9 presents the routing packet

delivery ratio for various selections of (γ, β) in the face of
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Fig. 7. Normalized rotor frequencies, phase angles, phase angle differences versus time without our proposed protocol.

Fig. 8. Dynamical-graph representation of the physical system,

higher congestion and DoS attacks at Nodes 24 and 26 starting

at time t = 2.5 s. As we observe, when no DoS is present

lower randomization improves performance while penalty γ
has negligible influence. In the face of DoS, effectively in-

creasing β and selected γ can improve the networks resilience

to attack. For instance, (γ, β) = (3, 0.95) provides good

performance for both DoS cases.

We next study the effect of the end-to-end delay of the

network on the performance of transient stability mechanisms.

Once again we focus on higher congestion and DoS attack on

Nodes 24 and 26 at time t ≥ 2.5 s. Parameter selections of

(γ, β) = (3, 1) and (γ, β) = (3, 0.95) are made for the conges-

tion and both DoS cases, respectively. Figure 10 demonstrates

the performance of the routing protocol and its adaptation and

resilience to DoS. For higher congestion, the routing strategy

produces consistent latency since no randomization for routing

(β = 1) is employed. However, in the face of DoS that is

applied for t ≥ 2.5 s, there is an adaptation stage at the

beginning of communications for the flock in which experience

is propagated amongst flockmates to improve performance.

This occurs again amidst DoS. Overall, the adaptation enables

good latency improvements within a few seconds.

Figure 11 evaluates the performance of our flocking-based

hierarchical cyber-physical control framework in the presence

of the proposed DoS-attack-resilient routing protocol for main-

taining transient stability. We consider the network conditions

of low congestion and DoS attack at Node 26 for t ≥ 2.5 s

with routing parameters (γ, β) = (3, 1) and (γ, β) = (3, 0.95),
respectively. In both situations the PMU packet rate is set to

100 packets/sec. Moreover the power injection/absorption Pu
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Fig. 12. Power injection/absorption Pu for flocking-based control in the
absence and presence of DoS attack at Node 26 for t ≥ 2.5 s. Clipping is
evident given the maximum power constraints.

from the fast reacting-source shown in Fig. 12 is constrained

to be below the rated power in both cases [2]. It is clear from

the generator performance that transient stability is maintained

in the presence of series fault in the middle of Line 4 − 5
and DoS attack thus demonstrating the potential of our cyber-

physical modeling framework and proposed adaptive flocking-

based routing strategy.

V. CONCLUSIONS

In this paper, we propose a flocking-based dynamical

systems model for PMU communication routing in mesh

networks for wide area monitoring. Such a model conveniently

represents communication dynamics in a form that can be

integrated with power system dynamics to provide a compre-

hensive framework for understanding cyber-physical system

interactions. We demonstrate the utility of the model for

demonstrating the advantages of employing flocking strategies

for control and communications routing to maintain transient

stability in the presence of severe physical power system fault

and DoS attack on the network. Moreover we observe the

advantages of goal seeking and obstacle avoidance strategies

from flocking for timely and resilient data delivery.
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