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Abstract

Blocking in queueing network models with �nite capacities can lead to deadlock situations.

In this paper, deadlock properties are investigated in queueing networks with multiple rout-

ing chains. The necessary and su�cient conditions for deadlock-free queueing networks with

blocking are provided. An optimization algorithm is presented for �nding deadlock-free capacity

assignments with the least total capacity. The optimization algorithm maps the queueing net-

work into a directed graph and obtains the deadlock freedom conditions from a speci�ed subset

of cycles in the directed graph. In certain network topologies, the number of deadlock freedom

conditions can be large, thus, making any optimization computationally expensive. For a special

class of topologies, so-called tandem networks, it is shown that a minimal capacity assignment

can be directly obtained without running an optimization algorithm. Here, the solution to the

minimal capacity assignment takes advantage of the regular topology of tandem networks.

�This work was supported by the National Science Foundation under Grant No. CCR-90-11981.



1 Introduction

Queueing network models are frequently applied for performance evaluation of computer systems

and communication networks. Numerous methods are available for analyzing queueing networks

under the assumption that all stations have in�nite capacities. However, in actual systems the

resources have �nite capacities, and queueing networks with �nite capacities should be used for

performance analysis.

In a queueing network with �nite capacities, each station has only a �nite waiting room for

bu�ering jobs. Blocking arises due to the limitations imposed by the capacity of these stations. In

particular, blocking occurs when the ow of jobs through one station is interrupted due to another

station that has reached its full capacity. The set of rules that dictate when a station becomes

blocked or unblocked is commonly referred as the blocking mechanism. In this work, we consider

the so-called blocking-after-service or BAS mechanism, also referred to as Type 1 or manufacturing

blocking mechanism [1]. In BAS, a job which has completed service at a station i and attempts

to proceed to station j must �nd an empty bu�er space in station j. If station j is full, the job

is blocked and forced to wait in station i's server until it can enter destination station j. A server

which contains a blocked job cannot serve other jobs waiting in the queue.

Finite station capacities and blocking can lead to a deadlock situation in the queueing network.

As an example, suppose a job has �nished service at a station, say station 1, and wants to proceed

to some other station, say station 2. If the waiting room of station 2 is full, the job is blocked in the

server of station 1. Suppose another job has �nished service at station 2 and has selected station 1

as its next station. If station 1's waiting room is also full, this job is blocked at station 1. In this

situation, the jobs in the servers of both stations 1 and 2 are permanently blocked. As a result, a

deadlock situation arises.

There are two approaches to solve deadlock problems in �nite capacity queueing networks.

First, one can extend the blocking mechanism by providing additional algorithms that dynamically

resolve a deadlock situation. For example, some deadlocks can be resolved by allowing blocked

jobs to select an alternate destination station. Note however, that adding a deadlock resolution

mechanism signi�cantly increases the complexity of the queueing network model, and, as a result,

may render an analytical solution of the model intractable. Second, one can select the waiting

room at each station su�ciently large such that deadlocks cannot occur. This solution requires

knowledge of so-called deadlock freedom conditions, that is, conditions on the size of the waiting

room of the stations which prevent deadlock situations. An advantage of the second approach is

that it does not involve changes to the blocking mechanism.

In this study, we take a preventive approach to deadlocks and derive deadlock freedom conditions

for �nite capacity queueing networks with BAS blocking and multiple routing chains. For queueing

networks with a single routing chain, Kundu and Akyildiz [4] proved that a network is deadlock-

free if the number of jobs in the network is less than the capacity of the directed cycle with

minimal waiting room. However, these conditions for deadlock freedom cannot be straightforwardly

extended to networks with multiple routing chains since a deadlock may result from dependencies

between jobs from di�erent routing chains.
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Figure 1: Blocking Network with 2 chains.

We demonstrate these dependencies in the network model shown in Figure 1. The Figure depicts

a queueing network with two stations and two routing chains. We denote by Bir the waiting room,

referred to as bu�er, of chain r at station i and by Kr the total number of jobs in chain r. Let the

parameters be given by:

K1 = 5; K2 = 6

Capacity of B11 = 3; Capacity of B21 = 3

Capacity of B12 = 4; Capacity of B22 = 3

In Figure 1, the job from chain 2 residing in the server of station 1 cannot proceed to the full bu�er

B22. Thus, the job waits in the server until space in B22 becomes available. On the other hand, the

job in the server of station 2 cannot enter bu�er B11, since B11 is full. Thus, a deadlock situation

occurs, even though the conditions for deadlock freedom in [4] are satis�ed for each routing chain

in isolation.

We show that deadlock situations in multiple-chain queueing networks always occur in so-called

bu�er cycles. A bu�er cycle is a cyclic sequence of bu�ers in the networks where the bu�ers may

belong to di�erent routing chains. The set of feasible bu�er cycles is obtained from the transition

probability matrices of the routing chains. We show that a queueing network with multiple routing

chains is deadlock-free if and only if each bu�er cycle is deadlock-free.

Once the deadlock freedom conditions are available they can be constructively applied to �nd

an assignment of capacities to the bu�ers of each station such that deadlocks cannot occur. Of

particular interest are capacity assignments which yield a deadlock-free network with the least total

capacity. We refer to these assignments as minimal capacity assignments.

We present an optimization algorithm which yields a minimal capacity assignment for multiple-

chain queueing networks with arbitrary topology. The set of bu�er cycles is obtained by mapping

the queueing network into a directed graph such that each cycle in the graph corresponds to a

bu�er cycle in the queueing network. The minimal capacity assignment is obtained with standard

linear optimization technique.

A potential drawback of the optimization algorithm is its computational complexity which

makes the algorithm impractical for networks with a large number of bu�er cycles. As a worst

case, we consider so-called tandem networks, that is, networks where all stations are connected in

a sequence. In tandem networks with N stations and R routing chains, the number of bu�er cycles
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is given by RN . By taking advantage of the regular topology in a tandem network we can provide

a minimal capacity assignment without running an optimization algorithm.

The remaining sections of this study are structured as follows. In Section 2 we describe the

class of queueing models which is considered in this study. The conditions for deadlock freedom

are stated and proved in Section 3. In Section 4 we de�ne a capacity assignment to be minimal if it

achieves deadlock freedom with the least total capacity. Then we present an optimization algorithm

which generates a minimal capacity assignment for arbitrary network topologies. In Section 5 we

show that a minimal capacity assignment can be directly given if the network has a so-called tandem

topology. In Section 6 we conclude our results.

2 Model Description

We consider a closed queueing network � = (N ;R;P) with the following properties:

� The network contains a �nite set N of stations and a �nite set R of disjoint routing chains.

Each job in the network belongs to exactly one routing chain. Let Ri � R denote the set

of routing chains whose jobs visit station i. Let Nr � N denote the set of stations visited

by jobs from routing chain r. P is a set of matrices P = (P1; P2; : : : ; PjRj) where Pr is the

jN j � jN j transition probability matrix for routing chain r. The elements of Pr are denoted

by pij;r with the following interpretation. A job of routing chain r which has received service

by station i proceeds to station j with probability pij;r. Throughout the paper, we assume

that pij;r > 0 implies that r 2 Ri and r 2 Rj .

� Each station i has a single server. The service time distribution and the scheduling discipline

of a station is arbitrary, but non-preemptive.

� Each station keeps separate bu�ers for jobs from di�erent routing chains. Bir denotes the

bu�er at station i (excluding the server) for jobs from routing chain r. Each bu�er may

accommodate only a �nite number of jobs. Let � be an assignment of capacities to the

bu�ers of �, i.e.,

� : fBirji 2 N ; r 2 Rig ! f0; 1; 2; : : : : : :g (1)

A bu�er can have in�nite capacity, i.e., �(Bir) = 1, or no capacity at all, i.e., �(Bir) = 0.

The total capacity of station i is computed by
P

r2Ri
�(Bir) + 1.

� The jobs from chain r in � is �xed and given by Kr. The total number of jobs in the network

is denoted by

K =
X
r2R

Kr (2)

� The number chain-r jobs in bu�er Bjr cannot exceed its capacity �(Bjr). Assume a job of

chain r has completed service at some station i and wants to proceed to a station j. If Bjr is

saturated, i.e., �(Bjr) jobs are waiting in Bir, the job is blocked at bu�er Bjr and must reside

in the server of station i until a place in Bjr becomes available. A server which contains
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a blocked job cannot serve other jobs. The described blocking mechanism is referred to as

blocking-after-service or BAS.

3 Conditions For Deadlock Freedom

In this section we present the deadlock freedom conditions for a queueing network as described in

Section 2. The theorem for deadlock freedom (DLF Theorem) is stated in terms of conditions that

must hold for each bu�er cycle in the network. A bu�er cycle is de�ned as a cyclic sequence of

bu�ers such that each bu�er in the sequence belongs to a station which can have a blocked job at

the next bu�er of the sequence. A formal de�nition of a bu�er cycle is given as follows.

De�nition 1 A bu�er cycle is a sequence of bu�ers C = (Bi1r1 ; Bi2r2 ; : : : ; BiM�1rM�1
; BiM rM )

such that
pimim+1;rm+1 > 0 and rm 2 Rim for all 1 � m < M

piM i1;r1 > 0 and rM 2 RiM

(3)

Let C denote the set of all bu�er cycles in �.

The next de�nition provides the set of stations in bu�er cycle C that may contain a job from

routing chain r which is blocked at a bu�er in the same cycle.

De�nition 2 The set of stations with bu�ers from routing chain r in bu�er cycle C is de�ned by

S(C)
r = fi j Bir 2 Cg (4)

For example, C1 = (B11; B21) and C2 = (B11; B22) are two bu�er cycles in the network shown

in Figure 1. From De�nition 2 we obtain the sets of stations with potentially blocked jobs to be

S
(C1)
1 = f1; 2g, S

(C1)
2 = ; and S

(C2)
1 = f1g, and S

(C2)
2 = f2g, for cycles C1 and C2, respectively.

Next we state the conditions for deadlock freedom in a queueing network with multiple routing

chains. Theorem 1 states that for each bu�er cycle C there must exist at least one routing chain r

which, at the same time, cannot saturate all its bu�ers in cycle C and have S
(C)
r jobs blocked at

some other bu�ers in the cycle.

Theorem 1 (DLF Theorem) A multiple chain queueing network � is deadlock-free if and only

if for all C 2 C there exists a routing chain r 2 R such that:

X
i2S

(C)
r

�(Bir) + jS(C)
r j > Kr (5)

For a given bu�er cycle C and a given routing chain r, the term on the left of (5) is said to be

the DLF term of routing chain r in bu�er cycle C. We say that routing chain r satis�es the

DLF condition in bu�er cycle C, if inequality (5) holds for chain r in bu�er cycle C. A capacity

assignment � is said to satisfy the DLF conditions for bu�er cycle C, if there is at least one

routing chain which satis�es the DLF condition in cycle C. A capacity assignment � is said to be

deadlock-free if � satis�es the DLF conditions for all bu�er cycles C 2 C.

5



Proof:

Necessity: Assume there exists a cycle C = (Bi1r1 ; Bi2r2 ; : : : ; BiM�1rM�1 ; BiMrM ) such that for all

r 2 R we obtain: X
im2S

(C)
r

�(Bimr) + jS(C)
r j � Kr (6)

Then, a state is feasible where all bu�ers in C are saturated, i.e., Bimrm holds �(Bimrm) jobs of

chain rm for all 1 � m �M , the server of each station im contains a job from chain rm+1 if m < M ,

and the server of station iM contains a job from chain r1. Note that the entire cycle will have jS
(C)
r j

servers which contain a job from chain r. There exists a positive probability that each job in the

server of station im (m < M) has picked station im+1 as destination station, and the job in the

server of station iM has selected station station i1 as its next station. In this state, no server can

release a job and eventually, each station im is blocked. Thus, a deadlock persists.

Su�ciency: Assume that assignment � satis�es the DLF condition for all bu�er cycles, but

the queueing network is in a deadlock state. Then there must exist a permanently blocked

job in the server of a station, say i1. Assume that the blocked job is from routing chain r2
(r2 2 Ri1). Assume that the blocked job in the server of station i1 is blocked at a bu�er,

say Bi2r2 of station i2, that is, Bi2r2 contains �(Bi2r2) jobs. Station i2 itself must be blocked,

otherwise a space in Bi2r2 will eventually become available and station i1 would not be perma-

nently blocked. The job in the server of station i2 is blocked at a saturated bu�er, say Bi3r3

of station i3. We can continue to apply this argument. Since there is only a �nite number

of stations in the network, we will eventually encounter a job from routing chain rM+1 in the

server of some station, say station iM , which is blocked at a saturated bu�er Bik iM+1 of a pre-

viously considered station ik. Then, bu�ers BikrM+1 ; Bik+1rk+1 ; : : : ; BiMrM de�ne a bu�er cycle

C = (BikrM+1 ; Bik+1rk+1 ; : : : ; BiM�1rM�1 ; BiM rM ). Note that a job from chain rm is blocked in the

server of station im�1 if Bimrm is a bu�er in the cycle. Therefore, jS
(C)
r j jobs from chain r are

blocked in servers of stations which have a bu�er in the cycle. Since all bu�ers in the cycle are

saturated, there are
P

im2S
(C)
r

�(Bimr) jobs from routing chain r in the bu�ers of the cycle. The

sum for each chain r must be less or equal the total number of jobs Kr, otherwise the shown

construction would not have been feasible. This implies that for all routing chains r with bu�ers

in cycle C we have: X
im2S

(C)
r

�(Bimr) + jS(C)
r j � Kr (7)

However, this contradicts our assumption that � satis�es the DLF condition for all cycles. 2

If the DLF conditions (5) are satis�ed for a bu�er cycle C, they are clearly satis�ed for any

cycle which contains the bu�ers of C as a subset. Therefore, to guarantee deadlock freedom of

a network, it is not required to test the DLF conditions for all bu�er cycles. This observation is

formalized in the following lemma:
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Lemma 1 Given a multiple chain queueing network � and the set of all bu�er cycles C of �. Let
~C be a maximal subset of C such that for any two cycles C 2 ~C and C0 2 ~C we have C 6� C0: 1 Then,

� is deadlock-free if the DLF condition (5) is satis�ed for all C 2 ~C.

Proof: If C � C0, then S
(C)
r � S

(C0)
r for all r 2 R. Therefore, if a routing chain r satis�es the DLF

condition in cycle C, that is,
P

im2S
(C)
r

�(Bimr) + jS
(C)
r j > Kr; then chain r also satis�es the DLF

condition in all cycles C0 with C � C0. Now the claim follows immediately since ~C is a maximal

subset of C. 2

4 Deadlock-Free Capacity Assignment Algorithm

With the deadlock freedom conditions of Theorem 1, we can decide whether a given capacity

assignment may result in deadlock situations. In this section, we will show that Theorem 1 can be

applied in a constructive manner. In particular, we will use Theorem 1 to develop an algorithm

which �nds a deadlock-free capacity assignment with the least total capacity. Such a capacity

assignment is referred to as minimal.

De�nition 3 A deadlock-free capacity assignment �� for a queueing network � is minimal if for

all deadlock-free assignments � for � it holds that

X
i2N

X
r2Ri

��(Bir) �
X
i2N

X
r2Ri

�(Bir) (8)

Hence, any capacity assignment which allocates less total capacity to the bu�ers of the queueing

network than a minimal capacity assignment will have a deadlock. In the remaining part of this

section we will present an algorithm which �nds a minimal capacity assignment. The algorithm is

executed in two steps:

1. Find a maximal subset ~C of bu�er cycles, as de�ned in Lemma 1, and establish the DLF

conditions for each cycle.

2. Formulate an optimization problem of minimizing the total number of bu�er capacities, sub-

ject to the constraints that the DLF conditions be satis�ed for all cycles C 2 ~C.

In the following subsections we will discuss the steps of the algorithm in detail. At the end of the

section, we present an example of the optimization algorithm.

1For two bu�er cycles C and C 0 we say that C � C
0 if the set of bu�ers in C is a subset of the set of bu�ers in C 0.
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4.1 Finding Bu�er Cycles

We approach the problem of �nding the bu�er cycles of a queueing network as the problem of

�nding cycles in a directed graph. The following lemma allows to map the queueing network into

a directed graph.

Lemma 2 Given a multiple chain queueing network �. Obtain from � a directed graph G� =

(V�; E�) with set of vertices V� and set of arcs E� by:

(i) V� = fBir j i 2 N ; r 2 Rig,

(ii) E� = f(Bir; Bjs) j pij;s > 0g.

Then, there exists a one-to-one mapping between the bu�er cycles in � and the cycles in G�.

Proof: The proof follows immediately from the de�nition of a bu�er cycle in De�nition 1 and

the construction of the directed graph. 2

The cycles in the directed graph can be obtained with any cycle-�nding algorithm for directed

graphs [3]. Note that with Lemma 1 we do not need to �nd all cycles in G�. Rather, motivated by

Lemma 1, we are interested in only those cycles which correspond to set ~C as given in Lemma 1,

that is, a maximal subset of cycles where no cycle is fully contained in another cycle. In [2], we

present an e�cient algorithm which �nds the subset ~C of relevant bu�er cycles.

4.2 Optimization

From the set of bu�er cycles as obtained in Subsection 4.1 we can generate the maximal subset

of bu�er cycles ~C that must be examined for deadlock freedom of the queueing network. If the

DLF condition is satis�ed for all bu�er cycles in ~C, then the network is deadlock-free. Here, we

present two approaches for �nding a minimal capacity assignment for queueing networks. The

�rst approach is based on integer programming techniques and guarantees a minimal capacity

assignment. The second approach is a heuristic method which always provides a deadlock-free

capacity assignment, but may yield a suboptimal solution. The advantage of the heuristic method

is that it is computationally less demanding than solving the integer program.

4.2.1 Optimization with Integer Programming

A minimal capacity assignment �� satis�es the DLF condition in all bu�er cycles with the least

total number of bu�er capacities. Thus, for a given network �, a minimal capacity assignment is

obtained by solving the following optimization problem:

Find �� which minimizes
X
i2N

X
r2Ri

��(Bir) subject to the constraints:

(8C 2 ~C)(9r 2 R) :
X

i2S(C)
r

��(Bir) + jS(C)
r j > Kr

(9)
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By indexing the cycles in ~C, i.e., ~C = fC1; C2; : : : ; Cj~Cjg, the optimization problem can be written

as 2:
minimize

X
i2N

X
r2Ri

��(Bir)

subject to _
S
(Cl)
r 6=;

X
i2S

(Cl)
r

��(Bir) + jS(Cl)
r j > Kr l = 1; 2; : : : ; j~Cj

��(Bir) � 0 i 2 N ; r 2 Ri

(10)

By introducing additional (0; 1)-variables which allow us to replace the disjunctions in the con-

straints, we can state the optimization problem as an integer program:

minimize
X
i2N

X
r2Ri

��(Bir)

subject to0
B@ X
i2S

(Cl)
r

��(Bir)

1
CA � ylr � (Kr � S(Cl)

r + 1) � 0 l = 1; 2; : : : ; j~Cj; S(Cl)
r 6= ;

X
S
(Cl)
r 6=;

ylr � 1 l = 1; 2; : : : ; j~Cj

��(Bir) � 0 i 2 N ; r 2 Ri (11)

ylr 2 f0; 1g l = 1; 2; : : : ; j~Cj; S(Cl)
r 6= ;

The optimization of the equation system in (12) can be solved with any program package for integer

linear programs. The solution of the integer program provides a minimal capacity assignment ��

for network �. Note that, in general, the system will have more than one optimal solution, since

an optimization problem with the above structure will show considerable degeneracy.

4.2.2 Heuristic Approach

The number of constraints and variables in the optimization may become too large for a solution

by integer programming. As an alternative, we present in Algorithm 1 an approximate method

for allocating bu�er capacities. Algorithm 1 consecutively assigns capacities to the bu�er Bir

which eliminates the most DLF conditions with the smallest bu�er capacity. Since the algorithm

terminates only if all DLF conditions are satis�ed, we obtain a deadlock-free assignment. However,

there is no guarantee that the solution is optimal. In the example given in the Subsection 4.3 we

will see that the approximate solution yields very accurate results, often identical with an optimal

solution.

2We use the symbol `_' to denote the disjunction operator.
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Input: ~C, the maximal subset of bu�er cycles in � where no cycle is a subset

of another cycle.

Output: ��, a deadlock-free capacity assignment for �.

1. Cir := fC 2 ~C j Bir 2 Cg

2. �min(Bir) := minfKr � jS(C)
r j+ 1 j C 2 Cir; S

(C)
r 6= ;g

3. Select (i0; r0) such that
jCi0r0 j

�min(Bi0r0)
= min

�
jCirj

�min(Bir)
j Cir � ~C

�
.

4. ��(Bi0r0) := �min(Bi0r0)

5. ~C := ~C n Ci0r0 .

6. if ~C 6= ; then goto Step 1.

Algorithm 1.

4.3 Example

Next we apply the minimal capacity assignment algorithm to an example3. Figure 2 depicts a

queueing network with three routing chains. The network contains 429 elementary bu�er cycles,

that is, bu�er cycles where no bu�er appears twice. However, there exists a maximal subset of

bu�er cycles where no cycle is contained in another cycle with 19 elements. Thus, with Lemma 1,

only 19 bu�er cycles must be considered for �nding a minimal capacity assignment. These cycles

are as follows:

C1 = (B1 1; B2 1)

C2 = (B9 2; B102)

C3 = (B5 3; B8 3; B103; B63)

C4 = (B2 1; B4 1; B101)

C5 = (B2 1; B4 1; B51; B102)

C6 = (B2 1; B4 1; B52; B83; B103)

C7 = (B2 1; B4 1; B52; B102)

C8 = (B2 1; B4 1; B72; B102)

C9 = (B4 2; B5 1; B83; B103; B33)

C10 = (B4 2; B5 1; B83; B103; B92; B32)

C11 = (B4 2; B5 1; B102; B33)

C12 = (B4 2; B5 2; B83; B103; B33)

3More examples of minimal capacity assignment for various network topologies are given in [5].
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Figure 2: Multiple Chain Queueing Network.

C13 = (B4 2; B5 2; B83; B103; B92; B32)

C14 = (B4 2; B5 2; B102; B33)

C15 = (B4 2; B101; B33)

C16 = (B4 2; B101; B92; B32)

C17 = (B4 2; B7 2; B102; B33)

C19 = (B5 3; B102; B63)

In Table 1 we show the solution of the optimization for di�erent values of K = (K1; K2; K3) 4.

We also include the results obtained with the heuristic method given in Algorithm 1. Table 1

only depicts non-zero capacity assignments. Note that for all values of K, the heuristic method of

Algorithm 1 provides results which are very close to or identical with an optimal solution.

K1 = 10 K1 = 46 K1 = 3

K2 = 10 K2 = 4 K2 = 3

K3 = 10 K3 = 125 K3 = 3

minimal heuristic minimal heuristic minimal heuristicX
i2N

X
r2Ri

��(Bir) 36 37 175 175 8 8

��(B21) 9 9 45 45 2 2

��(B42) 10 10 4 4 3 3

��(B102) 9 10 4 4 3 3

��(B63) 7 9 122 122 0 0

Table 1: Results for Example.

4The optimizations were solved with the programming package LINDO [8]
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5 Deadlock-Free Capacity Assignments in Tandem Networks

The computational complexity of the capacity assignment algorithm presented in Section 4 increases

with the size of ~C, the maximal subset of cycles where no bu�er cycle is contained in another cycle.

For some networks the size of ~C can make the optimization algorithm impractical. As a worst case,

.

...
.
...

.

...
. . . 

. . . 

. . . 

. . . 21

22

23

2R1R

13

12

11B

B

B

B

B

B

B

B

B

B

B

BNR

N3

N2

N1

Figure 3: Tandem Network.

consider the network in Figure 3. Here ~C is identical with the set of all bu�er cycles in the network.

Note that in the queueing network in Figure 3, the set ~C contains RN cycles. In the following we

show that the e�ort to obtain a minimal capacity assignment can be greatly reduced, if we take

advantage of networks with a regular topology such as the network shown in Figure 3.

5.1 Minimal Capacity Assignments for Tandem Networks

We refer to networks which have a topology as shown in Figure 3 as tandem networks. Tandem

networks can be formally de�ned as follows.

De�nition 4 A tandem network � = (N ;R) is a multiple chain queueing network � = (N ;R;P)

with

Ri = R for all i 2 N (12)

and for each station i 2 N there exists a station i0 2 N (i 6= i0) such that for all r 2 R:

pij;r =

(
1 if j = i0

0 if j 6= i0
(13)

In a tandem network, each station has a bu�er for all routing chains, i.e., Ri = R for all i 2 N ,

and jobs from each routing chain can visit all stations, i.e., Nr = N for all r 2 R. Each bu�er

cycle in a tandem network contains one bu�er from each station, and the the length of each bu�er

cycle is equal to jN j.
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Our main result in this section is that minimal capacity assignments in tandem networks can

be provided without running any optimization algorithm. The result is presented in the following

theorem where we state that a minimal assignment for tandem networks is obtained by allocating

non-zero capacities to the bu�ers of only one station.

Theorem 2 For a tandem network � = (N ;R), the following capacity assignments ��
i (i 2 N )

are minimal:

��
i (Bjr) =

8>>>>>>>>>>><
>>>>>>>>>>>:

Kr if j = i and K �Kr � jN j

K � jN j+ 1 if j = i and K � jN j > K �Kr

0 if j = i and jN j > K

0 if j 6= i

for j 2 N and r 2 R:

(14)

Note that Theorem 2 de�nes a set of jN j di�erent capacity assignments, that is, there is one

capacity assignment ��
i for each station i 2 N . The remainder of this section contains the proof

of Theorem 2. The proof consists of two parts. First we must show that the capacity assignments

given above do not allow deadlock situations. Secondly, we have to show that any capacity assign-

ment, which assigns less total bu�er capacities to the stations of the tandem network will result

in a deadlock. The second part of the proof requires considerable e�ort since we must e�ectively

construct a deadlock for a large class of capacity assignments. In the next subsection, we present

a set of technical lemmas which simplify the second part of the proof. Following is the proof of

Theorem 2.

remark: Note that the network shown in Figure 1 also is a tandem network. Thus, with Theorem 2

we can give two minimal capacity assignments, ��
1 and �

�
2. Assuming the same network parameters

as in Section 1 we have jN j = 2 and K = K1 + K2 = 11. Therefore, ��
1 and ��

2 assign capacities

as shown here:
��
1(B11) = 5 ��

2(B11) = 0

��
1(B12) = 6 ��

2(B12) = 0

��
1(B21) = 0 ��

2(B21) = 5

��
1(B22) = 0 ��

2(B22) = 6

It can be easily veri�ed that ��
1 and ��

2 are the only minimal capacity assignment for the tandem

network in Figure 1. However, for some tandem networks, there may exist minimal capacity

assignments which are di�erent from the assignments given in Theorem 2. For example, in a

tandem network with jN j = 3, R = f1; 2g, and K1 = K2 = 3, a capacity assignment �0 with

�0
ir = 1 (for i = 1; 2; 3 and r = 1; 2) is minimal.

13



5.2 Properties of Tandem Networks

In tandem networks, a violation of a DLF condition by a routing chain r can be easily detected if

the number of stations in the tandem network is equal to the number of jobs of the routing chain,

that is, Kr = jN j. This assertion is shown in Lemmas 3 and 4. In Lemmas 5 and 6, we show how to

modify the structure of tandem networks such that we can take advantage of Lemmas 3 and 4, yet,

any deadlock in the modi�ed network corresponds to a deadlock in the original network. Lemma 7

presents a modi�cation of a tandem network which has a routing chains r such that Kr < jN j. The

modi�cation is deadlock preserving, that is, any deadlock in the modi�ed network can be extended

to a deadlock situation in the original network.

Lemma 3 Given a tandem network � = (N ;R). Let � be a capacity assignment for � such thatP
i2N �(Bir) � Kr + 1 and Kr = jN j for some routing chain r 2 R. Let C be a bu�er cycle in

� such that jS
(C)
r j > 0. If routing chain r satis�es the DLF condition for cycle C then it does not

satisfy the DLF condition in any bu�er cycle C0 with S
(C0)
r = N n S

(C)
r . (5)

Thus, if the number of jobs in a routing chain is equal to the number of stations, and the total

capacity which is assigned to the bu�ers of this routing chain exceeds the number of stations by at

most one, we can always �nd a bu�er cycle such that the routing chain does not satisfy the DLF

condition.

Proof: Assume a capacity assignment � and a routing chain r 2 R with
P

i2N �(Bir) � Kr + 1.

Let C be a bu�er cycle in � such that chain r satis�es the DLF condition, i.e.,

X
i2S

(C)
r

�(Bir) + jS(C)
r j > Kr (15)

Now assume a bu�er cycle C0 with S
(C0)
r = N n S(C)

r . Then, we obtain for the DLF term of chain

r in cycle C0:

X
i2S

(C0)
r

�(Bir) + jS(C0)
r j =

X
i2S

(C0)
r

�(Bir) +
�
jN j � jS(C)

r j
�

(16)

�

0
B@Kr + 1�

X
i2S

(C)
r

�(Bir)

1
CA+

�
Kr � jS(C)

r j
�

(17)

< Kr + 1 (18)

The equality in (16) follows from S
(C0)
r = N n S

(C)
r . For (17) we use

P
i2N �(Bir) � Kr + 1 and

Kr = jN j. Finally, we obtain (18) from (15). Thus, the DLF condition of chain r in cycle C0 is not

satis�ed. 2

5For two sets A and B, we use A n B to denote the relative complement of B with respect to A, i.e., A n B :=

fx 2 A j x 62 Bg.
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The following lemma provides an even stronger result. Similar to Lemma 3, we assume that the

number of stations in the tandem network is equal to the number of jobs of a particular routing

chain. Here, however, we assume that the total capacities assigned to the bu�ers of the routing

chain is less than the number of stations. Then we can divide the stations of the tandem network

into two sets such that the DLF condition of the routing chain is violated in both sets.

Lemma 4 Given a tandem network � = (N ;R). Let � be a capacity assignment for � such thatP
i2N �(Bir) < Kr and Kr = jN j for some routing chain r 2 R. Then N can be partitioned into

two disjoint sets N1 and N2 such that

(a)
X
i2N1

�(Bir) + jN1j � Kr, and

(b)
X
i2N2

�(Bir) + jN2j � Kr.

Proof: We partition N , the set of all stations, into two subsets Z and NZ . Z denotes the set of

stations to which � assigns no bu�ers to chain r. NZ is the set of stations with non-zero bu�er

capacities for chain r. Z and NZ are given by:

Z = fi 2 N j �(Bir) = 0g

NZ = fi 2 N j �(Bir) > 0g

Input: A set NZ = fi 2 N j �(Bir) > 0g.

Output: Two sets X and Y such that X \ Y = ;, X [ Y = NZ ,

and
P

i2X �(Bir) + jX j � jN j.

begin

1. X := ;;

2. Y := ;;

3. while (NZ 6= ;) do

4. Select v such that �(Bvr) = maxj2NZf�(Bjr)g;

5. if
P

i2X �(Bir) + jX j+ �(Bvr) + 1 � jN j then

6. X := X [ fvg;

7. else

8. Y := Y [ fvg;

9. endif

10. NZ := NZ n fvg;

11. endwhile

end

Algorithm 2.
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Next we apply Algorithm 2 to partition NZ into two disjoint sets X and Y . Algorithm 2 is

constructed such that after termination of the algorithm the following holds:

X
i2X

�(Bir) + jX j � jN j (19)

Since
P

i2N �(Bir) < jN j we have jZj > 0. Therefore, we can always select a subset Z1 � Z such

that: X
i2X

�(Bir) + jX j+ jZ1j = jN j (20)

Note that by construction, sets X , Y , and Z have the following properties:

jN j = jX j+ jYj+ jZj (21)

jN j >
X
i2X

�(Bir) +
X
i2Y

�(Bir) (22)

By setting Z2 := Z n Z1 we obtain from (20), (21), and (22):

X
i2Y

�(Bir) + jYj+ jZ2j < jN j (23)

Next we de�ne

N1 := X [ Z1 (24)

N2 := Y [ Z2 (25)

Then, equation (20) shows the correctness of claim (a) in Lemma 4, and equation (23) shows the

correctness of claim (b) in Lemma 4. 2

Lemmas 3 and 4 allow to make statements regarding the deadlock properties of routing chains

where the number of jobs is equal to the number of stations in the tandem network. The next two

lemmas, Lemmas 5 and 6, show how to modify a tandem network network such that we can take

advantage of Lemmas 3 and 4.

Lemma 5 Given an arbitrary network � = (N ;R;P), and �, a capacity assignment for �. Con-

sider a routing chain r 2 R with Kr jobs. Assume reduce the number of jobs in chain r by one and

de�ne a new capacity assignment �0 which di�ers from � in the capacity assignment to only one

bu�er Bjr with �(Bjr) > 0 as follows:

�0(Biq) =

(
�(Biq)� 1 if q = r and i = j

�(Biq) otherwise

Then � violates the DLF condition for chain r with Kr jobs in a bu�er cycle, if �0 violates the

DLF condition for chain r with Kr � 1 jobs in the same bu�er cycle.
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Lemma 5 says that given a routing chain with a large capacity assigned to its bu�ers, i.e.,
P

i2N �(Bir)

> Kr, we can reduce both the capacity assignments and the number of jobs such that any deadlock

in the modi�ed network also results in a deadlock in the unmodi�ed network.

Proof: Assume that chain r has Kr jobs, and suppose a bu�er cycle C in � such that capacity

assignment �0 results in a violation of the DLF condition of routing chain r in cycle C, i.e.,

X
i2S

(C)
r

�0(Bir) + jS(C)
r j � Kr � 1 (26)

If j 62 S
(C)
r we obtain for assignment �:

X
i2S

(C)
r

�(Bir) + jS(C)
r j =

X
i2S

(C)
r

�0(Bir) + jS(C)
r j < Kr (27)

Obviously, the DLF condition is also violated with capacity assignment �, and Kr jobs in chain r.

On the other hand, if j 2 S
(C)
r , the following holds:

X
i2S

(C)
r

�(Bir) + jS(C)
r j =

X
i2S

(C)
r

�0(Bir) + 1 + jS(C)
r j (28)

Equations (26) and (28) result in:

X
i2S

(C)
r

�(Bir) + jS(C)
r j � Kr (29)

Again, the DLF condition for cycle C with capacity assignment � is violated. 2

In Lemma 6 we show how to modify a tandem network such that at least one routing has more

jobs than the modi�ed network has stations. Lemma 6 uses Algorithm 3 to perform the desired

modi�cations to the tandem network.

Lemma 6 Given a tandem network � = (N ;R) and a capacity assignment � for �. Assume the

following conditions hold:

(�1)
X
i2N

�(Bir) � Kr for all r 2 R, and

(�1)
X
r2R

Kr � jN j.

Algorithm 3 generates from � a tandem network �0 = (N 0;R0) with N 0 � N and R0 � R, such that

(1) Kr � jN 0j for at least one r 2 R0.

(�1) If �0 is not deadlock-free, then � is not deadlock-free.
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Input: Tandem network � = (N ;R) which satis�es properties (�1) and (�1)

in Lemma 6.

Output: Tandem network �0 = (N 0;R0) with N 0 � N and R0 � R.

�0 satis�es (1) and (�1) in Lemma 6.

begin

1. N (1) := N ;

2. R(1) := R;

4. n := 1;

5. while max
q2R(n)

fKqg < jN (n)j do

6. Select r with Kr = min
q2R(n)

fKqg;

7. Z(n) :=
n
j 2 N (n) j �(Bjr) = 0

o
;

8. if Kr > jN (n)j=2 then

9. Select Z
(n)

� Z(n) with jZ
(n)
j = jN (n)j �Kr;

10. else

11. Select Z
(n)

� Z(n) with jZ
(n)
j = Kr;

12. endif

13. N (n+1) := N (n) n Z
(n)

;

14. R(n+1) := R(n) n frg;

15. n := n + 1;

16. endwhile

end

Algorithm 3.

Proof: The proof is performed in three steps. First we show that the set Z
(n)

can always be

selected as shown in Steps 9 and 11 in Algorithm 3. In the second and third steps, we show that

conditions (1) and (�1), respectively, are satis�ed when the algorithm terminates.

1. Selecting jZ
(n)
j in Steps 9 and 11 of Algorithm 3 is always feasible.

Consider the ith iteration of Algorithm 3, and suppose that in Step 6, routing chain ri is

selected. Since property (�1) holds and since N (i) � N (0), we have
P

j2N (i) �(Bjri) � Kri.

Therefore, there can be at most Kri bu�ers from chain ri with a non-zero capacity among

the stations of N (i), and there are at least jN (i)j �Kri stations without bu�er capacities for

chain ri. Thus, the number of elements in Z(i) (Step 7) has the following lower bound:

jZ(i)j � jN (i)j �Kri (30)
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Now we distinguish two cases:

� Case 1: Kri � jN (i)j=2

In this case, Algorithm 3 executes Step 11 in the ith iteration. With Kri � jN (i)j=2,

equation (30) can be rewritten as:

jZ(i)j � Kri (31)

We follow that there are at least Kri stations without capacities assigned to routing

chain r among the stations of N (i). Hence, the selection of Z
(i)

in Step 11 is feasible.

� Case 2: Kri > jN (i)j=2

Here, Algorithm 3 executes Step 9 in the ith iteration. Since Z(i) satis�es (30), the

selection of Z
(i)

with jZ
(i)
j = jN (i)j �Kr as in Step 9 is feasible.

2. After termination, Algorithm 3 satis�es condition (1).

Let us assume, that in the ith iteration Kri > jN (i)j=2. Recall that in this case, Step 9 is

executed. If we count the number of stations in N (i+1) after Step 13 we obtain:

jN (i+1)j = jN (i)j � jZ
(i)
j (32)

= jN (i)j � (jN (i)j �Kri) (33)

= Kri (34)

Since ri was selected such that Kri is minimal among all routing chains in R(i) (Step 6), all

routing chains r 2 R(i+1) (Step 14) satisfy:

Kr � jN (i+1)j (35)

Thus, condition (1) is satis�ed after the ith iteration whenever Kri > jN (i)j=2 in the ith

iteration.

Now assume that Kri � jN (i)j=2 holds in each iteration of the while-loop. Then Step 11 is

executed in each iteration. After i iterations, the set N (i+1) is given by:

N (i+1) = N (i) n Z
(i)

(36)

= (: : :((N (1) n Z
(1)
) n Z

(2)
) : : :) n Z

(i)
) (37)

= N (1) n (Z
(1)
[ Z

(2)
[ : : :[ Z

(i)
) (38)

Since all Z
(j)

are mutually disjoint, we obtain for the number of stations in N (i+1) that

jN (i+1)j = jN (1)j � (jZ
(1)
j+ jZ

(2)
j+ : : :+ jZ

(i)
j) (39)

= jN j �
X

r 62R(i+1)

Kr (40)

For equation (40) we have used N (1) = N from Step 1, and jZ
(j)
j = Krj from Step 11 of

Algorithm 3 (assuming that chain rj is selected in the jth iteration). Since with property

(�1) we have
P

r2RKr > jN j, there must exist an n with 1 � n < jRj such that Kr � jN (n)j

for at least one r 2 R(n). Then, property (1) is satis�ed after the nth iteration.
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3. If �0 is not deadlock-free, then � is not deadlock-free.

If �0 contains a deadlock there exists a bu�er cycle C0 in �0 which consists of bu�ers from

routing chains in R0, and no routing chain in R0 satis�es the DLF condition. We will complete

bu�er cycle C0 in �0 to a bu�er cycle C in �, and we show that no DLF condition is satis�ed

in C. Then a deadlock situation occurs in cycle C of �.

Assume that Algorithm 3 eliminates routing chains r1; r2; : : : ; rk from network � in the in-

dicated sequence, i.e., in the �rst iteration r1 is eliminated, in the second iteration r2 is

eliminated, and so on. Then, R0 and N 0 are given by:

R0 = R(k+1) = Rn fr1; r2; : : : ; rkg (41)

N 0 = N (k+1) = N n (Z
(1)
[ Z

(2)
[ : : :[ Z

(k)
) (42)

Per construction, the sets Z
(i)

are mutually disjunct. Also, per construction, N (k+1)\Z
(i)

= ;

for all 1 � i � k. Thus, the sets N (k+1);Z
(1)
;Z

(2)
; : : : ;Z

(k)
are a partition of the set of

stations N in �. Next we construct a bu�er cycle C in � by expanding the bu�er cycle C 0 of

�0. We set

S(C)
r :=

(
S
(C0)
r if r 2 R0

jZ
(i)
j if r 62 R0

(43)

Per assumption, the DLF condition for any chain r 2 R0 is not satis�ed. On the other hand,

if r 62 R0, or equivalently, r 2 fr1; r2; : : : ; rkg, then r = ri for some 1 � i � k. Note that in

this case, the DLF condition cannot be satis�ed since S
(C00)
r1 = jZ

(i)
j implies

X
j2S

(C)
ri

�(Bjri) =
X

j2Z
(i)

�(Bjri) = 0

and

jS(C)
ri
j = jZ

(i)
j = Kri

Thus, all r 62 R0 do not satisfy the DLF condition for cycle C. Since no routing chain satis�es

the DLF condition, cycle C in � contains a deadlock. 2

The next lemma is applicable to tandem networks where the total number of jobs in all routing

chains is less than the number of stations in the tandem network. We use Algorithm 4 to reduce

the tandem network to a network with at most one routing chain. If this routing chain contains a

deadlock, then the original network also contains a deadlock.

Lemma 7 Given a tandem network � = (N ;R) and a capacity assignment � for �. Assume the

following conditions hold:

(�2)
X
i2N

�(Bir) < Kr for all r 2 R, and

(�2)
X
r2R

Kr < jN j.
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Input: Tandem network � = (N ;R) which satis�es properties (�2) and (�2)

in Lemma 7.

Output: Tandem network �0 = (N 0;R0) with N 0 � N and R0 � R.

�0 satis�es (2) and (�2) in Lemma 7.

begin

1. N (1) := N ;

2. R(1) := R;

4. n := 1;

5. while min
q2R(n)

fKqg < jN (n)j=2 do

6. Select r with Kr = min
q2R(n)

fKqg;

7. Z(n) :=
n
j 2 N (n) j �(Bjr) = 0

o
;

8. Select Z
(n)

� Z(n) with jZ
(n)
j = Kr;

9. N (n+1) := N (n) n Z
(n)

;

10. R(n+1) := R(n) n frg;

11. n := n + 1;

12. endwhile

end

Algorithm 4.

Algorithm 4 generates from � a tandem network �0 = (N 0;R0) with N 0 � N and R0 � R, and �0

satis�es

(2) jR0j = 1 and Kr � jN 0j=2 for r 2 R0, or jN 0j = jN j �
P

r2RKr.

(�2) If �0 is not deadlock-free, then � is not deadlock-free.

Proof: The proof is conducted similarly to the proof of Lemma 6. As in the the proof of Lemma 6

(equation (31)) we can show that a selection of Z
(n)

as in Step 6 of Algorithm 4 is always feasible.

Showing that condition (�2) holds when Algorithm 4 terminates is equivalent to showing that

condition (�1) holds when Algorithm 3 terminates. Note however, that �0 may not contain any

routing chain at all, i.e., �0 = (N 0; ;) is a feasible outcome. In this case �0 will never contain a

deadlock. To complete the proof we have to show that condition (2) is satis�ed when Algorithm 4

terminates.

Let us �rst assume that Kr � jN (i)j=2 in all iterations of the algorithm. Then N 0 = N (jRj+1)

and

jN (jRj+1)j = jN (1)j � (jZ
(1)
j+ jZ

(2)
j+ : : :+ jZ

(jRj)
j) (44)
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= jN j �
X
r2R

Kr (45)

which yields the �rst condition of (2). On the other hand, if Kr > jN (i)j=2 before the ith iteration

of the algorithm, then Algorithm 4 terminates after Step 5. Suppose jR(i)j > 1 after termination of

the algorithm. Since Algorithm 4 always selected the routing chain with the least number of jobs,

we obtain with jR(i)j > 1 and minq2R(i)fKqg > jN (i)j=2:X
q2R(i)

Kq > jN (i)j (46)

Since

jN (i)j = jN j �
X

r 62R(i)

Kr (47)

we obtain with (46) and (47) that X
r2R

Kr > jN j (48)

which contradicts our initial assumption (�2). Therefore, jR(i)j � 1. Since Kr > jN (i)j=2 results

in jR(i)j � 1, we obtain jR(i)j = 1. Hence, in this case the second condition of (2) holds. 2

5.3 Proof of Theorem 2

Now we are ready to prove Theorem 2. The proof will take advantage of the lemmas in the

previous subsection. As previously indicated, we �rst show that the capacity assignments given in

Theorem 2 yield a deadlock-free network. Then we prove the minimality of the assignments ��
i
6

by showing that any capacity assignment which allocates fewer capacities to any routing chain in

the tandem network will result in a deadlock situation. The proof of minimality is tedious since we

must distinguish a considerable number of cases, each requiring a di�erent set of arguments.

5.3.1 Proof of Deadlock Freedom

Here we show that the capacity assignment ��
i as de�ned in Theorem 2 yield a deadlock-free

assignment. Note that in a tandem network each bu�er cycle C must contain a bu�er from station

i. In the following we will assume without loss of generality that the bu�er from station i belongs

to routing chain r, that is, i 2 S
(C)
r .

To prove freedom of deadlocks, we distinguish three cases: (a) jN j > K, (b) K � Kr � jN j,

and (c) K � jN j > K �Kr.

(a) jN j > K

In this case, it is not possible that the servers of all stations in � are occupied by jobs. Hence, for

each bu�er cycle C there must exist a chain r 2 R with:

jS(C)
r j > Kr (49)

6Recall that Theorem 2 de�nes jN j capacity assignments ��

i , one for each station i 2 N . In the following, we

assume that the index i of capacity assignment ��

i is arbitrary, but �xed.

22



With (49), routing r satis�es the DLF condition for cycle C.

(b) K �Kr � jN j

Here, Theorem 2 assigns capacities such that ��
i (Bir) = Kr. Since per assumption we have jS

(C)
r j �

1, the DLF term for routing chain r in cycle C evaluates to:X
j2S

(C)
r

��
i (Bjr) + jS(C)

r j = Kr + jS(C)
r j > Kr (50)

Clearly, the DLF condition is satis�ed.

(c) K � jN j > K �Kr

We �rst consider all cycles C with

i 2 S(C)
r and jS(C)

r j < jN j � (K �Kr) (51)

Since all cycles in a tandem network have a length of jN j, i.e.,
P

r2R jS
(C)
r j = jN j, we obtain from

(51) that there must exist a routing chain q (q 6= r) such that jS
(C)
q j > Kq. But this satis�es the

DLF condition for chain q in cycle C.

Now we consider K � jN j > K �Kr and all cycles C with

i 2 S(C)
r and jS(C)

r j � jN j � (K �Kr) (52)

With i 2 S
(C)
r and ��

i (Bir) = K � jN j+ 1 we obtain:X
j2S

(C)
r

��
i (Bjr) + jS(C)

r j � (K � jN j+ 1) + (jN j � (K �Kr)) (53)

= Kr + 1 (54)

> Kr (55)

Thus, the DLF condition for routing chain r in cycle C is satis�ed. 2

5.3.2 Proof of Minimality

For K < jN j, no capacity is assigned to any bu�er. Therefore, ��
i is certainly minimal. In the

following, we investigate the minimality of ��
i for K � jN j.

To show minimality, we have to prove that any capacity assignment which assigns less total

capacity to the stations of the tandem network than ��
i will result in a deadlock situation. Let us

select an arbitrary routing chain r 2 R and consider a capacity assignment � which satis�es:

X
j2N

�(Bjq) =

8>><
>>:

X
j2N

��
i (Bjq)� 1 if q = r

X
j2N

��
i (Bjq) if q 6= r

(56)

Thus, � assigns one bu�er space less to the bu�ers of routing chain r than capacity assignment

��
i . The total capacity assigned to bu�ers from chains q 6= r by � remains unchanged. Note that
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we do not have any assumptions on how � distributes the capacities to the stations of the tandem

network. In particular, we do not assume that � assigns non-zero capacities to only one station.

For K � jN j, we will show that assignment � results in a deadlock in at least one bu�er cycle in

�.

Recall that in Theorem 2, the capacities assigned to bu�ers from routing chain r are di�erent

for K �Kr � jN j and K �Kr < jN j. We will prove each case separately.

(a) K �Kr � jN j

Consider the tandem network �0 = (N ;Rn frg) which is obtained from � by eliminating routing

chain r. Further consider capacity assignment � as given in (56). Next we execute Algorithm 3 on

�0. Since �0 satis�es conditions (�1) and (�1) in Lemma 6, the output of Algorithm 3 is a network

�00 = (N 00;R00) with N 00 � N and R00 � Rn frg. Per Lemma 6 there exists a routing chain q 2 R00

with Kq � jN 00j.

Now consider the tandem network �000 = (N 00; fr; qg). We will construct a deadlock in �000.

With Lemma 6, any deadlock in �000 can be extended to a deadlock in �. Dependent on the size

of Kr relative to jN
00j, the construction of the deadlock in �000 will be di�erent for Kr � jN 00j and

Kr < jN 00j.

Kr � jN 00j:

Note that K �Kq � jN j must hold in this case. (K �Kq < jN j implies
P

s2R00 Ks +Kr �Kq <

jN 00j which contradicts Kr � jN 00j.) Therefore, capacity assignment � assigns the following total

capacities to bu�ers from routing chains r and q:

X
j2N

�(Bjr) = Kr � 1 (57)

X
j2N

�(Bjq) = Kq (58)

We apply Lemma 5 repeatedly to chains r and q until Kr = jN 00j and Kq = jN 00j. Then, by

applying Lemma 4 we can e�ectively partition N 00 into two sets N 00
1 and N 00

2 such that chain r does

not satisfy the DLF condition in either subset.

Now consider two cycles C1 and C2 with:

S
(C1)
r = jN 00

1 j S
(C1)
q = jN 00

2 j

S
(C2)
r = jN 00

2 j S
(C2)
q = jN 00

1 j
(59)

Per construction of C1 and C2, the DLF condition for chain r is not satis�ed in either cycle. With

Lemma 3 the DLF condition for chain q cannot be satis�ed in both cycles C1 and C2. Therefore,

the DLF conditions for both routing chains are violated in C1 or C2. Thus, either cycle C1 or C2

contains a deadlock. Since the modi�cations to � have preserved any possibly existing deadlock

(see Lemmas 5 and 6), one of the two cycles C1 or C2 can be extended to a bu�er cycle in �

such that no routing chain r 2 R satis�es the DLF condition of this cycle. As a result, we have

constructed a deadlock in �.
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Kr < jN 00j:

If Kr < jN 00j holds, both K �Kq � jN j and K �Kq < jN j are feasible depending on the outcome

of Algorithm 3. We will only show the proof K � Kq < jN j and assume that Algorithm 3 has

executed Step 9 in its last iteration (The proof is similar if Step 11 is executed in the last iteration

of Algorithm 3). With these assumptions, the following holds for the number of stations in �00 and

�000:

jN 00j = jN j �
X
s6=r;q

Ks (60)

Since per our assumptions, K � Kr � jN j and K �Kq < jN j, capacity assignment � assigns the

following total capacities to routing chains r and q:X
i2N

�(Bir) = Kr � 1 (61)

X
i2N

�(Biq) = K � jN j+ 1 (62)

= Kr +Kq � jN 00j+ 1 (63)

The equality in (63) is obtained with (60). Next we apply Lemma 5 repeatedly to chain q until

Kq = jN 00j. Thus, Lemma 5 is applied exactly Kq � jN 00j times. Applying Lemma 5 changes the

capacity assignment to chain q, and we use �
0
to refer to the modi�ed capacity assignment. �

0
is

such that: X
j2N

�
0
(Bjr) =

X
j2N

�(Bjr) (64)

X
j2N

�
0
(Bjq) =

X
j2N

�(Bjq)� (Kq � jN 00j) (65)

= (Kr +Kq � jN 00j+ 1)� (Kq � jN 00j) (66)

= Kr + 1 (67)

Let us de�ne NZq as the set of stations in �000 with non-zero capacities assigned to bu�ers of chain

q. With (67) we obtain the following upper bound for jNZqj:

jNZqj � Kq + 1 (68)

We select a set NZq with NZq � NZq such that

jNZqj = Kr + 1 (69)

Since
P

j2N �(Bjr) = Kr � 1, and since
P

j2NZq
�(Bjr) �

P
j2N �(Bjr) we have:X

j2NZq

�(Bjr) = Kr � 1 (70)

Hence, we can apply Lemma 4 and partition NZq into two sets NZq1 and NZq2 such thatX
j2NZq1

�
0
(Bjr) + jNZq1j � Kr and

X
j2NZq2

�
0
(Bjr) + jNZq2j � Kr (71)
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For routing chain q, we have with (67) that
P

j2NZq
�
0
(Bjq) = Kr + 1. Thus, we obtain with

Lemma 3 that eitherX
j2NZq1

�
0
(Bjq) + jNZq1j � Kr + 1 or

X
j2NZq2

�
0
(Bjq) + jNZq2j � Kr + 1 (72)

Without loss of generality we will assume that the �rst inequality in (72) holds. Then we can

perform the following manipulations:X
j2N 00nNZq2

�
0
(Bjq) + jN 00 n NZq2j =

X
j2N 00nNZq2

�
0
(Bjq) + jNZq1j+ jN 00j � jNZqj (73)

=
X

j2NZq1

�
0
(Bjq) + jNZq1j+ jN 00j � (Kr + 1) (74)

� (Kr + 1) + jN 00j � (Kr + 1) (75)

= jN 00j (76)

Equation (73) follows from jNZqj = jNZq1j+ jNZq2j. Equation (74) follows with (69) andP
j2N 00nNZq

�
0
(Bjq) = 0. The inequality in (74) is obtained with (72), and (76) is obtained by

canceling terms. With the above derivations, we can de�ne a bu�er cycle C in �000 such that:

S
(C)
r = NZq2 S

(C)
q = N 00 n NZq2 (77)

It follows from (71), and (72) { (76), that the DLF conditions for both routing chains r and q

are not satis�ed. Therefore, a deadlock results in network �000. With the same arguments as used

before, the deadlock in �000 results in a deadlock in �.

(b) K �Kr < jN j

Again, we consider the capacity assignment � for � as given in (56). Recall that � assigns the

same total capacities to the bu�ers of routing chains q 6= r as ��
i , but assigns one bu�er capacity

less to routing chain r. Since K �Kr < jN j we have that:X
j2N

�(Bjq) = K � jN j (78)

Consider the tandem network �0 = (N ;Rn frg), which is obtained from � by eliminating routing

chain r. Since �0 satis�es conditions (�2) and (�2) from Lemma 7, we execute Algorithm 4 on

�0 and obtain a tandem network �00 = (N 00;R00). Recall from Lemma 7 that any deadlock in �00

can be extended to a deadlock in �0. Algorithm 4 has two feasible outcomes (see condition (2) in

Lemma 7):

(a) jN 00j = jN j �
P

q2RnfrgKq, or

(b) jR00j = 1 and Kq � jN 0j=2 for q 2 R00.

In the following we construct a deadlock situation for chains r and q in the tandem network

�000 = (N 00;R00 [ frg). First we assume outcome (a) of Algorithm 4. Here, we construct a bu�er

cycle C in �000 which consists exclusively of bu�ers from routing chain r, i.e., S
(C)
r = N 00.
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The DLF term for routing chain r in cycle C can be evaluated as follows:

X
j2N 00

�(Bjr) + jN 00j � (K � jN j) + jN 00j (79)

= (K � jN j) + (jN j �
X

q2Rnfrg

Kq) (80)

= Kr (81)

To obtain (79) we have used

X
j2N 00

�(Bjr) �
X
j2N

�(Bjr) = K � jN j (82)

Applying the assumption on the outcome of Algorithm 4, that is, jN 00j = jN j�
P

q2RnfrgKq, yields

(80). Finally, (81) follows from K =
P

q2RKq. The derivations in equations (79) { (81) show that

chain r does not satisfy the DLF condition in cycle C, and we have constructed a deadlock in �000.

With Lemma 7 we also obtain a deadlock in �.

Now we consider the outcome (b) of Algorithm 4, i.e., R00 = fqg and Kq � jN 00j=2. Note that

Algorithm 4 yields the following equalities:

jN 00j = jN j �
X
s6=q;r

Ks (83)

K � jN j = Kr +Kq � jN 00j (84)

From equation (84) and K �Kr < jN j, it follows that Kq < jN j. With Lemma 7 we can construct

a deadlock in � by �nding a bu�er cycle in �000 = (N 00; fq; rg) where neither chain r nor chain q

satisfy the DLF condition. The construction of this bu�er cycle is dependent on the size of Kr

relative to jN 00j. Here we only show the proof for Kr � jN 00j.

If Kr � jN 00j, then K � Kq � jN j must hold. Otherwise, we obtain a contradiction with

Kr > Kr. Hence, capacity assignment � assigns the following capacities to routing chains r and q:

X
j2N

�(Bjr) = K � jN j = Kr +Kq � jN 00j (85)

X
j2N

�(Bjq) = Kq (86)

We apply Lemma 5 repeatedly to chain r until Kr = jN 00j. Note that Lemma 5 is applied exactly

Kr � jN 00j times. Let us refer to the capacity assignment obtained by applying Lemma 5 as �
0
.

The assignments of capacities to chain q have not changed, i.e., �
0
(Biq) = �(Biq) for all i 2 N .

However, �
0
changes the total capacities assigned to bu�ers from chain r to:

X
j2N

�
0
(Bjr) = (Kr +Kq)� jN 00j � (Kr � jN 00j) (87)

= Kq (88)
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Summarizing the last steps, we have constructed a network �000 = (N 00; fq; rg) and a capacity

assignment �
0
with

Kr = jN 00j
P

j2N �
0
(Bjr) = Kq

jN 00j=2 < Kq < jN 00j
P

j2N �
0
(Bjq) = Kq

(89)

Recall that any deadlock in this network will result in a deadlock in � with capacity assignment �.

Now we select a subset N1 � N of stations with jN1j = jN 00j �Kq such that:X
j2N1

�
0
(Bjr) = 0 (90)

X
j2N1

�
0
(Bjq) > 0 (91)

From (89), it follows that this selection is always feasible. We denote by N2 the set of stations

not in N1, i.e., N2 = N 00 n N1. Since jN2j = Kq holds, and since equation (91) implies thatP
i2N2

�
0
(Biq) < Kq, we can use Lemma 4 to partition N2 into two subsets N21 and N22 such that:X

j2N21

�
0
(Bjq) + jN21j � Kq (92)

X
j2N22

�
0
(Bjq) + jN22j � Kq (93)

Now consider the following two bu�er cycles C1 and C2 in �000:

S
(C1)
q = jN21j S

(C1)
r = jN 00 n N21j = jN1 [N22j

S
(C2)
q = jN22j S

(C2)
r = jN 00 n N22j = jN1 [N21j

(94)

With (92) and (93), routing chain q does not satisfy the DLF condition in either cycle. Therefore,

routing chain r must satisfy the DLF condition in both C1 and C2. Let us assume chain r satis�es

the DLF condition in cycle C1, that is,X
j2N1[N22

�
0
(Bjr) + jN1j+ jN22j > Kr (95)

Note that with (90) we have X
i2N1[N22

�
0
(Bir) =

X
i2N22

�
0
(Bir) (96)

With jN1j = jN 00j �Kq, Kr = jN 00j, and (96), equation (95) is equivalent toX
i2N22

�
0
(Bir) + jN22j > Kq (97)

Then, the DLF term for routing chain r in cycle C2 evaluates as follows:X
i2N1[N21

�
0
(Bir) + jN1j+ jN21j = (Kq �

X
i2N22

�
0
(Bir)) + (jN 00j � jN22j) (98)

< jN 00j (99)

= Kr (100)
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Equality in (98) follows from (86) and jN 00j = jN21j+ jN22j+ jN1j. Equation (99) is obtained with

(97), and (100) is correct since (89) implies Kr = jN 00j. Hence, if routing chain r satis�es the DLF

condition in cycle C1, it does not satisfy the DLF condition in cycle C2. On the other hand, if

we assume that chain r satis�es the DLF condition in cycle C2, equivalent derivations as in (95) {

(100) yield that chain r cannot satisfy the DLF condition in cycle C1. Therefore, either cycle C1

or cycle C2 contains a deadlock in �000. Since all manipulations of � where such that any deadlock

�000 can be extended to a deadlock in �, we follow that � also contains a deadlock. 2

6 Conclusions

Deadlock situations in blocking networks with multiple routing chains are di�cult to detect since

deadlocks may occur due to interdependencies between jobs from di�erent routing chains. In this

study, we presented necessary and su�cient conditions for deadlock-free blocking networks with

multiple routing chains. We addressed the problem of �nding a deadlock-free capacity assignment

for a network with the least number of bu�er spaces (minimal capacity assignment). We presented

an algorithm which generates a minimal assignment for multiple chain networks without restrictions

on the network topology. A drawback of the optimization algorithm is that it involves the solution

of an integer program. To avoid the high computational complexity involved in solving integer

programs, we o�ered an e�cient heuristic algorithm which always provides a deadlock-free capacity

assignment, but does not guarantee minimality. For a special class of network topologies, so-called

tandem networks, we proved that a minimal capacity assignment can be given without running any

optimization algorithm. We proved the correctness of a minimal capacity assignment for tandem

networks which assigns non-zero capacities to only one station in the network.

Our work can be extended in several directions. In our study, we assume the most common

blocking mechanism, i.e., blocking-after-service or BAS. Many systems are more realistically mod-

eled with di�erent blocking mechanisms, e.g., blocking-before-service or repeated-service [1]. For

these blocking mechanisms, deadlock freedom conditions { di�erent from the conditions in this

study { must be found. We also assume that all stations have a single server, and that each rout-

ing chain has a separate bu�er at a station. Extensions of our work could consider stations with

multiple servers, and stations where the available bu�ers are shared by all routing chains.
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