
Enhancing Class-Based Service Architectures with Adaptive
Rate Allocation and Dropping Mechanisms∗

Technical Report: University of Virginia, CS-2004-09

Nicolas Christin J̈org Liebeherr Tarek F. Abdelzaher
School of Information Department of Computer Science

Management and Systems University of Virginia
UC Berkeley Charlottesville, VA 22904

Berkeley, CA 94720

Abstract

Class-based service differentiation can be realized without resource reservation, admission control
and traffic policing. However, the resulting service guarantees are only relative, in the sense that guar-
antees given to a flow class at any time are expressed with reference to the service given to other flow
classes. While it is, in principle, not feasible to provision for absolute guarantees (i.e., to assure lower
bounds on service metrics at all times) without admission control and/or traffic policing, we will show in
this paper that such a service can be reasonably well emulated using adaptive rate allocation and drop-
ping mechanisms at the link schedulers of routers. We name the resulting type of guaranteesbest-effort
bounds. We propose mechanisms for link schedulers of routers that achieve these and other guarantees
by adjusting the drop rates and the service rate allocations of traffic classes to current load conditions.
The mechanisms are rooted in control theory and employ adaptive feedback loops. We demonstrate that
these mechanisms can realize many recently proposed approaches to class-based service differentiation.
The effectiveness of the proposed mechanisms are evaluated in simulation experiments as well as in mea-
surement experiments of a kernel-level implementation on FreeBSD PC-routers with multiple 100 Mbps
Ethernet interfaces.

Key Words: Service Differentiation, Buffer Management, Scheduling, Feedback Control, Best-Effort Bounds.

∗This work is supported in part by the National Science Foundation through grants ANI-9730103 and ANI-0085955. Portions
of this technical report appeared in a preliminary form in [13] and [17].



1 Introduction

Service architectures for packet networks can be distinguished according to two criteria. The first criterion

is whether guarantees are expressed for individual traffic flows (per-flow guarantees), or for aggregates of

flows with the same service requirements (per-class guarantees). With a per-flow architecture, a router must

inspect each incoming packet to determine to which flow the packet belongs and match the packet with per-

flow guarantees (classification). Generally, the classification overhead increases linearly with the number of

flows present in the network. With per-class guarantees, flows are grouped in traffic classes. Each packet

entering the network is marked with the traffic class to which it belongs, and routers in the network classify

and transmit packets according to the service guarantees offered to traffic classes. Since there are generally

only a few traffic classes in the network, the overhead incurred with per-class guarantees is smaller than that

of per-flow guarantees. As a disadvantage, per-class service guarantees do not immediately translate into

per-flow guarantees.

The second criterion to distinguish service architectures is whether guarantees are expressed with ref-

erence to guarantees given to other flows or classes (relative guarantees), or if guarantees are expressed as

absolute bounds (absolute guarantees). As an example, an absolute guarantee can be of the form “Delay

of flow i never exceeds 4 ms.” Relative service guarantees are weaker than absolute guarantees, and can

be further divided into qualitative guarantees and proportional guarantees. Qualitative guarantees specify a

service differentiation of classes, but without quantifying the differentiation, as in “Class-2 delay is less than

class-1 delay.” Proportional guarantees quantify the differentiation between traffic classes in terms of ratios

of the service metrics, as in “Class-1 delay is half of class-2 delay,” but without specifying lower or upper

bounds on the ratios.

The main advantage of absolute guarantees is that they provide lower bounds on the service received

by a flow or a class of traffic. However, absolute guarantees impose a need to dedicate resources to traffic.

This involves mechanisms to control the amount of traffic that enters the network, via admission control

and traffic policing. Resource reservation schemes have been proposed for flow-based and class-based

guarantees, where resource reservations are handled by a signaling protocol [11], a dedicated server [44],

resource provisioning [18], or manual configuration [44]. Relative guarantees, on the other hand, do not

require resource reservations, and, therefore, do not need admission control or traffic policing. Relative

guarantees can be provided by appropriate scheduling and buffer management mechanisms at routers.

This paper is concerned with improving the capabilities of class-based service architectures for the

Internet. The class-based service architecture proposed by the Internet Engineering Task Force, called Dif-

ferentiated Services orDiffServ[8], consists of two services. The Expedited Forwarding (EF, [21]) service

provides absolute delay guarantees to predefined amounts of traffic, and requires traffic policing, admission

control, and resource reservations. The Assured Forwarding (AF, [30]) service enforces isolation between

classes, and qualitative loss differentiation between different drop precedence levels within each class. The

Proportional Service Differentiation architecture [22, 25] showed how to strengthen Assured Forwarding by

adding proportional guarantees on delays and loss rates. Recently, several research efforts have explored

2



how to further enhance class-based services. Specifically, attempts have been made to support some level

of absolute guarantees, yet without requiring resource reservation, admission control, or traffic policing

[8, 29, 32, 36, 37]. Clearly, without asserting control over the amount of traffic injected in the network

(through admission control and policing) it is not feasible to guarantee absolute guarantees at all times. On

the other hand, if one permits routers to selectively drop traffic, one can provide absolute guarantees to the

traffic that is not dropped. The Alternative Best-Effort (ABE, [32]) is an example of such a service. ABE

supports differentiation for two traffic classes, where the first class obtains an absolute delay bound, and

the second class is given a better loss rate than the first class, but has no delay guarantees. To meet these

guarantees, ABE is permitted to drop any amount of traffic from the first class.

In this paper, we generalize the enhancements to class-based service differentiation proposed in the

literature [8, 29, 32, 36, 37] by introducing the notion ofbest-effort bounds. We refer to a service with

best-effort bounds as a service that emulates absolute guarantees in a network without admission control

and policing. The difference between absolute guarantees and best-effort bounds is that the former assumes

a network with admission control and policing. By limiting the number of flows via admission control and

by limiting the amount of traffic per flow via policing, such a network can deliver absolute guarantees at

all times. In contrast, a network with best-effort bounds achieves absolute guarantees by dropping traffic

or changing its traffic rate allocation. In situations when this is not feasible, a best-effort bound may be

violated for some time. Best-effort bounds can be verified by comparing them to absolute guarantees in

a reference network with admission control and policing. If the reference network can support a set of

absolute guarantees for a certain amount of traffic, then the same network without admission control should

be able to satisfy the corresponding best-effort bounds.

Best-effort bounds are much weaker than the corresponding absolute guarantees. On the other hand,

best-effort bounds enhance the existing framework of feasible class-based guarantees without introducing a

need for mechanisms to control the amount of traffic entering the network. Given that a service with absolute

guarantees at all times requires admission control and policing, best-effort bounds are possibly the closest

approximation of such a service in a network without these mechanisms. As we will show in this paper,

even in times of high traffic load, appropriate adaptive rate allocation and dropping mechanisms can enforce

a wide range of best-effort bounds and provide proportional service differentiation at the same time, thereby

generalizing the service differentiation offered by any of the previously proposed class-based services.

The main challenge for realizing best-effort bounds is to find mechanisms for routers that can meet a

wide range of bounds for a large number of classes by selectively dropping traffic and by adjusting the

traffic rate allocated to a class. The main contribution of this paper is that we propose and evaluate such

mechanisms which can meet a broad range of best-effort bounds as well as proportional guarantees on delay,

loss, and throughput. The mechanisms employ adaptive feedback loops at link schedulers of routers, which

adjust the drop rates and the service rate allocations of traffic classes to current load conditions. To our

knowledge, the feasibility of using packet-level feedback loops at high data rates for the purpose of service

differentiation has not been demonstrated. We evaluate the effectiveness of our adaptive rate allocation and

dropping mechanisms in simulation experiments as well as in a kernel-level software implementation in

3



FreeBSD PC routers. This implementation is currently being disseminated as part of the ALTQ [12] and

KAME [4] packages.

The remainder of this paper is organized as follows. In Section 2, we expand our discussion of the related

work. In Section 3, we present a formal description of the proposed service. In Sections 4 and 5, we discuss

the mechanisms that enforce the desired differentiation of loss, delay and throughput for classes by adjusting

the service rate allocation to classes and by selectively dropping traffic. We apply linear feedback control

theory for the design of these mechanisms. In Section 6, we present an implementation of the mechanisms

in FreeBSD PC-routers. We evaluate our implementation in Section 7 and present brief conclusions in

Section 8.

2 Related Work

Proportional service differentiation, originally proposed by Dovrolis et al. [22, 23, 24, 25] is perhaps the best

known effort to enhance class-based services with relative guarantees. In the proportional service differen-

tiation architecture, relative differentiation of losses and delays experienced by traffic classes, as in “Class-2

delay≥ class-3 delay,” is guaranteed under any traffic load. Furthermore, proportional differentiation of

loss and delay, as in “Class-2 loss / Class-3 loss = 2,” is enforced whenever feasible.

Most mechanisms for proportional service differentiation use independent algorithms for delay and loss

differentiation. Proportional differentiation of delays can be implemented with appropriate scheduling algo-

rithms. Priority-based scheduling algorithms such as Waiting-Time Priority, Hybrid Proportional Delay [25],

Local-Optimal Proportional Differentiation [48], the dynamic priority scheduler proposed in [26] or Mean-

Delay Proportional [42] can enforce proportional delay differentiation by dynamically adjusting the priority

of a given class as a function of the waiting-time experienced by packets from that class. Alternatively, rate-

based schedulers such as the Proportional Queue Control Mechanism [41], or Backlog Proportional Rate

[24] can be used to provide proportional delay differentiation, by dynamically changing the service rates

allocated to classes. A slightly different approach pursued by the Weighted-Earliest-Due-Date scheduler of

[9] provides proportional differentiation in terms of probabilities of a deadline violation.

Proportional loss differentiation can be implemented by buffer management algorithms that choose

which class to drop from in order to reach steady-state proportional loss differentiation [22]. Enhancements

to the mechanisms discussed in [22] can provide proportional loss differentiation over arbitrary timescales

[10].

More recent works have attempted to expand the range of traffic conditions under which proportional

service differentiation can be enforced, by combining the scheduling and dropping decisions in a single

algorithm [37, 52]. For instance, in [52], packet drops and packet transmissions are viewed as transitions

in a state diagram, where states represent the experienced level of delay and loss differentiation. Packet

scheduling and dropping is performed to reach states that match the desired proportional delay and loss

differentiation.

The service proposed in [37] further enhances class-based service differentiation by providing limited

4



support for absolute bounds on loss and delay. To that effect, the authors of [37] present a Joint Buffer

Management and Scheduling algorithm (JoBS), which expresses the scheduling and dropping decisions as

the solution to an optimization problem, whose constraints are defined by the service guarantees, and the

objective function aims at minimizing packet losses and changes in the rate allocation. The drawback of

JoBS is that solving a non-linear optimization problem, even if approximated by a heuristic method [37],

can incur a significant computational overhead when performed on a per-packet basis.

There are many other service proposals (e.g., ABE) that have explored the design space of class-based

architectures and we refer the reader to [13] for a more comprehensive discussion. For instance, the Dy-

namic Core Provisioning service [36] supports absolute delay bounds, and qualitative loss and throughput

differentiation, but no proportional differentiation. The mechanisms used in [36] enforce service guarantees

by dynamically adjusting scheduler service weights and packet dropping thresholds in core routers. Traf-

fic aggregates are dimensioned at the network ingress by a distributed admission control mechanism that

uses knowledge of the entire traffic present in the network. Since, in practice, full knowledge of the traffic

traversing a network is generally not available, the algorithm needs to be approximated when deployed in a

large network.

The majority of related work focuses on particular scheduling and dropping algorithms and investigates

the degree to which class-based service guarantees can be enhanced with the proposed algorithms. The work

presented in this paper takes a different approach. We first state the desired service guarantees (a superset

of the guarantees of all works cited above), then formulate requirements on rate allocation and dropping

mechanisms, and, eventually, arrive at mechanisms that satisfy the specified requirements.

3 Class-Based Service with Adaptive Rate Allocation and Dropping

In this section, we describe a service that, in the absence of admission control, traffic policing, signaling

or resource reservation, offers both best-effort bounds and proportional differentiation to traffic classes.

The proposed service gives, on a per-hop basis, best-effort bounds and proportional service guarantees to

traffic classes. All guarantees can be expressed for loss rates, delays, or throughput, and are assumed to be

configured on routers by a network operator.

Example: As an example for a mix of guarantees for three traffic classes, one could specify the following

best-effort bounds for a network interface of a router:

(G1) “Class-1 delay≤ 2 ms,”

(G2) “Class-2 loss rate≤ 1%,”

(G3) “Class-3 service rate≥ 1 Mbps,”

and the following proportional guarantees:

5



(G4) “Class-2 delay/class-1 delay≈ 4,”

(G5) “Class-3 loss rate/class-2 loss rate≈ 2.”

(G6) “Class-1 throughput/class-3 throughput≈ 2.”

Guarantee (G1) states that class-1 packets do not experience a delay greater than two milliseconds, (G2)

ensures that the loss rate of class 2 never exceeds 1%, and (G3) states that the aggregate throughput of all

flows in class 3 should be at least 1 Mbps. (G4) expresses that class-2 packets experience delays roughly

twice as large as class-1 packets, (G5) states that class-3 packets experience twice the loss rate of class-2

packets, and finally, (G6) indicates that the aggregate throughput of all flows in class 1 should be twice as

large as the aggregate throughput of all flows in class 3. When all best-effort bounds cannot be enforced

simultaneously, the best effort bounds are relaxed in some order. Here, we specify that the best effort bounds

should be relaxed in the order (G1), (G2) and (G3). Thus, if necessary, guarantee (G1) can be violated in

order to meet guarantee (G3), and that (G3) will be violated last. Note that, as long as the available link

bandwidth is at least 1 Mbps, (G3) can be satisfied at all times.

With these guarantees, we can emulate Assured Forwarding, by assigning each AF drop level to a sepa-

rate traffic class. Further, we can implement ABE by selecting a delay bound for one class, and proportional

differentiation yielding lower loss rates to another class. More generally, it can be argued that delay, loss,

and throughput differentiation can be used to express guarantees on other service metrics, such as traffic

burstiness [51].

We next give a formal description of the service, and outline a solution for an algorithm that realizes the

service.

3.1 Formal Description of Rate Allocations and Dropping Decisions

The provisioning of per-class service differentiation in our proposed service is expressed in terms of the

backlog behavior at a single transmission queue of the output link of a router. The discussion draws inspira-

tion from Cruz’s network calculus [19, 20]. We will refer to Figure 1 for an illustration.

We assume that all traffic that arrives to the transmission queue of the output link of a router is marked

to belong to one ofN classes. We use a convention whereby a class with a lower index receives a better

service. We consider a discrete, event-driven time model, where events are traffic arrivals. We uset(n) to

denote the time of then-th event in the current busy period,1 and∆t(n) to denote the time elapsed between

then-th and(n + 1)-th events. We useai(n) andli(n), respectively, to denote the class-i arrivals and the

amount of class-i traffic dropped (lost) at then-th event. We useri(n) to denote the service rate allocated

to class-i at the time of then-th event. The service rate of classi is a fraction of the output link capacity,

and can vary over time. The service rate of classi is set to zero if there is no backlog of class-i traffic in

the transmission queue. For the time being, we assume a fluid-flow service, that is, the output link is viewed

as simultaneously serving traffic from several classes. Such a fluid-flow interpretation is idealistic, since

1The beginning of the current busy period is defined as the last time when the transmission queue at the output link was empty.

6



time

Bi(n)

A

Output curve

Input curve

Arrival curve
i

Rin

Rout
Dropped

t(n1) t(n2) t(n)

C
la

ss
- 

i T
ra

ffi
c

Di(n)

i

i

Figure 1:Delay and backlog at the transmission queue of an output link.Ai is the arrival curve,Rin
i is the input

curve andRout
i is the output curve.

traffic is actually sent in discrete sized packets. In Section 6, we discuss how the fluid-flow interpretation is

realized in a packet network.

Service differentiation will be enforced over the duration of a busy period. An advantage of enforcing

service differentiation over short time intervals is that the output link can react quickly to changes of the

traffic load. Further, providing differentiation only within a busy period requires little state information,

and, therefore, keeps the implementation overhead limited. As a possible disadvantage, at times of low

load, when busy periods are short, providing service differentiation only with information on the current

busy period can be unreliable. However, when busy periods are short, the transmission queue is generally

underloaded, and all service classes receive a high-grade service.

Let t(0) define the beginning of the busy period. The arrival curve for classi at then-th event,Ai(n), is

the total traffic that has arrived to the transmission queue of an output link at a router since the beginning of

the current busy period, that is

Ai(n) =
n∑

k=0

ai(k) .

The input curve,Rin
i (n), is the traffic that has been entered into the transmission queue at then-th event,

Rin
i (n) = Ai(n)−

n∑
k=0

li(k) .

The output curve is the traffic that has been transmitted since the beginning of the current busy period, that

is

Rout
i (n) =

n−1∑
k=0

ri(k)∆t(k) . (1)

7



In Figure 1, we illustrate the concepts of arrival curve, input curve, and output curve for class-i traffic. At

any timet(n), the service rate is the slope of the output curve. In the figure, the service rate is adjusted at

timest(n1), t(n2) andt(n).
As illustrated in Figure 1, for eventn, the vertical and horizontal distance between the input and output

curves, respectively, denote the class-i backlogBi(n) and the class-i delayDi(n). For then-th event, we

have

Bi(n) = Rin
i (n)−Rout

i (n) ,

and

Di(n) = t(n)− t
(
sup{k < n | Rout

i (n) ≤ Rin
i (k)}

)
. (2)

Eqn. (2) characterizes the delay of the class-i traffic that departs at then-th event.

We define theloss rateto be the ratio of dropped traffic to the arrivals. That is

pi(n) =
Ai(n)−Rin

i (n)
Ai(n)

. (3)

Since, from the definition ofAi(n) andRin
i (n), thepi(n) are computed only over the current busy period,

they correspond to long-term loss rates only if busy periods are long. We justify our choice with the obser-

vation that traffic is dropped only at times of congestion, i.e., when the link is overloaded, and, hence, when

the busy period is long.

We use the above metrics to express best-effort bounds and proportional differentiation of delay, loss,

and throughput. A best-effort delay bound on classi for all eventsn with Bi(n) > 0 is specified as

Di(n) ≤ di , (4)

wheredi is the desired upper bound on the delay of classi. Similarly, a best-effort loss rate bound for classi

is defined by

pi(n) ≤ Li . (5)

A best-effort throughput bound for classi is specified as

ri(n) ≥ µi . (6)

Proportional differentiation on delay, loss, and throughput, respectively, is defined, for alln such that

Bi(n) > 0 andBi+1(n) > 0, as
Di+1(n)
Di(n)

= αdel
i , (7)

pi+1(n)
pi(n)

= αloss
i , (8)

and
ri+1(n)
ri(n)

= α
tput
i , (9)

whereαdel
i > 1, αloss

i > 1, andα
tput
i > 1 are constants that quantify the proportional differentiation desired.

We make the following important remarks about the guarantees:

8



• Without additional assumptions about the per-class backlogs, offering proportional guarantees simul-

taneously for delay and throughput may result in an infeasible set of service guarantees. As an exam-

ple, from the relationship between backlog, delay, and throughput of a given class, it is easy to see that

“Class-2 delay/class-1 delay = 2” and “Class-2 throughput/class-1 throughput = 2” is feasible only if

the backlog of class 2 is four times as large as the backlog of class 1. To avoid such infeasible sets of

proportional service guarantees, we require there be at most one proportional guarantee between two

classes with consecutive index. So, between class 1 and class 2, there cannot be a both a proportional

throughput guarantee and a proportional delay guarantee.

• We note that even if the above constraints on proportional differentiation are respected, a set of propor-

tional service differentiation guarantees could be infeasible under certain traffic conditions, as shown

in [35]. Therefore, we allow some slack, generally, a few percent of the current values, in the ratios

of loss rates, delays and throughputs to be enforced.

• Since we do not assume admission control or traffic policing, it may not be feasible to enforce all

best-effort bounds at all times if the traffic volume in the network is too high. When all best-effort

bounds cannot be satisfied, we allow some bounds to be temporarily relaxed according to a specified

relaxation order. For instance, the implementation that we discuss in Section 6 adopts a relaxation

order that gives loss guarantees priority over delay or rate guarantees, and best-effort bounds priority

over proportional differentiation. We emphasize that, while a relaxation order on the service guaran-

tees is needed, the mechanisms we propose in this paper are, unless otherwise noted, independent of

the specific relaxation order chosen.

3.2 Rate Allocation and Drop Decisions

We now sketch a solution for realizing the service differentiation specified in Eqs. (4)–(8) at the output link

of a router with capacityC and buffer sizeB. We assume per-class buffering of incoming traffic, and each

class is transmitted in a First-Come-First-Served manner. The service ratesri(n) and the amount of dropped

traffic li(n) are adjusted at each eventn so that the constraints defined by Eqs. (4)–(8) are met. If not all

constraints in Eqs. (4)–(8) can be met at then-th event, then some service differentiation parameters need to

be temporarily relaxed. We assume that the order in which differentiation parameters are relaxed is given.

The best-effort delay bound on classi, di, imposes a minimum required service rate in the sense that all

backlogged class-i traffic at then-th event will be transmitted within its delay bounddi if

ri(n) ≥ Bi(n)
di −Di(n)

, (10)

for all n. This condition can be verified by inspection of Figure 2. In the figure, a thick line is used to denote

the input curve, a thin line represents the output curve, andt(n) is the present time. The delay of the traffic

in transmission att(n) is Di(n). Because all traffic backlogged at timet(n) arrived in a single burst, the

amount of time remaining to transmit the traffic at the tail of the queue within the best-effort delay bounddi

9



C
la

ss
- 

i T
ra

ffi
c

timet(n)

di

di-D  i  (  n)

D

Bi

i

(n)

(n)

R in
i

Rout
i

rmin
i (n)slope =

Figure 2:Determining service rates for delay bounds.

is given bydi − Di(n). Hence, the output curve at timet(n) + di − Di(n) should have at least a value of

Rout
i (n) + Bi(n) so that all traffic backlogged att(n) meets its delay bounddi. So, the minimum service

rate,rmin
i (n), required to meetdi is given by the slopeBi(n)/(di −Di(n)).

If the condition of Eqn. (10) holds for anyn, the delay bounddi is never exceeded. If classi has, in

addition, a throughput boundµi, the expression for the minimum rate needed by classi at then-th event

becomes2

rmin
i (n) = sup

{
Bi(n)

di −Di(n)
, µi · χBi(n)>0

}
. (11)

The service rate that can be allocated to classi is upper bounded by the difference of the output link capacity

and the minimum service rates needed by the other classes, that is,

rmax
i (n) = C −

∑
j 6=i

rmin
j (n) .

Therefore, the service rate can take any valueri(n) with

rmin
i (n) ≤ ri(n) ≤ rmax

i (n) ,

subject to the constraint
∑

i ri(n) ≤ C. Given this range of feasible values,ri(n) can be selected to satisfy

proportional delay and throughput differentiation.

We view the computation ofri(n) in terms of the recursion

ri(n) = ri(n− 1) + ∆ri(n) , (12)

where∆ri(n) is selected such that the constraints of proportional delay and throughput differentiation are

satisfied at eventn. From Eqs. (1) and (2), the delayDi(n) at then-th event is a function ofri(k) with

2We defineχexpr = 1 if expr is true andχexpr = 0 otherwise.

10



k < n. By monitoringDi(n) we can determine the deviation from the desired proportional differentiation

due to past service rate allocations, and infer the adjustment∆ri(n) = f(Di(n)) needed to attenuate this

deviation.

If no feasible service rate allocation for realizing all desired delay and throughput differentiation exists

at then-th event, or if there is a buffer overflow at then-th event, traffic must be dropped, either from a new

arrival or from the current backlog. Loss differentiation determines which class(es) suffer(s) traffic drops at

then-th event.

To enforce loss differentiation, we rewrite the loss rate, as a difference equation. We useAi(n) =
Ai(n− 1) + ai(n), andRin

i (n) = Rin
i (n− 1) + ai(n)− li(n) in Eqn. (3), and obtain

pi(n) =
Ai(n− 1) + ai(n)− (Rin

i (n− 1) + ai(n)− li(n))
Ai(n)

,

or, after simplification,

pi(n) =
Ai(n− 1)−Rin

i (n− 1)
Ai(n)

+
li(n)
Ai(n)

,

which, using Eqn. (3), allows us to expresspi(n) as a function ofpi(n− 1):

pi(n) = pi(n− 1)
Ai(n− 1)

Ai(n)
+

li(n)
Ai(n)

. (13)

From Eqn. (13), we can determine how the loss rate of classi evolves if traffic is dropped from classi at

then-th event. Thus, we can determine the set of classes that can suffer drops without exceeding best-effort

loss bounds. In this set, we choose the class whose loss rate differs by the largest amount from the objective

of Eqn. (7).

The recursive expressions for service rates and the loss rates from Eqs. (12) and (13) can be used to

characterize the service rate allocation and dropping decisions as feedback control problems. In the next

sections, we will describe two feedback problems: one for delay and rate differentiation (delay feedback

loop), and one for loss differentiation (loss feedback loop). In Section 6, we describe the interaction of the

two feedback problems.

4 The Delay Feedback Loop

In this section, we present feedback loops that enforce the desired delay and rate differentiation given by

Eqs. (4), (6), and (7). We have one feedback loop for each class with proportional delay and/or rate differ-

entiation. In the feedback loop for classi, we characterize changes to service rate∆ri(n) by approximating

the non-linear effects of the service rate adjustment on the delays by a linear system, and derive a stability

condition for the linearized control loop, similar to a technique used in [31, 38, 39, 46]. While the stability

condition derived does not ensure that the non-linear control loop converges, the stability condition gives

useful guidelines for selecting the configuration parameters of the loop.

11



An alternative to using a linear approximation of the non-linear system under consideration is to directly

apply non-linear control techniques to derive the stability conditions. Non-linear control techniques, e.g.,

adaptive control [7], resort to algorithms such as gradient estimators. The practicality of a gradient estimator

implementation to be executed for each packet arrival is questionable. Furthermore, adaptive control theory

is used to dynamically estimate unknown parameters that remain constant over time, whereas all quantities

in the feedback loops we are studying vary over time. This implies that some approximations have to

be made to use adaptive control theory. The necessary approximations, e.g., assuming that the backlog

remains constant over a very short time interval, are similar to the approximations we will use to linearize

the feedback loops, so that there is no immediate advantage of using adaptive control in the design of our

algorithm.

4.1 Expressing the Objective of Proportional Delay and Rate Differentiation

Let us assume for now that all classes are offered proportional delay differentiation, and that we do not have

any proportional throughput differentiation. Later, these assumptions will be relaxed. The set of constraints

given by Eqn. (7) leads to the following system of equations:

D2(n) = αdel
1 ·D1(n) ,

...

DN (n) =
(∏N−1

j=1 αdel
j

)
D1(n) .

(14)

Let mi =
∏i−1

j=1 αdel
j for i > 1, andm1 = 1. We define a weighted delay of classi at then-th event, denoted

by D∗
i (n), as

D∗
i (n) =

 N∏
k=1, k 6=i

mk

 Di(n) . (15)

The weighted delayD∗
i (n) is the delay of classi at then-th event, multiplied by a scaling factor expressing

the proportional delay differentiation desired. By multiplying each line of Eqn. (14) with
∏

j 6=i mj , we see

that the desired proportional delay differentiation is achieved for all classes if

∀i, j ,∀n : D∗
i (n) = D∗

j (n) . (16)

Eqn. (16) is equivalent to

∀i ,∀n : D∗
i (n) = D

∗(n) ,

where

D
∗(n) :=

1
N

∑
i

D∗
i (n) . (17)

We setD
∗(n) to be theset pointcommon to all delay feedback loops. The feedback loop for classi reduces

the difference|D∗ −D∗
i (n)| of classi from the common set pointD

∗(n).

12



When some classes are not offered proportional delay differentiation we extend the above analysis as

follows. If proportional delay differentiation is requested for some, but not for all classes, constraints as in

Eqn. (14) can be defined for each group of classes with contiguous indices. Then, the feedback loops are

constructed independently for each group.

We include proportional throughput differentiation in our analysis as follows. If we assume that no traffic

is ever dropped to satisfy proportional delay or rate guarantees, we can express proportional throughput dif-

ferentiation between two classes in terms of proportional delay differentiation. Indeed, from the relationship

between delay, backlog and rate, we have

ri+1(n)
ri(n)

=
Bi+1(n)
Di+1(n)

Di(n)
Bi(n)

,

which, from the proportional throughput guarantee defined in Eqn. (9), reduces to

Bi+1(n)
Bi(n)

Di(n)
Di+1(n)

= α
tput
i ,

which we can rearrange as
Di+1(n)
Di(n)

=
1

α
tput
i

Bi+1(n)
Bi(n)

.

Recall that we have imposed that no pair of classes can be subject to both proportional delay and through-

put differentiation. Thus, we can express the proportional throughput guarantee as a proportional delay

guaranteeαdel
i , with

αdel
i =

1
α

tput
i

Bi+1(n)
Bi(n)

.

In other words, proportional throughput differentiation can be viewed as proportional delay differentiation

where the desired ratio of delaysαdel
i varies over time. Some of the assumptions we will discuss in the

stability analysis of the delay feedback loops will allow us to neglect the time-dependency of this ratio over

short time intervals such as the current busy period. Thus, for the sake of simplicity, we will only consider

proportional delay differentiation in the remainder of this paper, and we will consider that proportional

throughput differentiation can always be obtained through proportional delay differentiation.

4.2 Service Rate Adjustment

Next, we determine how to adjust the service rate to achieve the desired delay differentiation. Letei(n),
referred to aserror, denote the deviation of the weighted delay of classi from the set point, i.e.,

ei(n) = D
∗(n)−D∗

i (n) . (18)

Note that the sum of the errors is always zero, that is, for alln,∑
i

ei(n) = ND
∗(n)−

∑
i

D∗
i (n) = 0 .

13



If proportional delay differentiation is achieved, we haveei(n) = 0 for all classes. We use the errorei(n)
to compute the service rate adjustment∆ri(n) needed for classi to satisfy the proportional delay differ-

entiation constraints. From Eqn. (18), we note that ifei(n) < 0, D∗
i (n) > D

∗(n), classi delays are too

high with respect to the desired proportional delay differentiation. Therefore,ri(n) must be increased. Con-

versely,ei(n) > 0 indicates that classi delays are too low, andri(n) must be decreased. Hence, the rate

adjustment∆ri(n) is a decreasing function of the errorei(n), written as∆ri(n) = f(ei(n)), wheref(.) is

a monotonically decreasing function. We choose

∆ri(n) = K(n) · ei(n) , (19)

whereK(n) < 0 is called the controller. An advantage of this controller is that only a single multiplication

is needed to obtain the rate adjustment. Another advantage is that, at anyn, we have∑
i

∆ri(n) = K(n)
∑

i

ei(n) = 0 . (20)

From Eqn. (20), the controller imposes a work-conserving system, as long as the initial condition
∑

i ri(0) =
C is satisfied. Note that systems that are not work-conserving, i.e., where the link may be idle even if there

is a positive backlog, may be undesirable for networks that need to achieve a high resource utilization.

We next linearize the delay feedback loop to obtain a condition onK(n) to ensure that the delay feedback

loops are stable, in the sense that they attenuate the errorsei(n) over time. We later derive an additional

condition onK(n) so that the rate adjustments∆ri(n) do not create a violation of the best-effort delay and

throughput bounds.

4.3 Linearization of the Delay Feedback Loop

The non-linearities in the delay feedback loop primarily result from the non-linear relationship between the

service rate adjustments∆ri and the delaysDi. We introduce a set of assumptions needed to linearize the

delay feedback loops, before discussing the linearized relationship between∆ri andDi.

Assumptions. We use four assumptions, labeled (A1)–(A4), to linearize the control loop.

(A1) Consider a virtual time axis, where the event numbers,n, are equidistant sampling times. We assume

that the skew between virtual time and real time can be neglected. Since events are traffic arrivals

from any class, the assumption holds when the aggregate traffic arrival rate is almost constant. Over

a busy period, if the aggregate arrival rate remains below the link capacity for too long, the queue

becomes empty and the busy period ends. So, the assumption is accurate unless the considered output

link is constantly overloaded, and further subject to a highly variable load.

(A2) We assume that, for any classi, the delay of class-i traffic does not vary significantly between eventsn

and(n + 1), i.e.,

Di(n + 1) ≈ Di(n).

14



This assumption is accurate when classi remains backlogged between eventsn and (n + 1), and

changes to the service rateri betweenn and(n + 1) remain modest, i.e.,∆r(n) is relatively small.

This assumption may not hold when the time elapsed between then-th and(n + 1)-th event is large,

i.e., when the arrival rate of traffic from all classes is low. However, a low aggregate arrival rate

generally results in the current busy period ending quickly.

(A3) We assume that the backlog of class-i traffic Bi(n) does not vary significantly over the timeDi(n)
spent by class-i traffic in the transmission queue. The assumption is accurate when the delaysDi are

small and traffic arrivals are relatively smooth. The assumption is not accurate when traffic arrivals

are extremely bursty over very short time intervals.

(A4) We assume that the service rateri is not subject to large variations over short intervals of time. The

assumption is likely to hold unless the proportional coefficientK(n) is chosen very large. The as-

sumption may not be accurate when the backlog of class-i frequently oscillates between zero and a

positive value, becauseri is reset every time class-i is not backlogged.

Clearly, the above assumptions are idealistic, and stability under these assumptions does not guarantee

stability of the actual delay feedback loops. However, the numerical data in Section 7 suggests that the

loops converge adequately well.

Relating delaysDi to rate adjustments∆ri. We next describe the effect of the rate adjustment∆ri on

the delayDi under (A1)–(A4). To that effect, we relate∆ri to the average rateri experienced by the class-i

traffic over the time this class-i traffic was backlogged. Then, we relateri to Di.

Let us defineτi(n) as:

Di(n) = t(n)− t(n− τi(n)) .

In other words,τi(n) denotes the number of events that occurred over the time interval during which the

class-i traffic leaving att(n) was backlogged. From (A1) and (A2), we can write

τi(n) ≈ τi(n + 1) ,

and will, from now on, useτi to refer to bothτi(n) andτi(n + 1).
We relateri to Bi andDi as follows. By definition ofτi andDi, traffic leaving att(n) entered the queue

at timet(n − τi) and spentDi(n) in the queue. Thus, the average service rateri(n) received by the traffic

leaving att(n) is given by:

ri(n) =
Bi(n− τi)

Di(n)
. (21)

From Eqn. (21),ri(n) is the average class-i service rate averaged over[t(n− τi), t(n)), whereas, by defini-

tion, ri(n) denotes the class-i service rate over[t(n), t(n+1)). We use this observation and (A1) to express

ri as a function ofri, as follows:

ri(n + 1) =
(τi − 1)ri(n) + ri(n)

τi
. (22)

15



Let us now define

∆ri(n + 1) = ri(n + 1)− ri(n) . (23)

Combining Eqs. (22) and (23), we get

∆ri(n + 1) =
(τi − 1)∆ri(n) + ∆ri(n)

τi
. (24)

Eqn. (24) describes the relationship between a change in the service rate and a change in the average rate.

We now derive the relationship between∆ri(n) and a change in the delay of classi, denoted as∆Di(n),
and defined by

∆Di(n + 1) = Di(n + 1)−Di(n) .

Since we have, from Eqn. (21),

Di(n) =
Bi(n− τi)

ri(n)
,

and

Di(n + 1) =
Bi(n + 1− τi)

ri(n + 1)
,

we get

∆Di(n + 1) =
Bi(n + 1− τi)

ri(n + 1)
− Bi(n− τi)

ri(n)
. (25)

Eqn. (25) is not linear inri. We use (A4) to linearize Eqn. (25), by means of a first order Taylor series

expansion. (A4) implies that

∆ri(n + 1) � ri(n) ,

which, usingBi(n + 1− τi) ≈ Bi(n− τi) obtained from (A3), allows to rewrite Eqn. (25) as

∆Di(n + 1) = −Bi(n− τi)
ri

2(n)
∆ri(n + 1) + ωi(n) , (26)

whereωi(n) is the error in the evaluation of∆Di(n + 1) resulting from (A1)–(A4). Then, the relationship

between delay variations and the delay is given by

Di(n + 1) =
n+1∑
k=0

∆Di(k) , (27)

Di(n + 1) is used to computeD∗
i (n + 1), using Eqn. (15). Finally, from Eqs. (17) and (18), the error at

the(n+1)-th event,ei(n+1), is obtained fromD∗
i (n+1). This completes the description of the linearized

delay feedback loop. We now turn to the derivation of a stability condition on the linearized delay feedback

loop.

4.4 Stability Condition on the Linearized Delay Feedback Loop

We derive the stability condition of the linearized delay feedback loop using a two-step process. We first

express the delay feedback loop in the frequency domain, usingz-transforms, and then apply a standard

stability argument to the frequency-domain expression of feedback loop to obtain bounds onK(n) that

ensure stability of the linearized feedback loop.

16



Σ K(n) z
zτi- τi+1

-Bi(n-τi)

ri
2(n)

1
z

Σ
Z[e i (n)] Z[∆ri(n)] Z[∆ri(n+1)] Z[∆Di(n+1)] Z[Di(n+1)] Z[Di

*(n+1)]

Z[Di
*(n)]

Z[D*(n)]

Z[ω i(n)]

-
+

+
+

Πj=i m j
z

z-1

Figure 3:The class-i delay feedback loop.This model usesz-transforms of the relationships derived in Section 4.2.

Frequency-domain expression for the feedback loop. We express the delay feedback loop in the fre-

quency domain using usingz-transforms of Eqs. (15)–(27). We denote thez-transform of a functionf(n)
by Z[f(n)], defined as

Z[f(n)] =
+∞∑
n=0

f(n)z−n .

Eqs. (15), (18), (19), (26) are unchanged when usingz-transforms. Eqn. (24) yields

Z[∆ri(n + 1)] = (τi − 1) · Z[∆ri(n)]
τi

+
Z[∆ri(n)]

τi
,

which, using the property that, for any continuous functionf , Z[f(n)] = 1
zZ[f(n + 1)], implies that

Z[∆ri(n + 1)] = (τi − 1) · Z[∆ri(n + 1)]
zτi

+
Z[∆ri(n)]

τi
.

By reordering terms we obtain

Z[∆ri(n + 1)] =
z

zτi − τi + 1
Z[∆ri(n)] .

Thez-transform of Eqn. (27) is

Z[Di(n + 1)] =
z

z − 1
Z[∆Di(n + 1)] .

Also, the relationship betweenD∗
i (n) andD∗

i (n + 1) in the frequency domain is given by

Z[D∗
i (n)] =

1
z
Z[D∗

i (n + 1)] .

Figure 3 illustrates the frequency-domain expression of the delay feedback loop. In the figure, each

block maps an input variable to an output variable by multiplying the input variable by the contents of the

block. For instance, the first block mapsZ[ei(n)] to Z[∆ri(n)] by multiplying Z[ei(n)] by K(n). The

product of all individual blocks is called theloop gain.

We notice that in the class-i delay feedback loop of Figure 3, some quantities (e.g.,τi, Bi, ri) are time-

dependent. Therefore, the loop gain is time-dependent. Classical linear control theory [28], on the other

hand, generally requires the loop gain to be time invariant to obtain stability conditions. However, stability

can still be achieved with a time-dependent loop gain, if the loop gain is not increasing unboundedly over

time [7].

17



Stability analysis We obtain stability bounds onK(n) from a standard control theory result [28]. Denot-

ing the loop gain byG(z), the loop is stable if and only if the roots of the characteristic equation1+G(z) = 0
have a module less than one. We obtain an expression forG(z) by taking the product of all blocks in Fig-

ure 3,

G(z) = −1
z

z

z − 1

(∏
j 6=i mj

)
Bi(n− τi)K(n)

ri
2(n)

z

zτi − τi + 1
.

The negative sign comes from the expression ofei(n), whereD∗
i (n) is subtracted fromD

∗(n). We use

(A4) to further simplify the expression forG(z). Under (A4),∆ri(n + 1) ≈ ∆ri(n), which enables us to

approximate the gain of the blockz/(zτi + 1 − τi) by 1. With this approximation, we obtain a new loop

gainG′(z) as follows

G′(z) = −1
z

z

z − 1

(∏
j 6=i mj

)
Bi(n− τi)K(n)

ri
2(n)

.

The characteristic equation of the approximate system is

1− 1
z − 1

(∏
j 6=i mj

)
Bi(n− τi)K(n)

ri
2(n)

= 0 ,

which has exactly one root,

ẑ = 1 +

(∏
j 6=i mj

)
Bi(n− τi)K(n)

ri
2(n)

.

With the rootẑ, we obtain the following stability condition∣∣∣∣∣∣1 +

(∏
j 6=i mj

)
Bi(n− τi)K(n)

ri
2(n)

∣∣∣∣∣∣ ≤ 1 ,

or, equivalently,

1 +

(∏
j 6=i mj

)
Bi(n− τi)K(n)

ri
2(n)

≥ −1 (28)

1 +

(∏
j 6=i mj

)
Bi(n− τi)K(n)

ri
2(n)

≤ 1 . (29)

All quantities in Eqn. (29), with the exception ofK(n), are positive. Hence, the condition described by

Eqn. (29) reduces toK(n) ≤ 0.

The condition in Eqn. (28) becomes, after reordering,

K(n) ≥ −2 · ri
2(n)(∏

j 6=i mj

)
Bi(n− τi)

. (30)

18



Since, with Eqn. (21), we can write

ri
2(n)

Bi(n− τi)
=

Bi(n− τi)
Di(n)2

,

Eqn. (30) can be expressed as

K(n) ≥ −2 · Bi(n− τi)(∏
j 6=i mj

)
D2

i (n)
. (31)

The condition given by Eqn. (31) requires to keep a history of the backlogs. The need to maintain a backlog

history can be alleviated, using (A2) and writingBi(n−τi) ≈ Bi(n), which allows us to simplify Eqn. (31).

Combining withK(n) ≤ 0, we obtain the following expression for the stability condition for the class-i

delay feedback loop:

−2 · Bi(n)∏
j 6=i mj ·D2

i (n)
≤ K(n) ≤ 0 .

SinceK(n) must be common to all classes for Eqn. (20) to hold, we finally get

−2 ·min
i

{
Bi(n)∏

j 6=i mj ·D2
i (n)

}
≤ K(n) ≤ 0 . (32)

The condition in Eqn. (32) ensures that the linearized delay feedback loops will not engage in divergent

oscillations. We cannot be certain that the assumptions made to linearize the delay feedback loops hold in

practice, and cannot claim that Eqn. (32) ensures stability of the (non-linear) delay feedback loops. However,

we can use Eqn. (32) as a design guideline forK(n).

4.5 Including the Absolute Delay and Rate Constraints

The condition onK(n) we obtained in Eqn. (32) is needed to enforce proportional differentiation. So far,

we have not considered the best-effort delay and rate bounds in the construction of the delay feedback

loops. These best-effort delay and rate bounds are viewed as a saturation constraint on the rate adjustment,

and yield a second condition onK(n). To satisfy the constraintsri(n) ≥ rmin
i (n), we may need to clip

∆ri(n) when the new rate is below the minimum. This, however, may violate the work-conserving property

resulting from Eqn. (20). To respect the saturation constraint,K(n) has to satisfy

ri(n− 1) + K(n)ei(n) ≥ rmin
i (n) ,

and apply thatK(n) to all control loops. The above implies that we must have

K(n) ≥ max
i

(
rmin
i (n)− ri(n− 1)

ei(n)

)
. (33)

We note that if

max
i

(
rmin
i (n)− ri(n− 1)

ei(n)

)
> 0 ,

19



we cannot satisfy both Eqn. (33) andK(n) ≤ 0, required by Eqn. (32). In other words, we cannot satisfy

best-effort delay and throughput bounds and proportional delay differentiation at the same time. In such a

case, we relax either Eqn. (32) or Eqn. (33) according to a given relaxation order. For instance, giving best-

effort bounds higher precedence than proportional differentiation results in relaxing Eqn. (32) and satisfying

Eqn. (33).

5 The Loss Feedback Loop

We now describe the feedback loop which controls the traffic dropped from classi to satisfy proportional

loss differentiation within the limits imposed by the best-effort loss bounds. As before, we first assume that

all classes are offered proportional loss differentiation. We relax this assumption in the same manner as we

relaxed the assumption that all classes are offered proportional delay differentiation in Section 4.1.

Traffic must be dropped at then-th event either if there is a buffer overflow or if best-effort delay bounds

cannot be satisfied given the current backlog. For any classk, we can express the class-k backlog at then-th

event,Bk(n), in function of the arrivalsak(n), the losseslk(n) and the service raterk(n) as

Bk(n) = Bk(n− 1) + ak(n)− lk(n)−∆t(n− 1)rk(n) . (34)

With a buffer sizeB, to prevent buffer overflows at then-th event, we need
∑

k Bk(n) ≤ B, which,

using Eqn. (34) and the work-conserving property
∑

k rk(n) = C, becomes

N∑
k=1

(
Bk(n− 1) + ak(n)− lk(n)

)
−∆t(n− 1)C ≤ B . (35)

We must ensure that
∑

k rmin
k (n) ≤ C to be able to provide delay and throughput bounds. Using the

definition ofrmin
k (n) given by Eqn. (11), and Eqn. (34), we obtain the following condition:

N∑
k=1

max
{

Bk(n− 1)− rk(n− 1)∆t(n− 1) + ak(n)− lk(n)
dk −Dk(n)

, µk · χBk(n)>0

}
≤ C . (36)

If either of Eqs. (35) or (36) is violated, traffic is dropped to enforce proportional loss differentiation. To

describe how proportional loss differentiation is enforced, let us define a weighted loss rate as

p∗i (n) =

 N∏
j=1, j 6=i

m′
j

 pi(n) ,

wherem′
i =

∏i−1
j=1 αloss

j for i > 1 andm′
1 = 1. With this definition, Eqn. (8) reduces to

∀(i, j) ,∀n : p∗i (n) = p∗j (n) ,

which is equivalent to

∀i ,∀n : p∗i (n) = p̄∗(n) ,

20



where

p̄∗(n) =
1
N

∑
i

p∗i (n) .

We setp̄∗(n), as the set point for the loss feedback loop, and usep̄∗(n) to compute an error

e′i(n) = p̄∗(n)− p∗i (n) .

The desired proportional loss differentiation is achieved whene′i(n) = 0 for all i. The loss feedback loops

decrease the errorse′i(n) by increasingp∗i (n) for classes that havee′i(n) > 0 as follows. Let〈i1, i2, . . . , iR〉
be an ordering of the class indices from all backlogged classes, that is,Bik(n) > 0 for 1 ≤ k ≤ R, such

thate′is(n) ≥ e′ir(n) if is < ir. Traffic is dropped in the order of〈i1, i2, . . . , iR〉.
Best-effort loss rate bounds impose an upper bound,l∗i (n), on the traffic that can be dropped at eventn

from classi. The value ofl∗i (n) is determined from Eqs. (5) and (13) as

l∗i (n) = Ai(n)Li − pi(n− 1)Ai(n− 1) .

If the conditions in Eqs. (35) and (36) are violated, traffic is dropped from classi1 until the conditions

are satisfied, or until the maximum amount of trafficl∗i1(n) has been dropped. Then traffic is dropped from

classi2, and so forth. Suppose that the conditions in Eqs. (35) and (36) are satisfied for the first time ifl∗j (n)
traffic is dropped from classesj = i1, i2, . . . , ik̂−1, andx̂(n) ≤ l∗

k̂
(n) traffic is dropped from classik̂, then

we obtain:

li(n) =


l∗i (n) if i = i1, i2, . . . , ik̂−1 ,

x̂(n) if i = ik̂ ,

0 otherwise.

(37)

If lk(n) = l∗k(n) for all k = i1, i2, . . . , iR, we have the choice between dropping more traffic, thereby

relaxing a best-effort loss bound, or ignoring condition (36), thereby relaxing a best-effort delay or rate

bound. A predetermined precedence order is used to choose which bound is relaxed. For instance, in

the implementation discussed in Section 6, loss bounds take precedence over delay and rate bounds, and

condition (36) is relaxed.

The loss feedback loop never increases the maximum errore′i(n), if e′i(n) > 0, and more than one class

is backlogged. Thus, the errors remain bounded and the algorithm presented will not engage in divergent

oscillations around the target valuep∗(n). Additionally, the loss feedback loop and the delay feedback loops

are independent of each other. Indeed, since we always drop traffic from the tail of each per-class buffer,

losses do not have any effect on the delays of traffic admitted into the transmission queue.

6 Implementation

We implemented the feedback loops presented in Sections 4 and 5 in PC-routers running the FreeBSD

4.3 [3] operating system, using thealtq-3.0 package [12].altq allows programmers to modify the

operations of the transmission queue in the IP layer of the FreeBSD kernel. Our implementation [1] has

21



been included inaltq-3.1 , and more recently in KAME [4]. Inclusion in the base BSD distributions is

under consideration. For a detailed discussion of the implementation issues, we refer the reader to [14]. In

this section, we only discuss the operations performed when a packet is entered into the transmission queue

of an IP router (packet enqueuing) and when a packet is selected for transmission (packet dequeuing), and

then argue how the implementation can be deployed.

We use the DiffServ codepoint (DSCP, [43]) in the header of a packet to identify the class index of

an IP packet. The DSCP field is set by the edge router; in our implementation, this is the first router

traversed by a packet. We chose the following precedence order for relaxing constraints: Best-effort loss

rate bounds have higher precedence than delay and throughput bounds, which have in turn higher precedence

than proportional differentiation.

6.1 Packet Enqueuing

The enqueue procedure are the operations executed in the IP layer when a packet is entered into the

transmission queue of an output link. Since, in FreeBSD 4.x, the FreeBSD kernel is single-threaded, the

execution of theenqueue procedure is strictly sequential.

The enqueue procedure performs the dropping decisions and the service rate allocation. We avoid

floating point operations in the kernel of the operating system, by expressing delays as machine clock cycles,

service rates as bytes per clock cycle (multiplied by a scaling factor of232), and loss rates as fractions of

232. Then, 64-bit (unsigned) integers provide a sufficient degree of accuracy.

In our modifiedenqueue procedure, the transmission queue of an output link has one FIFO queue

for each class, implemented as a linked list. We limit the total number of packets that can be queued to

B = 200. Whenever a packet is entered into the FIFO queue of its class, the arrival time of the packet is

recorded, and the waiting times of the packets at the head of each FIFO queue are updated.

The enqueue procedure uses the loss feedback loop described in Section 5 to determine if and how

much traffic needs to be dropped from each class. In our implementation, the algorithm of Section 5 is run

twice. The first time, buffer overflows are resolved by ignoring condition (36); The second time, potential

violations of delay and throughput bounds are resolved by ignoring condition (35).

Next, theenqueue procedure computes new values forrmin
i (n) from Eqn. (11), and determines new

service rates, using Eqs. (12) and (19), with the constraints onK(n) given in Eqs. (32) and (33). If no fea-

sible value forK(n) exists, Eqn. (32) is ignored, thereby giving delay bounds precedence over proportional

delay (and throughput) differentiation.

6.2 Packet Dequeuing

The dequeue procedure selects one packet from the backlog for transmission. In our implementation,

dequeue selects one of the traffic classes, and picks the packet at the head of the FIFO queue for this class.

Thedequeue procedure uses a rate-based scheduling algorithm to adapt the transmission ratesri(n)
from a fluid-flow view to a packet-level environment. Such an adaptation can be performed using well-

22



known rate-based scheduling algorithm techniques, e.g., Virtual Clock [54] or PGPS [45]. These scheduling

algorithms translate a rate allocation, into virtual deadlines of individual packets. In our implementation, we

use a modified Deficit Round Robin [49] scheduling algorithm. LetXmiti(n) denote the number of bytes

of class-i traffic that have been transmitted in the current busy period, the scheduler selects a packet from

classi for transmission if

i = arg max
k

{
Rout

k (n)−Xmitk(n)
}

.

In other words, thedequeue procedure selects the class whose service is the most behind its allocated

service rate.

6.3 Service Deployment

We conclude this section with a brief discussion how our proposed mechanisms can be deployed. We

remark that service differentiation is only needed at potential bottleneck points. Indeed, if a link is never

congested, incoming packets can be transmitted at once, using a First-Come-First-Served queuing policy,

thereby getting a high-grade service (no loss, low delay, high throughput). Reports on the utilization of

backbone links indicate that backbone links are used at about 60% of their capacity on average [53], which

tends to show that the cores of the networks are generally underloaded. We can identify three locations

where a bottleneck can occur: at the ingress or egress of an autonomous system or at peering points between

two autonomous systems. Placing routers supporting the mechanisms discussed in this paper to regulate

traffic at the bottleneck links can ensure that service differentiation is provided where it is needed, without

generating any overhead for links that are mostly idle. Increasing the number of routers that implement

our adaptive mechanisms never degrades the overall service differentiation observed in the entire network.

Routers can be independently configured and can support completely different sets of service guarantees.

(Of course, an inconsistent configuration at routers may result in a poor service and resource usage.)

Used in conjunction with routing mechanisms that can perform route-pinning, such as MPLS [47], our

adaptive rate allocation and buffer management mechanisms can be used as a building block for end-to-end

service differentiation. Based on the per-hop service guarantees, applications can infer end-to-end service

differentiation, and select the most appropriate route given their service demands. A thorough inspection

of the interaction of traffic engineering techniques (e.g., routing) with the per-hop service proposed here,

to provide end-to-end service differentiation, is outside the scope of this paper. We refer the reader to [23]

and [34] for a discussion of the mapping of per-hop differentiation as described in this paper to end-to-end

service differentiation of loss and delay.

7 Evaluation

In this section, we first assess the stability of the feedback loops by conducting a simulation experiment on a

single bottleneck link subject to a highly variable offered load. Then, we present experimental measurements

23



O
ff

er
ed

 lo
ad

 in
 %

 o
f 

lin
k 

ca
pa

ci
ty

0 2 4 6 8 10 12 14 16 18 20
Simulation Time (s)

0

20

40

60

80

100

120

140

Figure 4: Experiment 1: Offered Load. The graph describes the offered load at the simulated 1 Gbps bottleneck

link.

0
0 16 201814

5

1

6

4

2

3

Class 2/Class 1

12108642

R
at

io
 o

f 
de

la
ys

Simulation Time (s)

Class 3/Class 2
Class 4/Class 3

(a) Ratios of Delays

5

4

3

2

1

0

Simulation Time (s)

Class 4/Class 3

R
at

io
 o

f 
lo

ss
 r

at
es Class 3/Class 2

Class 2/Class 1

4 620 1614128 10 2018

(b) Ratios of Loss Rates

Figure 5: Experiment 1. The graphs show the proportional differentiation obtained by each class at the simulated

1 Gbps bottleneck link.

of our FreeBSD implementation in a testbed of PC-routers. Last, we present an evaluation of the overhead

associated to our proposed algorithms.

7.1 Experiment 1: Simulating a Single Link Topology with Highly Variable Load

To illustrate the stability of the feedback loops, we present a simulation experiment, using the simulator

described in [2], with a single bottleneck link of capacity 1 Gbps. The offered load at the bottleneck link is

represented in Figure 4, and is obtained by overlapping between 300 and 550 Pareto sources with a shape

parameterα = 1.9. The number of sources active at a given time is given by a sinusoidal function, which

makes the offered load vary between underload and overload on timescales in the order of several seconds.

Traffic is self-similar, due to the Pareto distributions used to determine the interarrival times of packets at

each source. This accounts for the transient variations in the offered load on timescales in the order of

0.1 seconds. We consider four traffic classes, each contributing approximately a quarter of the offered load.

24



Bottleneck Bottleneck

Source
1

Source
2

Router
1

Router
2 Sink 1Router

3

Sink 3Sink 2

Source
3

Figure 6:Experiment 2: Network Topology. All links have a capacity of 100 Mbps. We measure the service provided

by Router 1 and 2 at the indicated bottleneck links.

In this experiment, we are interested in assessing the stability of the feedback loops subject to rapid

variations of the offered load. In an effort to eliminate potential side effects, such as, for instance, TCP con-

gestion control algorithms, we only use UDP sources, which start transmitting at timet = 0, for 20 seconds

of simulated time. Also, because best-effort bounds are enforced by saturation constraints external to the

feedback loops, we only use proportional differentiation in this first experiment. The objective is to enforce

proportional delay differentiation with ratiosδdelay
i = 4, and proportional loss differentiation with ratios

δloss
i = 2 for i ∈ {1, 2, 3}.

We plot the ratios of delays and loss rates of classes in Figure 5. Each datapoint corresponds to a

moving average with a sliding window of size 0.1 seconds. The results obtained for the ratios of delays

in Figure 5(a) show that proportional delay differentiation is achieved with good accuracy when the link is

overloaded. Furthermore, the plots show that the feedback-based controller reacts immediately when the

offered load goes from underload to overload, and reacts swiftly (between 0 and 0.2 seconds depending on

the class concerned) when the link goes from overload to underload. This indicates that the delay feedback

loops used in the closed-loop algorithm are stable. Proportional delay differentiation does not match the

target proportional factorsδdelay
i = 4 when the link is underloaded, due to the work-conserving property,

which prevents our algorithms from artificially generating delays when the load is small.

Results for ratios of loss rates in Figure 5(b) indicate that the desired proportional loss differentiation

is achieved when drops are needed due to an overload. The transient spikes during a transition between

an overloaded and an underloaded system are caused by the low number of packets dropped when the link

becomes underloaded, which makes the ratios of loss rates become less meaningful.

7.2 Experiment 2: Measurements over Multiple Bottleneck Links with Near-Constant Load

We next evaluate our implementation in PC-routers as described in Section 6. The objective here is to

demonstrate that the feedback loops described in this paper can be implemented at relatively high-speeds,

and achieve good service differentiation when a mix of best-effort bounds and proportional differentiation

25



Class Service Guarantees

di Li µi δ
delay
i δloss

i

1 8 milliseconds 1 % – – –

2 – – 35 Mbps 2 2

3 – – – 2 2

4 – – – N/A N/A

Table 1:Experiment 2: Desired service differentiation.Both routers have the same differentiation parameters.

Class No. of Type

flows Protocol Traffic

1 6 UDP On-off

2 6 TCP Greedy

3 6 TCP Greedy

4 6 TCP Greedy

Table 2:Experiment 2: Traffic mix. The traffic mix is identical for each source-sink pair. The on-off UDP sources

send bursts of 20 packets during an on-period, and have a 150-millisecond off-period. All TCP sources are greedy,

i.e., they always have data to transmit, and run theNewRenocongestion control algorithm.

is desired, and TCP and UDP traffic are competing at multiple bottlenecks. The PCs are Dell PowerEdge

1550 with 1 GHz Intel Pentium-III processors and 256 MB of RAM. The system software is FreeBSD 4.3

andaltq-3.0 . Each system is equipped with five 100 Mbps-Ethernet interfaces.

We use a local network topology using point-to-point Ethernet links as shown in Figure 6. All links are

full-duplex and have a capacity ofC = 100 Mbps. Three PCs are set up as routers, indicated in Figure 6 as

Router 1, 2 and 3. Other PCs are acting as sources and sinks of traffic. The topology has two bottlenecks:

the link between Routers 1 and 2, and the link between Routers 2 and 3. The buffer size at the output link

of each router is set toB = 200 packets.

We consider four traffic classes and we provide the service differentiation described in Table 1. The

traffic mix, the number of flows per class, and the characterization of the flows for each source is as shown

in Table 2. Class 1 traffic consists of on-off UDP flows, and the other classes consist of greedy TCP flows.

All sources start transmitting packets with a fixed size of 1024 bytes at timet = 0 until the end of the

experiments att = 60 seconds.

Sources 1, 2 and 3 send traffic to Sinks 1, 2 and 3, respectively. The traffic mix, the number of flows

per class, and the characterization of the flows, is identical for each source, and as shown in Table 2. Each

source transmits six flows from each of the classes. Class 1 traffic consists of on-off UDP flows, and the

other classes consist of greedy TCP flows. All sources start transmitting packets with a fixed size of 1024

Bytes at timet = 0 until the end of the experiments att = 60 seconds. Traffic is generated using thenetperf

26



Time (s)
30 40 50

20

60

O
ff

er
ed

 lo
ad

 in
 %

 o
f 

lin
k 

ca
pa

ci
ty

0

100

0 2010

40

60

80

120

140

(a) Router 1.

Time (s)
30 40 50

20

60

O
ff

er
ed

 lo
ad

 in
 %

 o
f 

lin
k 

ca
pa

ci
ty

0

100

0 2010

40

60

80

120

140

(b) Router 2.

Figure 7:Experiment 2: Total Load. The graphs show the offered load at Routers 1 and 2.

v2.1pl3 tool [33]. The network load overloads the bottleneck links of Figure 6. Congestion control at the

TCP sources maintains the total load at a level of about 99% of the link capacity, as shown in Figure 7.

In Figures 8 and 9, we present our measurements of the service received at the bottleneck links of

Routers 1 and 2, respectively. All datapoints correspond to moving averages over sliding windows of

size 0.5 seconds, except in Figures 8(b) and 9(b), which present the delays of each class-1 packet.

Figures 8(a) and 9(a) depict the ratios of the delays of Classes 4 and 3, and the delays of Classes 3 and

2. The plots show that the target value ofk = 2 (from Table 1) is achieved.

In Figures 8(b) and 9(b) we show the delay of class-1 packets at Router 1 and Router 2. The best-effort

delay bound ofd1 = 8 milliseconds is satisfied for most (> 98.5%) of the packets, despite the precedence

order we chose for our best-effort bounds, i.e, in case of an infeasible set of differentiation constraints, delay

bounds are relaxed in favor of loss rate bounds. No class-1 packet ever experiences a delay higher than

10 milliseconds at either Router 1 or 2. Figures 8(c) and 9(c) indicate that delay values of other classes are

in the range 10-50 milliseconds.

In Figures 8(c) and (d), and Figures 9(c) and (d), we show the measurements of the loss rates. Fig-

ures 8(c) and 9(c) depict the ratios of loss rates for classes 4 and 3, and for classes 3 and 2. The desired

ratios ofδloss
2 = δloss

3 = 2 are maintained most of the time. As Figures 8(d) and 9(d) indicate, the bound

on the loss rates for class 1 ofL1 = 1 % is always kept. We also see that the loss rate of class 1 may be

higher than the loss rate of other classes, because class 1 is not tied to other classes by proportional guaran-

tees. Our implementation always drops first from class 1, until the loss boundL1 as been reached, before

dropping to satisfy proportional loss guarantees. Note that much less traffic is dropped at Router 2, because

Router 2 receives traffic from Source 3 and Router 1, instead of receiving traffic from two sources. Half of

the traffic arriving at Router 2 has already been policed by Router 1, resulting in a lower loss rate. Finally,

in Figures 8(f) and 9(f) we include the throughput measurements of all classes. We observe that the lower

bound on the throughput of Class 2 ofµ2 = 35 Mbps is maintained. The total throughput of all classes,

labeled in Figures 8(f) and 9(f) as “Total”, is close to the link capacity of 100 Mbps at each router.

In summary, measurements obtained from a testbed network with multiple bottlenecks indicate that our

27



50 602010

1

0

R
at

io
 o

f 
D

el
ay

s

0

3

4030
Time (s)

Class 3/Class 2
Class 4/Class 3

2

4

5

(a) Ratios of Delays.

Delay Bound Class 1

Time (s)

D
el

ay
 (

m
s)

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60

(b) Class-1 Delays (individual).

Class 2

Class 3 Class 4

100
Time (s)

0

D
el

ay
 (

m
s)

20

10

50

20 30 40 6050

30

40

(c) Classes 2, 3 and 4 Delays

(averaged over a sliding window of 0.5 s)

50 602010

1

0

R
at

io
 o

f 
L

os
s 

R
at

es

0

3

4030
Time (s)

Class 3/Class 2
Class 4/Class 3

2

4

5

(d) Ratios of Loss Rates.

0 10 20

L
os

s 
R

at
e 

(%
)

50
Time (s)

604030
0

Class 4
Class 3
Class 2
Class 1

2.5

2

1.5

1

0.5

(e) Loss Rates.

Class 2 Class 1

TotalClass-2 Guarantee

Class 3
Class 4

20

Time (s)
60504010 30200

100

80

60

40

0

T
hr

ou
gh

pu
t (

M
b/

s)

(f) Throughput.

Figure 8:Experiment 2: Router 1. The graphs show the service obtained by each class at the output link of Router 1.

28



50 602010

1

0

R
at

io
 o

f 
D

el
ay

s

0

3

4030
Time (s)

Class 3/Class 2
Class 4/Class 3

2

4

5

(a) Ratios of Delays.

Class 1Delay Bound

2

0

4

6

8

10

12

14

600 10 20 30 40 50
Time (s)

D
el

ay
 (

m
s)

(b) Class-1 Delays (individual).

Class 2

Class 3 Class 4

0

10

20

30

40

50

50 60403020100
Time (s)

D
el

ay
 (

m
s)

(c) Classes 2, 3 and 4 Delays

(averaged over a sliding window of 0.5 s)

50 602010

1

0

R
at

io
 o

f 
L

os
s 

R
at

es

0

3

4030
Time (s)

Class 3/Class 2
Class 4/Class 3

2

4

5

(d) Ratios of Loss Rates.

40 50 60
Time (s)

0.5

L
os

s 
R

at
e 

(%
)

1.5

1

0

Class 1

3020100

Class 4
Class 3
Class 2

2

2.5

(e) Loss Rates.

Total

Class 2 Class 4
Class 3

Class-2 Guarantee

Class 1

20

Time (s)
60504010 30200

100

80

60

40

0

T
hr

ou
gh

pu
t (

M
b/

s)

(f) Throughput.

Figure 9:Experiment 2: Router 2. The graphs show the service obtained by each class at the output link of Router 2.

29



Set enqueue dequeue Pred.
µpred

X s X s (Mbps)

1 11323 3140 1057 316 291

2 10723 2305 1092 340 305

3 3039 1512 1138 348 864

4 2573 668 1078 343 988

Table 3:Overhead Measurements.This table presents, for the four considered sets of service differentiation param-

eters, the average number of cycles (X) consumed by theenqueue anddequeue operations, the standard deviation

(s), and the predicted throughputµpred (in Mbps) that can be achieved. In the 1-GHz PCs we use, one cycle corre-

sponds to one nanosecond.

feedback algorithms achieve the desired service differentiation, and utilize the entire available bandwidth,

while maintaining stability throughout. Additional testbed experiments with variable loads are available in

[16], and give further empirical evidence of the stability and robustness properties of the feedback algo-

rithms.

7.3 Analysis of Overhead

Experiment 2 illustrated that our implementation in PC-routers with a 1 GHz processor can fully utilize

the capacity of a 100 Mbps link. We next present a back-of-the-envelope analysis of the overhead of our

implementation, where we attempt to predict the data rates that can be supported by our PC-router imple-

mentation, and where we measure the sensitivity of our implementation to the number of service constraints.

We will show measurements of theenqueue anddequeue operations for four different sets of service

differentiation parameters, tested for four traffic classes.

Set 1: Same differentiation as in Table 1.

Set 2: Set 1 with best-effort bounds from Set 1 removed.

Set 3: Set 2 with proportional differentiation from Set 1 removed.

Set 4: No service differentiation.

In the measurements we determine the number of cycles consumed for theenqueue anddequeue

procedures. The TSC register of the Pentium processor is read at the beginning and at the end of the

procedures, for each execution of the procedure.

We compiled our implementation with a code optimizer, in our case, we use thegccv2.95.3 compiler

[50] with the “-O2” flag set. The results of our measurements, collected under FreeBSD 4.5 andaltq-3.1 ,

are presented in Table 3, where we include the machine cycles consumed by theenqueue anddequeue

operations. The measurements are averages of over 500,000 datagram transmissions on a heavily loaded

link, using the same topology as in Figure 6. The measurements in Table 3 were collected at Router 1.

Measurements collected at Router 2 showed deviations of no more than±5% compared to Router 1.

30



Since theenqueue anddequeue operations are invoked once for each IP datagram, we can predict

the maximum throughput of a PC-router to be

µpred =
F

α + β
· P , (38)

whereF denotes the CPU clock frequency in Hz,α denotes the number of cycles consumed by theenqueue

operation,β denotes the number of cycles consumed by thedequeue operation, andP is the average size

of a datagram. Eqn. (38) is only an estimate since it neglects operations that occur in an interrupt context

(e.g., arrival of a packet at the input link). We point out, however, that operations performed in an interrupt

context must have a negligible overhead for the router to operate properly [40]. In the case of our implemen-

tation in 1 GHz PCs, we haveF = 109. Data from a recent report [5] indicates that the average size of an IP

datagram on the Internet isP ≈ 451 bytes. Using these values forP andF in the above equation shows that,

in the four sets of constraints considered, we estimate that our implementation can be run at data rates of at

least 291 Mbps.3 To forward packets at higher speeds, one can perform service rate adjustments only once

in n packet arrivals. Such sampling comes at the expense of the accuracy of the service differentiation, but

we did not observe much degradation in service differentiation for sampling intervals up to approximately

10-20 packets, which would be appropriate for Gbps links. We thus believe that our approach is viable at

high speeds.

We next evaluate the sensitivity of the performance as a function of the number of constraints. The

number of cycles consumed by thedequeue operation is independent of the set of constraints, since the

dequeue operation solely uses the rate allocation provided. From Table 3, we observe that the overhead

associated to the best-effort bounds (Set 3) is approximately 10% compared to a set with no service differen-

tiation (Set 4). The overhead is 29% when comparing a set with best-effort bounds and proportional service

differentiation (Set 1) to a set with proportional differentiation only (Set 2), which indicates that the over-

head incurred by best-effort bounds is dependent on the presence of proportional differentiation. This result

shows that the computation of the coefficientK(n), used for proportional differentiation, is more complex

when best-effort bounds are present. Proportional differentiation seems to incur more overhead than best-

effort bounds, which is essentially due to the computations that need to be performed to dynamically update

the value of the coefficientK(n). However, in the set of constraints considered, there is a larger number of

classes with proportional differentiation than classes with best-effort bounds, and thus, more computations

are needed to enforce proportional differentiation.

8 Conclusions

This paper has suggested improvements to the type of service guarantees that can be given in a class-

based service architecture without resource reservation. We introduced the concept ofbest-effort bounds.

3Previous measurements in [14] exhibited slightly more significant overhead under the same type of arrivals, but were collected

using an older version of our software, and an older version of the FreeBSD operating system.

31



which were defined as guarantees that emulated absolute guarantees in a network without admission control

and policing. We proposed mechanisms for routers that achieve best-effort bounds as well as proportional

guarantees by selectively dropping traffic and by adjusting the traffic rate allocated to classes.

We used control theory to design the adaptive rate allocation and dropping mechanisms, by relying

on feedback loops at link schedulers to enforce proportional differentiation of loss and delay and to give

traffic classes best-effort bounds to loss, throughput and delay. The feedback loops do not require prior

knowledge of traffic arrivals and do not require signaling. At times when not all best-effort bounds can be

satisfied simultaneously, the feedback-based mechanisms relax some of the bounds using a predetermined

precedence order.

We assessed the stability of our adaptive rate allocation and dropping mechanisms via simulation, and

through experiments in a testbed network of BSD PC-routers. Testbed measurements allowed us to show that

the implementation of the proposed mechanisms in 1 GHz PC-routers can fully utilize the available capacity

of 100 Mbps, while enforcing the desired service differentiation. The implementation of our proposed

mechanisms in PC-routers is available athttp://qosbox.cs.virginia.edu/software.html ,

and has been included in thealtq and KAME extensions to the BSD kernels.

As a final note, the mechanisms presented in this paper can be extended to include TCP congestion

control algorithms [6, 27], as shown in [15].

References

[1] http://qosbox.cs.virginia.edu/software.html .

[2] http://qosbox.cs.virginia.edu/snooplet.html .

[3] The FreeBSD project.http://www.freebsd.org .

[4] The KAME project.http://www.kame.net .

[5] Packet sizes and sequencing, May 2001.http://www.caida.org/outreach/resources/learn/

packetsizes .

[6] M. Allman, V. Paxson, and W. Stevens. TCP congestion control. IETF RFC 2581, April 1999.

[7] K. Åström and B. Wittenmark.Adaptive Control. Addison-Wesley, Reading, MA, 1995.

[8] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architecture for differentiated services.

IETF RFC 2475, December 1998.

[9] S. Bodamer. A scheduling algorithm for relative delay differentiation. InProceedings of IEEE HPSR’00, pages

357–364, Heidelberg, Germany, June 2000.

[10] U. Bodin, A. Jonsson, and O. Schelen. On creating proportional loss differentiation: predictability and perfor-

mance. InProceedings of IWQoS’01, pages 372–386, Karlsruhe, Germany, June 2001.

[11] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSerVation Protocol (RSVP). IETF RFC

2205, September 1997.

32



[12] K. Cho. A framework for alternate queueing: towards traffic management by PC-UNIX based routers. In

Proceedings of USENIX’98 Annual Technical Conference, pages 247–258, New Orleans, LA, June 1998.

[13] N. Christin.Quantifiable Service Differentiation for Packet Networks. PhD thesis, University of Virginia, August

2003.

[14] N. Christin and J. Liebeherr. The QoSbox: A PC-router for quantitative service differentiation in IP networks.

Technical Report CS-2001-28, University of Virginia, November 2001.ftp://ftp.cs.virginia.edu/

pub/techreports/CS-2001-28.pdf . In revision.

[15] N. Christin and J. Liebeherr. Marking algorithms for service differentiation of TCP traffic.Computer Communi-

cations, 2004. In print.

[16] N. Christin, J. Liebeherr, and T. F. Abdelzaher. A quantitative assured forwarding service. Technical Report CS-

2001-21, University of Virginia, August 2001.ftp://ftp.cs.virginia.edu/pub/techreports/

CS-2001-21.pdf .

[17] N. Christin, J. Liebeherr, and T. F. Abdelzaher. A quantitative assured forwarding service. InProceedings of

IEEE INFOCOM’02, volume 2, pages 864–873, New York, NY, June 2002.

[18] D. Clark and W. Fang. Explicit allocation of best-effort packet delivery service.IEEE/ACM Transactions on

Networking, 6(4):362–373, August 1998.

[19] R. Cruz. A calculus for network delay, part I: Network elements in isolation.IEEE Transactions on Information

Theory, 37(1):114–131, January 1991.

[20] R. Cruz. A calculus for network delay, part II: Network analysis.IEEE Transactions on Information Theory,

37(1):132–141, January 1991.

[21] B. Davie, A. Charny, J. Bennett, K. Benson, J.-Y. Le Boudec, W. Courtney, S. Davari, V. Firoiu, and D. Stiliadis.

An expedited forwarding PHB. IETF RFC 3246, March 2002.

[22] C. Dovrolis and P. Ramanathan. Proportional differentiated services, part II: Loss rate differentiation and packet

dropping. InProceedings of IWQoS’00, pages 52–61, Pittsburgh, PA, June 2000.

[23] C. Dovrolis and P. Ramanathan. Dynamic class selection: From relative differentiation to absolute QoS. In

Proceedings of ICNP’01, pages 120–128, Riverside, CA, November 2001.

[24] C. Dovrolis, D. Stiliadis, and P. Ramanathan. Proportional differentiated services: Delay differentiation and

packet scheduling. InProceedings of ACM SIGCOMM’99, pages 109–120, Boston, MA., August 1999.

[25] C. Dovrolis, D. Stiliadis, and P. Ramanathan. Proportional differentiated services: Delay differentiation and

packet scheduling.IEEE/ACM Transactions on Networking, 10(1):12–26, February 2002.

[26] L. Essafi, G. Bolch, and H. de Meer. Dynamic priority scheduling for proportional delay differentiated services.

Technical Report TR-I4-01-03, University of Erlangen, March 2001.

[27] S. Floyd and T. Henderson. The NewReno modification to TCP’s fast recovery algorithm. IETF RFC 2582,

April 1999.

[28] G. Franklin, J. Powell, and M. Workman.Digital control of dynamic systems. Addison-Wesley, Menlo Park,

CA, 3rd edition, 1998.

33



[29] B. Gaidioz, P. Primet, and B. Tourancheau. Differentiated fairness: Service model and implementation. In

Proceedings of IEEE HPSR’01, pages 260–264, Dallas, TX, May 2001.

[30] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured forwarding PHB group. IETF RFC 2597, June

1999.

[31] C. V. Hollot, V. Misra, D. Towsley, and W. Gong. On designing improved controllers for AQM routers supporting

TCP flows. InProceedings of IEEE INFOCOM’01, volume 3, pages 1726–1734, Anchorage, AK, April 2001.

[32] P. Hurley, J.-Y. Le Boudec, P. Thiran, and M. Kara. ABE: providing low delay service within best effort.IEEE

Networks, 15(3):60–69, May 2001. See alsohttp://www.abeservice.org .

[33] R. Jones. netperf: a benchmark for measuring network performance - revision 2.0. Information Networks

Division, Hewlett-Packard Company, February 1995. See alsohttp://www.netperf.org .

[34] A. Kumar, J. Kaur, and H. M. Vin. End-to-end proportional loss differentiation. Technical Report TR-01-33,

University of Texas, February 2001.

[35] M. Leung, J. Lui, and D. Yau. Characterization and performance evaluation for proportional delay differentiated

services. InProceedings of ICNP’00, pages 295–304, Osaka, Japan, November 2000.

[36] R. Liao and A. Campbell. Dynamic core provisioning for quantitative differentiated service. InProceedings of

IWQoS’01, pages 9–26, Karlsruhe, Germany, June 2001.

[37] J. Liebeherr and N. Christin. JoBS: Joint buffer management and scheduling for differentiated services. In

Proceedings of IWQoS’01, pages 404–418, Karlsruhe, Germany, June 2001.

[38] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. Feedback control real-time scheduling: Framework, modeling

and algorithms.Journal of Real Time Systems, 23(1–2), July 2002.

[39] Y. Lu, A. Saxena, and T. F. Abdelzaher. Differentiated caching services; A control-theoretical approach. In

Proceedings of the 21st International Conference on Distribute d Computing Systems, pages 615–624, Phoenix,

AZ, April 2001.

[40] J. Mogul and K. Ramakrishnan. Eliminating receive livelock in an interrupt-driven kernel.ACM Transactions

on Computer Systems, 15(3):217–252, 1997.

[41] Y. Moret and S. Fdida. A proportional queue control mechanism to provide differentiated services. InProceed-

ings of the International Symposium on Computer and Information Systems (ISCIS), pages 17–24, Belek, Turkey,

October 1998.

[42] T. Nandagopal, N. Venkitaraman, R. Sivakumar, and V. Barghavan. Delay differentiation and adaptation in core

stateless networks. InProceedings of IEEE INFOCOM’00, pages 421–430, Tel-Aviv, Israel, April 2000.

[43] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the differentiated services field (DS field) in the IPv4

and IPv6 headers. IETF RFC 2474, December 1998.

[44] K. Nichols, V. Jacobson, and L. Zhang. Two-bit differentiated services architecture for the Internet. IETF RFC

2638, July 1999.

[45] A. Parekh and R. Gallagher. A generalized processor sharing approach to flow control in integrated services

networks: The single-node case.IEEE/ACM Transactions on Networking, 1(3):344–357, June 1993.

34



[46] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. S. Jayram, and J. Bigus. Using control theory to achieve

service level objectives in performance management.Journal of Real-Time Systems, 23(1–2), July 2002.

[47] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching architecture. IETF RFC 3031, January

2001.

[48] H. Saito, C. Lukovszki, and I. Moldován. Local optimal proportional differentiated services scheduler for relative

differentiated services. InProceedings of IEEE ICCCN’00, pages 554–550, Las Vegas, NV, October 2000.

[49] M. Shreedhar and G. Varghese. Efficient fair queueing using deficit round-robin.IEEE/ACM Transactions on

Networking, 4(3):375–385, June 1996.

[50] R. Stallman.Using and Porting the GNU Compiler Collection (gcc). iUniverse Inc., 2000.

[51] D. Stiliadis and A. Varma. Latency-rate servers: a general model for analysis of traffic scheduling algorithms.

IEEE/ACM Transactions on Networking, 6(5):611–624, 1998.

[52] A. Striegel and G. Manimaran. Packet scheduling with delay and loss differentiation.Computer Communica-

tions, 25(1):21–31, January 2002.

[53] N. Taft, S. Bhattacharyya, J. Jetcheva, and C. Diot. Understanding traffic dynamics at a backbone POP. In

Proceedings of SPIE ITCOM Workshop on Scalability and Traffic Control in IP Networks, number 4526, Denver,

CO, August 2001.

[54] L. Zhang. Virtual clock: A new traffic control algorithm for packet switched networks.ACM Transactions on

Computer Systems, 9(2):101–125, May 1991.

35


