
1

A Low-Cost Low-Power LoRa Mesh Network for
Large-Scale Environmental Sensing

Dixin Wu Student Member, IEEE
Jörg Liebeherr Fellow, IEEE

Abstract—Sustainability and climate monitoring efforts create
a need for long-term in-situ sensing of large geographic areas.
However, environmental monitoring in remote areas of developing
countries remains impeded by a lack of low-cost, scalable
IoT solutions. Whereas IoT systems for in-situ sensing abound,
they mostly are either low-cost or suitable for large areas, but
not both. In this paper, we present a low-cost low-power network
solution for in-situ sensing of areas up to hundreds of square
kilometers. Taking advantage of LoRa technology, we develop a
self-organizing mesh network that can be scaled to a hundred and
more nodes. Scalability is achieved by developing methods that
mitigate packet collisions during data collection. We present a
protocol, called CottonCandy, with which nodes self-organize in a
spanning-tree network topology in a distributed fashion. A power
profile on a custom-built circuit board shows that CottonCandy
nodes can run thousands of duty cycles on 2 AA batteries,
sufficient to operate for years in many applications. Using off-
the-shelf components, the cost of a CottonCandy node is less
than US-$ 15. Evaluations by simulation show that CottonCandy
networks with 100 nodes achieve a packet delivery ratio of
>90%. Measurements of an outdoor deployment with 15 nodes
corroborate the high packet delivery ratio in a real-life setting.

Index Terms—Low-Power Wide-Area Network (LPWAN),
LoRa MAC Layer, LoRa Mesh Network, Network Protocols.

I. INTRODUCTION

In-situ sensing of environmental factors plays an important
role in sustainability efforts. For instance, by monitoring
soil conditions and evaporation on their fields, farmers can
precisely tailor watering schedules, thereby preserving scarce
water resources. Making such efforts practicable in rural
areas of developing nations requires low-cost communication
subsystems that can collect sensor data across large areas with
low power requirements. Wireless sensor networks (WSNs)
and the Internet-of-Things (IoT) have been embraced by earth
and environmental sciences [1]–[3], however, most WSNs and
IoT systems are either low-cost or can cover large areas, but
not both. Low-cost IoT technologies, such as BLE and Zigbee,
have a limited range [4, Table 2], while cellular radios, such
as GSM, NB-IOT, and LTE-M, cover large distances, but incur
high costs.

The emergence of low-power wide-area networks (LP-
WANs), such as LoRa and Sigfox, enables remote monitoring
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for applications where a long transmission range and long bat-
tery life are preferred over high throughput [4]. Both operate
in unlicensed ISM bands and have communication ranges of
several kilometers [5]. Both LoRa and SigFox radios are based
on proprietary technologies. Unlike Sigfox, which is only
available as a subscription service, LoRa is complemented by
an open-source protocol stack, called LoRaWAN, for building
LPWANs. With LoRaWAN, sensor nodes send their data
directly to a LoRaWAN gateway [6], thus forming a star
network topology. As consequences of this, not only must each
LoRa radio be within communication range of a gateway, the
performance of communication also degrades with increasing
numbers of connected radios [7].

The limitations of LoRaWAN can be overcome by orga-
nizing LoRa radios in a mesh network [8]–[12]. A mesh net-
work extends communication ranges via multi-hop forwarding,
where LoRa nodes participate in relaying data between other
LoRa nodes. Since there is no requirement that all nodes are
within range of a gateway, mesh networks can cover larger
areas. Costs can be further reduced by replacing LoRaWAN
gateways by simpler (and less costly) gateway devices that
connect to the Internet using standard IoT protocols [13].
Given the low cost of LoRa radios, LoRa mesh networks
can significantly reduce the cost of large sensor deployments.
However, scaling such networks to hundreds of nodes while
maintaining low power consumption is challenging. A major
problem of a multi-hop design for LPWANs is the incurred
power consumption for packet relaying, as forwarding of
packets between nodes drains batteries. Moreover, multi-hop
relaying toward the gateway in large networks incurs a high
risk of packet collisions. The latter can be mitigated by
resorting to time-division multiplexing [10], [14] or assigned
frequency bands [15], which, however, limit the scalability of
the LPWAN.

In this paper, we present a LoRa multi-hop mesh network
solution, called CottonCandy, that can be scaled to a hundred
and more sensor nodes. CottonCandy is designed for time-
driven in-situ sensing applications [16], where nodes report
data to a data sink in coordinated duty cycles. Nodes conserve
energy by hibernating in a low-power state between duty
cycles. Since it is designed to support long-term measurements
of environmental data on a large scale, CottonCandy does not
attempt reliable data delivery. Rather than recovering packet
losses through retransmissions, the media access protocol of
CottonCandy seeks to reduce the occurrences of packet losses
by adapting to network conditions.

A unique feature of CottonCandy, compared to existing
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LoRa mesh networks, is that the network is self-organizing,
in the sense that the network forms without the need for
central coordination or management [17]. Advantages of self-
organization are that nodes can be dynamically added to an
existing network and that the network can adapt to node
failures. CottonCandy nodes form a rooted spanning tree
network topology, where the root is a gateway device with
access to the Internet. The hierarchical structure of a spanning
tree enables simple, recursive protocols for both uplink and
downlink communications.

The contributions of this paper are summarized as follows:
1) We devise collision mitigation methods that result in a

high delivery ratio on multi-hop routes.
2) We present a self-organizing protocol that enables nodes

to synchronize their duty cycles, to dynamically join the
spanning tree network, and to participate in a request-
based data collection of sensor data.

3) We design a prototype CottonCandy node with a unit
cost below US-$ 15. A detailed power profile shows that
the prototype can operate for thousands of data cycles
on 2 AA batteries. Assuming that environmental data
is collected a few times per day, this ensures a battery
lifetime in excess of one year.

4) We validate the performance claims of our protocol
via simulation and outdoor measurement experiments.
Simulations show that a CottonCandy network, even
with 100 nodes, achieves a packet delivery ratio above
90%. The findings are confirmed in measurements of a
deployed network with 15 nodes.

The proposed self-organizing protocol targets sensing applica-
tion where data is reported in regular time intervals, ranging
from several minutes to several days. The protocol does not
provide a solution for time-critical sensing applications, such
as detection wildfires, flash floods, or mudslides.

The remainder of this paper is organized as follows. In
Sec. II, we discuss related work. In Sec. III, we present
methods for collision mitigation in multi-hop LoRa networks.
In Sec. IV, we describe the CottonCandy protocol. The
CottonCandy prototype is discussed in Sec. V. We present
a performance evaluations using simulations in Sec. VI, and
outdoor measurement experiments in Sec. VII. We present
brief conclusions in Sec. VIII.

II. BACKGROUND AND RELATED WORK

In this section, we discuss aspects of the LoRa physi-
cal layer relevant to this paper and related work on media
access control (MAC) protocols for WSNs and LoRa-based
LPWANs. We refer to available surveys for more detailed
discussions [15], [18]–[21].

LoRa PHY: LoRa PHY is a proprietary physical layer devel-
oped by Semtech that operates in unlicensed ISM bands, e.g.,
915 MHz in North America and 868 MHz in Europe. LoRa
uses variants of chirp spread spectrum modulation and forward
error correction. The range of a LoRa link is often reported
as 5–15 km in open space [22], but can be much shorter
in practical settings [23], [24]. The bit rate of LoRa radios
depends on spreading factor, channel bandwidth and coding

rate, which are all configurable system parameters. A higher
spreading factor uses more chirps to modulate a single bit and
enhances the reliability of transmission at a lower bit rate.
Without a MAC protocol, LoRa communication is subject to
collisions when two or more incoming packets overlap in both
time and frequency. The number of available LoRa channels
depends on the frequency band and the configured channel
bandwidth. With a typical channel separation in LoRa of 1.5
times the channel bandwidth [25] and a channel bandwidth
of 125 kHz, the North American frequency band for LoRa of
902 MHz–928 MHz supports up to 139 different channels.1

Classification of MAC Protocols for WSNs: MAC protocols
for WSNs were studied extensively in the early 2000s. While
the specifics of those protocols are not applicable to LoRa,
proposed classifications of WSN MAC protocols help to
gain perspective on LoRa MAC protocols. One classifica-
tion distinguishes between asynchronous, synchronous, frame-
slotted, and multi-channel protocols [28]. Asynchronous MAC
protocols establish communication links on demand. Here,
receivers wake up periodically and start receiving if they
hear a bit signature, e.g., a preamble [29], [30]. Alternatively,
receivers can proactively send beacon messages to initiate
communication with senders who are waiting to transmit [31],
[32]. In contrast, with synchronous MAC protocols nodes
wake up and communicate for certain active times, the so-
called duty cycles [33]–[35]. This eliminates the need to
establish communication on demand, but may incur additional
overhead for clock synchronization. Frame-slotted and multi-
channel mechanisms are often used for collision mitigation.
Most frame-slotted MAC protocols implement time-division
multiple access (TDMA) on synchronous WSNs. Alterna-
tively, network throughput can be improved by concurrent
transmissions on orthogonal frequency channels using multi-
channel MAC protocols. Another useful classification in [16]
distinguishes between time-driven WSNs involving duty cy-
cles, event-driven WSNs where sensor nodes alert the sink
node upon the occurrence of certain events, and query-driven
WSNs, where sensor nodes send their data only upon receiving
a query from the sink node. Viewed in terms of these clas-
sifications, CottonCandy belongs to the class of time-driven
WSNs with a synchronous MAC protocol.

MAC Protocols for LoRa-based LPWANs: In the star topol-
ogy of LoRaWAN, nodes transmit data to a gateway in an
asynchronous, ALOHA-like fashion. Even though LoRaWAN
gateways support concurrent reception of multiple packets,
the number of nodes that can be supported without perfor-
mance degradation is limited [36]. A geographically dispersed
LPWAN deployment therefore requires multiple LoRaWAN
gateways, which, due to the high cost of commercial Lo-
RaWAN gateways defeats the goal of a low-cost network
solution. Public LoRaWAN infrastructures are an increasingly
popular alternative to private gateways [37], [38], however,
they are generally unavailable in remote regions of developing
countries. Many recent studies on LoRaWAN improve the

1In Europe, the frequency allocation policy in its 868 MHz ISM band
depends on the type of device, with 35 available channels for non-specific
devices [26]. In India, the available number of channels is 10 [27].
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capacity of LoRaWAN gateways via physical-layer coding,
e.g., Pyramid [39], CoLoRa [40], mLoRa [41], OCT [42],
Choir [43]. Other works replace the ALOHA protocol by
CSMA [44], TDMA [45] and lightweight scheduling [46].
However, the challenge of limited scalability remains unsolved
due to the inherent drawbacks of a star topology.

The limitations of LoRaWAN have inspired the design of
multi-hop LoRa LPWANs. Some studies [12], [47] propose
multi-hop forwarding between LoRaWAN gateways so that
only one gateway requires Internet access. This, however,
still relies on multiple LoRaWAN gateways. Among single-
gateway LoRa LPWAN solutions, some protocols involve
multiple intermediate nodes in the relaying of a single data
packet [9], [48], which harvests the benefit of concurrent trans-
missions at the cost of higher energy consumption. In [11],
nodes are organized in a rooted tree topology, where the root of
the tree queries one node at a time. Having no sleep schedule,
nodes must listen to queries at all times, which is impractical
for battery-powered deployments. Several recent LoRa-based
LPWANs embraced TDMA to mitigate collisions. In [14]
LoRaWAN is extended with synchronous mesh sub-networks
that employ TDMA, where sub-networks are limited to only
five nodes each. Another solution [10] centrally computes a
global TDMA schedule and routing paths. This requires a new
TDMA schedule and new routing tables each time a node is
added or removed.

III. COLLISION MITIGATION METHODS

The viability of a large-scale multi-hop LoRa mesh network
depends largely on the degree to which its protocols can
avoid or mitigate packet collisions. The root cause of packet
collisions are transmissions with overlapping frequencies and
air times. Time-division or frequency-division multiplexing
can dramatically reduce collisions, however, at the cost of
reduced scalability, limited flexibility, and a need for central-
ized coordination or configuration. For a self-organizing archi-
tecture that seeks to scale to hundreds of nodes, resorting to
preassigned or centrally coordinated time slots or frequencies
is not an option. Instead, we develop distributed solutions for
network formation, channel assignment and access, and data
collection that jointly achieve a low rate of packet collisions. In
Sec. IV, our solutions will be integrated into a self-organizing
network protocol.

We will evaluate the proposed mitigation methods using
simulations on ns-3 [49]. We adopt the physical-layer LoRa
model from [50], which assumes a log-distance path loss
model. Unless specified otherwise, network parameters are as
listed in Table I. We simulate networks with 100 nodes that
are placed on 10×10 grids with an additional node, the root of
the spanning tree, at the center of the grid. By modifying the
horizontal and vertical distance between neighboring nodes d,
we can vary the node density ρ and the area covered by the
network. Table II relates these quantities for a 10×10 grid for
the range of values evaluated in this paper.

Throughout the paper we consider data collection in a
rooted spanning tree network topology. The root of the tree
is a special node that serves the role of a gateway, which

TABLE I
PHYSICAL-LAYER PARAMETERS USED IN SIMULATIONS.

PHY Parameters Value
Loss Exponent (γ) 3.76
Reference Loss (PL0) 7.7
Reference Distance (d0) 1 m

LoRa Spreading Factor (SF ) 7
LoRa Channel Bandwidth (BW ) 125 kHz
LoRa Coding Rate (CR) 4/5
LoRa Sensitivity (SF7 and BW125) -123 dBm [25]

TABLE II
NETWORK DENSITY IN TERMS OF COVERAGE AREA AND GRID DISTANCE.

Node density ρ
(nodes/km2) 0.3 0.5 1.0 1.5 2 3 5

Distance d
(km) 2 1.57 1.11 0.91 0.79 0.64 0.50

Area (km2) 324 200 100 67 50 33 20

offers connectivity to the Internet. (Methods and protocols for
connecting to the Internet are briefly discussed in Sec. V, but
are not a subject of this paper.) Each node, with exception of
the root, is associated with a parent node that offers a path to
the root. Each node, including the root, may provide a path to
the root for other nodes, which are called the children of the
node. Nodes with a common parent are referred to as siblings,
and nodes that have a parent-child relationship are referred to
as neighbors. The descendants of a node are all nodes whose
path to the root passes through the node.

A. Proximity-Based Parent Discovery

Nodes located inside the transmission range of each other
are subject to interference, if they share the same channel
or have overlapping frequencies. We refer to a node that
experiences interference during a transmission as a victim and
to nodes that are sources of interference as interferers. A node
can reduce its likelihood of becoming an interferer to other
nodes by reducing its transmission power, thereby effectively
decreasing its transmission range. This motivates a network
formation strategy where newly joining nodes try to find a
parent in their proximity.

A proximity-based parent discovery can be realized by
incrementally increasing the transmission power of newly
joining nodes. Once a parent node is found, the transmission
power used to find the parent is applied in all future uplink
transmissions to the parent. The adaptive transmission power
is not applied to packets sent to the children of a node, since
these packets must be able to reach multiple recipients located
at different distances from the sender.

We evaluate the benefits of proximity-based parent discov-
ery in simulations of a grid arrangement of 100 nodes and
compare it to a baseline with static transmission power. We
assume that all nodes transmit on the same LoRa channel.
The baseline method transmits at Ptx = 17 dBm, the highest
transmission power for continuous operation on SX1276 LoRa
transceivers [25], which yields a transmission range of 3.3 km
with log-distance path loss and without antenna gains. Nodes
using the proximity-based discovery start at Ptx = 8 dBm,
which results in a transmission range of approximately 1.9 km.
The value of Ptx is incremented after each failed discovery
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(a) Reducing interferers through proximity-based par-
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(c) Required backoff range for target collision rates.

Fig. 1. Impact of collision mitigation methods.
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Fig. 2. Channel selection through channel announcements.

until it reaches 17 dBm. Fig. 1a presents the resulting average
number of interferers as a function of the density of nodes. We
observe that the proximity-based method has fewer interferers
than a method with static transmission power. The benefits
diminish when the network density is low.

We note that the described proximity-based parent discovery
creates deeper spanning trees, which, in turn, increases overall
power consumption due to an increased need for relaying
packets. In Sec. VI, we evaluate the tradeoff between reduced
collisions and increased power requirements.

B. Multi-Channel Communication

Since packet transmissions on non-overlapping LoRa chan-
nels are trivially collision-free, packet collisions can be
avoided in most cases by having nodes transmit on different
channels. This is exploited in LoRaWAN, where nodes select a
random channel before sending data to a gateway, and further
refined in [51].

We take advantage of channel diversity by having each
node allocate a channel, referred to as its private channel, for
communication with its children. Every node selects a private

channel and notifies its children in the spanning tree about
its selection. With one exception (to be explained later), all
communications between a parent node and its children occur
over the private channel of the parent node. Since most nodes
in a spanning tree have the roles of both parent and child,
each node performs transmissions on two private channels: (1)
the node’s private channel for transmissions to its children,
and (2) the parent’s private channel for transmissions to its
parent. This requires that nodes frequently switch between
their own private channels and those of their respective parent
nodes. Since, in LoRa, configuring the channel frequency takes
less than the typical symbol time, the overhead of channel
switching in LoRa is negligible.

Nodes select their private channels in a distributed fashion.
While a switch to a different private channel can be com-
municated using the current private channel, bootstrapping
private channel information, e.g., when a node joins a network,
requires a separate process. We therefore reserve a common
public channel that is used by all nodes to transmit so-called
channel announcements, which contain the private channel of
a node and that of its parent.

Channel announcements are sent only at the start of a duty
cycle and are only sent downstream in the spanning tree. The
root node is the first to transmit a channel announcement.
Upon receiving a channel announcement from its parent, a
node selects its own private channel and broadcasts its own
channel announcement. Concurrent channel announcements
are avoided by having nodes insert a random backoff delay
before transmitting their channel announcements. When select-
ing a private channel, each node avoids the channels contained
in received channel announcements. If that is not possible, it
avoids channels that have been announced most recently and
were sent most frequently.

Fig. 2 illustrates the transmission of channel announcements
between a group of nodes. Solid lines represent channel
announcements between neighbors in the spanning tree, and
dotted lines indicate channel announcements between non-
neighbors. Dashed circles indicate the transmission ranges of
channel announcements. The order of transmissions is indi-
cated by labels, as (1), (2), (3). First, a channel announcement
sent by node A is received by nodes B, D and E. Since nodes B
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Fig. 3. Recursive data collection. (a) Each node (other than the root) has a data item indicated by a square. (b) The root requests data from nodes A and B.
(c) Nodes A and B request data from nodes C–F. (d) In the next round of requests, the root collects the data items of nodes C–F from node A and B.

and D both have node A as parent, they now select their own
private channels, and announce it, together with the channel of
their parent. Next, nodes B and D send announcements. Due to
a random backoff delay, the announcements are likely sent at
different times. In the figure, node B sends its announcement
before node D. Since node D receives the channel announce-
ment of node B before sending its own announcement, it
considers B’s channel selection when selecting its own private
channel. Lastly, the third announcement is sent by node D.

The multi-channel communication strategy also comple-
ments proximity-based parent discovery. Essentially, a new
node listens on the public channel to learn about other nodes
from their channel announcements, which subsequently be-
come candidates as parent of the new node. The new node
then proceeds with proximity-based parent discovery using
the private channel of a parent candidate. In this fashion,
message exchanges for joining the network are protected
against interference by other nodes.

We measure the impact of multi-channel communication us-
ing ns-3 simulations of 100-node grid networks. Fig. 1b shows
the average number of interferers per node with respect to node
density and the number of available channels. Generally, using
more channels reduces the number of interferers, especially
when the geographical density of nodes is high.

C. Adaptive Random Backoff Delay

Packet collisions due to interference may occur for trans-
missions of siblings to their parent on the private channel of
the parent, for any transmission on the public channel, and for
transmissions with a channel conflict. In these situations, we
can reduce the likelihood of a collision by adding a random
backoff delay before a transmission.

Assuming fixed-sized packets and identical settings for
transmissions at each node, given the air time of a LoRa
packet Tair for a transmission at time t, any transmission at-
tempt on the same channel by an interferer in the time interval
[t − Tair, t + Tair] creates a packet collision. One generally
assumes that the packets of both victim and interferers are
lost in a collision. In practice, one of the packets may survive
due to the capture effect [52].

Our objective is to use random backoff delays to achieve
a target packet collision rate for transmissions by siblings.
Here, collisions occur (1) when siblings send data to their
parent on the private channel of the parent, and (2) when

siblings send channel announcements (see Subsec. III-B) to
their respective children on the public channel. We can ensure
that siblings start their backoff timer at the same time by
having parents prompt their children to upload or forward data
(see Sec. III-D).

Note that an additional source of packet collisions are
overlapping transmissions of channel announcements on the
public channel by nodes that do not have a common parent.
Here, random backoff delays also reduce collisions. However,
since accounting for the set of interferers for this collision
type requires global knowledge, we do not account for them
for determining the range of random backoffs.

Consider two siblings with a common parent that have data
for transmission either upstream on the private channel or
downstream on the public channel. With a backoff delay drawn
from a uniform distribution U(0, TMaxBackoff), the probability
of overlapping packets is given by

Poverlap =
2Tair

TMaxBackoff
.

Among n siblings, a node delivers a packet successfully only if
the packet does not overlap with transmissions from the other
n − 1 siblings, which results in a probability of a collision
given by

Pcollision = 1− (1− Poverlap)
n−1 .

We employ an adaptive random backoff delay, where a parent
determines the value of TMaxBackoff such that the collision
probability meets a target value. Specifically, for node with
n− 1 siblings and a target of Pcollision, we set

TMaxBackoff =
2Tair

1− n−1
√
1− Pcollision

. (1)

By having parent nodes compute TMaxBackoff for their children
and including the value in their channel announcements,
nodes do not need to know the number of their siblings.
Fig. 1c shows the minimum TMaxBackoff required to achieve a
collision probability of 0.05, 0.03, 0.01 and 0.005 for 64-byte
packets. The figure illustrates that, even with a small number
of siblings, achieving a collision probability less than 1%
requires backoff delays up to several minutes. Since excessive
backoff delays cut into the power budget, we set the target
Pcollision = 0.05 and limit the number of children to three
for each parent node, thereby keeping TMaxBackoff below 10
seconds.
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Fig. 4. CottonCandy duty cycles.

D. Request-Based Data Collection

During the collection of sensor data, nodes in the spanning
tree forward data items obtained from their own sensors or
the sensors of their descendants toward the root. The amount
of data items that a node must forward to its parents is
proportional to the number of its descendants. Hence, in larger
networks data may accumulate at nodes close to the root,
which increases the risk of congestion and packet collisions
when sibling nodes transmit their data to their parent. Conges-
tion during data collection can be prevented by having parent
nodes prompt their children to upload data. Data collection
can then proceed in a recursive fashion, where, starting at
the root, nodes request data items from their children. Fig. 3
illustrates the data collection process. In the figure, data items
of nodes are indicated by squares. Starting at the root, a node
fetches data from its children by sending a request. Upon
receiving a request, a child sends its data item to its parent
and then issues a request for data items to its own children.
The transmission of requests to children continues as long as
there is data to be collected. The explicit requests for data act
as a flow control mechanism, which prevents nodes close to
the root from becoming overwhelmed with data items from
downstream nodes.

Since siblings receive requests for data simultaneously,
nodes can start their backoff timers for uploading data at the
same time. The same holds for downstream transmission of
channel announcements. Siblings receive the same channel
announcement message sent by their parent, and therefore,
can start their backoff timer for sending their own channel
announcement at the same time.

IV. COTTONCANDY PROTOCOL

CottonCandy is a distributed protocol that organizes LoRa
nodes in a rooted spanning tree with a designated gateway
node as the root, and which periodically moves sensor data
from all nodes in the spanning tree toward the root. Cotton-
Candy permits dynamic additions of nodes to the network,
and it adapts to node departures or failures. By adopting the
collision mitigation methods from Sec. III, CottonCandy keeps
the rate of packet collisions low.

CottonCandy operates in synchronized duty cycles [53]
where all nodes, including the root, start their duty cycles at
about the same time. Between duty cycles, nodes hibernate
in a low-power state, where they do not receive messages.
The start time of the next duty cycle is disseminated by the
root in the preceding duty cycle. CottonCandy is intended
for applications where the elapsed time between duty cycles

Announce

Announce

Parent 
of A

Node 
A 

Child 
of A

Announce

Fig. 5. Transmissions in the SeekJoin phase. Transmissions on the public
channel are indicated by dashed arrows, with the arrow pointing to the receiver.

ranges between several minutes and several days, that is, nodes
spend the majority of time in hibernation.

Duty cycles consist of three phases, which are managed
individually by each node. The first two phases, Join and
SeekJoin, are used for network formation and are relatively
short with a fixed duration. They are followed by the variable-
length Data collection phase, which takes up the remainder of
the duty cycle. Fig. 4 shows the sequence of phases in a duty
cycle. The first row shows the sequence of phases for nodes
that are members of the spanning tree. We will refer to these
nodes as in-network nodes. In the Join and Data collection
phases, nodes communicate with each other only over private
channels. In the SeekJoin phase, in-network nodes transmit
messages to their children on the public channel. A newly
joining node, shown in the second row of Fig. 4, must wait
for messages that in-network nodes send during their SeekJoin
phase These messages enable a new node to synchronize with
the start of the next duty cycle, where it seeks to join the
network in the Join phase.

Even though the phases of all in-network nodes are roughly
synchronized, CottonCandy does not work with absolute time
and therefore does not require synchronized clocks. Each node
is assumed to have a real-time clock that drifts by no more
than a few seconds between duty cycles.

A. Network Formation

Nodes join a CottonCandy network dynamically without
central management or configuration. They do so by finding an
in-network node and selecting it as parent node in the spanning
tree. A node that wants to join a CottonCandy network faces
two difficulties. First, since nodes in the spanning tree are in
hibernation most of the time, new nodes can only be added
during a duty cycle. Thus, joining nodes must know when
duty cycles commence. Second, since we avoid the use of the
public channel for upstream communication in the spanning
tree, newly joining nodes must learn the private channel of
a prospective parent node before they can send a message to
this node. Both difficulties are solved in the SeekJoin phase
of a duty cycle, as we will discuss next.

In the SeekJoin phase, starting at the root, nodes in the
spanning tree send an Announce message on the public
channel. These messages realize the ‘channel announcements’
discussed in Sec. III-A, but also have other functions. As
shown in Fig. 5, when node A receives an Announce message
from its parent, it sends an Announce message of its own
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Fig. 6. Message exchange when a new node joins a CottonCandy network.
Parent candidates A and B have the same number of hops to the root, but B
has fewer children. So, B is selected as parent node.

after a backoff of length tbackoff , which is selected uniform
random from the interval [0, TMaxBackoff ], where TMaxBackoff

is computed from Eq. (1). The children of node A proceed
in the same fashion. To protect against losses of Announce
messages, the root may send several such messages. After a
node has sent the Announce message(s), its SeekJoin phase
ends and the node hibernates until the start of the Data
collection phase.

An Announce message sent by a node carries information on
the private channels of the sending node and its parent node,
the value TMaxBackoff of the maximum backoff interval to be
used by its children, and the time until the start of the next
duty cycle TNextDC. Note that by having the parent compute
and disseminate the value of TMaxBackoff for its children,
children do not need to know the number of their siblings
which appears in Eq. (1). The length of TNextDC is set so
that all nodes start the next duty cycle at the same time.
The root sets TNextDC to a configured value, which can be
modified between duty cycles. All other nodes decrease the
received value of TNextDC by their backoff time tbackoff when
forwarding an Announce message.

Network formation is initiated by a root node. When a root
node is powered on, it immediately starts a duty cycle. Even
without another node present, the root runs through duty cycles
with the sequence of phases shown in Fig. 4. We next describe
the interactions of a node that wants to join the CottonCandy
network, referred to as ‘new node.’ Every node (other than the
root) acts as a new node after it is powered on. As illustrated
in the bottom figure in Fig. 4, a new node continuously listens
to the public channel to receive Announce messages sent by
CottonCandy nodes in the SeekJoin phase. A node may need
to wait for a duration up to the hibernation period between
duty cycles before it can observe such a message. Every node
from which the new node receives an Announce message is a
candidate to become its parent node in the spanning tree. After
receiving the first Announce message, the new node waits for
a few seconds to receive up to two more Announce messages.
Then, the node hibernates to synchronize with the next duty
cycle of the CottonCandy network.

In the Join phase of the next duty cycle, the new node sends
a Join message to each parent candidate. To mitigate collisions
in case multiple nodes send their Join messages to the same
parent, every new node applies a random backoff before

sending a Join message. Unlike the adaptive TMaxBackoff for
Announce messages, the random backoff for Join messages
uses a static value of TMaxBackoff = 1 s. With the information
in the Announce messages, the new node knows when to
contact the parent candidates and which channels to use.
Starting with the sending of Join messages, the exchange
of a new node with its parent candidates follows a three-
way handshake, shown in Fig. 6, where the third part of the
handshake finalizes the parent selection.

In the Join phase of a duty cycle, all in-network nodes
listen on their private channel for Join messages. If a node
receives a Join message it determines whether it is willing to
take on another child node, and, if so, replies with a JoinAck
message. The reply contains the number of hops of the node
to the root, its number of children, and the measured RSSI
value of the received Join message. A new node selects its
parent based on link quality, hop count to the root, and the
parent’s current number of children. Link quality is determined
as the minimum of the measured RSSI value of an incoming
JoinAck message and the RSSI value contained in the JoinAck
message, thus reflecting both directions of communication.
If the link quality is below a threshold value, the candidate
is discarded. The threshold is a configurable parameter with
default value 8 dBm above the minimum sensitivity of a LoRa
radio. The threshold for link quality is skipped, once the new
node has reached the maximum transmission power in the
parent discovery (see Sec. III-A) and has not yet found an
adequate parent. For the remaining candidates, the new node
selects the node with the smallest hop count. In case of a tie, it
favors the candidate with fewest children. For candidates with
identical values for both metrics, it selects as parent the node
with the best link quality as a final tiebreaker. After selecting
its best parent candidate, the new node sends a JoinConfirm
message to the selected parent.2 After this, the new node is
part of the CottonCandy network and can now accept children
of its own. Fig. 6 presents an example of a message exchange
when a new node joins. Nodes A and B are parent candidates
with the same number of hops to the root. Since node B has
fewer children, the new node selects it as its parent.

The process for joining a node may fail for several reasons,
e.g., Join or JoinAck messages may incur transmission errors
or the link quality for all parent candidates falls below the
threshold. If a new node cannot link up with a parent, it returns
to listening on the public channel for Announce messages. As
described in Sec. III-A, in the next attempt, the node increases
its transmission power when sending its Join messages.

The above discussion presumes that a parent keeps track
of the status of its children. If a parent does not receive any
messages from a child in multiple consecutive duty cycles,
several scenarios are possible: (1) the child has failed (e.g.,
insufficient battery), (2) the child was desynchronized with the
network and is searching for a new parent, or (3) packets from
the child have been lost due to collisions or poor link quality.
In all cases, the parent presumes the child lost, removes it from
its list of children, and recomputes the value of TMaxBackoff

2Even if the JoinConfirm message does not arrive at the selected parent
node, the parent will accept the new node as a new child and will forward
data items received from this node.
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for its remaining children. We note that in the third situation,
the presumed lost child may still be attached to the parent.

B. Data Collection Phase

In the Data collection phase, the in-network nodes forward
data items from their own sensors and the sensors of their
descendants toward the root.3 As discussed in Sec. III-D and
illustrated in Fig. 3d, data collection proceeds in a recursive
fashion starting at the root, where nodes request data items
from their children.

All messages in the Data collection phase are sent over
private channels, where messages between a parent and a child
use the private channel of the parent. To avoid overlapping
transmissions by siblings to their parent, children delay their
transmission by a random backoff tbacko! selected uniformly
at random from the interval [0, TMaxBacko! ], where the value
of TMaxBacko! was sent by the parent in its most recent
Announce message.

Fig. 7a illustrates details of the data exchange relative to
a node A. When node A receives a request from its parent
on the parent’s private channel, it sends its data item after a
random backoff tbacko! . Following the transmission, node A
switches to its own private channel and transmits a request
to its children. The depicted child node proceeds in the same
fashion as node A, that is, it transmits its data item to its
parent (node A) after a backoff and then issues a request on its
private channel. After the transmission of its request, node A
listens on its private channel for a duration of TMaxBacko!

and waits for data items from its children. Then, it switches
to the private channel of its parent, PA, and waits for the next
request message. When the request arrives it sends its data item
as before (if one is available). A node that received multiple
data items from its children concatenates the data items into a
single message, up to a maximum message size. Once the data
has been passed to its parent, node A issues another request to
its children. Fig. 7a illustrates that a node sends a new request
after it has delivered a message to its parent node. The root,
which has no parent, issues a new request after it has processed
the data items received from its children. Processing a data
item can be as simple as writing it to permanent storage, but
generally consists of transmitting the data item to an edge or
cloud server.

If a node has requested data from its children but has not
received a data item from any of its children for a time period
of TMaxBacko! , it enters a low-power state, referred to as
Pause, which lasts TPause, after which it sends another request
for data items to its children. The purpose of the Pause state
is that descendants are given time to collect data that will
be ready once the node exits the low-power state. Refer to
Fig. 7b for an illustration, where the difference to Fig. 7a is
that node A does not receive data from its child node following

3If there are multiple sensor readings per duty cycle or sensors operate
asynchronously, e.g., a rain gauge, a node may need to wake up from
hibernation between duty cycles. Buffering data between duty cycles is
sufficient to ensure that no sensor readings are lost. Reading of sensors and
processing of sensor data are orthogonal to the CottonCandy protocol, since
the target sensing applications of climate change and agriculture are generally
not time-critical.

Request

Request

Data RequestData

Data Request

Parent 
of A

Node 
A 

Child 
of A

Request

(a) Node A and a child of node A report data items.

Request Request

RequestData Request

Parent 
of A

Node 
A 

Child 
of A

(b) Child of node A does not have data item to report.

Fig. 7. Data collection for node A (Transmissions are indicated by arrows,
which are labeled with the channel. A, PA, CA, respectively, indicate the
private channel of node A, A’s parent, and A’s child.).

its first request. While in the Pause state, node A does not
listen to any channel. As shown in Fig. 7b, node A therefore
does not receive the second request from its parent.

The described process has the data collection at each node
operating in rounds, where in each round a node sends a
Request message to its children. A new round is started after
receiving data items from its children or after having ended a
pause period.

If a node has entered the Pause state several times in a
row without receiving a data item from any of its children
it assumes that its descendants have no more data items to
deliver. It then terminates the current duty cycle and hibernates
in a low-power state until the start of the next duty cycle.
Generally, leaf nodes in the spanning tree are the first to end
data collection, and the root is the last. The maximum number
of consecutive unanswered requests Rmax is configurable.

Several situations exist where a node listens on its parent’s
channel for Request messages without success: (1) the par-
ent node has failed, (2) Request messages from the parent
encounter transmission errors, or (3) the parent has ended
its Data collection phase and no longer issues requests. To
prevent that a node listens indefinitely, each node has a timeout
value Tend, which bounds the duration of a duty cycle. A timer
for the timeout value is started at the begin of a Data collection
phase. We use Tend = 15 minutes if the time between duty
cycles is 20 minutes or more.

To participate in the data collection, a node must know
TNextDC, the time until the next duty cycle. As discussed,
this information is included in Announce messages. Due to
the importance of this information, TNextDC is also included
in each Request message. A node that misses all updates
on the schedule of the next data collection cycle becomes
desynchronized with the rest of the network. Such a node must
rejoin the CottonCandy network as a new node.
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Fig. 8. Channel transitions in a duty cycle. ‘Node channel’ and ‘parent
channel,’ respectively, refer to the private channel of a node and its parent.

C. Channel Transitions

In the course of a duty cycle, a CottonCandy node switches
between states where it listens to the public channel, its own
private channel, and the private channel of its parent. In the
hibernation phase between duty cycles and in the Pause state
during the Data collection phase, a node does not listen to any
channel.

Fig. 8 illustrates how a node transitions between channels.
At the start of a duty cycle, a node returns from hibernation
and enters the Join phase where it listens to its private channel
for Join messages from new nodes. This is followed by the
SeekJoin phase where a node sends and receives Announce
messages on the public channel. In the Data collection phase,
a node switches between its own private channel, its parent’s
channel, and no channel at all. Each time the node joins its
private channel it issues a Request message. At each node, the
return to its private channel can be viewed as a new round of
data collection. The node ends the duty cycle either after a
Tend timeout or if it has not received messages several rounds
in a row. Then, a node hibernates until the start of the next duty
cycle. If a node has not received any messages from its parent
in the current duty cycle after the Tend timeout, it assumes it
is no longer synchronized with the CottonCandy duty cycles
and tries to rejoin as a new node.

The channel transitions of the root are slightly different from
Fig. 8 in that the parent channel is skipped, and, in case of a
Tend timeout, the root always proceeds to hibernate until the
next duty cycle.

V. HARDWARE PLATFORM

We have implemented the CottonCandy protocol on a
microcontroller platform and designed a printed circuit board
for a CottonCandy node. To demonstrate that CottonCandy
achieves the goal of a low-cost system with a small footprint,
we exclusively used low-end commodity components. The
protocols runs on an ATmega328P microcontroller [54] with
only 32 kB flash memory and 2 kB RAM. The ATmega328P
is connected to a Semtech SX1276 LoRa transceiver equipped
with a 3 dBi external antenna. A DS3231M real-time
clock (RTC) is used for timekeeping with a daily error less
than 0.432 seconds [55]. The RTC enables the microcontroller

ATmega328P DS3231M 
RTC

SX1276 
LoRa 

Transceiver

SPI I2C

Alarm 
Interrupt

TX/RX 
Interrupt

3-dBi 
Antenna

3 V 
Power Supply

3 V Coin Battery
(Timekeeping)

ON/OFF 

(a) System design.

SX1276 LoRa Transceiver

ATmega328P DS3231M 

(b) Custom-built circuit board. The white con-
nectors are for attaching a battery and sensors,
and for installing software.

Fig. 9. CottonCandy node.

and LoRa transceiver to enter a deep sleep mode between
duty cycles. At the start of a duty cycle, the RTC wakes
up the microcontroller, which in turn switches on the LoRa
transceiver. The hardware platform operates on 2 AA batteries
with 3V input voltage. The RTC additionally draws power
from an on-board coin battery.

Fig. 9a provides a sketch of the system design, and Fig. 9b
presents the custom-built circuit board of a CottonCandy node.
The total cost the depicted CottonCandy node is less than US-
$ 15.

The selection of a low-end microcontroller imposes a limit
on security features. Currently, CottonCandy protects packet
integrity with a 4-byte cipher-based message authentication
codes (CMAC) based on AES-128 [56] and a 16 byte
shared key. Support of confidentiality is not viable on the
ATmega328P platform.

A. Power Profile

We next present measurements of the power requirements
of a CottonCandy node. The power consumption of individual
nodes varies depending on their position in the spanning tree
topology. Leaf nodes consume far less energy than the direct
children of the root node, due to the need of the latter for
forwarding data items from all descendants. Nonetheless, as
long as nodes use the same underlying hardware platform, the
power consumption at each stage of the protocol is consistent
across all nodes. This allows us to profile the energy usage
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Fig. 10. Current draw of a CottonCandy node in the Data collection phase.

during different phases of the operations (computing, receiving
data, transmitting data) as well as during hibernations. Given
a duty cycle, the total number of transmissions and time spent
in reception mode, we can provide an accurate estimate of the
battery life of a CottonCandy node.

The energy consumption of a CottonCandy node is profiled
using a Nordic Power Profiler Kit II (PPK2) with 1000 sam-
ples/s. The accuracy of the measurements have been verified
using a professional grade SDM3065X digital multimeter.

The tested node is the only child of a root node and does not
have further children. Fig. 10 depicts the energy consumption
of the node over a duration of 25 s. The measured activity
corresponds to that of node A in the timeline diagram in
Figure 7b. Until around t = 5 s, where the current draw is
constant at approximately 11 mA, the node waits for a Request
message from its parent (which, in this case, is the root).
During this time, the microcontroller is in deep sleep mode,
while the LoRa transceiver is active. The arrival of a Request
message, at around t = 5 s, wakes up the microcontroller
and triggers a small spike up to 40 mA, which is due to
packet processing. The node then performs a random backoff
followed by a transmission with an instantaneous current draw
of 72 mA. The transmission contains the data item of the node
sent on the private channel of the parent. Shortly thereafter
is a another transmission, specifically, the transmission of a
Request on the node’s private channel, which peaks at 121 mA.
The difference in current draw for the two transmissions is
due to proximity-based parent discovery, which reduced the
power for transmissions to the node’s parent. After the second
transmission, the node switches to a receive mode on its private
channel where it waits for data from its child. As before, when
waiting for a message the microcontroller is set to deep sleep
mode, yielding a current draw of around 11 mA. When no
data is received after a timeout of TMaxBackoff = 3 s, the
microcontroller performs some processing and then enters a
hibernation mode with a duration of TPause = 10 s, where the
current draw drops to 17 µA. Here, both the microcontroller
and transceiver are in deep sleep mode.

The power profile in Fig. 10 contains all levels of current
draws that exist in our implementation. In the next section, we
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Uplink Module
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Antenna

CottonCandy 
Node

LoRa 
Antenna

SD Card

Fig. 11. Gateway of a CottonCandy network (a battery pack is installed above
the LTE shield).

will use the power profile in simulations to obtain the power
consumption in a duty cycle for a network with 100 nodes.

B. Gateway

As discussed earlier, the root node of a CottonCandy
network is associated with a gateway that provides connec-
tivity to the Internet. The access modality and protocols used
for uploading sensor data to the Internet is independent of
CottonCandy. Fig 11 shows the hardware of a gateway for
a CottonCandy network. The gateway has a modular design
that contains two microcontrollers connected via a serial
interface: (1) an ATmega328P running as a CottonCandy root
node, and (2) an ESP32 responsible for Internet access. The
ATmega328P runs the same code as any other CottonCandy
node. The ability to run as root is encoded in the address
of the node. The ESP32 manages an uplink to the Internet
via an onboard Wifi radio and an attached cellular shield. A
satellite uplink with an Iridium satellite modem is work in
progress. The gateway exchanges data with a cloud system
using the MQTT protocol [57] over TLS [58]. We refer to [59]
for details of the design and implementation of the gateway.

VI. SIMULATION EXPERIMENTS

We next evaluate the CottonCandy protocol in ns-3 sim-
ulations for networks with 100 nodes. The simulations use
the physical-layer parameters from Table I, which match the
characteristics and configuration of SX1276 LoRa transceivers
of our hardware platform. Different from the simulations in
Sec. III, the simulations in this section run a full implemen-
tation of the CottonCandy protocol, with protocol parameters
as given in Table III.

The simulations evaluate (1) network formation time, which
measures the elapsed time to establish a CottonCandy net-
work, (2) packet delivery ratio (PDR), defined as the fraction
of transmitted data items that are successfully delivered from
an originating node to the root, (3) the relative benefits of the
collision mitigation methods from Sec. III, and (4) the energy
consumption in a duty cycle.
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TABLE III
COTTONCANDY PARAMETERS USED IN SIMULATIONS.

Parameters Value
Initial Tx power for parent discovery 8 dBm
Maximum Tx power for parent discovery 17 dBm
Minimum link quality for parent discovery -115 dBm

Number of channels 20
Maximum number of children 3

Maximum packet size 64 Bytes
Target max. collision prob. between siblings (Pcollision) 0.05

Timer between duty cycles (TNextDC) 1 hour
Duration of Join phase (TJoin) 6 s
Duration of SeekJoin phase (TSeekJoin) 120 s
Duration of Pause (TPause) 10 s

Maximum duration of Data collection phase (Tend) 900 s
Max. number of consecutive Pauses, non-leaf node (Rmax) 5
Max. number of consecutive Pauses, leaf node (Rmax) 2

As in Sec. III, the simulations distribute 100 nodes uni-
formly spaced on either a 10×10 grid or uniformly random
on a disk, with an additional root node located in the center.
The node density (ρ) is varied by modifying the size of the
10×10 grid or the disk. In the simulations, all nodes, including
the root, are turned on simultaneously and then execute 10 000
duty cycles. Due to the self-organizing nature of CottonCandy,
each simulation run creates a different spanning tree topology.
Even with the same spanning tree, repeated runs render differ-
ent results due to the random backoffs before a transmission.
To ensure consistency of results, the presented graphs will
show the results from at least five simulation runs.

A. Duration of Network Formation

This experiment measures the time needed to form a span-
ning tree network with 100 nodes. Since, with CottonCandy,
nodes are added only during the Join phase of the duty cycle,
the time is measured in terms of the number of duty cycles
required to complete the network formation. As stated, we
assume that all nodes start up at the same time. Also, we
assume that there are no node failures. Fig. 12 shows the
duty cycles consumed until all 100 nodes have a parent in
the spanning tree, as a function of the node density. Each
data point presents the results for one simulation run, with
five simulation runs for each setting. For node densities above
1 node/km2, network formation takes less than 25 duty cycles
on average. Observe that the outcomes for the grid and
uniform disk settings are similar, if not identical. When nodes
are distributed more sparsely, the network formation time
increases exponentially. This is due to proximity-based parent
discovery, where nodes slowly increment their transmission
power upon a failed attempt to find a parent. For the uniform
random disk, no results are reported for node densities below
1 node/km2. Here, even at the maximum transmission power,
some nodes are unable to find a parent thereby preventing the
network from fully forming.

Observe that the network formation times do not decrease
monotonically with increasing node density, but increase when
the node density exceeds 3 nodes/km2. At these density levels,
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Fig. 12. Duration of network formation as a function of node density.

joining of nodes is delayed because of packet collisions,
mostly of Announce messages sent on the public channel and
Join messages sent to a common parent candidate.

B. Packet Delivery Ratio

In this experiment, we measure the fraction of data items
that are delivered successfully to the root in terms of the
PDR of the corresponding messages. The PDR reflects how
well CottonCandy mitigates packet collisions. We present the
PDR as a function of the distance to the root, measured in
terms of number of hops. We assume that in each duty cycle
each CottonCandy node (with exception of the root) has one
data item that will be sent toward the root during the Data
collection phase. We arrange 100 nodes in a 10×10 grid
or uniformly random on a disk. For the grid arrangements,
we use node densities ρ = 4 and 0.3 nodes/km2. For the
random placement, we deploy nodes in a disk with a radius
of 5 km, resulting in a node density of 1.2 nodes/km2. The
three networks cover an area of about 25, 324, and 78.5 km2,
respectively. measurements of the PDR commence after all
nodes have joined the network. In each duty cycle, every node
prepares an 8-byte data item, which, with protocol headers,
results in a packet length of 15 Bytes.

Fig. 13 shows the average and the standard deviation of the
PDR with respect to distance from the root for three node
placements. First, note that the average and standard deviation
of the PDR are above 90% in all simulations. Second, note
that all plots result in U-shaped curves. The lowest PDR is
observed for nodes located within 3–6 hops from the root,
which comprises the majority of nodes. Due to the operation
of the data collection in rounds, data items from nodes with the
same distance to the root are in transmission at about the same
time. Therefore, the transmissions originating from nodes in
the range 3–6 hops create a ‘rush hour’ in the network, which
encounters the highest degree of interference in the entire Data
collection phase. Nodes that are delivered to the root before or
after the rush hour, that is nodes with smaller or larger number
of hops to the root, encounter less interference, which results
in a higher delivery ratio.
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(b) Grid placement (324 km2).
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(c) Uniform random disk placement (78.5 km2).

Fig. 13. Average packet delivery ratio for networks with 100 nodes. The error bars represent the standard deviation.
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(c) ρ = 4 nodes/km2 (25 km2).

Fig. 14. Trade-off of the proximity-based parent discovery with different node densities.
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Fig. 15. Evaluation of the adaptive random backoff (80 km2).

C. Evaluation of Collision Mitigation Techniques

Some of the collision mitigation techniques from Sec. III
present trade-offs between PDR and energy consumption.
For example, proximity-based parent discovery reduces the
number of interferers at each node, but creates longer paths to
the root, which requires more relaying of data items, which, in
turn, increases energy consumption. Also, extending backoff
intervals reduces packet collisions, but prolongs the data
collision phase, which again increases energy consumption.
We next present simulations that study both trade-offs.

The first group of simulations uses a 10×10 grid placement
with a node density of 1.2 nodes/km2. For these densities,

Fig. 1a showed that proximity-based parent discovery has a
clear advantage in terms of interferers over neighbor discovery
with a static transmission power. In Fig. 14 we depict the
average PDR and average power consumption of CottonCandy
nodes with and without proximity-based parent discovery.
With the latter, nodes use a static transmission power of
17 dBm. Each data point represents a simulation run. We
enclose data points from repeated simulations by a minimum
volume ellipse computed with the Khachiyan algorithm, with
outliers excluded. We observe that the improved PDR of
proximity-based parent discovery comes at the cost of higher
energy consumption, especially in sparse networks. This is not
surprising, since collisions in sparse networks are effectively
reduced by the other mitigation strategies. The data in Fig. 14
suggest that the benefits of proximity-based parent discovery
are rather limited.

We also explore the trade-off between PDR and energy
consumption for random backoff delays. The simulations are
performed in the same 10 × 10 grid as before with a node
density of 1.2 nodes/km2, covering an area of around 80 km2.
We compare our adaptive random backoff delay with random
backoffs with a static upper bound of TMaxBackoff = 3 s and
TMaxBackoff = 12 s. The results are shown in Fig. 15, in terms of
average PDR and average energy consumption. As expected,
TMaxBackoff = 3 s has the lowest PDR and lowest energy
consumption. Setting TMaxBackoff = 12 s improves the PDR
by approximately 10% but consumes 50% more energy on
average. The adaptive TMaxBackoff achieves a similar gain in
the packet delivery, but with only about 30% more energy use
on average. Note that, the adaptive random backoff, which is
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Fig. 16. Duration of Data collection phase (solid line) and energy consump-
tion (dashed line).

based on Eq. (1), approximately achieves the targeted PDR of
(1− Pcollision) · 100.

D. Data Collection Phase and Energy Consumption

In this experiment we evaluate the energy consumption of
CottonCandy nodes in a network with a 10×10 grid placement
at a node density of 1.2 nodes/km2. The energy consumption
in CottonCandy largely depends the number of descendants
for which data items must be relayed. We therefore tally the
energy consumption of a node as a function of the number of
descendants. Fig. 16 shows the average energy consumption
in a duty cycle, measured over all phases of a duty cycle.
The energy usage is computed using the power profile from
Sec. V-A. We also plot the average duration of the Data
collection phase. Since most network operations are performed
in this phase, we observe that the energy consumption closely
tracks the length of the Data collection phase. The results
are shown in Fig. 16 for different sizes of delivered data
items. Both energy consumption and the Data collection phase
increase with the number of descendants. Leaf nodes (which
do not have any descendants) are usually the first to end
the Data collection phase, after approximately 2 minutes on
average. Note that payload size has a big impact on energy
consumption and duration of duty cycles. The experiment
demonstrates that, using AA batteries with a typical capacity
of 3000 mAh each, a CottonCandy node can operate for
several thousand data cycles on 2 AA batteries.

VII. EVALUATION OF AN OUTDOOR DEPLOYMENT

We next present measurements from an outdoor deployment
of a CottonCandy network at the Koffler Scientific Reserve
in King Township, Ontario. The deployed network has 14
CottonCandy nodes (Fig. 17a) and one gateway (Fig. 17b)
in a 70 hectare open terrain. All devices are encased in
waterproof IP65 enclosures with externally mounted antennas,
and mounted approximately one meter above ground at a
distance of 100–300 meters to each other.

The CottonCandy configuration mostly uses the parameters
in Table III. Since the network is relatively small and to

(a) CottonCandy node. (b) Gateway.
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Fig. 17. CottonCandy deployment at the Koffler Scientific Reserve.

accelerate the collection of data, we configure the frequency
of duty cycles to 10 minutes, and adjust parameters Tend and
TSeekJoin accordingly. Data items of nodes have an 8-byte
payload, in addition to a 4-byte CMAC.

Fig. 17c shows the placement of nodes and the spanning
tree topology of CottonCandy when measurements were taken.
Three nodes (nodes 2, 5, and 9) are children of the gateway.
Due to hills, depressions, ponds, and woodland in the overall
terrain, geographical proximity of nodes is not a good pre-
dictor for signal strength. In fact, only few nodes have an
unobstructed line of sight to each other.

The measurements reported here are taken over a 10-day
period and cover 1,500 duty cycles. The network topology,
shown in Fig. 17c, did not change during this period. Fig. 18
presents the PDR values for all non-root nodes. All nodes
have a PDR of 90% or higher, which is consistent with our
simulation results. Nodes close to the gateway (1 hop) have
the highest PDR. Note that nodes with a distance of 3 hops
from the root outperform their parents. For example, the PDR
of node 8 is above 92%, while the PDR of its parent, node 1,
successfully delivered only 89.5% of its data items. This is
consistent with the simulation results in Fig. 13.

In a separate experiment, we tested the fault recovery of
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Fig. 18. PDR of outdoor measurements. Nodes are grouped by the hop count
to the root. Error bars show the average and standard deviation for each group.
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Fig. 19. Network recovery time after the gateway restarted.

CottonCandy. During the operation of the 15-node network,
the gateway is turned off for a few consecutive duty cycles,
so that all non-root nodes become desynchronized and rejoin
the network as a new node. When the gateway is restarted,
the nodes can reconnect to the network. This is repeated three
times. Fig. 19 shows the number of nodes that have rejoined
the network at a given number of duty cycles after the gateway
is restarted. In all three trials, all 14 non-root nodes are able
to rejoin the spanning tree within 5–7 duty cycles.

VIII. CONCLUSION

We have presented a self-organizing LoRa multi-hop mesh
network for low-cost environmental sensing of large areas.
By aggressively exploiting collision mitigation techniques, we
were able to demonstrate scalability to at least one hundred
nodes. The mitigation methods were integrated in the pre-
sented CottonCandy protocol, which dynamically adapts to
node additions and failures. The protocol was implemented
on a custom-built circuit board, at a cost of less than US-
$ 15 per node using off-the-shelf components. Using a detailed
power profile, we showed that CottonCandy nodes can operate
for years on two AA batteries. We evaluated the Cotton-
Candy protocol in simulations of 100-node networks and

outdoor measurements of a deployed CottonCandy network.
Both simulations and measurement experiments showed that
CottonCandy achieves a packet delivery ratio above 90%.
In future work, we will further explore the scalability limits
of CottonCandy. An ongoing effort to equip a CottonCandy
gateway with a satellite module will enable us to deploy
CottonCandy in remote locations without a terrestrial commu-
nications infrastructure, e.g., the sub-Arctic and Arctic regions
of northern Canada. The current version of CottonCandy only
supports data integrity, but does not incorporate additional se-
curity measures. Support of data privacy and protection against
malicious attacks requires more powerful microcontrollers.
Power-saving techniques are another priority. Since significant
portion of energy consumption of CottonCandy nodes results
from waiting for incoming packets, we will explore a duty-
cycle driven receiving mode, where transceivers periodically
search for LoRa preambles and return to standby mode if no
packet is detected.
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[23] J. Petäjäjärvi et al., “On the coverage of LPWANs: range evaluation

and channel attenuation model for LoRa technology,” in Proc. 14th Int.
Conf. on ITS Telecommunications, 2015, pp. 55–59.

[24] M. R. Seye et al., “A study of LoRa coverage: Range evaluation and
channel attenuation model,” in Proc. 1st Int. Conf. on Smart Cities and
Communities, 2018, pp. 1–4.

[25] Semtech Corporation, SX1276/77/78/79 Low Power Long Range
Transceiver Data Sheet, Camarillo, CA, USA, 2020. [Online]. Avail-
able: https://www.semtech.com/products/wireless-rf/lora-core/sx1276#
download-resources

[26] ERC Recommendation 70-03 Relating to the use of short-range
devices, European Conference of Postal and Telecommunications
Administrations, 1997. [Online]. Available: https://docdb.cept.org/
download/25c41779-cd6e/Rec7003e.pdf

[27] National Frequency Allocation Plan, Department of Telecommuni-
cations, Ministry of Communication, Government of India, 2018.
[Online]. Available: https://dot.gov.in/sites/default/files/NFAP%202018.
pdf?download=1

[28] P. Huang et al., “The evolution of MAC protocols in wireless sensor
networks: A survey,” IEEE Commun. Surv. Tuts., vol. 15, no. 1, pp.
101–120, 2013.

[29] J. L. Hill and D. E. Culler, “Mica: A wireless platform for deeply
embedded networks,” IEEE Micro, vol. 22, no. 6, pp. 12–24, 2002.

[30] A. El-Hoiydi, “Aloha with preamble sampling for sporadic traffic in ad
hoc wireless sensor networks,” in Proc. IEEE ICC, 2002, pp. 3418–3423.

[31] E. A. Lin, J. M. Rabaey, and A. Wolisz, “Power-efficient rendez-vous
schemes for dense wireless sensor networks,” in Proc. IEEE ICC, 2004,
pp. 3769–3776.

[32] R. Musaloiu-Elefteri, C. M. Liang, and A. Terzis, “Koala: Ultra-low
power data retrieval in wireless sensor networks,” in Proc. 7th Int. Conf.
on Information Processing in Sensor Networks, 2008, pp. 421–432.

[33] W. Ye, J. S. Heidemann, and D. Estrin, “An energy-efficient MAC
protocol for wireless sensor networks,” in Proc. IEEE INFOCOM, 2002,
pp. 1567–1576.

[34] T. van Dam and K. Langendoen, “An adaptive energy-efficient MAC
protocol for wireless sensor networks,” in Proc. ACM SenSys, 2003, pp.
171–180.

[35] S. Du, A. K. Saha, and D. B. Johnson, “RMAC: A routing-enhanced
duty-cycle MAC protocol for wireless sensor networks,” in Proc. IEEE
INFOCOM, 2007, pp. 1478–1486.

[36] F. Adelantado et al., “Understanding the limits of LoRaWAN,” IEEE
Commun. Mag., vol. 55, no. 9, pp. 34–40, 2017.

[37] “The Things network,” The Things Network, 2019. [Online]. Available:
https://www.thethingsnetwork.org/

[38] A. Haleem et al., “Helium: A decentralized wireless network,”
Helium Systems Inc., Release 0.4.2, 2018. [Online]. Available:
http://whitepaper.helium.com/

[39] Z. Xu, P. Xie, and J. Wang, “Pyramid: Real-time LoRa collision
decoding with peak tracking,” in Proc. IEEE INFOCOM, 2021, pp. 1–9.

[40] S. Tong, Z. Xu, and J. Wang, “CoLoRa: Enabling multi-packet reception
in LoRa,” in Proc. IEEE INFOCOM, 2020, pp. 2303–2311.

[41] X. Wang et al., “mLoRa: A multi-packet reception protocol in LoRa
networks,” in Proc. IEEE ICNP, 2019, pp. 1–11.

[42] Z. Wang et al., “Online concurrent transmissions at LoRa gateway,” in
Proc. IEEE INFOCOM, 2020, pp. 2331–2340.

[43] R. Eletreby et al., “Empowering low-power wide area networks in urban
settings,” in Proc. ACM Sigcomm, 2017, pp. 309–321.

[44] A. Gamage et al., “LMAC: efficient carrier-sense multiple access for
LoRa,” in Proc. ACM MobiCom, 2020, pp. 43:1–43:13.

[45] D. Zorbas et al., “TS-LoRa: Time-slotted LoRaWAN for the industrial
internet of things,” Comput. Commun., vol. 153, pp. 1–10, 2020.

[46] B. Reynders et al., “Improving reliability and scalability of LoRaWANs
through lightweight scheduling,” IEEE Internet Things J., vol. 5, no. 3,
pp. 1830–1842, 2018.

[47] M. H. Dwijaksara, W. S. Jeon, and D. G. Jeong, “Multihop gateway-
to-gateway communication protocol for LoRa networks,” in Proc. IEEE
ICIT, 2019, pp. 949–954.

[48] M. C. Bor, J. Vidler, and U. Roedig, “LoRa for the internet of things,”
in Proc. Int. Conf. on Embedded Wireless Systems and Networks, 2016,
pp. 361–366.

[49] G. F. Riley and T. R. Henderson, The ns-3 Network Simulator. Springer
Berlin Heidelberg, 2010, pp. 15–34.

[50] D. Magrin, M. Capuzzo, and A. Zanella, “A thorough study of Lo-
RaWAN performance under different parameter settings,” IEEE Internet
Things J., vol. 7, no. 1, pp. 116–127, 2020.

[51] Y. Yu et al., “Adaptive multi-channels allocation in LoRa networks,”
IEEE Access, vol. 8, pp. 214 177–214 189, 2020.

[52] V. Toro-Betancur et al., “Modeling communication reliability in LoRa
networks with device-level accuracy,” in Proc. IEEE INFOCOM, 2021,
pp. 1–10.

[53] O. Yang and W. Heinzelman, “Modeling and performance analysis for
duty-cycled MAC protocols with applications to S-MAC and X-MAC,”
IEEE Trans. on Mobile Comput., vol. 11, no. 6, pp. 905–921, 2012.

[54] Atmel Corporation, ATmega328P Data Sheet, San Jose, CA, USA,
2015. [Online]. Available: https://www.microchip.com/en-us/product/
ATmega328P#document-table

[55] Maxim Integrated, DS3231M Data Sheet, San Jose, CA,
USA, 2015. [Online]. Available: https://www.maximintegrated.com/
en/products/analog/real-time-clocks/DS3231M.html#tech-docs

[56] National Institute and Technology of Standards, “Advanced encryption
standard,” NIST FIPS PUB 197, 2001.

[57] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-SA pub-
lish/subscribe protocol for wireless sensor networks,” in Proc. 3rd
Int. Conf. on Communication Systems Software and Middleware and
Workshops (COMSWARE), 2008, pp. 791–798.

[58] E. Rescorla, “The transport layer security (TLS) protocol version 1.3.”
IETF RFC 8446, pp. 1–160, Aug. 2018.

[59] A. Bogdan, “Designing an end-to-end internet-of-things system for large
scale environmental monitoring,” University of Toronto, Division of
Engineering Science, B.A.Sc. Thesis, Apr. 2022.

Dixin Wu (S’17) received the MASc degree in
Electrical and Computer Engineering at the Univer-
sity of Toronto in 2023. He is currently with the
University of Toronto and Spero Analytics where
he commercializes sensor network technologies for
large-scale environmental sensing.

Jörg Liebeherr (S’88, M’92, SM’03, F’08) received
the Ph.D. degree in Computer Science from the
Georgia Institute of Technology in 1991. He was on
the faculty of the Department of Computer Science
at the University of Virginia from 1992–2005. Since
Fall 2005, he is with the University of Toronto as
Professor of Electrical and Computer Engineering.




