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Abstract

With the steadily growing size and popularity of the worldwide
Internet, new applications such as tele-collaboration tools and
videoconferencing are becoming more popular. These new networked
multimedia applications require data transfer to a potentially very large
number of recipients. |P Multicast is one technology that can help
transmit data more efficiently to alarge group of users. However,
multicast transmission supports only unreliable service, meaning that it is
not guaranteed that a message sent using multicast will actually get to its
destinations. Therefore, for applications where reliability is required,
scal able methods must be used to ensure reliability by retransmitting data
when necessary. One genera approach to this problem isto establish a
hierarchy among group members, so that data repair operations can be
localized. This organization of group membersis a control topology.

This thesis presents a new protocol that we call HyperCast for the
organization of group members, by using alogical hypercube as the
hierarchy of computers. A hypercube structure as the control topology has
many scalability advantages over existing methods. With these
advantages, the hypercube structure provides an increase in the maximum
potential number of usersin reliable multicast groups over current
methods, with little bandwidth wasted on protocol overhead.

A full implementation of the protocol written in Javais presented.
The robustness of the protocol was exhaustively tested using a verification
tool. Large-scale experiments using a computer cluster at the University
of Virginiawere conducted to quantitatively assess the performance of the
protocol, as well as to demonstrate its scalability and the applicability of
the protocol to large real-world uses. Additional uses of the hypercube
structure are also discussed.



1 Introduction

Computer applications such as videoconferencing, shared document editors and
collaborative tools place enormous demands upon the networking technol ogies
connecting the computers [MAC94]. Video, audio, and collaborative applications often
need to distribute information to many destinations at once. Efficiently sending datato a
large number of recipients requires a different paradigm of thinking about information
dissemination [DEE89]. This manner of data transmission needsto provide scalable

communication for alarge number of simultaneous users.

1.1 Comparison of Unicast and Multicast Transmission Methods

h — <:> — > |Recelver

Router

Figure 1. Unicast communication with a singlereceiver:
Packets are sent only to the destination, via arouter.

The most prevalent mode of datatransfer in packet switching networks is unicast
communication. One computer (the sender) transmits a bundle of information called a
packet to another computer (the receiver) connected to it viathe Internet [COM91]. In
Figure 1, the transmission is seen going through an intermediate location, arouter.
Routers are specialized computers on the Internet that serve smply to forward packets to
adestination, possibly via other routers. Note that only one copy of the information is

sent between the sender and the receiver.
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Router Receiver

Figure 2. Unicast communication with multiple receivers:
Redundant unicast packets are sent to intermediaterouters.

Unicast communication serves the needs of many network applications, such as
distributing electronic mail and serving web pages to web browsers. However, the
limitations of unicast communication become apparent when it is applied to situationsin
which there is more than one receiver of the same data. Asseenin Figure 2, the network
bandwidth consumption at the sender is proportional to the number of receivers. The
load placed on the sender to individually service each one of them becomes prohibitive as

the number of receivers grows large [DEE91].

Receiver

_—>* " |Receiver
Multicast-Capable *

ROUter  \julticast- Capable Receiver
Router

Figure 3: Multicast communication:
Single multicast packets are sent to multicast-capablerouters.

A more scal able method of data transfer to a set of receiversisto use multicast
transmissions [DEE91]. Multicast transmissions differ from unicast transmissions in that
they are addressed to a set of receivers rather than a single destination. The set of senders

and receivers that exchange multicast packets for an application build a multicast group.



Multicast packets can then be sent to the group as awhole. When a multicast packet
reaches a multicast-capable router, the destination multicast group of the packet is read.
Based upon the multicast group membership, the multicast-capable router creates copies
of the packet and sends the copies to their appropriate destinations (Figure 3).

Multicast-capable networks may be separated on the Internet by routers that are not
capable of interpreting multicast packets. To solve this problem, multicast packets are
encapsulated within unicast packets and sent through unicast tunnels between multicast
networks. Multicast-capable hosts and routers together form avirtual network overlaid
on top of the Internet called the Internet Multicast Backbone, or MBone [CAS94]. The
connections between all of the multicast-capabl e routers and application endpoints define
the multicast distribution tree for the group.

Since multicast transmission allows the sender to send each packet only once to the
entire multicast group rather than having to send a packet to each receiver individualy,
multicast communication is a more scalable approach to group communications
[DEE91].

However, using multicast transmissions is not a complete solution for all
applications. The primary problem on which this research isfocused is that multicast
transmissions are unreliable, i.e. it is not guaranteed that data sent will actually be
received by all (or even any) of the intended receivers. The unreliability of multicast
transmissionsis due to the fact that the underlying transport mechanism for multicast
packetsis the User Datagram Protocol (UDP), an unreliable service. In comparison,
unicast applications can either use UDP or use the Transmission Control Protocol (TCP),

areliable service.



Packet loss frequency using IP Multicast has been measured as high as 25%
[ZAB96]. For some applications, lack of reliable data transfer does not pose a problem.
For example, when transmitting digital video a small percentage of lost video data does
not have an adverse effect on the perceived quality at the receiver. A lost video frame
may not be noticed by the user if subsequent frames are successfully transmitted.

For applications which require reliable data transfer, as in the case of file transfers
between computers or document-based collaboration tools, a system between the
members of the multicast group must be devised to handle detection and correction of
lost or corrupted packets. The system of checks and procedures for retransmission of lost

datais areliable multicast protocol.

1.2 Problem Statement

Many different protocols exist which ensure reliability in multicast communications
[LEV96A] [PIN94]. All such protocols have to address the following basic problem: If
each receiver of amulticast group exchanges control information directly with the sender
to ensure reliability, then the sender suffers from aload proportional to the number of
receiversin the group. For example, if all receiversin amulticast group send an
acknowledgement that a packet has been received (ACK) or a negative acknowledgement
of amissing packet (NACK) directly to the sender, then the sender is deluged with
messages [LEV98]. While ACKs and NACK s sent directly between the sender and
receiver are standard practice in ensuring reliability in unicast transmissions (asin TCP),
this method does not scale well to large numbers of receivers. This problemis called

ACK/NACK implosion [LEV96A].



Receiver Recealver

/. \

Receiver Recelver

Figure4. A logical treetopology can be used to aggregate NACKSs.

One approach to the ACK/NACK implosion problem is to construct a hierarchy of
multicast group members. One such hierarchy is atree [RAM87], where each member of
the multicast group is represented as a node in the tree, and the sender is at the root
(Figure 4). A structure such asthisis used so that a node reports packet losses only to its
parent, instead of directly to the sender. The parent node then performs the
retransmission of dataif the datais available, or else aggregates the NACKs from its
children and sends asingle NACK up to its own parent. With this approach, the load of
receiving retransmission requests and performing data repair operationsis distributed
across the whole tree, rather than relying on just the sender. Thisisamore scalable
approach since the load at every node is proportional to its number of children, and not
proportional to size of the receiver set.

Note that the tree structure is alogical organization that does not necessarily have
to bear any correlation to the physical organization of the nodes on the network. In the
discussion of the multicast distribution network in Section 1.1 the nodes and routers were
tied by physical connections, however in this case the links between nodes are defined by

logical relationships.
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Receiver Receiver
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Figureb5. A treetopology hasdifficulties with multiple senders.

A tree control topology has good performance features for one-to-many distribution
of data: a balanced tree distributes the load of retransmission evenly over the receiver set
and has a short total path length [LEV96B]. However, the treeis aso necessarily rooted
around asingle sender. Thus, atree topology is useful for applications that have one
source of data, however it isinefficient and difficult to use atree structure if multiple

nodes are sending data (Figure 5).

Recelver
/ \
Receiver Receiver
N\
Receiver

Figure6: The example tree “re-hung” from the sender.

If anon-root node sends data, the tree must either be wholly reconstructed with the
new sender at the root, or the existing tree links must be “re-hung” from the new sender

(Figure 6). A single tree topology that is re-hung and used for multiple senders is known



asashared tree[LEV96B]. In Chapter 3, K-ary shared trees will be discussed, which are
shared trees where each node can have up to K children.

If the treeis reconstructed, there is overhead associated with establishing new
logical connections to create the tree rooted at the new sender. If the treeisre-hung, the
resulting tree can be unbalanced and suffer from poor performance measures such asa
long average path length (number of steps from each receiver back to the sender) and
poor |oad-balancing across nodes [LIE98B]. Notein Figure 6 that the re-hung tree has a

greater average path length than the original treein Figure 5.

Figure7. A hypercube control topology of dimension 3.

J. Liebeherr and B. S. Sethi proposed an aternative control topology based on a
logical hypercube [LIE98A]. A hypercube is a generalization of athree-dimensional
cubeinto N dimensions, also known as a measure polytope (Figure 7). It isan extension
of a cube into N-space much like a cube is athree-dimensional extension of asguare. An
N-dimensional hypercube will have 2" vertices and N2 edges, and will be more
formally defined in Chapter 3. Using this topology, group members are arranged as
vertices of the hypercube, and the logical links between them lie along the hypercube

edges.



Root —
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Figure 8. A hypercubecan beused asatree.

Using a hypercube has benefits over a control structure such as atree, sinceit can
be shown that a tree can be easily superimposed over the hypercube structure (Figure 8)
[LIE98BA]. Dueto therelative symmetry of the logical hypercube, this superimposed tree
can be rooted at any of itsnodes. This means that using the hypercube has al the
performance advantages of atree topology, without the limitation of having best-case
performance only when there is one sender.

The problem this research addresses is the design, specification, implementation
and evaluation of the HyperCast protocol that creates and maintains a hypercube control
topology from a set of group members. In order to perform efficiently with very large
groups of nodes, the protocol must be able to organize nodes into alogical hypercube
without any node having knowledge of the entire group. Because of real-world problems
such as network faults and packet loss, the protocol must detect nodes that have failed

unexpectedly and perform maintenance and repair of the hypercube structure.



2 Previous and Related Work
2.1 Classes of Reliable Multicast Protocols

In al computer networks where transmissions are subject to packet loss, the
reliability of datatransfer isaconcern. At the most basic level, there are two primary
ways by which reliability can be improved: forward error correction (FEC) and
automatic-repeat-request (ARQ) [NON96].

FEC methods add redundancy into the data transmitted in order for the receiver to
be able to recover the original information even with some packet loss [NON96]. For
example, atrivial implementation of FEC is to transmit every packet twice over the
network. With such redundancy, individual packet losses will most likely not have any
adverse effect. In many cases, the advantages of having the receiver be ableto
completely recover from packet loss by itself can be shown to outweigh the bandwidth
penalty incurred due to the redundant transmissions. FEC is a means of improving
reliability, however it does not provide any guarantee of successful data transmission by
itself. If packet loss rates approach 100%, the receivers will not have enough data to
reconstruct the original information regardless of how much redundancy is encoded.
Therefore FEC is used to improve reliability, but it cannot guarantee it.

ARQ schemes rely on retransmitting data when packet loss is detected.
Retransmissions continue until the data has been transmitted successfully, thereby
guaranteeing reliability. There are two main classes of ARQ schemes: sender-initiated
and receiver-initiated.

In sender-initiated protocols, the sender bears responsibility for ensuring reliability

for al receivers, by keeping explicit information about the set of receivers and verifying

10



the delivery of datato each one. When the sender has received some form of
acknowledgement of successful data reception from each of the receivers, then it can
proceed with the knowledge that reliable transmission has been achieved.

A receiver-initiated scheme places the responsibility of lost packet detection upon
thereceiver. The receiver needsto request the retransmission of datawhen it detects
packet losses. The sender cannot explicitly verify successful delivery of data. Instead, a
lack of retransmission requests from the receiversis interpreted as an implicit sign of
correct transmission. Packet |osses can be detected by the receiver viathe use of
sequence number's, which are consecutive numbers that the sender attaches to every
packet that it transmits. If the receiver detects a gap in the sequence numbersthat it has

received, then packet loss has occurred.

2.2 Sender-Initiated Approaches

To ensure reliability in a sender-initiated approach the sender must have complete
knowledge of the receiver set. Thisis dueto the fact that the sender must keep track of
state information for each of the receiversin the group in order to determine if packets
have been reliably delivered to all receivers. Additionally, the receivers must have a
mechanism to acknowledge packet reception to the sender. If each receiver sends an
ACK back to the sender, the sender is subject to ACK implosion. Sender-initiated
protocols must be designed to solve this scalability problem.

The Negative Acknowledgement with Periodic Polling (NAPP) protocol was
developed as a broadcast protocol for LANS[RAM87]. With NAPP, the sender attaches
sequence numbers to data packets that it transmits. Receiver nodes multicast NACKs

back to the entire group’s multicast channel when packet losses are detected, and the
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sender replies by rebroadcasting the lost data. Note that areceiver cannot detect if it has

lost the last set of packets that the sender transmitted, since the loss of those last packets

does not create a gap in the receiver’s list of received sequence numbers. Therefore the
sender periodically polls the receiver set, requesting that each of the receivers transmit
the sequence number of their last successfully received packet. The polling serves two
purposes: (1) if the receiver’s last successfully received sequence number conflicts with
the sender’s last transmitted sequence number, it can be used as a NACK for the lost
packets, and (2) it also acts as an implicit acknowledgement of successful delivery of all
the packets up to that point. The NAPP protocol is also notable because it was the first
protocol to implement NACKuppression, a system used in many protocols that is
explained here: If a receiver planned to broadcast a NACK for a lost packet but also had
already received another node’s NACK for that same packet, then it suppresses its own
NACK response to reduce duplicate NACKs on the multicast channel. This avoids an
implosion problem, since ideally only one NACK is broadcast per lost packet for the
whole group.

The Xpress Transfer Protocol (XTP) is another sender-initiated protocol that makes
use of this suppression technique [STR92]. XTP allows the application three different
levels of reliability to choose from: fully reliable service, UDP-like unreliable service,
and a mode in which receivers transmit a negative acknowledgement immediately when
packet loss is detected. XTP also suggested the sB#tofg anddamping to reduce the
scalability damage from ACK implosion. Acknowledgements are “slotted” by
introducing a random delay before the transmission of an ACK, thereby reducing the

likelihood of many receivers transmitting identical ACKs at the same time. Also,
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receivers “damp” their control messages by not transmitting them if they determine that
their control messages are redundant with messages that other nodes have already
broadcast. Slotting and damping is an extension of the suppression technique introduced
by NAPP.

The Tree-based Multicast Transfer Protocol (TMTP) uses a clustering of nodes to
address the case of a single sender delivering information to a large receiver set
[YAV95]. Receivers are organized into a hierarchy of groups, which roughly correspond
to the nodes’ physical layout in the network. TMTP builds a tree control topology using
the hop counts (number of intermediate steps over routers) between the receivers in the
multicast group, by selecting the closest retransmitter for each receiver based on its hop
count. For each of the groups of nodes constructed by this metthmdaia manager is
elected. This domain manager has the responsibility of ensuring successful delivery to all
of the nodes within its group. NACKSs are broadcast to the multicast channel, but their
scope is limited by their time-to-live (TTL) field. The TTL field of a packet limits the
range of a multicast packet as it propagates over multicast routers. In this way, multicast
control messages from one domain do not reach all other domains, and so data repair
operations are localized.

The Single Connection Emulation (SCE) architecture is designed to provide a link
between the unicast transport layer and the multicast network layer [TAL95]. SCE
provides an interface for a reliable multicast application to treat a receiver set as a single
destination, by redefining unicast transmission terminology so that it applies to multicast
groups. For example, the unicast function of establishing a connection is replaced by the

multicast function of at leastreceivers connecting to the SCE group. SCE was
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implemented using TCP connections to the receiver set, so it is subject to the ACK
implosion scal ability problem.

For problems of bulk data distribution from a single source, dividing the receiver
set can be advantageous [AMM92]. By partitioning the receiver set into subgroups based
on delay characteristics and throughput achieved from the source, the sender is not rate-
limited by the slowest receiver. Group members with high throughput are grouped
together and receive the data in less time than slow subgroups.

The main limitation of sender-initiated protocolsis that the sender must have
complete knowledge of the receiver set in order to ensure delivery, and the sender must
keep state information for the entire group [LEV96A]. In very large multicast groups,
complete group information isimpossible to obtain, and therefore sender-initiated

protocols cannot reach high levels of scalability.

2.3 Receiver-Initiated Approaches

Receiver-initiated protocols eliminate the requirement for the sender to have total
information on the entire receiver set, and thus they can provide improved scalability.
However, ensuring reliability becomes amore difficult problem. It may be argued that
without explicit knowledge of the entire receiver set, the sender can never truly guarantee
reliable transmission to every member of the group. However, in practice aweaker
definition of reliability from the receiver’s point of view can suffice.

The Scalable Reliable Multicast (SRM) protocol is a successful implementation of a
receiver-based protocol [FLO95]. Rather than using a clustering scheme to organize
nodes, SRM makes use of a homogenous receiver set where all nodes multicast their

NACKSs to the group and all nodes are capable of retransmitting data if it is available. To
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avoid implosion, SRM uses NACK suppression via slotting and damping much like XTP.
The distribution of the random amount of introduced delay time for slotting is based upon

a heuristic of the group’s inter-node network latencies. Also, when a node wishes to
respond to a NACK by retransmitting data, it slots and damps so that redundant data
retransmissions do not overwhelm the multicast channel either.

While this approach scales well to multicast groups of up to a hundred users
[FLO95], the heuristic delays necessary to prevent NACK and retransmission implosion
grow with the size of the group, resulting in poor scalability. Large delays result in large
NACK and retransmission latencies, thereby slowing throughput. The NACK
suppression algorithm used requires that every node maintains timers based on updates
multicast by every other node. As the group size gets larger, nodes must each do an
increasing amount of work to maintain these timers [LEV96A]. The session messages in
SRM used to calculate its heuristic measures of network latencies can actually use up
more bandwidth than the application’s useful data [HAN98]. This performance
dependency on group size prevents high levels of scalability.

The scalability of SRM can be improved by limiting the scope of error recovery
traffic, so that retransmissions are sent to a subset of the whole group rather than the
entire receiver set. Splitting the destination set can be done by using multiple multicast
groups for packet retransmission [KAS96]. By using multiple multicast groups for
packet retransmission, receivers respond to packet loss by dynamically joining and
leaving separate multicast groups where retransmissions are broadcast. This process

limits the set of receivers who receive a retransmission, as retransmissions are only
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distributed to the set of receivers that joined the specific retransmission’s multicast group
[KAS96].

Other approaches to splitting the receiver set are hop-based scope control and local
recovery groups, which both offer scalability improvements compared to SRM [LIU97].
Hop-based scope control uses the TTL field of the multicast packet to limit the reach of
retransmission requests and retransmitted data. This ensures that data repair operations
localized in one part of the multicast group do not affect other nodes in the group. Local
recovery groups are separate multicast groups built from nodes that are close to each
other in the multicast distribution tree. These multicast groups are used for localized data
repair operations.

In addition, work has been done to improve the efficiency of the timers used for
slotting and damping in SRM [GRO97] [NON98]. The Deterministic Timeouts for
Reliable Multicast (DTRM) algorithm provides a method of computing optimal
deterministic timeout values for each receiver in the multicast distribution tree, given the
distribution tree topology and the sender-to-receiver round-trip delays [GRO97]. These
timeout values can be used to slot and damp control messages, avoiding implosion.
Improvements have also been made by using exponentially distributed timers, where
probabilistic feedback is based on round-trip delays [NON98]. This method achieves
scalability by providing low NACK latencies combined with good NACK suppression
performance.

Another approach to solve the performance dependency on group size is to divide
the receiver set into distinct groups in order to distribute the responsibility of handling

retransmission requests.
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The Reliable Multicast Transfer Protocol (RMTP) is areceiver-initiated extension
of the tree structure used in the sender-initiated TMTP protocol [LIN96]. Regions are
defined corresponding to groups of nodesin physical proximity over the network. Rather
than using hop counts as the basis for defining regions as TM TP does, RM TP uses
propagation delay asits measure. For each region a designated receiver is chosen. The
designated receivers aggregate the control messages within their region and forward them
to the sender. Since only the designated receivers send messages to the sender, implosion
problems are eliminated.

The Tree-based Reliable Multicast Protocol (TRAM) is another receiver-initiated
protocol based on atree-based control topology [CHI98]. Repair heads are designated as
being responsible for handling retransmission requests within tree groups. The TRAM
tree management allows for the tree to dynamically change based upon feedback from the
receiver set. Thisfeedback consists of control messages from each receiver to its repair
head containing data such as transmission statistics, congestion condition reports, and the
number of available repair heads on the tree. Receivers may switch to a different repair
head in order to distribute the load more efficiently. Thisinformation is also aggregated
upwards on the tree, so that control traffic to the sender isreduced. Based on this
feedback, the sender can change its data rate to match network conditions.

One problem with many of the reliable multicast protocols discussed so far is that
the protocols are not well suited for all applications. For example, some applications may
impose complete ordering and reliability requirements on their data transmissions,
whereas other applications may only desire basic UDP-type service. The Tunable

Multicast Protocol (TMP) addresses this problem of different application requirements
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[BAS97]. TMP's reliability mechanisms are based on those of SRM. TMP provides a
tunable reliability space consisting of the following dimensions: ordering, reliability,
group size, group membership, persistence, and receiver storage. An application can set
parameters for each of the dimensions to tune the protocol to its specific needs. A key
element of TMP is that it uses the concepibgical persistence, where the data kept at
nodes for possible future retransmission is not based on the age of the data (temporal
persistence) nor the size of the retransmission buffer (spatial persistence), but rather it is
based on application-defined logical units.

The MESH framework provides a flexible structure for large-scale multicast
transport [LUC98]. The name MESH is derived from its self-organizing, soft-state
recovery structure. MESH uses domain-scoped multicast transmissions, which are
supported in IPv6 multicasting. To distribute control processing across the multicast
group, MESH partitions the multicast group into subgroups based on network domain
boundaries, and organizes the subgroups into hierarchies. Example hierarchy levels are
LAN segments, campus networks, and regional backbones. Group members within a
domain elect aactivereceiver (AR) to aggregate and forward domain control
information to the next domain in the hierarchy. As presented, MESH supports two
variations: MESH-R for reliable data distribution, and MESH-M for deadline-driven
quality of service requirements.

The STORM (STructure-Oriented Resilient Multicast) protocol also allows the
application to specify its own reliability requirements [XU97]. STORM is designed to
improve the perceived performance of conferencing applications. STORM allows for

each receiver in a multicast group to make a tradeoff between reliability and latency in
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datadelivery. The design of STORM assumes that some users in a conference may be
passive, i.e. they do not require much interactivity with the sender. Such users who do
not require a high degree of interactivity can maintain alarger buffer of received data that
has not yet been presented to the user. Thislarger buffer allows retransmissions timeto
occur before the real-time data is used, thereby providing a higher quality transmission
for the user. However, the larger buffer size also means a higher latency between when
the sender transmits data and when the data is presented to the user. STORM builds a
logical structure for error recovery that consists entirely of application endpoints, so it
does not incorporate features within the multicast distribution tree. Thisstructureisa
multi-parent tree where each node keeps alist of parent nodes to which it balances
retransmission requests.

The Reliable Multicast Architecture for the Internet (IRMA) makes use of reliable
unicast TCP connections at the end hosts in its control topology to efficiently ensure
reliability [LEE99]. Each host can use the standard TCP/IP protocol stack in its
transmissions, essentially treating the communication as a unicast connection. IRMA
introduces special reliability functionality in a subset of multicast routers to create a
virtual network, thus providing areliable multicast framework that the TCP-based hosts
can tap into. However, the success of this protocol is somewhat dependent on
widespread deployment of the IRMA architecture.

Other protocols make use of extensions to the network layer in order to get
performance gains. The On-Tree Efficient Recovery using Subcasting (OTERS) protocol
uses multicast route backtracing and subcasting extensions to the network layer to

achieve better performance [L198]. Backtracing is afacility by which amember of a
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multicast group can determine the sequence of multicast-capable routers used between
itself and anode in the group sending data. Subcasting is afacility to multicast a packet
over a subtree of the multicast delivery tree, specified by the multicast group and the
multicast-capable router at the root of the subtree. These extensions allow OTERS to
build control topologies which match more closely with the underlying physical network
structure. In addition, the subcasting extension lets OTERS perform transmission to a
specified subset of the multicast delivery tree, hence conserving bandwidth. OTERS has
been shown to have performance benefits over SRM and TMTP.

In the same vein, another reliable multicast protocol called Tracer makes use of
MTRACE packets in IGMP to organize receivers of a multicast group deterministically
into alogical tree structure [LEV98]. Tracer allows areceiver host to trace its path
through the multicast group back to the source. This information can then be used to
organize local error recovery schemes. Tracer has an emphasis on packet-1oss
correlation, meaning that parent-child relationships in the control topology also relate to
how packets propagate through the multicast delivery tree. This minimizes the amount of
redundancy in retransmission requests. Tracer can a'so make use of router improvements
such as the subcasting extension used in OTERS.

A tree-based control topology is currently the predominant design of truly scalable
reliable multicasting protocols, and protocols that do not make use of atree or tree-like
structure suffer from poor scalability [LEV96A]. However, trees are optimized for
application domains that have one sender sending data to many receivers. Such protocols
can suffer from performance penalties in cases where there are multiple senders of

information [LIE98B]. Thus no existing protocol can offer both scalability to large
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groups of users and the ability to handle multiple data sources efficiently. Thisresearch
addresses the limitations of tree-based protocols, with the goal of finding a solution that
builds upon the tree-based control topology and improves its performance for multiple

data sources.
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3 The Hypercube Approach

Work on the hypercube structure done by J. Liebeherr and B. S. Sethi established
the theoretical underpinnings of the hypercube control topology [LIE98A]. Nodesin a
multicast group are arranged as vertices on alogical hypercube. Thiswork provided an
algorithm that generates an embedded tree rooted at any node within an incomplete
hypercube. Embedded trees rooted at nodes sending data can then be used to aggregate
control messages for scalable reliable multicast service. Liebeherr and Sethi showed the
theoretical benefits of using a hypercube as opposed to a shared tree in a multicast group

with multiple senders.

3.1 Hypercube Structure

Figure 9. Hypercube nodes and their bit string labels.

An n-dimensional hypercubeis agraph with N = 2" nodes. Each nodeis labeled by

abit string k,...k1, wherek; [1 {0, 1}. Nodes in a hypercube are connected by an edge if

22



and only if their bit strings differ in exactly one position. A hypercube of dimension n =
3isshownin Figure9.

Previous literature in the field of paralel computing has produced al gorithms for
embedding spanning treesin a hypercube [LAK90] [LEI92] [QUIY4], i.e. they create
trees for anode set VV which contain al nodesin V. However, these a gorithms primarily
work with static hypercubes, where the hypercube membership is known and immutable.
Additionally, most algorithms assume a compl ete hypercube, where the number of nodes
Is equal to a power of two. However, multicast applications cannot use the same
assumptions of static membership and hypercube completeness since group members
may join and leave at any time.

The problem that must be addressed in particular is how to embed spanning treesin
incompl ete hypercubes, where the number of nodesis not a power of two. With an
incomplete hypercube, it is required that the embedded spanning trees with node set V
only contain nodesin V [LIE98B]. Treesthat satisfy this property are completely
contained within the incomplete hypercube. Complete containment is necessary so that
embedded trees do not reference nodes which are not present in the incomplete
hypercube.

One basic requirement in order to embed spanning trees in an incompl ete hypercube
Is that the incompl ete hypercube must not be digoint, i.e. there must be a path from any
node in the incompl ete hypercube to any other node. A constraint that ensures that a
hypercube is not digoint is compactness: the dimension of the hypercube must be as
small as possible. In other words, in an incomplete hypercube of N nodes the dimension

of the hypercube must be the smallest integer not less than 1ogx(N).
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To determine if an incomplete hypercube satisfies the compactness assumption, an
ordering of the hypercube nodes’ bit string labels is needed. The ordering is used to
relate the bit string labels to the compactness property. A simple ordering based on the

binary representation of the node label bit string is as follows [LIE98B]A ket
ahan-1...a881. ThenBin(A) = Zi":lq 2. Binis therefore an ordering based simply on

the binary value of the label’s bit string.

However, the binary form of the bit string itself is difficult to use in hypercube
operations. For example, the nodes with labels “011” and “100” have consecutive binary
labels, however they are quite distant in the hypercube as they differ in three bit positions
(Figure 9). The result of this property is that Bae operator is difficult to use for the
task of creating spanning trees, since the binary value of a node’s label does not readily
indicate its position in the hypercube. A different way of ordering the labels is necessary,
where the ordering can be efficiently related to the positions of the nodes in the
hypercube.

This ordering can be accomplished by usirtgray code, where the Gray code is
denoted by the operat®(). A Gray code is defined by the following three properties
[QUI94]:

1. The values are unique. That isGfi) = G(j), theni =j.

2. G(i) andG(i + 1) differ in only one bit, for & i < 2% — 1.

3. G(2** - 1) andG(0) differ in only one bit.

It can be shown that a Gray code for a nunliethe bitwise exclusive-or @in(i)
right-shifted by one bit anBin(i) itself. That is,

G(i) := Bin(i) XOR Bin(i / 2),
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where 1 / 2" represents integer division and XOR is the exclusive-or operator.

Table 1: Example Gray codes.

Indexi 0 1 2 3 4 5 6 7
Bin(i) 000 001 010 011 100 101 110 111
G(i) 000 001 011 010 110 111 101 100

Example Gray codeS(0) throughG(7) are listed in Table 1 above.

From the definition of a Gray code, the progression of Gray codes for consecutive
indices has the property that each successive code differs from its predecessor by exactly
one bit. Recall that neighboring nodes in a hypercube have bit string labels that differ in
exactly one bit. Thus the Gray code establishes a complete ordering of all node labels,
where successive Gray codes correspond to neighbors in the hypercube.

The Gray code provides a tool that can be used to relate the bit string labels of a
hypercube’s nodes to its compactness. A hypercubkenofdes is compact if the bit

string labels of the nodes are equat{@) throughG(N — 1).

3.2 Embedding Trees

To create an embedded tree within a hypercube rooted aRnads sufficient to
specify a method for each node to know its parent’s label. This task can be accomplished
at each node given the knowledge of the node’s own bit string and the rodR. nS8dee
each node computes its link in the tree without aid from other nodes, the construction of
the tree is distributed across the group membership.

Let G™X() be defined as the inverse Gray operator, such3Hé&B(i)) =i. The
following pseudocode algorithm from Liebeherr and Sethi’'s work designates a node’s

parent, based on the node’s own bit string label and the label of the tree’s root [LIE98B]:
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Input: Label of thei-th node in the Gray encoding:
G(i) =1 = In...l2lg,
and the label of theth node £ i) in the Gray encoding:
G(r) =R=R,...RR;.
Output: Label of the parent node of nodm the embedded tree rootedrat

Procedure Parent(l, R)
If (GH1) <GYR)
/I Flip theleast significant bit wherel andR differ.
Parent := Inln-l---|k+1(1 - |k)|k-1---|2|1
with k = min(l; # R)
Else// (GY(1) > G Y(R)
I/ Flip themost significant bit wherel andR differ.
Parent := Inln-l---|k+1(1 - |k)|k-1---|2|1
with k = max(l; # R)
Endlf
End

Figure 10: Tree Embedding Algorithm.

The use of this algorithm to embed a spanning tree in an incomplete hypercube is

illustrated in the following examples from Liebeherr and Sethi’s work [LIE98B]:

a) Embedded in hypercube b) Resulting tree

Figure 11: Embedded Tree with “000” as Root.
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a) Embedded in hypercube b) Resulting tree

Figure 12: Embedded Tree with “111” as Root.

In Figure 11, a tree rooted at node “000” is embedded within an incomplete
hypercube using the algorithm described above. In Figure 12, the same incomplete
hypercube is shown with a tree rooted at node “111”. Note that the algorithm generates
spanning trees that are wholly contained within the incomplete hypercube, so no link

references a label that is not present within the incomplete hypercube.

3.3 Theoretical Benefits of the Hypercube

Using the aforementioned method for embedding spanning trees within an
incomplete hypercube, Liebeherr and Sethi then were able to rigorously compare the
theoretical performance of the hypercube control topology with a tree topology
[LIE9SB].

Recall from Chapter 1 thatkxary shared tree is a tree where each node has at most
K children, and it is re-hung as needed so that nodes sending data are at the root of the
tree [LEV96B]. For both the hypercube and Krary shared tree, spanning trees rooted
at the sender are used for aggregation of control information. For the hypercube to have

better theoretical performance than Kxary shared tree for multiple senders of data, it
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must be shown that the spanning trees rooted at all nodes of the hypercube have better
performance characteristics on average than the spanning trees rooted at all nodes of the
K-ary shared tree.
A spanning tree over node set V rooted at node | (I V isdenoted as T;. The spanning
trees T, are constructed for the hypercube and the K-ary shared tree as follows:
* Hypercube: Using the algorithm presented in Figure 10, the tree T, with node |
asroot is embedded in a hypercube of N nodes.
» K-ary Shared Tree: Aninitial balanced K-ary tree of N nodes rooted at a fixed
noder isre-hung with node | asthe root to form T,.
Liebeherr and Sethi compared the attributes of K-ary shared tree and hypercube
control topologiesin terms of several measures [LIE98B]:
e The number of children at anodekin tree T,, wi(T))

The number of children of each node w relates to the network load
distribution across the tree. Since each child node can send control messages to
Its parent, a node with w children receives a number of control messages
proportional tow. If wislarge, the node suffers from a bottleneck due to the
high load of processing many control messages.

*  The number of descendants in the sub-tree below anodekin tree T;, w(T)

The amount of state information that a protocol maintains for reliability
may also be related to the number of descendants of anode, v. Since each node
isresponsible for ensuring the reliability of all the nodes below it in the tree,
some reliable protocols may have scalability characteristics that depend on v.

* The path length from anode k in tree T, to the root of the tree, p«(T))
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The path length p affects total end-to-end latency. In the worst case, a
control message must propagate from node of the tree all the way back to the
root before aretransmission can be issued, and the total number of these stepsis
the path length. Each step from one node to another along the way increases the
total delay time from the detection of a lost packet to the lost packet’s
retransmission. A low path length results in higher theoretical maximum data

rates, whereas a high path length results in low bandwidth.

These characteristics are measured at eachkiadeparticular rooted spanning
treeT,. These measures are condensed by taking the average dvposdlible root

noded for each of th&-ary shared tree and the hypercube:
1 N
W = N ; w, (T))
1 N
Vi = N ; v (T))
1 N
Py = N Z P (T))

Both the average and maximum values of these measures at each node can be

computed:
1 1 13
Wavg = W Z Wi avg = N Vi pavg = W Z Py«
Wmax = mkaX Wk Vmax = mkaX Vk pmax = mkaX pk

For the rooted spanning trees of a hypercubi¢ mbdes, these measures are

summarized as follows [LIE98B]:
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Table 2: Theoretical measur es of hyper cube topology.

1
wW,,=1-—
avg N

log, N +2
N

W, =2-
Vag :%Iogz N +1
V. :%(Iogz NY +:—§Iog2 N +1
Pag :%Iogz N
Prax = %Iog2 N
For the rooted spanning trees of a shared K-ary tree of N nodes and depth d, these

measures are summarized as follows [LIE98B]:

Table 3: Theoretical measures of K-ary tree.

1
Wavg:]‘_ﬁ
Wmax:K_i
N
vavg=2d+K 5, 6d , 4K-2), 4(o|+1)2
K-1 N(K-1) N(K-1F N?(K-1)
g SNLI I k=2
H 8 4 8N
Vmax:D
E(K_Tl)l\l+%—% otherwise

Cog__ 4, 6d L MK-2) 4{d+1)

Pag = K-1 N(K- 1) N(K - 1)2 N2(K -1
, 3d+1)

CK-1 N(K 1)

From these results, the benefits of using a hypercube as the control topology can be
directly analyzed. Note that many of the performance characteristics of the K-ary tree are

directly proportional to d, K, or N, whereas the hypercube performance characteristics are
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of order O(logzN). This shows that as the multicast group size increases, the hypercube’s
load factors grow at a slower rate than that oftkaay tree.

Using empirical data, Liebeherr and Sethi also showed that in real-world group
memberships the hypercube offers significant performance advantages compared to other

control topologies [LIE98B].

31



4 The HyperCast Protocol

In this chapter the details of the HyperCast protocol are presented. The HyperCast
protocol provides for the scalable construction and maintenance of a hypercube structure
suitable for use with the tree embedding algorithm discussed in Chapter 3.

The data structures, protocol messages, hode states and state transition mechanisms
used in the design of the protocol are listed in full. Examples of the protocol in action are

also given, aswell as details of the protocol implementation.

4.1 Overview

The goal of the HyperCast protocol isto maintain the logical hypercube structure so
that reliability mechanisms can be easily overlaid on top of it, regardless of how nodes
join or leave the structure. It isassumed that the sole goa of the protocol isto maintain
the hypercube structure so that trees can be embedded within it as discussed in Chapter 3,
since actual data transmission and error correction mechanisms can be implemented
separately. Since embedded trees are created within the hypercube structure, existing
reliability schemes designed for tree structures can be ported to use the embedded trees
within the hypercube.

All nodes wishing to participate in the hypercube structure join a single multicast
group, referred to as the control channel. Every node can both send and receive
messages on this control channel. Only HyperCast control messages are distributed using
this channel; data and repair transmissions are distributed separately.

The protocol is soft-state, meaning that the state information kept at nodesis

periodically refreshed by HyperCast messages without requiring a consistent state at all
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times. Stateinformation that is not refreshed will expire. This design feature allows for
the protocol to be tolerant of network delays and packet losses. Each node has
information only about its neighbors in the hypercube, and no entity in the system has
complete information about the whole group membership.

Nodes in the hypercube each have an associated physical address, given by the pair
of their IP address and the UDP port being used for the HyperCast protocol. Dueto this
representation, all nodes are guaranteed to have distinct physical addresses.

In addition each node has alogical address, given by the bit string label discussed
in Chapter 3. For an N-dimensional hypercube, N bits are needed in the logical addressto
give aunique logical address to each node. In the HyperCast protocol, logical addresses
are represented as 32-bit integers, with one bit reserved to designate an invalid logical
address. Therefore the protocol allows for hypercubes of up to 2** (approximately two
billion) nodes.

The hypercube isin astable state if it satisfies the following three criteria

1. Consistent: No two nodes share the same logical address.

2. Compact: Inamulticast group with N nodes, the nodes have bit string labels

equal to G(0) through G(N - 1).

3. Connected: All nodes know the physical address of each of their neighborsin

the hypercube.

Nodes joining the hypercube, nodes leaving the hypercube, and network faults can
cause a hypercube to violate one or more of the above conditions, leading to an unstable
state. Thetask of the HyperCast protocol is to continuously return the hypercube to a

stable state in areliable and efficient manner.
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4.2 Basic Data Structures

A neighbor of anode A is another node B linked to node A via an edge of the
hypercube. Asdiscussed in Chapter 3, hypercubes have the property that each node’s
logical address differs from each of its neighbors’ logical addresses by exactly one bit.
This property is useful for the protocol, since every node can determine the logical
addresses of all of its potential neighbors based only on its own logical address. To
determine in an incomplete hypercube which neighbors should be present, a node also
requires knowledge of the highest logical address in the hypercube (unless otherwise
stated, it is assumed that the ordering of logical addresses will be basedot{)the
operator applied to the node labels). For example, if a node with logical address “001”
knows that the highest logical address in the hypercube is “010”, then it will not expect a
neighbor to be present with logical address “101”, sBicé€101) >G (010).

Every node keeps data about its neighborsneghborhood table. Every potential

neighbor of the node has an entry in the table, consisting of the following data:

The neighbor’s logical address

The neighbor’s physical address, if known

The time elapsed since the node last received a message from the neighbor

The time elapsed since the node began attempts to contact its neighbor

In addition, every node keeps track of the current highest logical address in the
hypercube, so that it can determine which of its neighbors should be present in its
neighborhood table. As with entries in the neighborhood table, the node keeps a record
of information for the highest logical address, consisting of the following data:

» The logical address of the highest known node in the hypercube



» Thetime elapsed since the node | ast received a message from the node with the
highest logical address
» Thelast received sequence number from the node with the highest logical
address
The node with the highest logical address attaches sequence numbersto the
multicast messages it sends, as will be discussed in Section 4.5. Nodes store this
sequence number so that they can determine if they have received recent or outdated

information.

4.3 HyperCast Timers and Periodic Operations

Four time parameters are used in the HyperCast protocol. These parameters and

their uses are defined below and listed with their values used in this implementation:

* theartbeat (29): Nodes send messages to each of their neighborsin the
neighborhood table periodically at intervals separated by the time theartpea-

*  timeout (10S): When the time elapsed since a node last received a message from a
neighbor becomes greater than the time timeout, the neighbor’s entry is said to be
stale and the neighborhood tableiigomplete. A missing neighbor is referred
to as aear in the hypercube. In addition to the neighborhood table entries, the
information about the highest known node in the hypercube also becomes stale
after a period of tim&imeout-

* tmissing (20s): As will be discussed in Section 4.5, after a neighbor’s entry
becomes stale the node then begins multicasting on the control channel to
contact the missing neighbor. If the missing neighbor fails to respond during

another period of tim&yising, the node removes the missing neighbor’s entry
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from the neighborhood table and proceeds under the assumption that the
neighbor has failed.

* taining (69): Nodesthat are in the process of joining the hypercube send
multicast messages to broadcast their presence to the entire group, as will be
discussed in Section 4.5. To prevent alarge number of joining nodes from
saturating the control channel with multicast messages, ajoining node that
receives a multicast message from another joining node will suppress its own
message and wait for aperiod of time tjoining before attempting to broadcast its

message.

4.4 Node States

In the HyperCast protocol, each node in the hypercube isin one of eleven different
states. Based on events that occur and HyperCast control messages that are received,

nodes transition between states.
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Table 4: Node state definitions.

Outside: Not yet participating in the group.

Joining: Wishes to join the hypercube, but does not yet have any
information about the rest of the hypercube. Itslogical address
ismarked asinvalid.

JoiningWait: A Joining node that has received a beacon from another Joining
StartHypercube: Has determined that it is the only node in the multicast group

since it has not received any control messages for a period of
time timeout, aNd it Starts its own stable hypercube of size one.

Stable: Knows all of its neighbors’ physical addresses.

Incomplete: Does not know one or more of its neighbors’ physical addresses,
or a neighbor is assumed to have left the hypercube after nat
receiving pings from that neighbor for a period of timout-

Repair: Has beerincomplete for a period of timémising and it begins to
take actions to attempt to repair its neighborhood.

HRoot/Stable: Stable node which also believes that it has the highest logical
address in the entire hypercube, as ordered by tileaBerator.

HRoot/Incomplete: | Incomplete node which also believes that it has the highest
logical address in the entire hypercube, as ordered by tfe G
operator.

HRoot/Repair: Repair node which also believes that it has the highest logical
address in the entire hypercube, as ordered by tileaBerator.

L eaving: Node that wishes to leave the hypercube.

Note that a hypercube dfnodes is in a stable state if all of its nodes have unique
logical addresses fro@(0) to G(N-1) and are in th&table state, with the exception of

the node with a logical address equaBG{®-1) which is in theHRoot state.

4.5 Message Types

The functions of the hypercube are based upon a set of basic message types. There
are a total of four message types that are used by the protocol. The protocol does not
depend on the reliability of basic message transmission, since the soft-state design of the
protocol allows for packet losses. Messages are sent via either a unicast transmission

directly to another node, or a multicast transmission to the group’s control channel.
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Beacon Message: The beacon message is a message that is multicast on the control
channel. A beacon contains the logical/physical address pair of the sender, aswell as the
logical address and sequence number of the currently known HRoot. There are three
cases in which nodes periodically broadcast a beacon message at intervals spaced theartbeat
apart: (1) if the node considersitself to be the HRoot, (2) if the node determines that it
has an incompl ete neighborhood, or (3) if the node isin the process of joining the
hypercube. The HRoot sends beacons to the whole group so that all nodes know the
highest logical addressin the hypercube, and therefore know which of their neighbors
should be present in their neighborhood tables. The HRoot also adds a sequence number
which it increments every time it sends a beacon. The sequence number is used to mark
the timeliness of the information. Beacon messages with higher sequence numbers have
more current information. A node with an incompl ete neighborhood sends beacons
periodically so that its missing neighbors (if present in the hypercube) are informed of the
node’s physical address and the nodes can reestablish their logical connsmtiomg

nodes periodically serakacons to advertise their presence to the group.

Ping Message: Each node periodically sendgiag to all of its neighbors listed in its
neighborhood table to inform the neighbors that the node is still present in the hypercube.
A ping is a short unicast message, containing the logical/physical address pair of both the
sender and the receiver of the message, as well as the logical address and sequence
number of the currently knowdRoot. If a node has not receivegbiag from a neighbor

for an extended period of tint@neout, the node will consider its neighborhood incomplete

and will begin sendingeacons as described above. If it still has not receivgthg
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from its neighbor after another period of time tmissng, it Will assume that its neighbor has
failed and will remove it from its neighborhood list. Ping messages are also used as a

vehicleto assign anew logical addressto the receiver of the ping message.

Leave Message: When a node wishesto leave the hypercube, it sends a leave message.
Nodes receiving this leave message will remove the leaving node from their

neighborhood tables.

Kill Message: Nodesreceiving akill message will immediately send |eave messages to
all of the neighbors in their neighborhood tables, and then enter the Joining state. The

kill message is used for the elimination of nodes with duplicate logical addresses.

4.6 Message Packet Format

Basic messages are sent using the following packet format, common to all

messages:
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1 byte |Message Type

4 bytes \ Source |P Address
4 bytes \ Source Port
4 bytes \ Source Logical Address

|

|

|

4bytes | Dest IP Address |
4 bytes | Dest Port |
|

|

|

|

4bytes | Dest Logical Address

4 bytes \ HRoot Logical Address
4 bytes \ HRoot Sequence Num

4 bytes ‘ Data Length
bytes

Figure 13: Packet for mat.

The M essage Type field is defined as the following:

Table5: Message Types.
Message Type: | Ping Beacon | Leave | Kill
Field Value: 0 1 2 3

The IP Address fields are filled in the network address’ most significant byte to
least significant byte order. TiRert, Logical Address, Sequence Number, andData
Length fields are also filled in most significant byte to least significant byte order.

Data is a variable-length field, with its length specified by Brea L ength field of
the packet. ThB®ata field is present for future expansion, and it is not currently used in

the protocol.

4.7 Protocol Mechanisms

The goal of the HyperCast protocol is to maintain a stable hypercube; i.e. the

hypercube must be consistent, compact, and connected.
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To maintain the consistency criterion, a mechanism called Duel (duplicate
elimination) isemployed. The Duel mechanism deterministically ensures that logical
address conflicts are resolved by aways eliminating the conflicting node with the lower
physical address. If anode detects that another node has the same logical address, it
compares its own physical address with the physical address of the conflicting node.
Ordering of physical addresses is given by the 32-bit integer representation of the nodes’
IP addresses. If two nodes share the same IP address, then the HyperCast control channel
port number is used for comparison. If the node’s physical address is numerically greater
than the conflicting node’s physical address using this ordering, the node with the greater
physical address issue&il message to the other node. Otherwise, it sksaus
messages to all of its neighbors and rejoins the hypercube in theJoitialg state.

To maintain the compactness criterion, tmin (address minimization)
mechanism is used. TR&min function of the protocol continually attempts to move
nodes into lower logical addresses whenever opportunities arise. When a node receives
beacon messages from ti¢Root node, it checks to see if it has been missing a neighbor
in its own neighborhood list with a lower logical address than that ¢ Rt for
longer than a period of tingissing. If such a tear is found, the node sengmng with the
vacant lower logical address back to Hieoot. A node that receivesping message
with a destination logical address lower than its actual logical address will set its logical
address to the value given in fhieg. Thus as tears appear in the hypercube, nodes
migrate down to lower logical addresses, eventually filling the tears. The continual
movement of nodes towards lower logical addresses as tears appear ensures that the

hypercube remains compact.
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The Admin mechanism also governs the process of nodes joining the hypercube.
Initially, the logical address of aJoining node is marked as an invalid address. Since the
Joining node periodically sends beacons to announce its presence to the group, other
nodes check to see if they can find a “lower”, valid logical address for the new node in
the hypercube. If a tear in the hypercube is foundJdh@ng node is sent ping to
lower it to the vacant logical address. If there is no tear in the hypercube, in order to
maintain compactness tleining node is placed at the next higher logical address above
theHRoot. TheHRoot is always capable of adding a node to its neighborhood list as its
successor in the Gray ordering, so it senpisi@ to theJoining node containing that new
logical address. Therefore nodes join a stable hypercube asReots.

The connectedness criterion is maintained by the following process: whenever a
nodeA receives a message from another rideeéth a logical address that designates it
as a neighbor, the logical/physical address pair of Badeadded into nodA’s
neighborhood table. Subsequpirigs ensure that the link between neighbors remains.
If a neighbor does not sepdhgs for a period of time as described in Section 4.5, it is
assumed that the neighbor has dropped out of the hypercube and its entry in the
neighborhood table is removed. Action taken byAmin mechanism then can repair

the hole in the neighborhood table.

42



Neighborhood Timeout while

becomes incomplete a“e'“pr:'e"lgt:ﬁ Sontact
Incomplete Repair 4— Node Any State
leaves
Neighborhood
kgcomes complete
Has ancesto
/Rejaln Depart

Neighborhood
becomes complete

Node Node \ Node Joining/ .
becomes New HRoot becomes New HRoot becomes New HRoot  Joining Node wants,
HRoot } Hp\om ’ HRoot Wait to join

Neighborhood
becomes complete

Timeout for
finding an HRoot

HRoot/
Stable

Timeout for beacons

NIL Timeout for finding from Joining nodes,

any neighbor Timeout
for finding an HRoot Joining
Wait
Start Beacon from,
Hypercube

las no aNcestor
Neighborhood

becomes incomplete:
HRoot/ HRoot/
Incomplete Repair
Neighborhood Timeout while

becomes complete attempting to contact
neighbor

Joining node
received

Figure 14: Node State Transition Diagram

Figure 14 summarizes the transitions between node states. Node states are
represented as circles, and arrows between states denote the method of transitioning

between two states.

4.8 Protocol Event Tables

The protocol actions taken by the nodes in response to events are presented in table
form below. The %" symbol means that the node will switch to the indicated state.

Table6: Event tablefor Outside state.
Outside » Node is not part of the hypercube

Event: Action:

Application wants to join HyperCast group— Joining
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Table 7: Event tablefor Joining state.

Joining

* Wantsto join the hypercube
» Logical addressis set asinvalid

Event:

Action:

Periodically, every theartbeat

Send beacon message to control channel

No ping received for period timeout

- StartHypercube

Beacon received from non-Joining node

Update known HRoot information

Beacon received from Joining node

- JoiningWait

Ping received

Set own logical addressto ping's
destination logical address

After ping received, own logical address
equals knowrHRoot’s logical address

- HRoot/Incomplete

After ping received, own logical address
does not equal knowdRoot’s logical
address

- Incomplete

Table 8: Event tablefor JoiningWait state.

* Wants to join the hypercube
» Has received heacon from aJoining

JoiningWait
node
» Logical address is set awalid
Event: Action:

No ping received for periotimeout

- StartHypercube

Beacon received from nordoining node

Update knowh Root information

No beacon received fromJoining node for
perlodtjommg

- Joining

Ping received

Set own logical addresging’s
destination logical address

After ping received, own logical address
equals knowrHRoot’s logical address

- HRoot/Incomplete

After ping received, own logical address
does not equal knowdRoot’s logical
address

- Incomplete

Table9: Event tablefor StartHypercube state.

StartHypercube

» Start new hypercube

Event:

Action:

Set own logical address @(0)
- HRoot




Table10: Common event
Stable
Incomplete
Repair
HRoot/Stable
HRoot/Incomplete
HRoot/Repair

tablefor several states.

Event:

Action:

Periodically, every theartbeat

Send ping message to al valid neighbors

Application triggers leave

Send leave message to al valid neighbors
- Leaving

Recelve message with source logical
address equal to own logical address and
source physical addressis less than own

Send kill to message source

Receive message with source logical
address equal to own logical address and
source physical addressis greater than own

Send leave to all valid neighbors
- Leaving

Kill received

Verify that source’s physical address is
greater than own physical address
Sendleave to all valid neighbors

- Leaving

Ping received

Update neighborhood entry for sender’s
logical address
Update knowrHRoot information

Beacon received

Update knowd Root information

Leave received

Remove neighborhood entry for sender
logical address

Table11: Event tab
Stable

lefor Stable state.

Event:

Action:

Neighborhood becomes incomplete due
lack of pings from a neighbor for period

tti meout

to» Incomplete

Own logical address is greater than knoy
HRoot logical address

vn- HRoot/Stable
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Table 12: Event tablefor Incomplete state.

Incomplete

Event:

Action:

Periodically, every theartbea

Send beacon message to control channel

Neighborhood becomes complete

— Stable

Own logica addressis greater than known
HRoot logical address

- HRoot/Incomplete

Neighborhood partially empty for timeout

- Repair

Neighborhood completely empty

- StartHypercube

Table 13: Event tablefor Repair state.

Repair

Event:

Action:

Periodically, every theartbea

Send beacon message to control channel

Beacon received from HRoot or Joining
node

Send ping message to beacon source
containing new logical addressto fill tear
in neighborhood

Neighborhood becomes complete

— Stable

Own logica addressis greater than known
HRoot logical address

- HRoot/Repair

Neighborhood completely empty

- StartHypercube

Table 14: Event table for HRoot/Stable state.

HRoot/Stable

Event:

Action:

Periodically, every theatbea

Send beacon message to control channel
Increment sequence number

Beacon received from Joining node

Register Joining node as next higher
neighbor

Increment sequence number

Update known HRoot information to be
new HRoot

Neighborhood becomes due to lack of
pings from a neighbor for period timeout

- HRoot/Incomplete

Own logica addressis less than known
HRoot logical address

— Stable
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Table 15: Event table for HRoot/Incomplete state.

HRoot/Incomplete

Event:

Action:

Periodically, every theatbea

Send beacon message to control channel
Increment sequence number

Beacon received from Joining node

Register Joining node as next higher
neighbor

Increment sequence number

Update known HRoot information to be
new HRoot

Neighborhood becomes complete

- HRoot/Stable

Own logica addressis lessthan known
HRoot logical address

- Incomplete

Neighborhood partially empty for timeout

- HRoot/Repair

Neighborhood completely empty

- StartHypercube

Table 16: Event table for HRoot/Repair state.

HRoot/Repair

Event:

Action:

Periodically, every theartbea

Send beacon message to control channel
Increment sequence number

Beacon received from Joining node

Send ping message to beacon source
containing new logical addressto fill tear
in neighborhood

Neighborhood becomes complete

- HRoot/Stable

Own logica addressis less than known
HRoot logical address

- Repair

Neighborhood completely empty

- StartHypercube

Table17: Event tablefor Leaving state.

Waits for period timeout t0 €nsure that
neighbors receive leave messagesin
response to their pings

L eaving » Proceedsto Outsideif leave was
initiated by application, otherwise
proceeds to Joining

Event: Action:

Ping received Send |eave to message source

Leave was triggered by application and - Outside

timeout tiMe has elapsed

Leave was not triggered by applicationand | — Joining

timeout tiMe has elapsed
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4.9 Protocol Behavior Examples

It is advantageous to demonstrate the protocol’s behavior by means of examples.

4.9.1 The Stable Hypercube

Figure 15: Stable hypercube.

In a stable hypercube, ti#Root multicastdeacons periodically (Figure 15-a).
This keeps all nodes informed of the logical address dfifReot, and therefore the
nodes know which of their neighbors should be present in their neighborhood tables.

Every node also periodically sengleg messages to all the neighbors listed in its
neighborhood table (Figure 15-b).
4.9.2 Adding a Node

The process of allowing nodes to merge into the hypercube control topology is

shown here.
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Figure 16: Joining node.

The Joining node periodically sends beacon messages, making its presence known
to the group (Figure 16-a). The HRoot will place the Joining node as its neighbor at the
next successive position in the hypercube, as ordered by the G™() operator. The HRoot
also knows that the new node will have the highest known logical address, so it updates
its highest known logical address entry and enters the Stable state. It pings the new node
with the new logical address (Figure 16-b). The new node takes on the new logical
address and replies with a ping back to the original HRoot (Figure 16-c).

The new node determines from the ping packet that it is the HRoot, since its logical
addressis equal to the highest known logical address. It begins sending beacons as an

HRoot (Figure 16-d).
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Figure 17: Joining node (continued).

Next, the new HRoot’s neighbors receive thaeacon and reply with ging, since
theHRoot naturally belongs in their respective neighborhoods (Figure 17-a). The
HRoot is then informed about its neighbors and replies wiimg (Figure 17-b). All
nodes in the hypercube have complete neighborhood tables and know all their neighbors,

so the hypercube is stable (Figure 17-c).

4.9.3 Repairing a Tear
The process of repairing defects in the hypercube control topology is shown here.
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Figure 18: Repairing a tear.

It is possible that a node can fail unexpectedly (Figure 18-a). Nodes that have
failed are detected because their neighbors do not receive ping messages from the failed
node for a period of time timeout (Figure 18-b). Each of the failed node’s neighbors then
periodically sendbeacons to indicate that they have detected a missing neighbor (Figure
18-c). Note that if the failed node returned at this timeb#aeons from its neighbors
will be used to reestablish the logical connections in its neighborhood table. After
sendingobeacons for a period of timémissng Without receiving a reply, each neighbor
assumes that the failed node will not return and a replacement is neededmihe
mechanism then begins as one or more neighbors se@migta theHRoot to lower the

HRoot’s logical address to fill the tear (Figure 18-d).
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Figure19: Repairing atear (continued).

Upon receiving the ping, the HRoot sends leave messages to its neighbors to notify
its neighbors that the HRoot will be leaving their neighborhoods (Figure 19-a). The
HRoot then assumes the new logical address given to it by the failed node’s neighbor,
and replies to it with ging of its own (Figure 19-b). This completes the logical
connection between the two nodes, since both nodes have entries for each other in their
respective neighborhood tables and know each other’s physical addresses (Figure 19-c).
The relocated olthRoot thenbeacons, since it does not yet know all of its neighbors

(Figure 19-d).
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Figure 20: Repairing atear (continued).

The neighboring nodes receive each othise&cons and respond by sendipgngs
(Figure 20-a). This completes the repair procedure, and the hypercube has returned to a

stable state (Figure 20-b).

4.10 Implementation Details

The HyperCast protocol was implemented using the Java programming language.
Java was chosen for its portability to multiple platforms and its easy-to-use threading
constructs [CAM98]. Classes were written to encapsulate the physical address, logical
address, and neighborhood table data structures. These classes contained functionality
for basic operations, such as adding/removing a node’s entry or searching for a tear in the
neighborhood table. Additional classes were used to represent a HyperCast message and
a queue used for storing HyperCast messages that have been received but not yet
processed.

Two sockets were used for each hypercube node. A single datagram socket was
used for unicast send and receive operations, and a single multicast datagram socket was
used for control channel send and receive operations. For testing purposes, the multicast

group used for the control channel was at a fixed multicast IP address.
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Four threads of execution were used to execute the tasks of the HyperCast protocol,
in order to separate the different duties of the protocol and more efficiently handle
packets without busy-waiting between packet arrivals. The different threads are as
follows:

1. A *“unicast monitor” thread that continually reads packets from the unicast
socket, parses the packets, and places the messages into the incoming message
queue.

2. A "multicast monitor” thread that continually reads packets from the multicast
socket, parses the packets, and places the messages into the incoming message
queue.

3. A*receiver” thread that continually reads messages from the queue and
processes them as described in the event tables in Section 4.8.

4. A *“pinger” thread which performs all the periodic actions of the protocol. The
pinger thread cycles between two states: (1) serpilingg to all neighbors in
the neighborhood table, updating the time fields in the neighborhood table, and
searching for tears in the neighborhood, and (2) sleeping for a period of time
equal totheartbea-

The use of the implementation for collecting performance statistics is discussed in

Chapter 6.



5 HyperCast Verification

In this chapter the formal verification of the HyperCast protocol is presented.
Neither simply specifying the protocol nor even testing an implementation of the protocol
is guaranteed to reveal all defects in the protocol’s design. Error conditions may be very
difficult to detect and correct. A protocol verification tool was used to perform a formal
verification of protocol correctness, thereby providing stronger evidence that the

HyperCast protocol is free of logical defects.

5.1 The Need for Verification

As we recall from Chapter 4, in the HyperCast protocol each node has an associated
state. The set of states and the rules governing the transitions between states defines a
finite state machine. As each node moves from state to state, it keeps no memory of
which states it has been in previously. The lack of memory is an advantageous property
for a network protocol, since nodes do not have to store past information in order to
operate. The task of implementing the protocol is greatly simplified since the only data
that needs to be kept is the current state. However, being a finite state machine also
means that there is no history of past messages processed at each node, so there is no

means for a node to detect if it is caught in a repeating cycle.
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Figure2l: A cyclepresent in an earlier version of Hyper Cast.

For example, an earlier version of HyperCast did not make a distinction between
the Incomplete and Repair states. The earlier version of HyperCast allowed nodes with
incompl ete neighborhoods to immediately send pings to the HRoot or Joining nodes to
repair their neighborhoods, without first waiting for the timeout tyissing. A problem that
can arise in that case is shown in Figure 21. Figure 21-a shows a possible state that the
hypercube can reach, where the link between nodes “011” and “111” has caused dropped
packets and node “011” has enteredlti®mplete state. In the earlier version of
HyperCast, nodes in thacomplete state immediately septngs to Joining or HRoot
nodes to move them to a lower logical address in order to repair the tear in their

neighborhood. In this case, tbeacon from aJoining node is received first so tipeng
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Is sent to the Joining node to move the Joining node to the vacant logical address (Figure
21-b). The Joining node takes its position at “111”, however there is already a node that
shares that same logical address. When the two “111” nodes receive each other’s
beacons (Figure 21-c), th®uel mechanism eliminates one of them by sendikigl a
message to the node with the lower physical address (Figure 21-d). The eliminated node
returns to thdoining state (Figure 21-a). Note that the hypercube has returned to its
original situation, and the cycle can potentially continue indefinitely.

Protocol design flaws such as this may leadot® progress cycles, where the
protocol endlessly cycles nodes through states in a repeating manner while never
reaching stability, odeadlocks, where nodes reach inconsistent states and cannot
continue with protocol executiorRace conditions may also occur, where unpredictable
behavior results from incorrect assumptions about process timing. Such problems are not
trivial to detect, and may be hidden deep within the protocol description. Flaws can
result in lengthy and complex error cases that cannot be found by human inspection. An
additional problem with these types of errors is that they do not necessarily occur all the
time, but only under certain (possibly rare) circumstances. A complex protocol such as
HyperCast may suffer from any number of hidden protocol bugs which may escape
normal testing.

Therefore it is not sufficient to simply claim that the HyperCast protocol works
correctly based on the protocol description and protocol operation examples given in
Chapter 4. A stronger assertion must be made, using a formal verification as evidence of

protocol correctness.
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5.2 Tool Description: Spin

A tool designed specifically for protocol verification developed at Bell Labs, called
Soin, was employed to aid in the development of HyperCast [BEL98]. Spin checks the
logical consistency of aprotocol specification by searching for deadlocks, non-progress
cycles, and any kind of violation of user-specified assertions [BEL98]. Spin has been
used in many real-world applications, such as tracing design errors in various data
communications protocols and concurrent algorithms.

To verify adesign using Spin, the input model is specified using a programming
language called the Process Meta Language (PROMELA). PROMELA isanon-
deterministic programming language based on Dijkstra’s guarded command language
notation and Hoare’s Communicating Sequential Processes (CSP) [DIJ76] [HOA78]
[HOL97]. This input model is a complete representation of the specification of the
protocol. In this case, the entire HyperCast protocol logic was encoded using
PROMELA, as well as a system for simulating multiple hypercube nodes in a computer
network.

Spin uses the model specified by the PROMELA code to construct a compact
representation of the completate of the system at any time. The system state uniquely
identifies the condition of every part of the system at an instant in time. For the
HyperCast protocol, the complete system state consists of the protocol states of each of
the nodes in the simulated hypercube, combined with a list of all messages currently
being passed between nodes. The effect of HyperCast protocol operations can then be
described as transitions from one system state to another. The possible transitions

between system states are governed by the actions of the HyperCast protocol.

58



Spin’s ability to verify protocol correctness results from how Spin manipulates
system state transitions. As a non-deterministic programming language, PROMELA has
language constructs that allow for non-deterministic behavior. For example, in the
PROMELA HyperCast implementation, incoming control messages passed are placed

iInto queues at each node.

moOw>

Figure22: First-in, first-out queuing order in a deter ministic language.

If the HyperCast implementation were written in a deterministic programming
language such as C++ or Java, the code will most likely extract the messages from the

gueue and process them in first-in, first-out order (Figure 22).

> 0O MW O

Figure 23: Random message selection in PROMELA.

In PROMELA, the same process of retrieving messages from the queue can be
written instead as a basic language construct which exteactsmly selected messages

from the queue (Figure 23). In a real network setting, the order in which a node receives
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messages is hot guaranteed. Each possible random outcome of the random message
retrieve operation represents a different valid possibility of how the protocol might
execute in an actual application.

Thus at certain points in the code, Spin has a “choice” of which non-deterministic
execution path to follow. It is through tracking these alternatives that Spin can verify
protocol correctness. From any one system state, Spin can determine every possible state
that the system can go into next. Thus by starting from an initial system state and
sequentially selecting every possible next state, Spin can follow all execution paths and
traverse the protocol’s entire state space. Traversing the entire state space means that
Spin can visit and examine all possible states that the system can ever reach under the
protocol’s direction.

Using this method, Spin can determine if a protocol has design errors. Potential
protocol fault modes can be written in the form of assertions, which Spin checks while
traversing the state space. Every possible route of execution will be examined by Spin,
so the absolute worst cases (no matter how unlikely) can be considered and checked for
assertion violations. A system state that has no further execution paths is deadlocked.
Non-progress cycles are found when Spin traverses the state space and returns to a
system state that is identical to one that has already been visited, thereby showing that the
process of looping through states can continue indefinitely. When Spin finds these
design flaws, it reports what type of error occurred and also which execution path led to
the error. If every possible execution path leads to a correct result, then the protocol has

been exhaustively verified to work correctly.
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5.3 Verification of the HyperCast Protocol

The primary goal of the HyperCast verification with Spin was to show that in all
cases the protocol will return an unstable hypercube to a stable state. To ensure that all
cases were covered, non-deterministic clauses were used to represent any variability in
the network. For example, in the case of the HyperCast message queues, non-
deterministically selecting the next message to process ensures that the protocol works
correctly without any assumptions on message ordering.

Theinitia state of the hypercube was represented using three parameters:

* The number of nodes joining a stable hypercube, J

* The number of nodes already present in the stable hypercube, N

» The number of nodes in the stable hypercube which fail unexpectedly, F

These parameters were varied to create a representative set of cases that the
protocol hasto deal with, over arange that will be described in Section 5.5. The state
space traversal that Spin performsis memory intensive, since the number of possible
system states for a hypercube isvery large. These memory requirements increase
exponentialy with the number of nodesin the hypercube. Due to memory limitations,
verification runs were performed using a maximum of six smulated nodes. Therefore the
guantity N + J—F was limited to being no more than six.

In addition to checking for deadlocks and non-progress cycles, Spin was used to
ensure that every execution path resulted in a stable hypercube. This was accomplished
by adding a method in the PROMELA implementation that detected when the system had
reached a state corresponding to a stable hypercube. A stable hypercube was defined as

when the nodes in the hypercube of $iz€ J —F had unique logical addresses equal to
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G(0) through G(N + J—F — 1), and all nodes were in tBtable state with the exception
of the oneHRoot at the highest logical address in the hypercube. Once stability had been
reached, then that particular execution path safely terminated.

Alternatively, if the protocol had an error that resulted in the hypercube not always
reaching a stable state, then a faulty execution path might run indefinitely. To check for
this scenario, a method was added to the PROMELA implementation that detected if the
system had been running for longer than a period of simulationTtinveereT was an
arbitrary large constant. This was represented as an assertion that the system time was
always less tham. Spin found assertion violations and reported them if the assertion was
violated along any execution path. If Spin’s verification run results in no assertion
violations and all execution paths result in successful terminations corresponding to
stable hypercubes, then the protocol is proven to be logically consistent and the protocol
meets the goal of always forming a stable hypercube.

Note that the assertion described above ensures that the hypercube will always
reach a stable state within tirfie Thus,T can be used as an upper bound on how long
the protocol will take to reach stability. A useful performance measure is the exact
amount of time that the protocol takes to achieve stability in the worst case. This exact
value can be found by systematically reducing the con$tamér successive verification
runs, untilT can be no lower without resulting in an assertion violation. This minifhum
IS thus the minimum upper bound on the time needed to reach stability. Other worst-case

system measures were also found by using this method.
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5.4 HyperCast Implementation in PROMELA

The mechanisms of the HyperCast protocol as described in Chapter 4 were encoded
in PROMELA. Multiple hypercube nodes were simulated using distinct processes.
PROMELA has no built-in language constructs to implement the passage of time,
therefore a process was written which simulated a clock with time increments of theartbeat-
With this clock functionality, the act of pausing a process for the next theartbea INCrement is
accomplished by blocking until the clock variable is updated. When all such periodic
functions are blocked, the clock process then increments the time and signals all the
blocked processes to reawaken. This stepwise procedure ensures that processes all
progress through time in a consistent manner, where no hypercube node is frozen in time
while other nodes are not.

Additionally, a system was designed to simulate the network connecting the nodes
together. Each hypercube node has an associated queue of inbound messages and a
gueue of outbound messages. The protocol process for each node removes random
messages from the inbound queue, processes the messages, and places messages into the
outbound queue. The network simulation process periodically removes random messages
from the nodes’ outbound queues and distributes them to the appropriate destination
gueues. If the outbound messageliearon, the message is copied and distributed to the
inbound message queues of all of the hypercube nodes. Otherwise, the destination
physical address is read from the outbound message and the message is placed in the

inbound queue of only the destination node.
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5.5 Data

The protocol was tested to find the minimum upper bounds on time, number of
unicast packets transmitted, and number of multicast packets transmitted given different
initial system states. The total number of unicast packets transmitted and number of
multicast packets transmitted were converted into average packet rates by dividing the
total number of packets by the time. In the case of the unicast packet rate, the per-node
average was found by dividing the aggregate unicast packet rate by the total number of
nodes. Packet loss was not accounted for in this simulation, since probabilistic packet
lossis difficult to model in a non-deterministic setting. Since Spin always finds the worst
case scenario, with any chance of packet oss the worst case scenario isthat al packets

arelost (leading to a meaningless simulation).

Table 18: Verification Results: Time (theartbeat)
vs. Number of JoiningNodes and
Number of Nodes Present

Number of Joining Nodes J
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Number of Nodes Present N

Table 19: Verification Results: Unicast Packet Rate

vs. Number of JoiningNodes and

Number of Nodes Present

Number of Joining Nodes J

0 1 2 3 4 5 6
0 00| 04 06| 08|08 09
1 |00 04|06 08]|08] 10
2 [00]08]10|10] 12
3 ]00 13|12 13
4 1001416
5 | 00] 17
6 | 00

Table 20: Verification Results: Multicast Packet Rate

vs. Number of JoiningNodes and

Number of Nodes Present

Number of Joining Nodes J

0 1 2 3 4 5 6
0 07| 1116 | 21| 28 | 3.2
1 00| 08|16 | 21| 28| 3.2
2 00| 08|16 | 23 | 28
3 00| 10 | 1.7 | 22
4 00| 08 | 16
5 00 | 10
6 0.0

Table 21: Verification Results: Time (theartbeat)
vs. Number of Failed Nodes and
Number of Nodes Present
Number of Failed Nodes F

0 1 2 3 4 5 6
0
1 1
2 1 17
3 1 23 17
4 1 23 33 17
5 1 38 44 36 17
6 1 23 39 42 34 17
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Table 22: Verification Results: Unicast Packet Rate
vs. Number of Failed Nodes and
Number of Nodes Present

Number of Failed Nodes F

z 0 1 2 3 4 5 6
g 0
x| 1 1
81 211 o8
2| 3 1 | 14| 16
S | 4 1 | 18| 15| 16
25 1 [20]17]18] 25
ER 1 | 2219|2021 25

Table 23: Verification Results: Multicast Packet Rate

vs. Number of Failed Nodes and
Number of Nodes Present
Number of Failed Nodes F

z 0 1 2 3 4 5 6
g 0
£ | 1 1
81 2] 1 o8
2| 3 1 | 15|08
S | 4 1 | 21] 16| 08
g 5 | 1 120|127 12]o08
21 6 1 | 2418 | 11|07/ 08

5.6 Discussion

The data shows that the HyperCast protocol reliably returns an unstable hypercube
to astable state. Additionally, the performance measures found by the verification
indicate that there are no worst cases that are significantly different from what can be
expected given the protocol specification.

While verification cannot be used to prove results for large hypercube sizes, we
assert that there is little qualitative difference between a hypercube of six nodes and a

hypercube of six thousand nodes. It isunlikely that non-progress cycles and deadlocks
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exist in large hypercubes which do not have analogous fault modes in smaller
hypercubes.

Not only did the verification tests provide evidence that the HyperCast protocol was
working correctly, they also guided debugging efforts. For example, the cycle presented
at the beginning of this chapter (Figure 21) was discovered and corrected using Spin. If it
were not for the exhaustive search capability of the verification tool, it is possible that

this cycle might not have been found.
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6 HyperCast Experimental Validation

To determine the scalability properties of the HyperCast protocol, afull
implementation of the protocol was tested. The goal of thistesting was to determine if
there are quantitative aspects of the protocol which adversely affect how it can scale up to
an extremely large number of group members. While the computer facilities available for
the testing of the HyperCast protocol during this research were not adequate for the
testing of millions of nodes in real-time, they supported up to athousand nodes. It was
assumed that if the data collected for up to a thousand nodes showed that HyperCast was
scalable, then it was reasonabl e to conclude that the trend will hold for still larger group
memberships.

The protocol was implemented in the Java programming language for maximum
portability across platforms, as described in Chapter 4. The implementation was an exact
port of the code written in PROMELA, which was verified to be free of logical
inconsistencies.

The protocol testbed was the Centurion computer cluster at the University of
Virginia, acluster used primarily as a platform for distributed computing research and for
computational tasks such aslarge-scale simulations. The part of the cluster used for this
experiment consists of 64 computers, each one a 533 MHz DEC Alphawith 256 MB of
RAM running Linux 2.0.35 [LEG99]. The Centurion cluster machines are connected
with a 100Mbit/s switched Ethernet network. Up to 32 logical hypercube nodes were run
on each physical computer in order to maximize the number of nodes that the computer
resources were able to test.

The measures of performance that were analyzed were:
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*  The number of packets (unicast and multicast) transmitted

*  The number of bytes (unicast and multicast) transmitted

* Thetime needed to return the hypercube to a stable state

These measures of performance represent two attributes of the protocol. First, the
control traffic transmitted must be shown to be scalable with the size of the multicast
group. If the controal traffic increases linearly with the size of the group, then the protocol
will not be able to support large group sizes. Second, we wish to show that the time
needed to return the hypercube to a stable state is not dependent on the size of the
existing group. Thistime relates to how quickly the HyperCast protocol can incorporate
dynamic changes in group membership into the embedded trees used for reliability.

These performance measures pertain only to the construction and maintenance of
the hypercubeitself. The scalability benefits of using embedded trees within the
hypercube are shown in Chapter 3, and these embedded trees can be utilized whenever
the hypercubeisin acompact state. The advantage of using the hypercube as the control
topology is known, however the measures of performance of the HyperCast protocol are
used to determine whether the process of maintaining the hypercube structureis also
scalable to large group sizes.

In order to examine the above measures of performance of the HyperCast protocol
in different scenarios, it was necessary to define parameters that are used to describe the
relevant characteristics of each scenario. These characteristics describe the initial state of
the hypercube, as well as the dynamic group membership changes that test the HyperCast
protocol’s ability to mend the hypercube. Four attributes of the system were selected:

* The number of nodes joining a stable hypercube,
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* The number of nodes already present in the stable hypercube, N
* The number of nodes in the stable hypercube which fail unexpectedly, F
* The packet loss frequency on the network, L
The first three attributes are the same as the ones used in the verification tests
described in Chapter 5. However, the tests were repeated with the Java implementation
even though the theoretical worst-case results were already known. This repetition was
performed because experimental data can be collected for amuch larger group of nodes
than the small number available in the verification, thereby alowing a better analysis of
scalability trends. The experimental datais also representative of atypical real-world
scenario, rather than showing results for only the worst case. Packet loss was artificially
introduced at nodes by randomly dropping received packets before they were processed,
so that the experiments more accurately model ed how HyperCast performs on a network
subject to packet |oss.
Three experiments were designed to evaluate the performance measures over a
selected range of attribute values, described fully in Sections 6.1 through 6.3:
1. Theeffect of the number of joining nodes was analyzed with respect to the size
of the hypercube. ThusJ and N were varied, while F and L were held constant
at 0.
2. Theeffect of the number of nodes that fail unexpectedly was analyzed with
respect to the size of the hypercube. Thus F and N were varied, while J and L
were held constant at O.
3. Theeffect of the rate of packet loss was analyzed with respect to the size of the

hypercube. ThusL and N were varied, while F and J were held constant at 0.
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A testing harness was written to automate individual HyperCast trials. Thistesting
harness consists of two components. The first component is a “server” program that is
run on all the cluster computers involved in the experiment. The server runs a user-
specified number of logical hypercube nodes, which in the majority of the trials was set
to 32. These logical hypercube nodes are fully distinct from one another and operate
concurrently in separate threads, thereby providing the same functionality as if each node
was running on a different physical computer. The server broadcasts its presence to the
second component of the testing harness, the “control” program. The control program is
a front-end interface executed on one computer that has the duty of managing all of the
servers. The control program reads from a list of individual trials specified, By K,

L) tuples, and creates initial state information for the subset of the logical hypercube
nodes needed to execute the trial.

The control program then distributes the initial state information to the servers,
where it is incorporated into the logical hypercube nodes. Using this method, a
hypercube in any possible state can be immediately created for the purposes of testing.
The control program sends a signal to the servers to notify them to begin protocol
execution. Once the protocol begins execution, the control program monitors the state of
the hypercube. The servers periodically report the current state of all the hypercube
nodes to the control program, so that the control program can determine if the hypercube
has reached stability. Once the individual trial’s termination condition has been reached,
the control program sends a signal to the servers to stop protocol execution. The servers
report network statistics back to the control program, where they are aggregated into the

measures of performance listed above.
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This processis repeated for each of the many individual trialsin the three

experiments.

6.1 Experiment 1: Effect of Number of Joining Nodes

6.1.1 Description
This experiment examines the effect of the number of simultaneously joining nodes

upon HyperCast performance.

In this experiment, the number of nodes already present in the hypercube N was
varied across multiple trials. N was set to values ranging from 0 to 512 in increments
such that logx(N) was close to uniformly distributed. Thiswas performed by setting N
equal to 22 rounded to the nearest integer, where the index i ranged from 0 to 18.

The number of joining nodes J was also independently varied across multipletrials,
with values ranging from 1 to 512. The distribution of the values of J was also chosen so
that 1og,(J) was close to uniformly distributed, in the same manner as the values of N
were chosen.

At the start of the trial, the hypercube of N nodes was in a stable state and all J
joining nodes entered simultaneously. The end of the experiment was defined as when
the hypercube contained N + J nodes and was in a stable state. The time until stability
was reached was measured, as well as the unicast and multicast traffic averages over that

period of time.
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6.1.2 Data and Interpretation
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Figure24: Timewith respect to number of joining nodes
and number of nodes present in hypercube.

Figure 24 shows the relationship between the amount of time needed to reach
hypercube stability and the parameters N and J. Note that the plot indicates no
correlation at al with the number of nodes present in the hypercube, which demonstrates
scalability. The increase in time with respect to the number of joining nodes on the
logarithmic axis indicates alinear correlation between the number of joining nodes and
the time needed. This behavior is expected, since the process of adding one node to the
hypercube takes a constant amount of time.

Note that the timeis given in multiples of theatves- |f @ Multicast group isrelatively
static with few members of the group joining or leaving during any given time period,
then arelatively long value of theartear CaN be chosen to minimize control traffic. If a
multicast group expects more rapid changes in its membership, then asmaller value of

theartbeat CaN be chosen to trade protocol overhead for lower join latencies.
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Figure25: Per-node average unicast packet rate with respect to number of joining nodes
and number of nodes present in hypercube.

Figure 25 shows the average unicast packet transmission rate during the time of the
join operation. The dataindicates that the unicast packet rate is approximately
logarithmically related to both the number of nodes already present in the hypercube and
the number of nodes joining the hypercube. The logarithmic correlation is present
because the unicast transmissions are primarily ping messages sent between neighbors.
The average number of neighbors of a node is approximately equal to the dimension of
the hypercube, which is approximately equal to logz(N + J). Hence the average number

of pings sent should be proportional to logx(N + J), aresult supported by the data.
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Average # bytes sent/received at
each node per t, ipea

Figure 26: Per-node average unicast byteratewith respect to number of joining nodes
and number of nodes present in hyper cube.

Figure 26 shows the average unicast byte transmission rate during the time of the
join operation. Since all HyperCast messages are of fixed length, this plot is equivalent
to Figure 25. The byte rate figure is presented to show the approximate bandwidth used

by the protocol, represented as bytes transmitted per theartbes iNterval.
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at each node per t . ivea

Average # packets sent/received

Figure 27: Multicast packet rate with respect to number of joining nodes
and nodes present in hypercube.

Figure 27 shows the average rate of multicast transmissions sent and received at
each node during the time of the join operation. The dataindicates that thereis no
correlation between multicast traffic and the number of nodes present in the hypercube.
There is however a sub-linear correlation between the multicast traffic and the number of
nodes joining the hypercube. This correlation is due to the beacons sent by the Joining
nodes. Without a beacon suppression mechanism for Joining nodes as described in
Chapter 4, the correlation will be linear due to the fact that each Joining node sends one
beacon per theartbear INterval. The suppression mechanism described in Chapter 4 is able to
eliminate the vast majority of redundant beacon messages, however there are still some
additional redundant beacon messages which contribute to multicast traffic as the group

size increases.
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Figure28: Multicast byte rate with respect to number of joining nodes
and nodes present in hypercube.

Figure 28 shows the average multicast byte transmission rate during the time of the
join operation. Since all HyperCast messages are of fixed length, this plot is equivalent
to Figure 27. The byte rate figure is presented to show the approximate bandwidth used
by the protocol, represented as bytes transmitted per theartbes iNterval.

6.1.3 Discussion

This experiment showed conclusively that the process of adding a node to the
hypercube scales well to extremely large group sizes. Applications which require low
latency in join operations can use alower value of theartbea, thereby reducing the time
needed to add a node to the hypercube.

For future work, the HyperCast protocol can be improved somewhat by
implementing more advanced suppression techniques used to suppress beacons from

joining nodes, such as the proposed improvements to SRM discussed in Chapter 2.
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Enhancing the suppression technique has the potential to reduce the amount of multicast

traffic generated from large numbers of nodes joining at once.

6.2 Experiment 2: Effect of Number of Failed Nodes

6.2.1 Description
This experiment examines the effect of the number nodes that fail simultaneously

upon HyperCast performance.
In this experiment, the number of nodes already present in the hypercube N was
varied across multiple trials. N was set to values ranging from 0 to 512 in increments
such that logx(N) was close to uniformly distributed. Thiswas performed by setting N
equal to 22 rounded to the nearest integer, where the index i ranged from 0 to 18.
The number of failed nodes F was a so independently varied across multiple trials,
with values ranging from 1 to N. The distribution of the values of F was also chosen so
that log,(F) was close to uniformly distributed, in the same manner as the values of N
were chosen.
At the start of the trial, the hypercube of N nodes was in a stable state and all F
nodes failed simultaneously. The end of the experiment was defined as when the
hypercube contained N — F nodes and was in a stable state. The time until stability was
reached was measured, as well as the unicast and multicast traffic averages over that

period of time.
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6.2.2 Data and Interpretation
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Figure29: Time with respect to number of failed nodes
and number of nodes present in hypercube.

Figure 29 shows the relationship between the amount of time needed to reach
hypercube stability and the parameters N and F. Note that data was not collected for the
degenerate cases where the number of failed nodesF is greater than the number of nodes
present in the hypercube N. Thisfact is represented on the plot by the value O wherever
F>N.

This plot shows no evidence of correlation between the time needed and the number
of nodes present in the hypercube. Particularly, the plot isflat with respect to N at values
of F where many data points exist to show trend information. The amount of time
needed to restore hypercube stability appears to increase approximately linearly with the
number of failed nodes. Thisresult is expected, since the task of moving one node in the

hypercube to alower address takes constant time.
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Note however that the data also indicates a slight reduction in the time needed to
repair the hypercube as F approaches values close to N. The nature of the repair
mechanism suggests an explanation for this non-linearity. 1f the number of failed nodes
is close to the number of nodes in theinitial stable hypercube, then the hypercubeis
sparsely populated due to the large number of node failures. In a sparsely populated
hypercube, the protocol will have to move fewer nodes in order to reach a stable state.
Therefore, the time needed to restore hypercube stability is actually linear with respect to
the number of nodes which must be moved to lower addresses. The data corroborates

this observation.

Average # packets sent/received
at each node per t . iveat

Figure 30: Per-node average unicast packet rate with respect to number of failed nodes
and number of nodes present in hypercube.

Figure 30 shows the average unicast packet transmission rate during the time of the
repair operation. The unicast transmissions are primarily ping transmissions, so the

number of pings sent is proportional to the average number of neighbors of nodes in the
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hypercube. In this case, the hypercube contains N — F nodes, therefore the average
number of neighbors is approximately i8¢ —F). This relation is confirmed by the

data.

Average # bytes sent/received at
each node per t, ipeat

Figure 31: Per-node average unicast byte rate with respect to number of failed nodes
and number of nodes present in hypercube.

Figure 31 shows the average unicast byte transmission rate during the time of the
repair operation. Since all HyperCast messages are of fixed length, this plot is equivalent
to Figure 30. The byte rate figure is presented to show the approximate bandwidth used

by the protocol, represented as bytes transmittetipek: interval.
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Figure 32: Multicast packet rate with respect to number of failed nodes
and number of nodes present in hypercube.

Figure 32 shows the average rate of multicast transmissions sent and received at
each node in the hypercube during the time of the repair operation. The rate of multicast
transmissions is approximately linear with respect to the number of failed nodes, since
the number of failed nodes is proportional to the number of tearsin the hypercube that are
created. For each tear in the hypercube, neighbors with incomplete neighborhood tables
periodically send beacon messages, thereby contributing to the rate of multicast
transmissions. The rate of multicast transmissionsis also logarithmically related to the
size of the hypercube. Thisrelation is present because hypercubes of higher dimensions

have more neighbors per node, and all the neighbors of afailed node send beacons.
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Figure 33: Multicast byteratewith respect to number of failed nodes
and number of nodes present in hypercube.

Figure 33 shows the average multicast byte transmission rate during the time of the
repair operation. Since all HyperCast messages are of fixed length, this plot is equivalent
to Figure 32. The byte rate figure is presented to show the approximate bandwidth used
by the protocol, represented as bytes transmitted per theartbes iNterval.
6.2.3 Discussion

This experiment indicates that as the size of a hypercube increases, the time
required to repair a tear does not increase. This shows that the HyperCast protocol’s
repair operation scales well to large group sizes. Applications which require low latency
in repair operations can use a lower valug@fuea, thereby reducing the time needed to
repair a tear in the hypercube.

Note that even though certain nodes may fail in a hypercube, there are many

redundant links in the hypercube that may still be used for aggregation of control
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information. Thisfeature of the hypercube may be utilized in a future implementation of
the tree embedding al gorithm which takes alternate routes into account, as will be

discussed in Chapter 7.

6.3 Experiment 3: Effect of Rate of Packet Loss

6.3.1 Description
This experiment reveal s the steady-state protocol overhead for different rates of

packet |oss.

In this experiment, the number of nodes already present in the hypercube N was
varied across multipletrials. N was set to values ranging from 1 to 1024 in increments
such that logx(N) was close to evenly distributed. Thiswas performed by setting N equal
to 2”2 rounded to the nearest integer, where the index i ranged from O to 20.

The proportion of packet loss L was also independently varied across multiple
trials, with values ranging from 0.0 to 0.3 in increments of 0.03.

At the start of the trial, the hypercube of N nodes was in a stable state. During the
trial, all nodes experienced the same level of random packet loss. The end of the
experiment was defined as when 100 theatbes iNtervals had elapsed. The unicast and

multicast traffic averages over that period of time were measured.



6.3.2 Data and Interpretation

Average # packets sent/received
at each node per t, o ipeat

Figure 34: Per-node average unicast packet rate with respect to packet loss
and number of nodes present in hypercube.

The plot in Figure 34 shows that as expected, the number of unicast packets sent
and received is logarithmically related to the number of nodes in the hypercube. This
behavior is due to the fact that the unicast messages are primarily pings sent between
neighbors, and the average number of neighbors of a node is approximately logz(N).
Note aso that there is a slight negative correlation between unicast transmissions and the
proportion of packet loss. This negative correlation is due to a smaller proportion of
packets being received as packet lossincreases. The dataindicates that as packet loss
increases, the HyperCast protocol does not increase the frequency of unicast

transmissions.
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Average # bytes sent/received at
each node per t, . inea

Figure 35: Per-node average unicast byte rate with respect to packet loss
and number of nodes present in hypercube.

Figure 35 shows the average unicast byte transmission rate during the time of the
trial. Since all HyperCast messages are of fixed length, this plot is equivalent to Figure
34. The byte rate figure is presented to show the approximate bandwidth used by the

protocol, represented as bytes transmitted per theartpea INterval.
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Figure 36: Multicast packet rate with respect to packet loss
and number of nodes present in hypercube.

Figure 36 shows the average rate of multicast packets sent and received at each
node during the time of thetrial. At low packet loss rates, the protocol keeps a constant
low multicast transmission rate. These multicast transmissions are the beacons sent
periodically by the HRoot.

At higher packet loss rates, the number of multicast transmissions rises. Nodes
often lose many consecutive ping packets when subjected to very high packet loss rates.
These nodes then assume that one or more neighbors are missing, and so they broadcast
beacons in attempts to contact their missing neighbors. The rise in multicast
transmissions is also related to larger hypercubes, since larger hypercubes have more
interconnections between nodes which are subject to packet loss. This behavior suggests
that in applications which suffer from high packet loss rates, the variabl e timeou: Should be

set to a higher value, thereby increasing the number of consecutive ping messages that
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must be dropped in order to create tears in the hypercube. By increasing the length of
time timeout bEfOre entries in the neighborhood table become stale, the chance of packet
loss causing atear in the hypercube is reduced and therefore the number of multicast

transmissions will also be reduced.

350 e
300 o
250 N

200 L

150 o R P

100 N

Average # bytes sent/received at
each node per t, . ipea

............ 0.3

(Og 6 ] . 0.25
A, 2(/‘/0/;76 4 3 015
Sy in & or 005 \(ets\—og'
A/J/ /VOQ' 0 o ion O pec
,0&0%6)% N or oporti©

Figure 37: Multicast byteratewith respect to packet loss
and number of nodes present in hypercube.

Figure 37 shows the average multicast byte transmission rate during the time of the
trial. Since all HyperCast messages are of fixed length, this plot is equivalent to Figure
36. The byteratefigureis presented to show the approximate bandwidth used by the
protocol, represented as bytes transmitted per theartpea INterval.

6.3.3 Discussion

The primary concern about the HyperCast protocol revealed in this experiment is

that multicast traffic grows quickly as packet lossincreases. Thisincreasein traffic

growth can be reduced substantially by an adjustment in the protocol timeout values
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listed in Chapter 4. A simple analytical example shows that increasing the timeou Value

can have a strong impact on how many neighborhood table entries become stale due to

dropped packets. Under a 20% rate of packet loss, if the number of consecutive ping

packets from a neighbor that must be dropped to consider that neighbor’s entry stale is
raised by only five packets, then the chance of dropping enough consecutive packets to
mark the neighbor’s entry as stale is reduced by a factor of over 3000.

Note that at low packet loss rates (< 10%), the data indicates near-perfect scalability
features of the protocol in steady-state operation. The multicast traffic is constant as
group size increases, and the unicast traffic is only proportionalA®N)ogro put the
logarithmic correlation in perspective, if the multicast group size is increased to a size of
one million nodes instead of one thousand, the overhead of the average unicast traffic per

node will only increase by a factor of two.

6.4 Examples of Transient Protocol Traffic

The performance characteristics examined in the experiments above presented
aggregate network statistics. In this section, transient network statistics were collected in
real time using th&cpdump utility on the Centurion cluster, which allowed for
observations of the network traffic at the individual packet level.

6.4.1 Nodes Joining the Hypercube

A stable hypercube of four nodes was created, and two more nodes were added.
The following table shows the transient packet transmissions for each of the nodes during
the join operation, with time in multiples Gfawex in thex axis and the number of

packets transmitted on teaxis.
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Table24: Transient data for join operation.

Logica | Transient data
Addr
.
3
G(O) :
1
0 ﬂ ﬂ | ﬂ | | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
4
3
G(l) :
1
0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
s
3
G(Z) ‘
1
0 H |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
.
3
GO | |-
1
o| | | ﬂ ﬂ ||l
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
.
3
Join | |,
! 1 ﬂﬂ ﬂ | ﬂ |
0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
.
3
Join | |,
2 .
0 | H | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

The large periodic spikesin the plotsin Table 24 correspond to when the node is
sending ping messagesto all of its neighbors. Ping messages received from a node’s
neighbors also occur at regular intervals, however there is little correlation between the
times at which different neighbors send pings.

As theJoining nodes join the hypercube, they are entered into the neighborhood

tables of the other nodes. This is shown in the table by the increasing length of the
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periodic spikes, indicating that the number of neighbors in the nodes’ neighborhood
tables has increased.

The secondoining node shows a lack of traffic until approximateltg&pes UNILS
into the experiment. The lack of traffic is due to the suppression of the second node’s
beacons by the reception of beacon from the firstJoining node.
6.4.2 Repairing Tears in the Hypercube

A stable hypercube of six nodes was created, and two nodes were set to fail. The
following table shows the transient packet transmissions for each of the nodes during the
repair operation, with time in multiples Bfwes in thex axis and the number of packets

transmitted on thg axis.

Table25: Transient datafor repair operation.

Logica | Transient data
Addr
3
G(O) :
0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
s
3
G(l) ‘
1
0 | | | | | | || | | | | | | || | | || |
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
s
3
(4) ’
1
0 | | | | | | | | | | || | | | | | |
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
3
G(S) :
0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
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The periodic spikesin Table 25 correspond to the ping messages sent by each node
toits neighbors. While these plots do not clearly indicate the progression of the repair
operation, some details are apparent. Note that the nodes at logical addresses G(4) and
G(5) send arapid succession of packets at approximately timet = 18. Thetraffic at time't
= 18 corresponds to the process of moving the HRoot at G(5) to alower logical address
after the tearsin the hypercube have been detected. Once the node at G(5) is moved, the
node at G(4) is moved to fill the second tear. The relocated nodes rebuild their
neighborhoods and again send ping messages to their neighbors, as indicated at times

after t = 25.
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7 Conclusions

In this research, the design, specification, verification and evaluation of the
HyperCast protocol have been presented. The design and specification of the HyperCast
protocol provide asimple, elegant set of messages and protocol states that operate
efficiently and are relatively easy to implement. The formal verification has shown that
the HyperCast protocol is free of logical inconsistencies, providing strong evidence to
support the ability of the protocol to always return an unstable hypercube to a stable state.
Evaluation of the protocol has shown that the HyperCast protocol is capable of efficiently
building and maintaining the hypercube structure. The implementation has been tested
for group sizes of up to 1024 nodes, and the data indicates that larger group sizes may be
easily reached. Thusthe HyperCast protocol is scalable to extremely large groups of
users.

Thelogical hypercube topology created by the HyperCast protocol supports the
efficient creation of embedded spanning trees, which can be rooted at any node. This
spanning tree can be used for the aggregation of control information, preventing the
implosion problem. The use of the hypercube and its embedded spanning trees for
multicast groups with multiple senders has been shown to have theoretical performance
advantages over the use of the current state of the art control topology, a shared K-ary
tree. Thusthe HyperCast protocol is capable of providing a control topology to multicast
applications which processes control information more efficiently than existing solutions.

Therefore the impact of thisresearch is that network applications which require the
distribution of data between alarge number of data sources and alarge number of data

recipients can make more efficient use of their network resources by using HyperCast.
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Applications which use HyperCast may be able to support a much larger group
membership than if HyperCast is not used. For example, a collaborative document
editing tool with all group members sending data may only scale up to afew dozen
simultaneous users using a tree-based reliable multicast protocol, however it may be able
to scale up to afew hundred simultaneous users or more by using HyperCast. Therefore
HyperCast adds value to computer applications by allowing them to provide a better

service to the user.

7.1 Future Work

The HyperCast protocol currently organizes nodes into a hypercube structure and
has been tested thoroughly with that goal in mind. However, the implementation does
not make use of the embedded treesto aid in transmitting data at thistime. This research
will be continued to include a reliable multicast protocol with HyperCast, so that the
embedded trees are used for the scalable processing and aggregation of control
information. In the literature reviewed in Chapter 2, many such reliable multicast
protocols were presented. It islikely that the future work of overlaying areliable
multicast protocol upon the embedded trees will be based on an existing protocol such as
RMTP. The combination of HyperCast with areliable multicast protocol can then be put
to use with some basic applications, such as asimple multicast file transfer protocol.
Performance measurements of these basic applications will be able to show the advantage
of the hypercube control topology as compared to aternative control topologies, in atrue
real-world implementation.

Many of the control topologies presented in Chapter 2 are designed to attempt to

correlate the logical topology with the network topology. For example, by creating a
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logical tree structure so that it corresponds with the multicast distribution tree, parent and
child nodes are likely to be in close proximity to each other on the physical network.
Therefore the local operations of passing control messages between logical parent and
child nodes are also localized on the physical network, reducing the use of network
resources. Additionally, packet losses are likely to be correlated within subtrees of the
logical topology, so the aggregation of control messages within subtrees efficiently
reduces redundant control information.

The HyperCast protocol currently makes no provision for placement of nodesin the
hypercube according to physical layout. A possible path of future research on HyperCast
isto develop a system by which nodes residing in close proximity to each other form
independent hypercube control topologies. These independent hypercubes contain just
the nodes in their respective physical domains. By selecting hypercube subgroups based
on physical proximity, it ismore likely that the logical links between nodesin the
hypercubes correspond to shorter physical distances on the network. Elected
representatives from each domain are in turn organized into a hypercube. A tiered
approach has the potential to maintain the scalability benefits of the hypercube structure
for multicast groups with multiple senders, while incorporating the performance benefit
of short physical paths between logical hypercube neighbors.

One advantage of the hypercube structure that has not been addressed is that the
hypercube contains a large number of redundant paths. If a network failure occursin a
tree structure, al nodes in the subtree below the network failure are cut off from the root
of thetree. While the same event may also occur in an embedded tree within the

hypercube, nodes within the hypercube have an advantage in that they each can have
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multiple neighbors. The failure of a node’s parent in an embedded tree does not
necessarily mean that there is no path of logical links from the node back to the sender,
since the node’s neighbors may have alternate connections to the sender. Future work
can be done on creating a method for using these redundant links to provide a fault-
tolerant control topology.

The timing parameters of the HyperCast protocol are currently set to fixed, known
values. It may be advantageous for the protocol to be able to modify these parameters in
order to compensate for variable network traffic conditions. A set of heuristics based on
measurements of network latencies and packet loss may allow the HyperCast protocol to
determine the timing parameters that provide the best tradeoff between the speed of

hypercube operations and the protocol’s network overhead.
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Appendix A: PROMELA Verification Source Code

(in electronic form)

Appendix B: Java Implementation Source Code

(in electronic form)
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