
Assigning Real�Time Tasks to Homogeneous

Multiprocessor Systems

Almut Burchard �

J�org Liebeherr ��

Yingfeng Oh ��

Sang H� Son ��

� School of Mathematics

Georgia Institute of Technology

Atlanta� GA �����

�� Computer Science Department

University of Virginia

Charlottesville� VA �����

January �� ���	

Abstract

Optimal scheduling of real�time tasks on multiprocessor systems is known to be computationally
intractable for large task sets� Any practical scheduling algorithm for assigning real�time tasks to
a multiprocessor system presents a trade�o� between its computational complexity and its perfor�
mance� The performance of a scheduling algorithm is measured in terms of the additional number
of processors required to arrive at a schedule without deadline violations as compared to an optimal
algorithm� In this study� new schedulability conditions are presented for homogeneous multipro�
cessor systems where individual processors execute the rate�monotonic scheduling algorithm� The
conditions are used to develop new strategies for assigning real�time tasks to processors� The per�
formance of the new strategies is shown to be signi�cantly better than suggested by the existing
literature� Under the �realistic� assumption that the load of each real�time task is small compared
to the processing speed of each processor� it is shown that all processors can be almost fully utilized�
Task assignment strategies are proposed for scenarios where the task set is known a priori �o��line
schemes�� and where the real�time task set can change dynamically �on�line schemes��

Key Words� Hard Real�Time Systems� Multiprocessor Systems� Rate�Monotonic Scheduling� Peri�
odic Tasks� Task Assignment Scheme�

� Introduction

The distinguishing feature of real�time computer systems is their attempt to achieve both logical

and temporal correctness of computations� A computation is temporally correct if it �nishes within

a speci�ed time frame� In this sense� all time�constrained computer applications require a real�

time computer system� Commonly� however� real�time computer systems are used if violations of

temporal correctness may result in drastic consequences as� for example� in power plants� hospitals�

or manufacturing and transportation systems�

In most real�time applications� the computer system is subject to arrivals of messages con�

taining monitor and control information from many di�erent sources� These messages can arrive

at any time� however� the minimal distance between consecutive arrivals from the same source is

constrained� Each message arrival initiates the request for executing a computational task� The

task must be completed before the arrival of the subsequent message from the same source� Thus�

the earliest arrival time of the next message from the same source is the deadline for executing

the task� In the worst case� each task is requested periodically� where the period is given by the

minimum time interval between consecutive message arrivals from a particular source� We refer to

tasks that are requested at most periodically and must �nish execution before the end of the next

period as �periodic� real�time tasks�

To maximize the number of real�time tasks that can be processed without timing violations� real�

time computer systems use sophisticated scheduling algorithms to decide the order in which tasks

are executed� The performance of a scheduling algorithm is measured by its ability to generate

a feasible schedule for a set of real�time tasks� A schedule for assigning tasks to one or more

processors is said to be feasible if the execution of each task can be completed before its deadline�

A feasible schedule is said to be minimal if there is no feasible schedule utilizing less processors�

A scheduling algorithm is said to be optimal if for any set of tasks the algorithm �nds a minimal

schedule�

Scheduling algorithms can be divided into 	xed priority and dynamic priority algorithms� In

�xed priority algorithms� the priority of a task remains constant at all times� whereas in dynamic

priority algorithms� the priority of a task may change during its execution�

In their seminal work� Liu and Layland 	
� showed that in single processor systems the dynamic

priority earliest�deadline�due �EDD� algorithm which assigns the highest priority to the task closest

to the end of its period is optimal among all scheduling algorithms� They also showed that the rate�

monotonic �RM� algorithm which assigns higher priority to tasks with shorter periods is optimal

among all �xed priority scheduling algorithms� For both the EDD and RM algorithms� Liu and

Layland derived su�cient conditions under which the respective algorithms yield feasible schedules�

Such conditions are referred to as schedulability conditions� Recently� necessary and su�cient

schedulability conditions were stated for both the RM algorithm 	� and the EDD algorithm 	����

Due to its low computational overhead the RM algorithm is widely regarded as an appropriate

algorithm for scheduling real�time tasks on uniprocessor systems� Recently proposed extensions to

the RM algorithm have increased its practical relevance 	��� ����

Even though real�time computer systems are expected to greatly bene�t from multiprocessor

technology� employing multiprocessor systems for real�time applications has shown to be di�cult�

A major obstacle is that scheduling algorithms for real�time multiprocessor systems are signi�cantly

more complex than for uniprocessor systems� In multiprocessor systems� the scheduling algorithm

must not only specify an ordering of tasks� but also must determine the speci�c processor to be

used� Leung and Whitehead 	�� proved that �nding a minimal schedule for a given set of real�

time tasks in a multiprocessor system is NP�hard� Therefore� research e�orts have focused on the

development of suitable heuristic algorithms which can be e�ciently implemented� yet� require only

a limited number of additional processors as compared to an optimal algorithm�

There are two strategies for scheduling real�time tasks on a multiprocessor system� In a global

scheme each occurrence of a real�time task may be executed on a di�erent processor� In contrast�

a partitioning scheme enforces that all occurrences of a particular task are executed on the same

processor� A partitioning scheme has several advantages over a global scheme� First� partition�

ing schemes are less complex since the overhead of multiprocessor scheduling merely consists in

assigning tasks to processors� Note that the assignment is performed only once for each task� i�e��

before the task is executed for the �rst time� Secondly� if the assignment of tasks to processors is

completed� well�known uniprocessor scheduling algorithms can be used for each processor�

The performance of an partitioning scheme is determined by two factors� the task assignment

algorithm which distributes tasks to the processors� and the scheduling algorithm which determines

the order of task executions on each processor� For a given scheduling algorithm� an optimal

task assignment algorithm achieves a feasible schedule for each processor with the least number

of processors� However� the problem of �nding an optimal assignment of tasks to processors for

�xed priority scheduling algorithms� in particular the RM algorithm� as well as for dynamic priority

scheduling algorithms� in particular EDD� was shown to be NP�hard 	���

In this study� we are concerned with task assignment schemes for homogeneous multiprocessor

systems where each processor executes the RM scheduling algorithm� This problem has been

addressed in a number of studies 	�� �� �� ��� Typically� the task assignment schemes apply variants of

well�known heuristic bin�packing algorithms where the set of processors is regarded as a set of bins ��

�The bin�packing problem is concerned with packing di�erent�sized items into �xed�sized bins using the least

number of bins ����

�

The decision whether a processor is full is determined by a schedulability condition� All existing task

assignment schemes are based on the su�cient schedulability conditions for uniprocessor systems

derived in 	
� and variants of this condition 	��� Thus� the existing assignment schemes di�er mainly

in the choice of the bin�packing heuristic�

In 	��� two heuristic assignment schemes are proposed� referred to as Rate�Monotonic Next�Fit

�RMNF� and Rate�Monotonic First�Fit �RMFF�� The schemes are based on the next�	t and 	rst�	t

bin�packing heuristic� respectively� In both schemes� tasks are sorted in decreasing order of their

periods before the assignment is started� Tasks are assigned to a so�called current processor until

the schedulability condition is violated� in which case the current processor is marked full and a

new processor is selected� RMFF �rst tries to accommodate a task in a processor marked as full

before assigning it to the current processor� The First�Fit Decreasing�Utilization Factor �FFDUF�

method is a variation of the �rst��t heuristic scheme� Here� tasks are sorted in the order of their

load factor 	��� In 	��� a best�	t bin�packing heuristic is used as the basis for the Rate�Monotonic

Best�Fit �RMBF� scheme� Similarly to RMFF� RMBF attempts to assign tasks to processors that

have been marked as full� However� in RMBF� the full processors are inspected in a speci�c order�

As in 	��� tasks are assumed to be sorted by their period�

Since the above schemes require that the entire task set is known before starting the task

assignment they are referred to as o��line schemes� In contrast� on�line schemes allow the task

set to change dynamically� that is� tasks can be added to or deleted from the task set� On�line

task assignment schemes can be implemented with lower computational complexity than o��line

schemes� but may require more processors for a feasible schedule� An on�line task assignment

scheme based on the next��t bin�packing heuristics and referred to as Next�Fit�M is described

in 	��� In Next�Fit�M� M is a parameter denoting the maximal number of processors which is

considered for assigning a new task�

In all studies� the performance of task assignment schemes is evaluated by providing worst case

bounds for N�Nopt� where N is the number of processors required to schedule a task set with a

given heuristic method� and Nopt is the number of processors needed by an optimal assignment�

Unfortunately� bounds for the existing schemes are only available as asymptotic bounds� that is� as

limNopt��N�Nopt�

In Table ��a�� we summarize the heuristic methods from the literature with their performance

bounds� The measure O�K� denotes the upper bound of the computational complexity for schedul�

ing a set of K real�time tasks�

Our approach for developing task assignment schemes for multiprocessor systems is di�erent

from previous work� Rather than increasing the level of sophistication of the bin�packing heuristic�

we focus on developing tighter schedulability conditions that allow to assign more tasks to each

�

Asymptotic

Scheme Upper Bound� Complexity Type

lim
Nopt��

N�Nopt

RMNF 	�� ��� O�K logK� o��line

RMFF 	�� ���� O�K logK� o��line

FFDUF 	�� � O�K logK� o��line

RMBF 	�� ���� O�K logK� o��line

Next�Fit�M 	�� ���
�O���M� O�K� on�line

�a� Existing Task Assignment Schemes�

RMST ����� �� O�K logK� o��line

RMGT ���� O�K logK� o��line

RMGT�M ����� �� � O���M� O�K� on�line

�b� Proposed Task Assignment Schemes�

Table �� Comparison of Task Assignment Schemes�

processor� We show that the maximum achievable load on each processor is signi�cantly higher than

suggested by previous work� If the load factor of each task is small compared to the processing

power of a processor � a very realistic assumption considering the state�of�the�art of hardware

technology � we will show that each processor can be almost fully utilized� More precisely� the

Rate�Monotonic Small�Tasks �RMST� scheme proposed in this study achieves an asymptotic bound

of limNopt��N�Nopt � ����� ��� where � is the maximal load factor of an individual task� For

general task sets we propose the Rate�Monotonic General�Tasks �RMGT� scheme which yields an

asymptotic bound of limNopt��N�Nopt � ����� Di�erent from previous work we also derive bounds

of the performance parameter N�Nopt for N � �� In addition to the o��line schemes RMST and

RMGT we propose an on�line task assignment scheme for general task sets� The scheme is referred

to as Rate�Monotonic General�Tasks
M �RMGT
M� scheme� where M is a parameter denoting

the number of processors to which a new task can be assigned� In Table ��b� we summarize the

performance characteristics of the assignment schemes proposed in this study�

The remainder of this study is structured as follows� In Section � we present our model for

�

real�time tasks and multiprocessor systems� In Section � we derive a tight schedulability condition

for the RM scheduling algorithm in a uniprocessor system that improves on the results presented in

	
�� We also prove a scheduling result for multiprocessor systems which can be interpreted as dual

result to our uniprocessor scheduling condition� In Section � we construct two simple assignment

schemes� referred to as RMST and RMGT� With our theoretical results from Section � we can

prove bounds for the number of processors required with these schemes� The on�line assignment

scheme RMGT�M is presented in Section �� Again� we use the results from Section � to derive

performance bounds� In Section � we conclude the study with a short discussion of our results�

� Model Description

We assume that the real�time computer system consists of a homogeneous multiprocessor system

and a set of K real�time tasks� The multiprocessor and the task set are characterized as follows�

� A real�time task is denoted by �i � �Ci� Ti� �i � �� � � � � K�� Ti denotes the shortest time

between two requests of task �i� and is also referred to as the period of �i� Ci denotes the

maximum execution time of task �i� Since we assume that the multiprocessor system is

homogeneous the execution time is identical on each processor� Each real�time task must

complete execution before the next request of the same task� Thus� in the worst case� the

execution of �i must be completed after Ti time units�

� The period and the maximum execution time of task �i satisfy

Ti � �� � � Ci � Ti� i � �� � � � � k

We will refer to Ui � Ci�Ti as the load factor of the i�th task� and to

U �
KX
i��

Ui

as the total load of the task set� 	n denotes the utilization of the n�th processor� that is� the

sum of the load factors of the tasks assigned to processor n�

� Throughout this paper� we assume that the rate�monotonic �RM� algorithm is used to sched�

ule tasks on each processor� That is� task �i has precedence over task �j � if Ti � Tj � We assume

that scheduling of tasks is preemptive� and that task execution can be resumed without loss

after interruptions�

� Schedulability Conditions

In this section we derive two su�cient schedulability conditions for processors which schedule tasks

with the RM algorithm� The �rst result� presented in Theorem �� is a simple modi�cation of the

result for uniprocessor systems by Liu and Layland 	
�� Our result yields a higher utilization of

the processor if the task periods satisfy certain constraints� On uniprocessor system� Theorem

� does not provide a signi�cant improvement for scheduling real�time tasks� For multiprocessor

scheduling� however� we can divide a large tasks set into subsets in such a way that we can make

use of the sharpened condition on all but possibly one processor�

In our second result� stated in Theorem �� we present a schedulability condition for the RM

algorithm in multiprocessor systems� Theorem � uses exactly the same parameters� i�e�� the total

load U and the number of tasks K� as the uniprocessor result by Liu and Layland 	
�� In fact�

Theorem � can be interpreted as as a dual result to the schedulability conditions given in 	
� for

multiprocessor system� Both results coincide for the special case K � ��

A result similar to our Theorem � was conjectured in 	��� but not proven� A partial proof� yet

incomplete and needing additional assumptions was given in 	���

��� Rate�Monotonic Scheduling in Uniprocessor Systems

The schedulability condition presented in the following theorem takes advantage of a special prop�

erty of the RM scheduling algorithm� We show that we can increase the processor utilization if all

periods in a task set have values that are close to each other�

Theorem � Given a real�time task set ��� � � � � �K� De	ne

Si �� log� Ti � blog� Tic i � �� � � � � K ���

and

 �� max
��i�K

Si � min
��i�K

Si ���

�a� If
 � �� ��K� and the total load satis	es

U � �K � ��
�
����K���� �

�
� ���� � � ���

then the task set is schedulable on one processor with the RM algorithm�

�b� If
 � �� ��K� and the total load satis	es

U � K
�
���K � �

�
���

then the task set is schedulable on one processor with the RM algorithm�

Both conditions are tight�

�

Note that Inequality ��� is exactly the schedulability condition given by Liu and Layland 	
��

Theorem � improves upon 	
� when
 � �� ��K� since the strict convexity of the function f�x� �

x����x � �� implies that

�K � ��
�
����K��� � �

�
� ���� � � � K����K � �� � ���

Throughout the paper� we will use a simpler version of Theorem �� The simpli�ed schedulability

condition is given in the following corollary�

Corollary � Given a set of real�time tasks ��� � � � � �K� and de	ne
 as in ���� If the total load

satis	es

U � max fln �� ��
 ln �g ��

then the task set can be scheduled on one processor�

Proof� Because both schedulability conditions ��� and ��� of Theorem � are strictly decreasing

with respect to K� we have that

K����K � �� � lim
K��

K����K � �� � ln � ���

and

�K � ��
�
����K���� �

�
� ���� � � � lim

K��
�K � ��

�
����K��� � �

�
� ���� � � �
�

�
 ln � � ���� � � ���

� ��
 ln � ����

Schedulability now follows from Theorem �� �

The remainder of this subsection contains the proof of Theorem �� For the proof� we will need

three lemmas� Lemma �� due to Lehoczky 	�� gives the necessary and su�cient schedulability for

the RM algorithm in a uniprocessor system�

Lemma � Given a set of real�time tasks ��� ��� � � � � �K� Assume the tasks are ordered with increas�

ing period� T� � � � � � TK� Then� a task �k always meets its deadline Tk under rate�monotonic

scheduling� if and only if there exists a time � � t � Tk such that

t �
kX
i��

�
t

Ti

�
Ci ����

We will need the following special cases of Lemma �� If TK � �T�� then condition ���� reduces to

�j � k � Tj �
j��X
i��

�Cj �
kX
i�j

Ci � ����

If the task set consists of only two tasks� ���� reduces to�
T�
T�

�
�T� � C�� � C� or T� �

�
T�
T�

�
C� � C� ����

The next lemma states that the RM algorithm is distinguished by a special property� which also

holds for EDD� however� not for any other �xed�priority or dynamic scheduling algorithm� The

proof is a simple application of Lemma �� but the result is surprisingly powerful� We will apply

Lemma � to obtain su�cient schedulability conditions for general task sets from schedulability

conditions for task sets where the longest period is at most twice as long as the shortest period�

Lemma � implies that it is not necessary to assume that a task set is ordered by periods in order

to apply the schedulability conditions in 	�� ��� a fact overlooked in both references�

Lemma � Given a task set ��� ��� � � � � �K� and a task � � �C� T � with T � Ti for i � �� � � � � K� If

� and ��� � � � � �K cannot be scheduled together on one processor with the RM scheduling algorithm�

then also ��C� �T �� ��� � � � � �K cannot be scheduled�

Proof� We assume that the tasks are ordered such that T� � � � � � TK � Denote by k the smallest

index� such that �C� T � together with �C�� T��� � � ��Ck� Tk� is not schedulable�

There are two possible cases� If �T � Tk� then we can use schedulability condition ���� for both

task sets in question� But clearly� the condition

�C �
j��X
i��

�Ci �
kX
i�j

Ci � Tj ����

for all j � k is equivalent to
j��X
i��

�Ci �
kX
i�j

Ci � �C � Tj ����

for all j� Also

C �
kX
i��

Ci � T ���

is equivalent to
kX
i��

�Ci � �C � �T ����

�

which shows the claim that ��C� �T �� �C�� T��� � � � � �Ck� Tk� cannot be scheduled� If� on the other

hand� �T � Tk� then Lemma � implies that for all � � t � Tk

t �

�
t

T

�
C �

kX
i��

�
t

Ti

�
Ci ��
�

�
�
t

�T

�
�C �

kX
i��

�
t

Ti

�
Ci ����

Again we have shown that ��C� �T �� �C�� T��� � � � � �Ck� Tk� is not schedulable� �

Lemma � is a corollary of Lemma � which applies to multiprocessor systems�

Lemma � Assume that the task set ��� � � � � �K cannot be scheduled on N processors� Then the task

set � ��� � � � � �
�
K given by

C�i � UiT
�
i � T �i � �Si ����

cannot be scheduled on N processors�

Proof� For all tasks �i with Ti � �Si we replace �Ci� Ti� by ���mCi� �
�mTi�� where m is selected

such that ��mTi � �Si � It is easy to see that by scaling t in the Lehoczky schedulability conditions

����� the replacement does not change the schedulability of the task set� Also� the values for Ui

and Si remain unchanged� So� we may assume that Ti � �Si for all i� If Ti � �Si for all i� we are

done� Otherwise� we select �k such that Tk � mini �Ti� and replace �Ck� Tk� by ��Ck� �Tk�� Clearly�

this does not change the load factor Uk� Lemma � implies that the resulting task set cannot be

scheduled on N processors� We repeat this procedure until we arrive at a task set with Ti � �Si

for all tasks� �

Proof of Theorem �� We will show that any set of K tasks that cannot be scheduled on a single

processor violates condition ���� if
 � ����K� and violates condition ���� if
 � ����K� To show

that the bounds from Theorem � are tight we will construct a task set that cannot be scheduled

on one processor� but whose total load is arbitrarily close to the bounds in ��� or ���� The proof

will proceed in four steps�

��� Formulate Theorem � in terms of a problem of minimizing U as a func�

tion of its variables C � �C�� C�� � � � � CK� and T � �T�� T�� � � � � TK��

��� Fix the periods T � �T�� T�� � � � � TK� and minimize U over the execution

times C � �C�� C�� � � � � CK�� Use the result to express the execution

times as functions of the periods�

��� Transform the reduced minimization problem into a convex problem�

��� Solve the convex minimization problem�

��

��� Assume that the task set �C�� T��� � � � � �CK� TK� cannot be scheduled on one processor� Since

the conditions given by ��� and ��� are strictly decreasing with K� they are certainly violated

for a task set if they are violated for a subset� Hence� we may assume without loss of generality

that all proper subsets of the task set can be scheduled on one processor� By Lemma � we

can assume that

T� � � � � � TK � ��T� ����

Since� by assumption� the proper subset ��� � � � � �K�� can � but the complete task set ��� � � � � �K

cannot be scheduled on a single processor� task �K � which has the lowest priority� misses its

deadline� By the schedulability condition in ����� this is equivalent to

j��X
i��

�Ci �
KX
i�j

Ci � Tj j � �� � � � � K ����

We will minimize the total load U as a function of the execution times and the periods of all

tasks� Thus� we have to solve the following problem�

minimize U�C� T� �
KX
i��

Ci

Ti
����

subject to
j��X
i��

�Ci �
KX
i�j

Ci � Tj j � �� � � � � K ����

� � Ci � Ti i � �� � � � � K ����

T� � � � � � TK � ��T�
 � � ���

We replaced ��� by ��� in ���� and ���� to ensure that the minimum is attained at some

point� Since the functional is continuous� this does not a�ect the minimal value of U � Note

that U�C� T� in ���� is not a convex function of its arguments� Hence� standard �nonlinear�

optimization methods cannot be applied�

��� We will show that U�C� T� takes its minimal value in a point where conditions ���� holds

with equality� Suppose that we have found the minimum� say U�� for the objective function

with C� � �C�� � C
�
� � � � � � C

�
K�� and T � � �T �� � T

�
� � � � � � T

�
K�� If for some j � �� inequality ���� is

strict� we set

�Ci �

�			

			�

C�j�� � � if i � j � �

C�j � � if i � j

C�i otherwise

����

where � is de�ned by

� ��
j��X
i��

�C�i �
KX
i�j

C�i � Tj � � ��
�

��

Then side condition ���� is unchanged for i �� j� and holds with equality for i � j� The total

load at this point satis�es

U� �C� T�� � U� � �

�
�

T �j��
� �

T �j

� U� ����

where we have used inequality ����� So we found a new minimum of the functional�

Similarly� if there is strict inequality in condition ���� for j � �� we set

�Ci �

�			

			�

C�� � � if i � �

C�K � �� if i � K

C�i otherwise

����

where

� ��
KX
i��

C�i � T �� � � ����

The total load satis�es

U� �C� T�� � U� � �

�
�

T �n
� �

T ��

�
� U� � ����

where we have used inequality ����� Again we found a new minimum of the functional�

Summarizing� we have shown that U takes its minimum in a point with

j��X
i��

�C�i �
KX
i�j

C�i � T �j for j � �� � � � � K ����

Subtracting equations in ���� for consecutive indices� and subtracting ���� for j � � from

���� for j � K� we obtain the following identities

C�j � T �j�� � T �j for j � �� � � � � K � � ����

C�K � �T �� � T �K ����

Note that the side conditions in ���� are satis�ed automatically� Thus� we have reduced the

problem to

minimize U�T� �
K��X
i��

Ti�� � Ti
Ti

�
�T� � TK

TK
���

subject to

T� � � � � � TK � ��T� ����

��

��� Substituting

xi �� log�
Ti��
Ti

i � �� � � � � K � � ��
�

xK �� log�
�T�
TK

����

we rewrite the minimization problem in ��� and ���� as

minimize U�x� �
KX
i��

��xi � �� ����

subject to

xi � �� i � �� � � � � K ����

xK � ��
 ����
KX
i��

xi � � ����

Relation ���� is a consequence of the de�nitions in ��
� and in �����

��� The minimization problem in ���� � ���� is a �strictly� convex problem� since the functional

is a sum of convex functions and the side conditions describe a convex set� At this point� the

minimization can be completed with a Lagrange multiplier method�

More directly� it follows from the strict convexity of the problem that there is a unique

critical point which is the absolute minimum� This critical point must be symmetric under

any symmetry of the problem� If we disregard condition ����� the problem is completely

symmetric under permutation of the indices� Hence� in the minimum� all x�i must be equal�

and side condition ���� demands that

x�i � ��K� for i � �� � � � � K ����

Note that for
 � � � ��K� condition ���� is satis�ed automatically� Reversing the trans�

formations in ���� � ���� and ��
� � ����� we obtain the following solution of the original

problem in ���� � ����

C�i � a �i�K����K � ��� T �i � a �i�K� for i � �� � � � � K ����

where a � � is any number� On this task set� U�C� T� takes the minimal value

U� � K
�
���K � �

�
���

given on the right hand side of ���� Note that the task set given in ���� can be scheduled on

a single processor� However� if any of the execution times C�i is replaced by �Ci � C�i � then

the resulting task set is not schedulable�

��

If
 � �� ��K� the minimum satis�es

x�K � ��
 ����

Problem ���� � ���� is symmetric under permutation of x�� � � � � xK��� Hence� in the minimum�

all values for xi �i �� K� must be equal� From ���� and ���� we obtain the solution

x�i �

K � �
i � �� � � � � K � � ��
�

Transforming back with equations ���� � ���� and ��
� � ���� gives the �nal solution

C�i � a ��i��K��������K���� �� T �i � a ��i��K��� i � �� � � � � K � � ����

C�K � a ��K��K�������� � �� T �K � a ��K��K��� ����

where a � � is any number� For this task set� U�C� T� takes the minimal value

U� � �K � ��
�
����K���� �

�
� ���� � � � ����

The task set given in ���� and ���� can be scheduled on one processor� But if any of the

execution times C�i is replaced by �Ci � C�i � then the resulting task set cannot be scheduled�

This completes the proof� �

��� Rate�Monotonic Scheduling in Multiprocessor Systems

In the previous subsection we were concerned with scheduling real�time tasks on a uniprocessor

system that employs the RM scheduling algorithm� Theorem � addresses the question� When can

a set of tasks be scheduled on one processor� For the answer we found the worst case task set which

can still be scheduled on a single processor� For the corresponding result in multiprocessor systems

we have to �nd the minimal number of processors that is needed to �nd a feasible assignment of a

task set to a multiprocessor system� Obviously� in the worst case� only one task can be assigned to

each processor� Therefore� we have to be concerned with the question� When can a set of tasks be

scheduled on less than one processor for each task�

The answer to this question is given in Theorem �� Roughly� Theorem � says� that if K

processors are needed to schedule a set of K tasks� then the load on each processor cannot be much

less than ����

Theorem � If the total load of a set of K real�time tasks satis	es

U � K

���K � �
����

then the task set can be scheduled with the RM algorithm on less than K processors� The condition

is tight�

��

The following example shows that Theorem � is a true multiprocessor result� and cannot be obtained

as a corollary of Theorem �� We select an an integer K � �� and set

Ci � �i�K Ti � �i�K����K � �� for i � �� � � � � K ����

Since U � K
���K��

the task set can be scheduled on less than K processors by Theorem �� However�

since ������K � �� �
p

�� � the schedulability conditions in Theorem � fail for any pair of tasks�

As a result� assignment schemes based on Theorems � can achieve a better processor utilization

than schemes based on uniprocessor results alone�

The following corollary provides a good approximation of Theorem �� The statement is asymp�

totically exact for K 	�� and never di�ers by more than ���� from the exact value�

Corollary � If the total load U of a set of K real�time tasks satis	es

U � K

�
� ln �

�
����

then the task set can be scheduled with the RM algorithm on less than K processors�

Proof� The proof follows from the following inequalities�

K

�
� ln �

�
�

K

���K � �
� K

�
� �

����

�

Next we present the proof of Theorem �� For the proof we will need a technical lemma� given in

Lemma �� We will use the lemma to show that for the task set which satis�es the inequality of

Theorem � with the lowest value for the total load� the execution times Ci satisfy the same ordering

relations C� � � � � � Ck � �C� as the periods�

Lemma � Assume that a set of K nonnegative numbers C�� � � � � CK has the following property�

For every � � j � K there exists at least one index i such that

Cj � mi �� minf�C�� � � � � �Ci��� Ci��� � � � � CKg or �Cj � mi ���

For such a set� either

C� � � � � � CK � �C� ����

or there exists an index � � j � K and numbers a � b � � such that

Ci �

�			

			�

a if i � j

b if i � j

�a if i � j

��
�

��

Proof� For K � � the statement is trivially correct� For K � �� consider a task set that satis�es

the assumption but violates equation ����� We have to distinguish two cases� Either� Cj�� � Cj

for some index � � j � K� or CK � �C�� We will only prove the �rst case� since the proof for the

second case is completely analogous�

Assume that there exists an index � � j � K with Cj�� � Cj � Then we obtain by de�nition of

mi� that for all i � j � ��

mi � Cj � Cj�� ����

and for all i � j�

mi � �Cj � �Cj�� ���

But with the assumption in ��� we must have that mj � �Cj��� By de�nition of mj � this means

�Cj � �Cj�� �
�

� �Ci if i � j � �

Ci if i � j
���

Using ���� we have

mi �

�			

			�

�Cj if i � j

�Cj�� if i � j

Cj if i � j

���

It follows that ��
� holds with a � Cj�� and b � Cj� �

Proof of Theorem �� We want to �nd the smallest value of U for a set of K tasks that cannot

be scheduled on less than K processors� Since for K � � there is nothing to show� we will assume

K � �� The proof will proceed in �ve steps�

��� Formulate Theorem � in terms of a problem of minimizing U

as a function of its variables �Ci� Ti��

��� Fix the execution times C � �C�� C�� � � � � CK� and minimize U

over the periods T � �T�� T�� � � � � TK�� Use the result to express

the periods as functions of the execution times�

��� Transform the minimization problem into a convex minimization

problem�

��� Solve the minimization problem with standard methods�

��� Assume that the tasks �C�� T��� � � � � �CK� TK� cannot be scheduled on less than K processors�

We want to show that the total load U violates ����� With Lemma � we can assume that

T� � � � � � TK � �T� ���

�

The assumption that the K tasks cannot be scheduled on less than K processors is equivalent

to the statement that no two tasks can be scheduled on one processor� By ���� this is

equivalent to �

� Ti � Ci � Cj if i � j

Ti � Ci � �Cj if i � j
���

So we have to solve the following minimization problem�

minimize U�C� T� �
KX
i��

Ci

Ti
���

subject to

Ti � Ci � Cj i � j ��

Ti � Ci � �Cj i � j ���

� � Ci � Ti i � �� � � � � K �
�

T� � � � � � Tk � �T� ���

As in the proof of Theorem �� we replace ��� by ��� to enforce that the minimum is attained

at some point�

��� Since the partial derivatives of U�C� T�

�U

�Ti
�C� T� � �Ci

T �
i

� � ����

are negative� U�C� T� is minimal if we we choose the Ti as large as possible� We enforce the

�rst two side conditions� �� and ���� by setting

Ti � Ci � minf�C�� � � � � �Ci��� Ci��� � � � � Ckg ����

To simplify ����� we will show that in the absolute minimum of U�C� T�� conclusion ���� of

Lemma � holds� To this end� we �rst have to show that the assumptions of Lemma � hold�

Assume that ��� is not satis�ed� that is� for some index j there exists neither i � j such that

mi � Cj � nor i � j such that mi � �Cj � With ����� the objective function can be phrased

exclusively in terms of C� Since the total derivative

dU

dCj
�C� �

mj

�Cj � mj��
� � ����

is positive� we can lower the value of the functional U�C� by lowering the values for Cj� Thus�

condition ��� of Lemma � is satis�ed in any critical point of the functional�

��

Next we show that the second outcome of Lemma � is not feasible in a minimum of the

functional� If the task execution times satisfy ��
� then

Ci �

�			

			�

a if i � j

b if i � j

�a if i � j

����

with � � b � a� At such a point the periods of the tasks are given by

Ti �

�			

			�

a � b if i � j

b � �a if i � j

�b � �a if i � j

����

We obtain for the total load factor

U�C� T� � �K � ��
a

a � b
�

b

�a � b
����

Setting

t �
b

a
���

equation ���� reads

U�t� � �K � ��
�

� � t
�

t

� � t
����

which is nonincreasing with t� Consequently� for � � t � �� U assumes its minimum at t � ��

that is a � b� Hence� condition ���� holds�

Since we showed that in a minimum the Ci satisfy condition ����� we obtain with ���� that

Ti � Ci � Ci�� i � �� � � � � K � � ��
�

TK � CK � �C� ����

Note that the side condition in ��� is always satis�ed�

Summarizing� we have reduced the problem to

minimize U�C� �
K��X
i��

Ci

Ci � Ci��
�

CK

CK � �C�
�
��

subject to

Ci � � i � �� � � � � K �
��

��� We perform a transformation of variables� De�ne

xi �� log�
Ci��

Ci
if i � K

xK �� log�
�C�
CK

�
��

�

Then the optimization problem of �
�� and �
�� reads

minimize U�x� �
KX
i��

�

� � �xi
�
��

subject to

xi � � i � �� � � � � K �
��
KX
i��

xi � � �
��

where equation �
�� is a consequence of de�nition �
���

��� Since the optimization problem in �
�� � �
�� is strictly convex� and since both the functional

and the side conditions are symmetric under permutation of the indices� the unique minimum

is also symmetric under permutations of indices� From the side condition in �
��� we directly

obtain that the solution must be

x�i � ��K i � �� � � � � K �
�

Transforming back to the original variables we obtain the following solution in terms of

execution times and periods�

C�i � a �i�K �
��

T �i � a �i�K����K � �� �

�

where a � � can be any number� For this task set� U has the minimal value

U� � K�����K � �� �
��

The task set with parameters as in �
�� and �

� can be scheduled on less than K processors�

But if all C�i are replaced by �Ci � C�i � then the resulting task can only be scheduled on K

processors� This completes the proof� �

��

� Assignment Schemes for Multiprocessor Systems

In this section� we show how to use our theoretical results from Section � to design a new class

of o��line assignment schemes for distributing a set of real�time tasks to a set of processors� We

will compare our assignment schemes with an optimal scheme which always utilizes the minimum

number of processors� For a given task set� we denote by Nopt the number of processors needed by

an optimal assignment scheme�

We will propose two assignment schemes� The �rst scheme� referred to as Rate�Monotonic

Small�Task or RMST scheme� is intended for task sets where the load factor Ui of each real�time

task is small compared to the processing speed of each processor� The second scheme� referred to

as Rate�Monotonic General�Task or RMGT scheme� applies to general task sets�

Previously proposed assignment schemes only consider the load factors of the tasks 	�� �� ��

��� Our schemes gain superiority by additionally taking into account the task periods� Before

we present the schemes� let us review the maximum performance that can be achieved with a

task assignment scheme using information on the load factors only� In this case� the su�cient

schedulability conditions given in 	
� and it variants 	�� �� are the best available schedulability

conditions� If these conditions are used then the load assigned to any pair of processors exceeds

ln �� So� if N processors are used� then

U �
ln �

�
N ����

This bound cannot be improved beyond �
p

� � ��N � For example� a set with K real�time tasks

where Ui �
p

� � � � � for each task cannot be scheduled onto K processors with this condition�

Thus� all task assignment schemes that use the scheduling condition of 	
� are strictly limited in

the performance they can achieve�

Similar arguments show that if the load factor of every task is less than �� then a next��t task

assignment scheme based on 	
� will ensure that the load on all but one processor is at least ln ����

This shows that

U � �ln �� ��N ����

For � � ��� this bound is best possible� More sophisticated bin�packing heuristics� such as �rst��t

or best��t� can improve the average performance a lot� but one can construct task sets such that

U � N ln �� Consequently� in the worst case� N�Nopt � �� ln ��

A moment s consideration shows� that the bounds given in inequalities in ���� and ���� are far

below the bounds that can be achieved with an optimal assignment scheme� By Theorem �� any set

of K real�time tasks with Ui � ����� for all tasks can be scheduled on less than K processors if the

number of tasks is su�ciently large� And we can certainly assign task sets with small load factors

��

to processors in such a way that the load on all but one processor exceeds ���� This argument

suggests that the best bound for an optimal assignment scheme is of the form

U �
N

�
� const� ����

Similarly� if the load factor of every task is bounded above by �� one might hope to prove that

U � ��� ��N � const� ����

Note that these inequalities have the same form as corresponding inequalities for periodic tasks

without deadline constraints� In particular� the leading terms N�� and ��� ��N are best possible�

The RMST and RMGT assignment schemes proposed here create task assignments that satisfy

bounds of the form ���� and ����� In the following we discuss both schemes and prove their

properties�

��� RMST � An Assignment Scheme for Small Tasks

We �rst consider the problem of scheduling a set of tasks with small load factors� Denote by

� �� max
i�������K

Ui ����

the maximal load factor of any single real�time task� For all practical purposes� we may assume

that a task set contains only �small� tasks if � � ����

Recall that by Corollary � the minimal achievable load on a single processor is larger than

��
 ln � where
 is de�ned as in ���� The main idea of RMST is to partition the tasks in such a

way that on each processor�
 has a small value�

It is convenient to visualize the values of Si for a given task set as points on a circle with

circumference one� Starting at any point on the circle and proceeding clockwise� we assign tasks to

processors� using the schedulability condition of Theorem �� Then� the value of
 at each processor

is given by the length of the arc spanned by the tasks that are assigned to that processor�

The RMST scheme is summarized in Algorithm �� It can be easily veri�ed that the compu�

tational complexity of Algorithm � is determined by the sorting of tasks in Step �� Thus� the

complexity of RMST is O�K logK� where K is the size of the task set�

��

��� Order the task set such that � � S� � � � � � SK � � and set SK�� �� S� � ��

Set the task index to i �� �� and the processor index to n � ��

��� Select an empty processor with index n �� n � �� Assign task �i to processor n�

that is 	n �� Ui� Set S �� Si� and �
n �� ��

��� Increase the task index� i �� i � �� and set �
n �� Si � S� If the schedulability condition ��

Ui � 	n � maxfln �� �� �
 ln �g

is satis�ed� assign task �i to processor n by setting 	n �� 	n �Ui� and continue with step ����

Otherwise� continue with step ����

��� When all tasks have been assigned set �
n �� SK�� � S and terminate�

Algorithm �� Rate�Monotonic Small Task �RMST��

Let us illustrate the RMST scheme with an example� In Table � we show the parameters for

a set of �� tasks� also including the values of Si� The task set is already ordered according to Si�

Note that for the parameter set in Table � we obtain � � ������ In Figure �� we depict the values

for Si on a circle with circumference one� The shaded areas indicate the assignment of tasks to

processors as obtained by RMST� The areas are labeled with the value of
 as de�ned in ��� for

a particular processor �� Thus� three processors are required to schedule the set of tasks of Table

�� where tasks ��� ��� ��� �� are assigned to the �rst processor� �	� �
� �� to the second processor� and

��� �� ��� to the third processor� Note that any assignment scheme proposed in the literature would

utilize four processors�

Next we will show that the RMST scheme satis�es performance bounds of the form given in �����

Theorem � For any given task set ��� � � � � �K� the RMST scheme arrives at a feasible assignment

of tasks to processors� If the maximal load factor of any single task is

� �� max
i������K

Ci

Ti
� � ����

then the number N of processors needed by RMST satis	es the inequality

N �
U

�� �
� �� �� ln �

�� �
� ���

�Note that � is slightly di�erent from 	�n in Algorithm
� 	�n also contains the value of Si of the �rst task �i not

assigned to processor n�

��

i � � � � � � �
 � ��

Ti � � �
� � ��� �� �� ��� � ��� �

Ci � � �� �� �� � �� ��� � �� ��

Ui � ����� ���� ������ ����� ���� ������ ���
�� ���
�� ������ �����

Si � ������ ������ ����� ����

 ������ �����
 ����
 ��
��� ��
��� ����

Figure �� Example Parameter Set�

1n

4S

S 1

S

S

S

S

S

S

S

S

2

3

5

6

7

8

9

10

0.75 0.25

0

0.5

�

��

2

13

Figure �� Processor Assignment for Algorithm ��

The inequality in ��� is not tight� however� one can construct task sets for which RMST requires

at least U���� �� processors� For � � ���� the bounds obtained with the RMST scheme improve

upon any previously proposed assignment scheme� For � � ���� the RMGT scheme presented in

the next subsection will give better bounds than RMST� Since in most practical real time systems

the load imposed by individual real�time tasks is small compared to the power of the processors�

the result of Theorem � shows to be highly relevant for practical real�time applications�

Proof of Theorem �� Denote by Kn the number of tasks assigned to the n�th processor� and

by 	n the load on the processor due to these tasks� De�ne �
n as �
n � Sin�� � Sin � where in is

the index of the �rst task assigned to processor n� We also set SiN��
� � � S�� Note that these

��

de�nitions are identical to the values of �
n after Algorithm � has terminated�

The task assignment resulting from Algorithm � is feasible by Corollary �� We now estimate N �

the number of processors needed by Algorithm � to schedule a given task set� By our schedulability

condition in ��� the loads on the processors satisfy

	n � �� �
n ln �� � n � �� � � �N � � ����

	N�� � 	N � �� �
N�� ln � ��
�

Adding ���� and ��
�� and using that by construction

NX
n��

�
n � � ����

we obtain

U �
NX
n��

	N �����

�
N��X
n��

��� �
n ln �� �� � �� �
N�� ln � �����

� �N � ����� �� � �� ln � �����

Solving for N yields assertion ���� �

In the following corollaries we compare the number of processors required to schedule a task

set using RMST with the number of processors required for an optimal assignment scheme� Corol�

lary � gives the bound of the performance parameter N�Nopt for any number N of processors� In

Corollary � we present the asymptotic limit which is included in Table ��

Corollary � For any task set� the number N of processors needed by RMST satis	es

N

Nopt
�

�

�� �
�

�

Nopt
�����

Nopt denotes the number of processors utilized by an optimal assignment scheme�

Proof� For any schedule� we must have Nopt � U � With ��� we obtain

N �
Nopt

�� �
� �� �� ln �

�� �
�����

Dividing by Nopt gives the claim� �

��

Corollary � Let f�i j i � �� �� � � �g be a given in	nite task set� Assume that the load factor of any

single task does not exceed �� Denote by U�k� the total load factor of tasks ��� � � � � �k� Denote by

N�k� the number of processors used by RMST to schedule ��� � � � � �k� and by Nopt�k� the number of

processors needed in an optimal assignment� If

lim
k��

U�k� � � �����

then

lim
k��

U�k�

N�k�
� �� � ����

lim
k��

N�k�

Nopt�k�
� �

�� �
�����

The bounds are tight�

Proof� We obtain ���� by dividing by N in equation ��� of Theorem � and passing to the limit�

For equation ����� we pass to the limit in inequality ����� of Corollary �� �

��� RMGT � An Assignment Scheme for General Task Sets

The RMST scheme from the previous subsection provides excellent bounds for task sets where the

maximal load factor of the tasks is limited by Ui � ���� Next we propose a simple task assignment

scheme� referred to as Rate�Monotonic General�Task �RMGT� scheme which is applicable to unre�

stricted task sets� We show that RMGT is able to �nd a feasible task assignment with less than

N � �U � � processors�

For the RMGT scheme we partition the task set into two groups� such that the load factors of

tasks in the �rst and second group� respectively� satisfy Ui � ��� and Ui � ���� Tasks in the �rst

group are assigned to processors with the RMST scheme in Algorithm �� Tasks from the second

group are assigned to processors with a �rst��t heuristic� The heuristic assigns at most two tasks

to one processor using the exact schedulability condition from ����� The complete RMGT scheme

is summarized in Algorithm ��

Partitioning the task set in Algorithm � involves a computational complexity of O�K� where

K is the total number of tasks� Recall from subsection ��� that Algorithm � has a complexity of

O�jG�j log jG�j�� Since a �rst �t bin�packing algorithm for tasks in G� can be implemented with a

complexity of O�jG�j log jG�j� 	��� the worst case computational complexity of the RMGT scheme is

given by O�K logK��

In the following theorem� Theorem �� we show that the number of processors needed by RMGT for

scheduling an arbitrary set of real�time tasks satis�es a bound similar to ����� In Theorem � and

Corollary � we prove bounds for the performance of the RMGT scheme�

��

��� Partition the set of tasks into two groups�

G� � f�i j Ui � ���g
G� � f�i j Ui � ���g

��� Use the RMST scheme in Algorithm � to assign the task set G��

��� Assign tasks in G� as follows�

����� Set the task index to i �� � and assign �� to an empty processor with index �� Set

	� �� U��

����� Increase the task index to i �� i� � and consider task �i� Use a �rst��t heuristic to �nd

a processor n that contains a task �j such that

�
Tj
Ti

�
�Tj � Ci� � Cj or Tj �

�
Tj
Ti

�
Ci � Cj

if Ti � Tj� and �
Ti
Tj

�
�Ti � Cj� � Ci or Ti �

�
Ti
Tj

�
Cj � Ci

if Ti � Tj � If such a processor exists� assign task �i to processor n by setting 	n �� 	n�Ui�

otherwise� assign task �i to an empty processor with index m� and set 	m �� Ui� Continue

with step ������

����� Terminate when all tasks in G� have been assigned�

Algorithm �� Rate�Monotonic General Task �RMGT��

�

Theorem � For any task set ��� � � � � �K� the RMGT algorithm arrives at a feasible processor as�

signment� The number N of processors utilized by RMGT to schedule the task set satis	es

N � �U �
�

�
ln �� �

�

 �U � ���� ���
�

Proof� Given a task set ��� ��� � � � � �K� With Theorem � and Lemma �� RMGT arrives at a feasible

processor assignment� Next we estimate the number of processors used by RMGT� Assume that

Algorithm � assigns to n� processors each two tasks from G�� and to n� processors each one task

from G�� Also assume that Algorithm � utilizes n� processors for tasks in G�� Denote the total load

factors assigned to the three groups of processors by U ���� U ���� and U ���� respectively� Then we

obtain�

U ��� �
�n�
�

� n�
�

�����

U ��� �
n�
�
� ln �

�
�����

U ��� �
�n�
�

� �

�
� ln � � n�

�
� ln � �

�

�����

Inequality ����� holds� because each processor in this group has been assigned two tasks� each with

a load larger than ���� Inequality ����� follows from Corollary �� Inequality ����� follows from

Theorem � provided that n� � �� Because the joint load on any two processors exceeds ln � by

construction� ����� holds also if n� � �� Adding the three inequalities and solving for N yields the

claim in ���
�� �

Theorem � The number of processors utilized by RMGT to assign a task set satis	es

N

Nopt
� �

�
�

�� ln �� �

Nopt

 �

�
�

����

Nopt
�����

where Nopt is the number of processors utilized by an optimal assignment� The inequality becomes

false� if the right hand side is replaced by anything less than ����

Proof� As in the proof of Theorem �� we denote by n� the number of processors that have been

assigned one task from G�� Then� from inequalities ������ ������ and ������ we obtain

Nopt � U �
�

�
�N � n�� �

n�
�
� �

�
� ln �� ln �

�
�����

�
�

�
N � n�

� �

�
� �

�
ln � �����

��

Moreover� since we used exact schedulability conditions to schedule class G�� we have that

Nopt � n� �����

We obtain

Nopt � min
��n�N

max fU� n�g ����

� �

�
N �

�

�
� ��

��
ln � �����

which proves ������

To show that the inequality in ����� is tight we will construct a task set such that N�Nopt � ����

The task set consists of ��m �m � �� tasks� For the construction of the tasks we select two small

positive numbers � and with

� ln � � �
�

�
� ln � ���
�

We label the tasks by �i�j � where � � i � m� and � � j � ��� The tasks are given by

Ci�j � Ui�jTi�j � Ti�j � �Si�j �����

Then the values for Ui�j and Si�j are given by

Ui�j �

�			

			�

���� if j � �� ��
� ��

��� if j � �� � ��

��� if j � �� �� �� �� ��� ��

�����

and

Si�j �

�

� ���i� j�� if � � j � ��

���i� ���� if j � ��
�����

An optimal assignment will require exactly �m processors to schedule the given task set� In par�

ticular� the optimal assignment distributes the following groups of tasks to one processor each�

f�i��� �i��� �i��g � f�i��� �i�	� �i�
g � f�i��� �i��� �i�� �i���g � f�i���� �i���� �i���g for i � �� � � � � m � �����

Since the total load of the task set is given by U � ��� ����m�� the given assignment is optimal�

if � and are chosen su�ciently small� The assignment is feasible by Corollary ��

RMGT as given in Algorithm � �rst divides the task set into two groups� In the �rst group we

have for each i

G� � f�i�j j j � �� �� �� �� �� ��� ��� ��� i � �� � � � m g �����

These tasks are assigned with Algorithm �� which results in the following processor assignment�

f�i��� �i��� �i��g � f�i�
� �i��� �i�g � f�i���� �i���� �i���g for i � �� � � � � m �����

�

The second group is given by

G� � f�i�j j j � �� ��
� ��� i � �� � � � m g �����

The load factor of each task in G� is given by ���� � Thus� according to equation ����� no two

tasks from G� can be scheduled on the same processor� So� RMGT needs �m processors for the

same task set� �

Corollary � Let f�i j i � �� �� � � �g be a given in	nite task set� Denote by U�k� the sum of the load

factors of tasks ��� � � � � �k� Denote by N�k� the number of processors used by RMGT to schedule

��� � � � � �k� and by Nopt�k� the number needed in an optimal assignment� If

lim
k��

U�k� � � ����

then

lim
k��

	�k�

N�k�
� �

� �����

lim
k��

N�k�

Nopt�k�
� �

� � ���� ���
�

Both bounds are tight�

Proof� Inequality ����� is obtained by dividing ���
� of Theorem � by �N � and passing to the

limit� Inequality ���
� follows by passing to the limit in ����� of Theorem �� �

� RMGT�M � An On�Line Task Assignment Scheme

In this section we propose an on�line version of the task assignment schemes presented in section ��

Recall that on�line task assignment schemes do not require that the entire task set is known a

priori� Rather� on�line schemes provide procedures for dynamically adding new tasks and deleting

existing tasks at any time� We assume that the number of processors in the real�time computer

system is not constrained� Thus� new tasks can always be added to the processor system�

We refer to the new scheme as Rate�Monotonic General�Tasks
M �RMGT
M� scheme� where M

is a parameter denoting the number of processors to which a new task can be assigned� RMGT�M

has the following properties� If a task is dynamically added to a processor� the assignments of

existing tasks remain unchanged� However� if a task is deleted from a particular processor� possibly

all tasks on this processor are moved to other processors�

��

The RMGT�M scheme is based on the schedulability conditions used for the o��line RMST

scheme discussed from subsection ���� In RMGT�M� each task is assigned to one of a �xed number

of M classes� The class membership� say m� of a task � is determined by the following expression�

m �
j
M�log� �T �� blog� �T �c�

k
� � �����

Each processor is assigned tasks from only one class� Thus� at each processor the value of
 as

de�ned in ��� is bounded above by � � ln ��M � For each class� the RMGT�M scheme keeps one

so�called current processor� If a new task from class m is added to the task set� RMGT�M �rst

attempts to accommodate the task to the current processor for class m� A complete description of

the procedures for adding and deleting a task � � �C� T � is given in Algorithm ��

In Algorithm �� adding and deleting of a task � � �C� T � are performed by procedures AddTask��

and DeleteTask��� AddTask�� �rst determines the class membership� say m� of the new task �

�Step ��� If � can be added to the current processor of class m without violating the schedulability

condition it is assigned to this processor� Otherwise� � is assigned to an empty processor� If the

load factor of � is su�ciently small �Step ��� the processor to which � is assigned becomes the

current processor of class m �Steps � and �� If the load factor of � is large� no other task will be

assigned to this processor �Steps
 and ���

Similarly to AddTask��� procedure DeleteTask�� �rst determines the class membership of the

task to be deleted �Step ��� If the task� say � � is assigned to the current processor of its class�

it is merely canceled �Step ��� Otherwise� all tasks at this processor �except �i� are assigned to

di�erent processors with procedure AddTask�� �Steps � and �� and the processor is labeled as

empty �Step
��

The performance bounds of the RMGT�M scheme are given in Theorem and Corollary �

Corollary states the asymptotic bound of RMGT�M� The bounds given in Table � can be obtained

from the corollary�

Theorem 	 If a dynamically changing task set is scheduled with RMGT
M then the number of

processors needed satis	es

N �
U

�� ln ��M � �
� M �����

The bound is tight if � � ��� ln ��M���� We also have

N �
�U

�� ln ��M
� M �����

which is a tight bound if � � ��� ln ��M����

��

Global functions�

curr�m� � Returns the current processor for class m�

proc��� � Returns the processor index assigned to task � �

newproc�� � Returns the index of an empty processor�

empty�n� � Labels processor n as empty processor�

AddTask �� � �C� T ��

begin

�� m ��
j
M �log� �T �� blog� �T �c�

k
� ��

�� if �	curr�m� � C�T � �� ln ��M� then

�� 	curr�m� �� 	curr�m� � C�T �

�� else if �	curr�m� � C�T � then

�� curr�m� �� newproc���

� 	curr�m� �� C�T �

�� else

� x �� newproc���

�� 	x �� C�T �

��� endif

end

DeleteTask �� � �C� T ��

begin

�� m ��
j
M�log� �T �� blog� �T �c�

k
� ��

�� if �proc��� � curr�m�� then

�� 	proc��� �� 	proc���� C�T �

�� else

�� for each f�� j proc���� � proc���� �� �� �g do
� AddTask�����

�� endfor

� empty�proc�����

�� endif

end

Algorithm �� Rate�Monotonic General Task�M �RMGT�M��
��

Proof� The schedulability condition used for Algorithm � in Step � of procedure AddTask�� enforces

that at any instant� the load on all processors but the M current processors exceeds both ��ln ��M�
� and ��� ln ��M���� �

Corollary 	 Let f�i j i � �� �� � � �g be a given in	nite task set� Denote by U�k� the sum of the load

factors of the 	rst k tasks� Denote by NM�k� the number of processors used by Algorithm �� and

by Nopt�k� the number of processors used by an optimal scheme� If

lim
k��

U�k� � � �����

then we have the asymptotic bounds

lim
k��

U�k�

NM�k�
� max

�
�� ln ��M � � �

�� ln ��M

�

�
�����

lim
k��

NM�k�

Nopt�k�
� min

�
�

�� ln ��M � �
�

�

�� ln ��M

�
�����

The bounds are tight�

Proof� We obtain both ����� and ����� by passing to the limit in ����� and ������ �

From the derived bounds we see that the performance of RMGT�M is sensitive to the selection of

M � the number of task classes� The asymptotic bounds in ����� and ����� improve for large values

of M � However� M also determines the number of current processors� i�e�� processors which are not

fully utilized� Next we present a method for selecting an appropriate value of M �

Assume that the total load of the task set is known� To �nd the value of M that gives the best

worst�case bound for the number of processors used� we �x the value of U in ������ Since the right

hand side of ����� is a strictly convex function of M � we can calculate the unique minimum which

is denoted by M��

M� �
p

�U ln � � ln � �����

This suggests that we should choose M � p
U � Then we obtain

U

N
� ��� ln ��M � �����M�N� �

�

�
�O���

p
U� ����

and hence
N

Nopt
� � � O���

p
U� �����

Similarly� if � � ���� we can minimize the right hand side of ����� over M and obtain that the

optimal choice for M should be as close as possible to

M� �

p
U ln � � ln �

�� �
���
�

��

If we choose M � p
U � we obtain with ����� the following bound for the average utilization at each

processor�
U

N
� ��� ln ��M � �����M�N� � �� �� O���

p
U� � �����

and N�Nopt is given by
N

Nopt
� �

�� �
� O���

p
U� �����

	 Conclusions

We derived new schedulability conditions for scheduling �periodic� real�time tasks on uniprocessor

and multiprocessor systems� Each processor was assumed to use the rate�monotonic scheduling

algorithm� Based on the schedulability conditions we developed three assignment schemes� called

RMST� RMGT� and RMGT
M� for assigning tasks to the processors� Both RMST and RMGT are

so�called o��line task assignment schemes� that is� the entire set of real�time tasks is assumed to

be known� The on�line scheme RMGT
M allows that real�time tasks are dynamically added to or

deleted from the task set�

For each of the schemes� we obtained upper bounds for the performance parameter N�Nopt�

where N is the number of processors required to schedule a task set with RMST or RMGT� and

Nopt is the number of processors needed in an optimal assignment� We also obtained lower bounds

for the average processor utilization� We provided asymptotic limits of the bounds� For RMST�

the asymptotic bound for N�Nopt was proven to be ����� �� where � is the maximal load factor

of the tasks in the given task set� For the RMGT scheme we proved an asymptotic bound of ����

In RMGT�M� the asymptotic bound was shown to be at most ����� �� � O���M�� where M is a

parameter�

The improvement of the performance bounds compared to previous existing results were achieved

with rather simple assignment algorithms� The strength of the presented schemes resulted from

novel schedulability conditions� We conjecture that both the RMST and RMGT scheme leave am�

ple space for improvements� For example� the following modi�cations to our assignment schemes

may result in better performance bounds�

� For RMST one can use tighter schedulability conditions than the one we applied� Without

additional computational cost one could use the following more precise condition which can

be obtained from Theorem ��

Uj � 	n �
�

�
 ln � � ���� � � if
 � ���

ln � if
 � ���

��

This will lower the number of processors used� however� the asymptotic limit for N�Nopt will

not change� RMST can be further improved by using the exact schedulability condition in

Theorem � which contains the number of tasks� K� as a parameter� Then the schedulability

condition in Algorithm � takes the form

Uj � 	n �
�

� �K � �������K���� �� � ���� � � if
 � �� ��K

ln � if
 � �� ��K

� Note that RMGT never assigns !large tasks �with Ui � ���� and !small tasks �with Ui � ����

to the same processor� However� it is very likely� that processors that are assigned !large

tasks can accommodate some additional !small tasks� This will increase the average load per

processor signi�cantly� and may also improve the worst case bound for N�Nopt�

��

References

	�� S� Davari and S� K� Dhall� An On Line Algorithm for Real�Time Allocation� In �th Annual

Hawaii International Conference on System Sciences� pages �������� ��
�

	�� S� Davari and S� K� Dhall� An On Line Algorithm for Real�Time Allocation� In IEEE Real�

Time Systems Symposium� pages �������� ��
�

	�� S� K� Dhall� Scheduling Periodic�Time�Critical Jobs on Single Processor and Multiprocessor

Computing Systems� PhD thesis� University of Illinois at Urbana�Champaign� �����

	�� S� K� Dhall and C� L� Liu� On a real�time scheduling problem� Operations Research� ���������

���� January�February ���
�

	�� D� S� Johnson� A� Demers� J� D� Ullman� M� R� Garey� and R� L� Graham� Worst Case Perfor�

mance Bounds for Simple One�dimensional Packing Algorithms� SIAM Journal of Computing�

���������� �����

	� J� P� Lehoczky� L� Sha� and Y� Ding� The Rate�Monotonic Scheduling Algorithm� Exact

Characterization and Average Behavior� In IEEE Real�Time Systems Symposium� pages ��

���� ��
��

	�� J� Y��T� Leung and J� Whitehead� On the Complexity of Fixed�Priority Scheduling of Periodic�

Real�Time Tasks� Performance Evaluation� ���������� ��
��

	
� C� L� Liu and J� W� Layland� Scheduling Algorithms for Multiprogramming in a Hard Real

Time Environment� Journal of the ACM� ���������� January �����

	�� Y� Oh and S� H� Son� Tight Performance Bounds of Heuristics for a Real�Time Scheduling

Problem� Submitted for Publication�

	��� L� Sha� J� P� Lehoczky� and R� Rajkumar� Solutions for Some Practical Problems in Prioritized

Preemptive Scheduling� In IEEE Real�Time Systems Symposium� pages �
������ ��
�

	��� J� A� Stankovic and K� Ramamritham �editors�� Hard Real�Time Systems� IEEE Computer

Society Press� ��

�

	��� Q� Z� Zheng and K� G� Shin� On the Ability of Establishing Real�Time Channels in Point�to�

Point Packet Switched Networks� to appear� IEEE Transactions on Communications�

��

A Average�Case Performance Evaluation of RMST and RMGT

In this study� the performance bounds of the new assignment schemes� RMST and RMGT� were

derived under worst�case assumptions� While a worst�case analysis assures that the performance

bounds are satis�ed for any task set� it does not provide insight into the average behavior of the

assignment schemes� To obtain the average�case performance of the RMST and RMGT schemes�

one can analyze the schemes with probabilistic assumptions� or conduct simulation experiments

to empirically study the average performance� Since a probabilistic analysis of our algorithms is

beyond the scope of this study� we resort to simulation to gain insight into the average�case behavior

of RMST and RMGT�

We present simulation experiments for large task sets with ��� � K � ���� tasks� In each

experiment� we vary the value of parameter � � maxi�������K Ui� the maximal load factor of any

task in the set� The task periods are assumed to be uniformly distributed with values � � Ti � ����

The execution times of the tasks are also taken from a uniform distribution with range � � Ci � �Ti�

The performance metric in all experiments is the number of processors required to assign a given

task set� We compare the RMST and RMGT schemes with several existing assignment schemes� All

assignment schemes are executed on identical task sets� The following o��line assignment schemes

are considered�

� Rate�Monotonic Small�Tasks �RMST� �section �����

� Rate�Monotonic General�Tasks �RMGT� �section �����

� Rate�Monotonic�Next�Fit �RMNF� 	���

� Rate�Monotonic�First�Fit �RMFF� 	���

� Rate�Monotonic�Best�Fit �RMBF� 	�� �

Since an optimal task assignment cannot be calculated for large task sets� we use the total load

�U �
PK

i�� Ui� to obtain a lower bound for the number of processors required�

The outcome of the simulation experiments is shown in Figures A�� � A��� The maximum load

of a task is set to � � ��� in Figure A��� to � � ��� in Figure A��� and to � � ��
 in Figure A��� In

the Figures� each data point depicts the average value of �� independently generated task sets with

identical parameters� Note that the RMGT scheme gives the best performance in all experiments�

In Figure A��� the performance of RMST and RMGT cannot be distinguished since RMST and

RMGT are identical if � � ���� As we increase the value of �� we observe that the performance of

RMST decreases�

The graphs in Figures Figures A�� � A�� show that in all schemes� the number of processors

required for the respective schemes� increases proportionally to the total load� In Table A�� we

�In all simulations� the results obtained with RMFF and RMBF were identical�

�

show the range of values of

N�U ��
Number of Processors Used

Total Load

as obtained for the di�erent assignment schemes in all task sets� The data in Table A�� was collected

from the same simulation experiments used for Figures A�� � A���

N�U RMNF RMFF RMST RMGT

� � ��� 	����� ����� 	����� ����� 	���� ����� 	���� �����

� � ��� 	����� ���� 	����� ���� 	����� ���� 	����� �����

� � ��
 	����� ���� 	����� ���
� 	����� ����� 	���
� �����

Table A��� Simulation Results for N�U �

�a�b� denotes that a � N�U � b in all simulations�

Figure A��� Task Sets with � � ����

��

Figure A��� Task Sets with � � ����

Figure A��� Task Sets with � � ��
�

�

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Regular
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

