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Abstract— The network calculus offers an elegant framework
for determining worst-case bounds on delay and backlog in a net-
work. This paper extends the network calculus to a probabilistic
framework with statistical service guarantees. The notion of a
statistical service curve is presented as a probabilistic bound on
the service received by an individual flow or an aggregate of flows.
The problem of concatenating per-node statistical service curves
to form an end-to-end (network) statistical service curve is ex-
plored. Two solution approaches are presented that can each yield
statistical network service curves. The first approach requires the
availability of time scale bounds at which arrivals and departures
at each node are correlated. The second approach considers a
service curve that describes service over time intervals. Although
the latter description of service is less general, it is argued that
many practically relevant service curves may be compliant to
this description.

Index Terms— Stochastic network calculus, Quality-of-Service,
network service curve.

I. INTRODUCTION

Beginning with Cruz’s seminal work [14] the deterministic
network calculus has evolved into a comprehensive theory for
the worst-case performance analysis of packet networks. It
has provided tools for reasoning about delay and backlog in
a network with service guarantees to individual or aggregate
traffic flows. A strength of the network calculus is that it
can be used to determine delays and backlog across multiple
network nodes and that it can accurately describe the behavior
of a broad class of scheduling algorithms. Using the notion of
arrival envelopes and service curves [15], delay and backlog
bounds can be concisely expressed in a min-plus algebra [1],
[7], [11]. The most powerful characteristic of the network
calculus is that bounds for single nodes can be easily extended
to multi-node bounds using a convolution operation of the min-
plus algebra [5].

The deterministic calculus reflects worst-case scenarios
where arrivals and service in the network conspire to cre-
ate maximum delays, backlogs, and bursts. Since traffic is
statistically multiplexed at network nodes, such scenarios are
extremely rare. Therefore, a deterministic approach to pro-
visioning service generally overestimates the actual resource
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needs, resulting in a low utilization of network resources.
A probabilistic view which considers that traffic in a packet
network is statistically multiplexed increases the achievable
utilization in the network by tolerating rare adversarial events.
This is referred to as statistical multiplexing gain. The sta-
tistical network calculus seeks to quantify the statistical mul-
tiplexing gain while maintaining the algebraic aspects of the
deterministic calculus.

Research on statistical network calculus has the potential
of providing new insights into fundamental trade-offs of
packet network architectures. For example, in [29] it is argued
that in networks with high data rates, statistical multiplexing
dominates the effects of scheduling. If it is indeed true that
the selection of scheduling algorithms has little impact on the
delay performance of networks, then the need for complex
link scheduling algorithms in Internet routers should be re-
evaluated. A statistical network calculus could also justify
recent empirical evidence that buffer sizes in Internet routers
are overprovisioned [2]. Another potential application area is
the verification of service-level agreements (SLAs) between
network customers and service providers. One can use service
curves to describe statistical lower bounds for the service
experienced by a single flow when resources are managed
for aggregates of flows by expressing the service seen by
the flow in terms of the capacity not used by other flows
[30]. This concept can be applied for verifying an SLA as
follows: If a network customer measures the aggregate input
to the service provider and the throughput of even a single
flow, the customer can determine whether the service provider
has allocated the capacity specified in the agreement. Finally,
probabilistic descriptions of service are suitable to express
the time-varying conditions of a wireless channel, which are
subject to random losses, noise, and interference between
users.

The contribution of this paper is a statistical network
calculus in the min-plus algebra formulation with convolution
and deconvolution operators [5]. The potential of using the
min-plus algebra is that, as in the deterministic context, end-
to-end guarantees can be expressed as a simple concatenation
(convolution) of single-node guarantees, leading to end-to-
end bounds for latency and backlog that are much smaller
than the sum of the corresponding single-node bounds. We
introduce the concept of a statistical service curve as a
probabilistic bound on the service received by a single flow
or group of flows at a node.1 We will show that single-node

1We use the terms ‘statistical’, ‘probabilistic’, and ‘stochastic’ interchange-
ably throughout the paper.
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performance bounds on output burstiness, backlog and delay of
the deterministic network calculus carry over to a probabilistic
framework based on statistical service curves.

At the same time, the derivation of end-to-end statistical
service curves turns out to be significantly more difficult, and
requires the availability of time scale bounds at which arrivals
and departures at each node are correlated. We present two
solutions to deal with this requirement. In the first solution
we assume that a priori time scale limits are available. Such
limits can be computed by obtaining bounds on the busy period
or the maximum backlog at a node. In the second solution, we
modify the characterization of service curves in such a way
that they imply the required bounds.

Much of the literature on statistical service guarantees
investigates performance bounds at a single node, assuming
bounds on the distribution of arrivals, such as exponen-
tially bounded burstiness [38], linear envelope processes [10],
stochastically bounded burstiness [35], effective bandwidth
characterizations [23], general burstiness characterizations [4],
[13], [39], stochastic domination by a given random variable
[27], or regulation by worst-case arrival envelopes [24]. Under
the additional assumption that arrivals from multiple flows
are stochastically independent, the statistical multiplexing gain
can be captured by applying the Central Limit Theorem [25],
the Chernoff Bound [19], or the Hoeffding Bound [37]. Some
works have iterated probabilistic bounds to yield end-to-end
bounds [35], [38]. However, end-to-end bounds obtained by
adding single-node results degrade quickly with the number of
nodes. We refer to [21], [26], [33] for reviews of the literature
on statistical multiplexing in packet networks.

The concept of probabilistic service curves was first sug-
gested by Cruz in [16] but no network service curve was
derived there. Chang suggested a network service curve for
a time-variable service description in the problem set of ([12],
Chapter 7), where the service at different nodes is described
by independent random processes and traffic is characterized
by moment-generating functions. After the manuscript for this
paper became available in 2002 [9], several studies have ap-
peared on the network calculus, some extending the framework
developed in this paper, e.g., [3], [13], [20], [22], [28], [30].
The statistical network calculus has also been related to other
analytical techniques. For example, in [28] it has been shown
that the effective bandwidth theory [23] can be expressed in
the statistical network calculus. This was used to derive end-to-
end performance bounds for networks with self-similar arrival
traffic.

The remaining sections of this paper are structured as
follows. In Section II, we review the notation and main
results of the network calculus. In Section III we introduce
statistical service curves and present the results for a statistical
network calculus in terms of statistical service curves. The
section concludes with a discussion of key difficulties in
the statistical network calculus. In Section IV we present a
solution for end-to-end service curves that exploit time scale
limits. In Section V we provide a different end-to-end service
curve, with a revised description of probabilistic service. In
Section VI we draw brief conclusions.

Node
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Node
2

Node
H

...
S1 S2 SH

Anet=A1 D1=A2 D2 AH DH=Dnet

Fig. 1. Traffic of a flow through a set of H nodes. Let Ah and Dh denote
the arrival and departures at the h-th node, with Anet = A1, Dh−1 = Ah

for h = 2, . . . , H and DH = Dnet .

II. NETWORK CALCULUS PRELIMINARIES

In this section we review the notation and main results of
the deterministic network calculus [8], [12]. Throughout this
paper we use a continuous time model with left-continuous
traffic arrival functions. In our framework, a node represents
a packet switch in a network. Packetization delays and other
effects of discrete-sized packets, such as the non-preemption
of packet transmission, are ignored. We also do not account
for processing overhead and propagation delays. We refer to
[12] for issues involved in relaxing these assumptions.

Let us consider the traffic of a single flow at a network
node. The arrivals to and departures from the node in the time
interval [0, t) are denoted by non-negative, non-decreasing,
left-continuous functions A(t) and D(t) with D(t) ≤ A(t) and
A(0) = D(0) = 0. The backlog of a flow at time t, denoted
by B(t), is given by B(t) = A(t)−D(t). The delay at time t,
denoted as W (t), is the delay experienced by an arrival which
departs at time t, given by W (t) = inf{d ≥ 0 | A(t − d) ≤
D(t)}. When A and D are represented as curves, B(t) and
W (t) are the vertical and horizontal differences between the
curves.

In the min-plus algebra formulation of the network calculus,
developed by [1], [7], [12], the service guarantees to a flow at
a node are expressed in terms of service curves. The algebra
uses the convolution operator ∗ and deconvolution operator �,
which are defined by setting, for any two functions f and g,

f ∗ g(t) = inf
τ∈[0,t]

{f(t − τ) + g(τ)} ,

f � g(t) = sup
τ≥0

{f(t + τ) − g(τ)} .

A service curve for a flow is a function S that specifies a
lower bound on the service given to the flow such that, for all
t ≥ 0,

D(t) ≥ A ∗ S(t) . (1)

A frequently encountered class of service curves is the rate-
latency server S(t) = c[t − d]+ [36], which appears in the
Guaranteed Service specification for the Internet [34].

When arrivals are bounded by an arrival envelope A∗, such
that A(t+ τ)−A(t) ≤ A∗(τ) for all t, τ ≥ 0, a service curve
yields bounds for the departures, the backlog and the delay at
a node. A bound on the departures is given by the envelope
A∗�S, in the sense that D(t+τ)−D(t) ≤ A∗�S(τ), for all
t and τ ≥ 0. A bound for the backlog B(t) can be given as
B(t) ≤ A∗�S(0). The delay W (t) is bounded by the smallest
number d that satisfies supτ≥0{A∗(τ − d) − S(τ)} ≤ 0.

It is also possible to establish a relationship between service
curves and link scheduling algorithms. Using deterministic
envelopes, we can write the service curve of a flow correspond-
ing to a given scheduling algorithm by expressing the link
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capacity that is left unused by other flows. This is frequently
called a leftover service curve. For a priority scheduling
algorithm at an output link with a fixed-rate capacity, the
leftover service curve seen by the traffic from priority class
p can be expressed as

(
Service

of class-p

)
=
(

Link
capacity

)
−
⎛
⎝ Arrivals from

higher priority
classes-q

⎞
⎠ .

If we use Aq to denote the aggregate arrivals from priority q,
the leftover service curve for priority p has the form

Sp(t) =
[
Ct −

∑
q>p

A∗
q(t)

]
+

,

where C is the transmission rate of the link,
∑

q>p A∗
q(t)

denotes the envelope of the arrivals from higher priority
classes, and [x]+ = max(0, x) [8].

An attractive feature of the network calculus is that single-
node bounds can be easily extended to end-to-end bounds.
Suppose a flow is assigned a service curve Sh on the h-th
node on its route (h = 1, . . . , H), as shown in Figure 1. Then
the service given to the flow by the network as a whole can
be expressed in terms of a network service curve S net as

Snet = S1 ∗ S2 ∗ . . . ∗ SH . (2)

With network service curves, bounds for the output burstiness,
backlog and delay along a path through the network follow
directly from the single-node results. End-to-end delay bounds
obtained in this fashion are generally better than the sum of
the per-node delay bounds. For example, when the service
curve at each node is given by a constant-rate function,
Sh(t) = rht, we obtain Snet(t) = S1 ∗ S2 ∗ . . . ∗ SH(t) =
min(r1, r2, . . . , rH)t. At this time, the deterministic calculus
has been extensively explored [8], [12] and has led to the
development of new scheduling algorithms [17], [31] and
network service specifications [21].

III. STATISTICAL NETWORK CALCULUS

When we approach the network calculus in a probabilistic
framework, arrivals A(t) and departures D(t) of a flow at
a node in the time interval [0, t) are described by random
processes. The random processes are defined over an underly-
ing joint probability space that we suppress in our notation. We
define a probabilistic version of a service curve, which defines
a probabilistic measure of the available service. A statistical
service curve is a non-decreasing non-negative function S that
satisfies for all t ≥ 0, 2

P
{
D(t) ≥ A ∗ S(t)

} ≥ 1 − ε . (3)

While statistical service curves S provide a probabilistic
description of the service at a node, they are not themselves
random. In the following we present statistical calculus bounds
for output envelopes, backlog, and delay. Here, the role of
statistical service curves in the derivations mirrors the corre-
sponding deterministic arguments.

2We use the convention that ‘S’ denotes a deterministic service curve, and
‘S’ denotes a statistical service curve.

A. Statistical Performance Bounds

The following theorem is a probabilistic counterpart to the
deterministic results discussed in the previous section, which
assumes that arrivals of a flow are bounded by a deterministic
envelope A∗.

Theorem 1: Performance Bounds. Given a flow with ar-
rival process A and envelope A∗ that receives a statistical
service curve S, the following hold:

1) Output Envelope. The function A∗�S is a probabilistic
bound for the departures on [0, t], in the sense that, for
all t, τ > 0, P {D(t, t + τ) ≤ A∗ � S(τ)} ≥ 1 − ε.

2) Backlog Bound. The function A∗ � S(0) is a proba-
bilistic bound for the backlog, in the sense that, for all
t > 0, P {B(t) ≤ A∗ � S(0)} ≥ 1 − ε.

3) Delay Bound. A probabilistic upper bound for the delay
is given by

dmax = inf {d ≥ 0 | ∀t ≥ 0 : A∗(t − d) ≤ S(t)}
in the sense that for all t ≥ 0, P {W (t) ≤ dmax} ≥
1 − ε.

Note that the probabilistic bounds are quite similar to those
of the deterministic calculus. In fact, by setting ε = 0
in Theorem 1, we recover the corresponding deterministic
bounds.

Proof. Let t ≥ 0 be given. Since A∗ is an envelope for A,
by definition, we have that

A(t) − A(x) ≤ A∗(t − x) , ∀x ≤ t . (4)

Let 0 ≤ s ≤ t and assume that

D(s) ≥ A ∗ S(s). (5)

Then we obtain the output bound

D(t) − D(s) ≤ A(t) − inf
x∈[0,s]

{A(s − x) + S(x)}
≤ sup

x≤s
{A(t) − A(s − x) − S(x)}

≤ sup
x≤s

{A∗(t − s + x) − S(x))

≤ A∗ � S(t − s) .

In the first step, we have used Eqn. (5) and have expanded the
convolution operation. The next line rearranges terms. Then
we have applied the envelope property as specified in Eqn. (4).
Lastly, we have expanded the range of the supremum and
applied the deconvolution operator.

Similarly, assuming that Eqn. (5) holds for s = t, the
backlog satisfies

B(t) = A(t) − D(t)
≤ A(t) − inf

x≤t
{A(t − x) + S(x)}

≤ sup
x≤t

{A∗(x) − S(x)}
≤ A∗ � S(0) .

In the first line we have used the definition of the backlog.
The second line uses the assumption for time t. The next
step rearranges terms and applies the envelope property of
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A∗. Finally, we have expanded the range of the supremum
and applied the deconvolution operator.

To prove the delay bound we assume again that Eqn. (5)
holds for s = t. If d is chosen such that A∗(x) ≤ S(x + d)
for all x ≥ 0, then

A(t − d) − D(t) ≤ A(t − d) − inf
x≤t

{A(t − x) + S(x)}
≤ sup

x≤t
{A(t − d) − A(t − x) − S(x)}

≤ sup
x≥0

{A∗(x − d) − S(x)}
≤ 0 .

The first two lines make the same arguments as the proof of
the output bound. Then, we apply Eqn. (4) and expand the
range of the supremum. The last step uses the choice of d,
and shows that the delay at time t does not exceed d.

For any fixed time s, Eqn. (5) is violated with probability ε
or less. Therefore, the above bounds for output, backlog, and
delay are violated with probability ε or less, and the theorem
follows. �

Similar performance bounds can be derived if the determin-
istic arrival envelope A∗ is replaced by a probabilistic bound
on the arrivals. An effective envelope, defined in [6], for an
arrival process A is a function G such that for all t and for all
s ≤ t

P
{
A(t) − A(s) ≤ G(t − s)

}
≥ 1 − εa .

Effective envelopes can be constructed for multiplexed arrivals
as well as for individual flows. The effective envelope for an
aggregate of flows is generally smaller than the sum of the
effective envelopes of the individual flows. This expresses sta-
tistical multiplexing. In [6], effective envelopes are constructed
using the Chernoff bound and the Central Limit Theorem.
Effective envelopes can be related to other probabilistic de-
scriptions of traffic that can capture statistical multiplexing,
such as the exponential bounded burstiness model [38], and
its generalizations [4], [13], [35], [39], and the effective
bandwidth theory [28]. For the min-plus formulation of single-
node bounds, we need a stronger envelope which provides
bounds for entire sample paths of the arrivals. Let us define
a sample-path effective envelope as a function H that satisfies
for all t ≥ 0

P
{
sup
s≤t

{
A(t) − A(s) −H(t − s)

} ≤ 0
}
≥ 1 − εa . (6)

With this definition, the condition that sample paths satisfy

A(t) − A(s) ≤ H(t − s) , ∀s ≤ t , (7)

is violated with probability εa. Arrival models in the literature
that have been shown to satisfy such sample path bounds
include exponentially bounded burstiness [38], linear envelope
processes [10], stochastically bounded burstiness [35], and its
generalizations [4], [39].

With the sample-path effective envelope, the bounds for
output, backlog and delay are directly obtained by replacing
A∗ in the proof of Theorem 1 with H, and by increasing the

violation probability by εa. We illustrate this for the output
bound. We obtain

P {D(t) − D(s) ≤ H� S(t − s)}
≥ P{ Eqs. (5) and (7) are satisfied }
≥ 1 − ε − εa ,

where we have used Boole’s inequality in the last line.
In the statistical calculus, leftover service curves have been

used to perform a delay analysis of networks with non-
trivial scheduling algorithms, such as Static Priority, Earliest-
Deadline-First, and Generalized Processor Sharing [28], [30],
[32]. In [28], a statistical leftover service curve for a flow j
of the form

Sj(t) =
[
Ct −

∑
i�=j

Hi(t)
]
+

was used to derive a lower bound for the service seen by
a single flow at a link with fixed capacity C that serves an
aggregate of flows. Since the sample-path effective envelope
H captures the statistical multiplexing gain, a leftover service
curve is generally much larger than its deterministic version.

B. Statistical Network Service Curve

A probabilistic counterpart to the statistical network service
curve is provided by the next theorem. Since the theorem
does not make assumptions on the arrivals to the network,
the network service curve holds for all feasible sample paths
of arrivals. In particular, it does not rely on a deterministic or
probabilistic description of traffic. To state the theorem, define
for a ≥ 0 the impulse function

δa(t) =
{ ∞ , if t > a ,

0 , if t ≤ a .

We have that f ∗ δa(t) = f(t − a) for any t, a ≥ 0 and for
any nondecreasing function with f(0) = 0.

Theorem 2: Statistical Network Service Curve. Consider
a flow that passes through H network nodes in series, as shown
in Figure 1. Assume that at each node, S h is a statistical
service curve for the h-th node in the sense of Eqn. (3). Then,
for any choice of a > 0, a statistical network service curve is
given by

Snet = S1 ∗ . . . ∗ SH ∗ δ(H−1)a

in the sense that

P
{
Dnet(t) ≥ Anet ∗ Snet(t)

}
≥ 1 − ε

(
1 + (H−1)

t

a

)
.

(8)
This theorem recovers the deterministic network service

curve from Eqn. (2). By setting ε = 0, the inequality in
Eqn. (8) holds with probability one. Then by letting a → 0, we
obtain the deterministic network service curve from Eqn. (2)
almost surely.

The parameter a that appears in Eqn. (8) is a small time
scale that is used in the proof to discretize time. Every choice
of a provides a valid bound. Larger values of a lead to more
pessimistic network service curves, while smaller values of
a lead to higher violation probabilities. In applications, it is
useful to treat the choice of a in the network service curve
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Snet and the choice of ε in the individual service curve S h as
an optimization problem where one seeks to maximize S net(t)
while keeping the resulting violation probability ε

(
1 + (H −

1)t/a
)

fixed. In a discrete-time setting, the parameter a is
not needed and the network service curve is given simply by
Snet(t) = S1 ∗ S2 . . . ∗ SH with violation probability ε(1 +
(H − 1)t).

Proof. We proceed in three steps. In the first step, we modify
the effective service curve to give lower bounds on the entire
sample path of arrivals and departures over the interval [0, t]. In
the second step, we manipulate sample paths using techniques
of the deterministic calculus. The proof concludes with an
estimate for the violation probability.

Step 1: Sample path bound. Suppose that S is a nondecreasing
statistical service curve satisfying Eqn. (3). We will show that,
for any choice of a > 0,

P
{∀x ≤ t : D(x) ≥ A ∗ S(x − a)

} ≥ 1 − ε
t

a
. (9)

To see this, fix a number a > 0 to serve as a discretization
parameter. Let j = 	x/a
 be the integer part of x/a, set xj =
ja, and consider the event

Ej =
{
D(xj) ≥ A ∗ S(xj)

}
.

If x ≥ a and Ej occurs, then

D(x) ≥ D(xj) ≥ A ∗ S(xj) ≥ A ∗ S(x − a) , (10)

where we have used the fact that both A and S are nonde-
creasing in the last step. On the other hand, for x ≤ a, we
have D(x) ≥ A∗S(x−a), since A(0) = S(0) = 0. It follows
that

P
{∀x ≤ t : D(x) ≥ A ∗ S(x − a)

}
≥ P

{∀j = 1, . . . , 	t/a
 : D(xj) ≥ A ∗ S(xj)
}

= P
{ ⋂

1≤j≤�t/a�
Ej

}

≥ 1 − ε
t

a
,

which proves Eqn. (9). The first step uses Eqn. (10), the second
the definition of the events Ej and the third step uses Boole’s
inequality.

Step 2. Suppose that, for a particular sample path,{ ∀x ≤ t : Dh(x) ≥ Ah ∗ Sh ∗ δa(x) , h < H ,
DH(t) ≥ AH ∗ SH(t) , h = H .

(11)

Since AH = DH−1 we can insert the first line of Eqn. (11)
with h = H − 1 into the second line, which yields

DH(t) ≥ inf
x∈[0,t]

{
AH−1 ∗ SH−1 ∗ δa(t − x) + SH(x)

}
= AH−1 ∗ (SH−1 ∗ SH ∗ δa

)
(t) .

By induction over the number of nodes, Eqn. (11) implies that
Anet = A1 and Dnet = DH satisfy

Dnet(t) ≥ Anet ∗ (S1 ∗ . . . ∗ SH ∗ δ(H−1)a

)
(t) . (12)

Step 3. From the above, it follows that

P
{
Dnet(t) ≥ Anet ∗ (S1 ∗ . . . ∗ SH ∗ δ(H−1)a

)
(t)
}

≥ P{ Eqn. (11) is satisfied }
≥ 1 − ε

(
1 + (H−1)

t

a

)
.

The first inequality follows from the fact that Eqn. (11) implies
Eqn. (12). The last inequality uses Eqn. (9) for h = 1, . . . , H−
1, and the definition of the statistical service curve for h = H .
�

C. What Makes Statistical Network Calculus Hard?

Since the bound in Eqn. (8) deteriorates as t becomes large,
the statistical network service curve in Theorem 2 appears to
have limited practical value. It turns out that devising time-
independent network service curves that retain the convolution
operation is challenging. Here we discuss the key problem
encountered when extending end-to-end service curves to a
probabilistic setting.

To explain the difficulty in replacing Eqn. (8) with a time-
independent bound, consider a network as shown in Figure 1,
with H = 2 nodes. A statistical service curve S2 at the second
node guarantees that, for any given time t, the departures from
this node are with high probability bounded below as

D2(t) ≥ A2 ∗ S2(t) = inf
τ∈[0,t]

{
A2(t − τ) + S2(τ)

}
. (13)

Suppose that the infimum in Eqn. (13) is assumed at some
value τ̂ ≤ t. Since the departures from the first node are
random even if the arrivals satisfy a deterministic bound, τ̂
is a random variable. A statistical service curve S 1 at the first
node guarantees that for any arbitrary but fixed time x, the
arrivals A2(x) = D1(x) to the second node are with high
probability bounded below by

D1(x) ≥ A1 ∗ S1(x) . (14)

Since τ̂ is a random variable, we cannot simply evaluate
Eqn. (14) for x = t − τ̂ and insert Eqn. (14) into Eqn. (13).
Furthermore, there is no general time-independent bound on
the distribution of τ̂ . Note that this issue does not arise in the
deterministic calculus, since deterministic service curves make
service guarantees that hold for all values of x.

The problem can be resolved by considering service curves
that, by definition, make sample path guarantees, e.g.,

P
{
∀t ≥ 0 : D(t) ≥ A ∗ S(t)

}
≥ 1 − ε . (15)

However, a service curve of this form, which can be found
in [22], has essentially the characteristics of a deterministic
service curve, i.e., it expresses worst-case lower bounds on
service. In fact, under the broad assumption of stationarity and
ergodicity of the arrival function A, for any given service curve
S, one can show that the violation probability ε in Eqn. (15)
is either 0 or 1.

An important conclusion is that the concept of a network
service curve does not carry over to a probabilistic setting
by simply transcribing the corresponding expressions from
the deterministic network calculus. Additional assumptions are
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required to establish time-independent bounds on the range of
the infimum in Eqn. (13). One example of such an assumption
is to require that for all t ≥ 0:

P
{
D(t) ≥ inf

x∈[0,T ]

{
A(t − x) + S(x)

}} ≥ 1 − ε . (16)

This assumption imposes a limit T on the range of the
convolution, and hence on the maximal time scale on which
the service curve relates service guarantees to arrivals.

In the next section we show that the availability of a time
scale bound resolves the problems of the statistical network
service curve. Then, in Section V, we approach the same
problem differently, by modifying the statistical service curve
so that it yields a meaningful multi-node convolution without
requiring a priori time-scale limits.

IV. NETWORK SERVICE CURVES WITH TIME SCALE

BOUNDS

We now consider a service curve that has the additional
property in Eqn. (16). This permits us to state a statistical
network service curve of the following form.

Theorem 3: With the assumptions made in Theorem 2 and
assuming that there exists a number T ≥ 0 such that Ah and
Sh satisfy Eqn. (16) for each h = 1, . . . , H , for any choice
of a > 0, a statistical network service curve is given by

Snet = S1 ∗ . . . ∗ SH ∗ δ(H−1)a

in the sense that

P
{
Dnet(t) ≥ Anet ∗Snet(t)

}
≥ 1−εH

(
1 +

(H − 1)T
2a

)
.

Different from Theorem 2, this service guarantee does not
degrade as a function of time. Rather, the bounds depend on
the time scale T as used in Eqn. (16). When a deterministic
arrival envelope A∗ is available, the condition on T can be
satisfied at a node with a given statistical service curve S by
choosing T such that A∗(T ) ≤ S(T ). This guarantees that

A ∗ S(t) = inf
x∈[0,T ]

{
A(t − x) + S(x)

}
.

Note, however, that a deterministic envelope, even if it is
available, holds only at the first node, leaving the problem
open of finding T for subsequent nodes.

A similar time scale bound can be obtained from a sample-
path effective envelope H that satisfies Eqn. (6). While such
arrival bounds are sometimes easy to obtain at the first node
of a network, the analysis for downstream nodes requires
additional assumptions. For a wide range of service curves,
including probabilistic versions of rate-latency service curves
[36], it is feasible to obtain a time scale bound when buffer
constraints impose a limit on the maximum backlog or when
traffic that exceeds a maximum waiting time is discarded.
Since the manuscript for this paper became available [9],
several papers have explored assumptions under which time-
scale bounds can be obtained. For example, [3] obtains time
scale bounds by assuming that each node drops traffic that
locally violates a given delay guarantee. In [28], [30], time

scale bounds are obtained by devising bounds on the busy
period for service curves at downstream nodes.

Proof. The proof is analogous to the proof of Theorem 2,
and proceeds in the same three steps.

Step 1: Sample path bound. Suppose that S is a statistical
service curve satisfying Eqn. (16), and let � > 0. Fix a > 0,
set xj = t − � + ja, and consider the events

Ej =
{

D(xj) ≥ inf
y∈[0,T ]

{
A(xj − y) + S(y)

}}
, j = 0, . . . , n,

where n = 	�/a
. If x ∈ [xj , xj+1) and the event Ej occurs,
we see as in Eqn. (10) that

D(x) ≥ inf
y∈[0,T ]

{
A ∗ δa(x − y) + S(y)

}
.

As in the proof of Theorem 2 it follows that

P
{∀x ∈ [t − �, t] : D(x) ≥ inf

y∈[0,T ]

{
A ∗ δa(x − y) + S(y)

}}
≥ P

{ ⋂
0≤j≤n

Ej

}

≥ 1 − ε

(
1 +

�

a

)
.

Step 2. Suppose that⎧⎪⎪⎨
⎪⎪⎩

∀x ∈ [t − (H−h)T, t] : Dh ∗ δ(H−h−1)a(x)
≥ inf

y∈[0,T ]

{
Ah ∗ δ(H−h)a(x − y) + Sh(y)

}
, h < H,

DH(t) ≥ inf
y∈[0,T ]

{
AH(t − y) + SH(y)

}
, h = H .

(17)
Repeatedly inserting the first equation into the second equa-
tion, and using that Anet = A1 and Dnet = DH , we see as
in Eqn. (12) that

Dnet(t) ≥ Anet ∗ Snet(t) .

Step 3. Combining Steps 1 and 2, we obtain

P
{
Dnet(t) ≥ Anet ∗ Snet(t)

}
≥ P

{
Eqn. (17) is satisfied

}
≥ 1 − ε

(
1 +

H−1∑
h=1

(
1 +

(H − h)T
a

))
.

Here, the first line follows from Step 2, and the second line
follows by using Step 1 with �h = (H − h − 1)T for node
h = 1, . . . , H−1 and from the assumption on SH . Evaluating
the sum yields the claim. �

V. NETWORK SERVICE CURVES WITH SERVICE

GUARANTEES FOR INTERVALS

In this section, we present an alternative approach to the
development of a statistical network service curve. Rather
than trying to formulate conditions under which the statistical
service curve from Eqn. (3) results in a useful network service
curve, we seek a modified statistical service curve that can
provide end-to-end guarantees without such external bounds.
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It turns out that we can dispense with the need for a time
scale limit by defining a class of service curves that provide
service guarantees on the departures over intervals of a given
length. In the following we will use A(x, y) and D(x, y) to
denote the arrivals and departures in the time interval [x, y),
with A(x, y) = A(y)−A(x) and D(x, y) = D(y)−D(x). We
define a modified convolution operator A ∗ t S(�) by setting,
for � > 0,

A∗t S(�) = min
{

S(�), B(t)+ inf
x≤�

{
A(t, t+ �−x)+S(x)

}}
.

For � ≤ 0 we set A∗t S(�) = 0. The essential property of this
modified operator is that the infimum only involves arrivals
in the interval [t, t + �). Note that A ∗t S(�) depends also on
the backlog at time t. When t = 0, it reduces to the usual
convolution operator, since by definition B(0) = 0.

In the deterministic network calculus, this type of convolu-
tion has appeared in [1], [8], [18] to define service curves of
the form

D(t, t + �) ≥ A ∗t S(�) , (18)

which are called adaptive service curves in [8]. Eqn. (18) is
equivalent to requiring that S satisfies Eqn. (1) for the time-
shifted arrivals and departures defined by

Ã(�) = B(t) + A(t, t + �) , D̃(�) = D(t, t + �) . (19)

Figure 2 illustrates the time-shifted arrivals. When t = 0,
Eqn. (18) implies that S is a service curve that satisfies
Eqn. (1). The difference between the two definitions is that
Eqn. (18) assigns no special role to the time t = 0.

As has been remarked in [1], [8], [18], many service curves
with applications in packet networks, including shapers, sched-
ulers with delay guarantees, and rate-controlled schedulers
such as GPS, can be expressed in terms of Eqn. (18). In
particular, this includes the group of so-called strict service
curves, which guarantee departures of at least S(�) over
any interval where the backlog remains positive. The main
motivation for defining a service curve as in Eqn. (18) is
that a (deterministic) network service curve obtained by a
convolution of strict service curves is generally adaptive but
not strict.

Now we turn to a probabilistic version of the adaptive
service curve. We say that a function S defines a statistical
service curve for intervals of length �, if the departures on
any interval [t, t + �) satisfy

P
{
D(t, t + �) ≥ A ∗t S(�)

} ≥ 1 − ε� . (20)

Here, the violation probability ε� depends on the length of the
interval. For ε� → 0, Eqn. (20) turns into the deterministic
condition in Eqn. (18).

We will show that statistical service curves satisfying
Eqn. (20) yield a statistical network service curve with de-
sirable properties. The modified service curves permits us to
calculate performance bounds for departure envelopes, backlog
and delay. Then, we will make a case that service curves of
this type are in fact practical and abound by showing that the
prototypical leftover service curve complies with the modified
service curve definition.

time

traffic

arrivals

departures

0

B(t)

D(t)

t +t

Fig. 2. Illustration for the modified convolution operator. The operator ∗t
uses the backlog at time t and the arrivals in the interval [t, t + �).

We now present a probabilistic version of a statistical
network service curve that is obtained via a concatenation of
service curves satisfying Eqn. (20). This is the content of the
following theorem.

Theorem 4: Consider a flow that passes through H network
nodes in series. Assume that the service at each node h is given
by a statistical service curve Sh satisfying Eqn. (20). Then,
for any choice of a > 0, we have that

Snet = S1 ∗ S2 ∗ . . . ∗ SH ∗ δ(H−1)a

is a statistical service curve for intervals that satisfies

P
{
Dnet(t, t+�) ≥ Anet∗tSnet(�)

} ≥ 1−ε�

(
1+(H−1)

�

a

)
.

(21)
A comparison with Theorem 3 makes clear the advantages
of the interval-based service curve. Both theorems involve a
time scale, T in Theorem 3 and � in Theorem 4, and the
violation probability deteriorates for large values of the time
scale. The key difference is that the time scale T of Eqn. (16)
appears in the assumptions of Theorem 3, while the conclusion
of Theorem 4 holds for all choices of �. In other words, in
Theorem 4 we only need to make a good choice of �. There
is no need to derive the time scale bound from computations
on the busy period or a priori limits on the backlog or delay.
Below we will explain how to choose the parameter �.

Proof. Fix t ≥ 0. At the h-th node define the time-shifted
arrivals Ãh and departures D̃h according to Eqn. (19), and
rewrite the assumption in Eqn. (20) as

P
{
D̃h(�) ≥ Ãh ∗ Sh(�)

} ≥ 1 − ε� .

Theorem 2 implies that

P
{
D̃net(�) ≥ Ãnet ∗ Snet(�)

} ≥ 1 − ε�

(
1 + (H − 1)

�

a

)
.

Reversing the time shift yields the claim in Eqn. (21). �

The theorem can be combined with a bound on arrivals
to obtain probabilistic bounds on output envelopes, backlog,
and delay. The next theorem shows that Eqn. (20) provides
performance bounds analogous to Theorem 1.

Theorem 5: Performance bounds. Given a flow with a
stationary arrival process A and a deterministic envelope A∗.
Assume that the service to the flow at a node over intervals
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of length � is guaranteed by a statistical service curve that
satisfies Eqn. (20). If � is chosen such that A∗(�) < S(�) then
the following bounds hold:

1) Output Envelope. The function A∗�S is a probabilistic
bound for the departures, in the sense that, for all t, τ ≥
0, P {D(t, t + τ) ≤ A∗ � S(τ)} ≥ 1 − ε�

S(�)
S(�)−A∗(�) .

2) Backlog Bound. The function A∗ � S(0) is a proba-
bilistic bound for the backlog, in the sense that, for all
t > 0, P {B(t) ≤ A∗ � S(0)} ≥ 1 − ε�

S(�)
S(�)−A∗(�) .

3) Delay Bound. A probabilistic upper bound for the delay
is given by

dmax = inf {d ≥ 0 | ∀t ≥ 0 : A∗(t − d) ≤ S(t)}
in the sense that for all t ≥ 0, P {W (t) ≤ dmax} ≥
1 − ε�

S(�)
S(�)−A∗(�) .

In the theorem, � should be selected so that the probability of
violating the bounds is minimized. Thus, the theorem permits
to select � using only information on the arrival bounds and the
service curve at a node. The value of � is related to the largest
time scale on which arrivals and departures are correlated. In
general, the parameter provides a bound on the range of the
infimum analogous to Eqn. (16).

Proof. We show only the backlog bound, as the proofs
of the other claims are similar. Since the arrival process is
stationary and A(0) = D(0) = 0, the backlog process B(t) is
stochastically increasing in the sense that

P{B(t) > b} ≤ P{B(t + �) > b} .

This can be found, for example, in ([12], p. 293). Thus, it
suffices to prove the claim for B(t + �).

Assume that A∗(�) < S(�) and set bmax = A∗ ∗ S(0). If

D(t, t + �) ≥ A ∗t S(�) , (22)

then

B(t + �) = B(t) + A(t, t + �) − D(t, t + �)

≤ max
{

B(t) + A(t, t + �) − S(�),

sup
x≤�

{
A(t, t + �) − A(t, t + � − x) − S(x)

}}
≤ max

{
B(t) − (S(�) − A∗(�)

)
, bmax

}
.

Here, the first step uses the definition of the backlog, the
second step uses the assumption in Eqn. (20), and the last
step uses the arrival envelope and the definition of bmax. For
B(t + �) > bmax this implies

B(t + �) ≤ B(t) − (S(�) − A∗(�)
)

. (23)

If, on the other hand, Eqn. (22) fails, we still have the estimate

B(t + �) = B(t) + A(t, t + �) − D(t, t + �)
≤ B(t) + A∗(�) . (24)

Since Eqn. (22) is violated with probability at most ε �, it
follows from Eqs. (23) and (24) that the expected value

E[B(t + �) − B(t)] satisfies

0 ≤ E
[
B(t + �) − B(t)

]
≤ ε�A

∗(�)
−(1 − ε� − P

{
B(t + �) ≤ bmax

})(
S(�) − A∗(�)

)
.

Solving for P
{
B(t + �) ≤ bmax

}
yields

P {B(t + �) ≤ A∗ � S(0)} ≥ 1 − ε�
S(�)

S(�)−A∗(�) , which
proves the claim. �

As was done following Theorem 1, the arrival envelope
can be replaced by a sample-path effective envelope H that
satisfies Eqn. (6). Recall that an effective envelope can ex-
press the result of statistically multiplexed arrivals from many
sources. As before, replacing A∗ by H increases the violation
probability by εa.

Theorems 4 and 5 can be combined to provide end-to-
end service guarantees over multiple nodes. Compared with
Theorem 3, the advantage is that the assumption on � can be
checked by considering only the network service curve and
the arrivals to the network at the ingress node; no separate
analysis of downstream nodes is needed.

The free parameters ε (which determines the individual
service curves Sh) and � (which determines the violation
probability in Theorem 4) need to be chosen so that A ∗(�) <
Snet(�) and the resulting violation probability takes an ac-
ceptable value (typically on the order of 10−6 or 10−9). In
applications one seeks to optimize the resulting performance
bounds under these constraints. For simple arrival and service
models this can sometimes be done analytically, but in general
numerical methods are needed to find good choices of ε and �.

Finally, we want to argue that the interval-based calculus
applies to a large class of practically relevant service curves.
To make this case, we show that a frequently used leftover
service curve, i.e., a service curve experienced by a flow at a
link scheduler with static priorities, complies to the interval-
based definition of service. We emphasize that similar results
can be derived for service curves that relate to other scheduling
algorithms, such as GPS.

Theorem 6: Statistical leftover service at a priority
scheduler. Consider a workconserving priority scheduler that
operates at a constant rate C. Arriving flows are grouped
into Q classes labeled q = 1, . . . , Q, with higher values of q
denoting higher priority. Let Hq(t) be a sample-path effective
envelope for the aggregate arrivals from flows in class q,
satisfying Eqn. (6). For each class define a function

Sp(t) = inf
s≥t

[
Cs −

∑
q>p

Hq(s)
]
+

.

Then the service available to class p over any time interval of
length � is bounded below as

P {Dp(t, t + �) ≥ Ap ∗t Sp(�)} ≥ 1 − (Q − p)εa . (25)

Proof. For a given priority index p and a given time interval
[t, t + �), consider a sample path that satisfies

Aq(s, t + �) ≤ Hq(t + � − s) (26)
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for all s ≤ t + � and all q > p. Let x be the beginning of the
busy period of classes q ≥ p that contains t + �, i.e.,

x = sup
{

s ≤ t + � :
∑
q≥p

Bq(s) = 0
}

.

If x ≥ t, then

Dp(t, t + �)
= Dp(t, x) + Dp(x, t + �)

= Dp(x) − Dp(t) +
(
C(t + � − x) −

∑
q>p

Dq(x, t + �)
)

≥ Ap(x) − Dp(t) +
[
C(t + � − x) −

∑
q>p

Aq(x, t + �)
]
+

≥ inf
s∈[t,t+�)

(
Bp(t) + Ap(t, s)

+
[
C(t + � − s) −

∑
q>p

Aq(s, t + �)
]
+

)
.

In the first line, we have split the interval [t, t+ �) into two
disjoint subintervals. In the second line, we have used that
the scheduler is workconserving and that classes q > p have
higher priority than p. In the third line, we have used that
Aq(x) = Dq(x) for all q ≥ p, and that Dq(t + �) ≤ Aq(t + �)
for all q > p. In the last line we have rearranged terms and
replaced evaluation at x by an infimum. Eqn. (26) implies that
we can replace Aq(s, t+�) with Hq(t+�−s) for any s ≤ t+�
and all q > p. It follows that in this case

Dp(t, t + �) ≥ Bp(t) + inf
s∈[t,t+�)

(
Ap(t, s) + Sp(t + � − s)

)
≥ Ap ∗t Sp(�) . (27)

If, on the other hand, x < t, we let

t = sup
{
s ≤ t :

∑
q>p

Bq(s) = 0
}

be the beginning of the busy period for classes with priority
higher than p that contains t. Then

Dp(t, t + �) = Dp(t, t + �)

= C(t + � − t) −
∑
q>p

Dq(t, t + �)

≥
[
C(t + � − t) −

∑
q>p

Aq(t, t + �)
]
+

≥ inf
s≤t

[
C(t + � − s) −

∑
q>p

Hq(t + � − s)
]
+

In the first line we have used that Dp(t, t) = 0 by the defining
property of the priority server, since the backlog of the higher
priority classes remains positive in that interval. In the second
line we have used that the server is workconserving. In the
third line we have used that Dq(t) ≤ Aq(t) since Bq(t) = 0
and applied Eqn. (26). In this case, we arrive at

Dp(t, t + �) ≥ Sp(�) ≥ Ap ∗t Sp(�) . (28)

Combining Eqs. (27) and (28) and using the assumptions on
Hq , we obtain

P
{
Dp(t, t + �) < Ap ∗t Sp(�)

}
≤
∑
q>p

P
{

sup
s≤t+�

(
Aq(s, t + �) −Hq(t + � − s) > 0

)}
≤ (Q − p)εa ,

as claimed. �

VI. CONCLUSIONS

We have presented a network calculus with probabilistic
service guarantees. We have introduced the notion of statistical
service curves as a probabilistic bound on the service received
by an aggregate of flows or an individual flow. While perfor-
mance bounds from the deterministic network calculus can
be straightforwardly carried over to a probabilistic framework
by inserting appropriate probabilistic arguments, the same is
not true for the formulation of a network service curve. The
results in this paper show that a multi-node version of the
statistical network calculus requires us to control the range
of the convolution operation when concatenating statistical
service curves. Such limits on a maximum relevant time
scale can follow from external assumptions (as discussed in
Section IV) or from appropriately modified interpretations of
service curves (as shown in Section V).
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