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On the Impact of Link Scheduling
on End-to-End Delays in Large Networks

Jörg Liebeherr, Yashar Ghiassi-Farrokhfal, Almut Burchard

Abstract—We seek to provide an analytical answer whether the impact
of link scheduling algorithms on end-to-end delays diminishes on long net-
work paths. The answer is provided through a detailed multi-hop delay
analysis, which is applicable to a broad class of scheduling algorithms, and
which can account for statistical multiplexing. The analysis is enabled by
two contributions: (1) We derive a function that can characterize the avail-
able bandwidth at a buffered link for various scheduling algorithms. This
characterization is sharp enough to provide necessary and sufficient condi-
tions for satisfying worst-case delay bounds at a single link; (2) We obtain
end-to-end delay bounds by solving an optimization problem, in which the
service received on a multi-hop path is subsumed into a single function.
Since our analysis captures the properties of a broad group of schedulers
in a single parameter, it can provide insight how the choice of scheduling
algorithms impacts end-to-end delay bounds. An important finding of this
paper is that schedulers may exhibit noticeable performance differences
which persist in a network setting with long paths.

Keywords— Delay Analysis, Scheduling, End-to-End Delays, Network
Calculus.

I. INTRODUCTION

The importance of link scheduling algorithms at packet
switches for trading off assurances on latencies and through-
put is well-known, and the differences between link scheduling
methods have been studied extensively, e.g., [26]. At the same
time, little is known about the role of scheduling algorithms in
large networks. The objective of this paper is to shed light on
the question whether the impact of link scheduling on end-to-
end delays diminishes on long network paths.

The literature on the impact of link scheduling on end-to-end
performance is limited and not conclusive. Most comparative
evaluations of scheduling algorithms investigate only a single
link scenario, e.g., [26]. Analytical comparisons between Gen-
eralized Processor Sharing (GPS) and Earliest Deadline First
(EDF) scheduling over a multi-hop path have been presented
for worst-case arrival scenarios [10] and for statistically multi-
plexed traffic [23], [17]. These works highlight the differences
between end-to-end delays with these schedulers, but do not
study how the differences evolve as the number of nodes of
a network path is increased. Some studies [2], [9], [25] have
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found conditions when the output traffic at a link has similar
characteristics as the input, suggesting that the end-to-end delay
performance of all (work-conserving) scheduling algorithms is
similar. An analysis of the throughput performance of FIFO
scheduling on long paths in an overloaded network with con-
stant bit rate fluid flow traffic in [11] showed that the end-to-end
throughput of a flow asymptotically degrades to that of a low-
priority flow. Our paper is motivated by the question whether
a similar degradation is observable under more complex traffic
patterns and in networks that are not permanently overloaded.

The analysis in this paper takes a network calculus approach
[5], [14], which offers a general method for delay and backlog
analysis over a multi-hop path. As a performance metric, we use
the end-to-end delay. We assume that the long-term traffic load
does not exceed the capacity of any network link. Traffic is char-
acterized in terms of envelope functions and service is character-
ized by service curve functions. A key result of the (determinis-
tic) network calculus states that the service curve of a multi-hop
network path can be computed from the service curves at the
links of the path by applying the convolution operator of the
min-plus algebra. More precisely, when S1, S2, . . . , SH are ser-
vice curves describing the available service for a sequence of
links, then the service of the entire network can be expressed by
a network service curve Snet = S1∗S2∗. . .∗SH , where ‘∗’ is the
min-plus convolution defined in Section II-B. In this fashion, a
multi-hop analysis is reduced to the analysis of a single link that
represents the entire network path. End-to-end delay bounds
computed this way are generally more accurate than adding de-
lay bounds computed for individual links. For example, worst-
case delay bounds obtained by adding single-hop delay bounds
scale quadratically with the path length, while delays computed
with Snet scale linearly [14]. In a probabilistic setting for traf-
fic satisfying exponential bounds, delays computed by adding
single-link bounds scale as O(H3) in the number of traversed
links H , while delays computed with a network service curve
scale with Θ(H logH) [4].

In this paper we assess the impact of link scheduling algo-
rithms on probabilistic end-to-end delay bounds using a net-
work calculus analysis. A key difficulty is to find a service curve
that can express a probabilistic service guarantee for non-trivial
scheduling algorithms. It is possible to express the service avail-
able to a traffic flow in terms of the capacity left unused by all
other flows with traffic at a buffered link. In a simplified form,
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such a leftover service description is given by:

Leftover service = Link capacity − Arrivals from
other traffic

.

This corresponds to an interpretation of service where the flow
under consideration receives a lower priority than all other traf-
fic at the link. For every work-conserving scheduling algorithm
(that does not reorder packets from the same flow), such a char-
acterization provides a lower bound for the actually available
service. This leftover service interpretation is often referred to
as blind multiplexing, since bounds on performance metrics hold
even if details of the scheduling algorithm are not available. Re-
finements of a leftover characterization with service curves that
account for specific scheduling algorithms have been consid-
ered before [8], [16], [21], however, with the exception of FIFO
[8], the accuracy of the characterizations has not been estab-
lished. An application of the blind multiplexing analysis of [6]
to FIFO networks in [12] has concluded that the delay bounds
for Markov-modulated arrivals can be very pessimistic.

In this paper, we derive an accurate probabilistic leftover ser-
vice characterization for a broad class of scheduling algorithms,
referred to as ∆-schedulers. The class of ∆-schedulers contains
a diverse set of algorithms, such as FIFO, priority scheduling,
and EDF. For this class of schedulers, we provide a positive an-
swer to the open question of the achievable accuracy of service
curve characterizations, by showing that we can obtain neces-
sary and sufficient conditions for meeting a given deterministic
delay bound at a single link.

The tight service curve characterization of schedulers in this
paper closes a gap in the literature, with regard to the analy-
sis of end-to-end performance metrics. For a single link, it is
feasible to study the relative impact of scheduling and statisti-
cal multiplexing on delay performance through a direct analy-
sis of scheduling algorithms, e.g., [3]. However, such a sched-
uler analysis is not easily extended to multiple hops. Here, the
min-plus convolution of service curves in the network calculus
offers an elegant alternative for a multi-hop delay analysis. Re-
cent progress on the stochastic network calculus [13] has shown
that the convolution of service curves extends to a regime with
probabilistic service descriptions. The quality of performance
bounds obtained with a network calculus approach critically de-
pends on the accuracy at which scheduling algorithms can be
described by service curves. With our tight service curve char-
acterization, we are clearing a path to a more accurate end-to-
end analysis for the class of ∆-scheduling algorithms.

The probabilistic end-to-end delay bounds derived in this pa-
per extend the stochastic network calculus analysis of [6] from
blind multiplexing to all ∆-schedulers. Compared to the blind
multiplexing scenario considered in [6], the end-to-end delay
analysis of general ∆-schedulers requires an additional analyti-
cal optimization (provided in Section IV).

Since our probabilistic analysis contains deterministic delay
bounds (that are never violated) as a special case, our work also

relates to the literature on worst-case end-to-end analysis [15],
[22]. Several methods for computing statistical end-to-end de-
lay bounds have been developed for EDF scheduling under addi-
tional assumptions on the operation of the scheduler. Andrews
[1] and Li and Knightly [17] consider a so-called coordinated
EDF scheduler, where the deadline at downstream links depends
on the delay experienced at upstream links. Andrews [1] and
Li et. al. [16] assume that traffic exceeding an a priori delay
constraint is dropped. Sivaraman and Chiussi [23] present an
analysis where traffic is re-shaped at each link, resulting in a
non-workconserving system. To the best of our knowledge, the
literature does not contain a statistical end-to-end analysis of a
network with plain EDF scheduling at each link.

We gain new insights on the role of scheduling algorithms in
networks. Even though the asymptotic growth of delays in the
path length H for exponentially bounded traffic is Θ(H logH)

for every ∆-scheduler, we find that, in a non-asymptotic regime,
the choice of the scheduling algorithm can have a noticeable im-
pact on end-to-end delays. Thus, accounting for the specifics
of a scheduling algorithms can yield probabilistic end-to-end
bounds that improve on the conservative bounds provided by
blind multiplexing.

The paper is structured as follows. In Section II we discuss
the probabilistic characterization of traffic and service in the net-
work calculus, with traffic envelopes and service curves. In Sec-
tion III we define ∆-scheduling algorithms and analyze their
impact on single-hop delays. In Section IV we compute a net-
work service curve for ∆-schedulers and use it for an analytical
optimization that result in end-to-end delay bounds. We present
numerical examples in Section V and conclude the paper in Sec-
tion VI.

II. ARRIVAL AND SERVICE MODEL

This paper takes a network calculus approach to modeling
and analysis, where arrivals of a flow and the service given to
a flow are expressed in terms of deterministic or probabilistic
bounds. We refer to these bounds as traffic envelopes and service
curves, respectively. The concepts presented in this section are
developed in [5], [6], [14].

A. Traffic Envelopes

We consider a continuous-time fluid-flow traffic model where
arrivals from a traffic flow or flow aggregate to a service el-
ement in the time interval [0, t) are represented by a random
process A(t) whose increments satisfy stationary bounds. The
model allows instantaneous arrivals of discrete-sized packets,
but does not preserve packet boundaries as traffic traverses the
network. Traffic departing from a service element in [0, t) is de-
noted by D(t). Both A(t) and D(t) are nondecreasing in time
with A(t) = D(t) = 0 for t ≤ 0, and we have D(t) ≤ A(t).
For brevity, we use the notation A(s, t) = A(t) − A(s) for any
s ≤ t to denote arrivals in the time interval [s, t). We use a sub-
script ‘j’ to denote traffic arrivals or departures by a flow or flow
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aggregate j.
We characterize traffic in terms of traffic envelopes that spec-

ify the arrivals over given time intervals. In a worst-case anal-
ysis, a deterministic sample path envelope E provides an upper
bound on traffic arrivals satisfying for all t > 0

sup
0≤s≤t

{A(s, t)− E(t− s)} ≤ 0 . (1)

For convenience, we set E(t) = 0 for t ≤ 0. By definition,
no sample path of A ever violates a deterministic sample path
envelope. An example of a deterministic sample path envelope
is a leaky bucket with E(t) = Rt + B for t > 0 with a rate
parameter R and a burst parameter B. Deterministic envelopes
are generally conservative bounds, because they do not capture
statistical fluctuations of traffic or statistical multiplexing. This
motivates the definition of a probabilistic analogue to the deter-
ministic envelope that may be violated with a small probability.
A statistical sample path envelope G(t) with bounding function
ε(σ) satisfies for all t, σ ≥ 0

P ( sup
0≤s≤t

{A(s, t)− G(t− s)} > σ) ≤ ε(σ) , (2)

where 0 ≤ ε(σ) ≤ 1. G is non-negative with G(t) = 0 for
t ≤ 0. The function ε(σ) bounds the probability that a sample
path of the arrivals exceeds the envelope G by more than σ. Over
the years, traffic envelopes have been explored for a wide range
of arrival processes, including memoryless, Markov-modulated,
and even long range dependent processes. We refer to [19] for
an informative survey. For ε(σ) = 0 if σ > 0, we recover the
deterministic version above.

B. Service Curves

Throughout this paper, we use service curves to describe
lower bounds on the service available to a flow. A service ele-
ment offers a (deterministic) service curve S if the input-output
relationship of traffic at the element satisfies for all t ≥ 0

D(t) ≥ inf
0≤s≤t

{A(s) + S(t− s)} . (3)

The term on the right-hand side is referred to as a min-plus
convolution, and denoted by ‘A ∗ S(t)’. As examples, a ser-
vice curve for a constant rate link with capacity C is given by
S(t) = Ct; the service curve for a fixed delay of d is given by
S(t) = δd, where

δd(t) =

{
0 , if t ≤ d
∞ , if t > d .

(4)

The service on a path of H service elements, each offering a
deterministic service curve of S1, S2, . . . , SH , can be expressed
in terms of the convolution S1 ∗S2 ∗ . . . ∗SH . The probabilistic
analogue of this concept is a statistical service curve S with
bounding function ε(σ), which satisfies for all t, σ ≥ 0

P (D(t) < A ∗ [S − σ]+(t)) < ε(σ) . (5)

Here, S(t) is a non-negative, non-decreasing function with
S(t) = 0 for t < 0. Using the notation [x]+ = max(0, x),
we denote [S −σ]+(t) = max(S(t)−σ, 0). The function ε(σ),
which bounds the probability that the guarantee of Eq. (3) is vio-
lated by more than σ, is non-increasing and satisfies 0 ≤ ε(σ) ≤
1.

When applying the network calculus to practical scheduling
methods, one finds that some schedulers are more suitable than
others for a service curve description. Some scheduling algo-
rithms, such as General Processor Sharing (GPS) [20] and Ser-
vice Curve Earliest Deadline (SCED) [8], have been specified
in terms of service curves. Generally, however, characterizing
a scheduler in terms of service curves requires an indirect de-
scription in terms of the available bandwidth capacity that is left
unused by other flows with traffic at this link. In the next section,
we develop such a description and show that we can completely
capture the operation of an entire class of scheduling algorithms.

III. ∆-SCHEDULING ALGORITHMS

We consider the arrivals from a set N of traffic flows (or
flow aggregates) to a buffered link with constant rate C. The
buffer size is assumed large enough so that no losses occur due
to buffer overflows. A scheduling algorithm determines the or-
der in which backlogged traffic is transmitted. The buffered
link with a scheduling algorithm will be referred to as a node.
We assume work-conserving scheduling in the sense that the
link transmits at rate C whenever there is backlogged traffic.
Scheduling is locally FIFO in the sense that traffic from the same
flow is transmitted in the order of its arrival. In this paper, we
ignore that packet transmissions cannot be interrupted. This is a
reasonable assumption when packet sizes are small compared to
the transmission rate. The assumption can be relaxed at the cost
of additional notation. We do not assume that traffic shaping is
performed between nodes.

Let us consider an arrival from flow j at time t, which we refer
to as the ‘tagged arrival’. This arrival will be transmitted when it
has higher precedence than all other backlogged traffic. It turns
out that for many scheduling algorithms it is feasible to specify
constants ∆jk (k ∈ N ), so that only arrivals from flow k that
occur before t + ∆jk have higher precedence than the tagged
arrival from flow j. Note that any locally FIFO ∆-scheduler
satisfies ∆jj = 0 for all j ∈ N . We refer to scheduling algo-
rithms whose operations can be completely described by such
constants ∆jk as ∆-schedulers.

Definition 1: Given a set N of flows with arrivals to a work-
conserving link. A ∆-scheduler is a work-conserving locally
FIFO scheduling algorithm if there exist constants {∆jk}j,k∈N
such that an arrival at time t from flow j has precedence pre-
cisely over those arrivals from flow k that occur after t+ ∆jk.

The class of ∆-schedulers contains a diverse group of
scheduling algorithms.
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• FIFO: Traffic is transmitted in the order of arrivals. Conse-
quently, we have ∆jk = 0 for all j, k ∈ N .
• SP, BMUX: With static priority (SP) scheduling, each flow
is assigned a priority level, and the scheduler always transmits
backlogged traffic with the highest available priority. Traffic
within one priority class is served in order of arrival. Since low
priority traffic has never higher precedence over higher priority
traffic, we have

∆jk =


−∞ , if k has lower priority than j,
0 , if k has the same priority as j,
∞ , if k has higher priority than j.

A scenario where the tagged flow j has low priority and all
other traffic has high priority is referred to as blind multiplex-
ing (BMUX). BMUX is an important benchmark, since it yields
the highest delays for flow j among all work-conserving locally
FIFO schedulers.
• EDF: Each flow j is associated with an a priori delay con-
straint d∗j . When traffic from flow j arrives to the scheduler at
time t, it is assigned a deadline t + d∗j . Traffic is transmitted
in the order of increasing deadlines. Since, in EDF, traffic has
a higher precedence if it has a smaller deadline, we have that
∆jk = d∗j − d∗k for all j, k ∈ N . Traffic is transmitted in the or-
der of deadlines, even if an arrival has violated the a priori delay
constraint.

There are numerous schedulers that are not ∆-schedulers.
Consider GPS [20] as a representative of fair queueing algo-
rithms. Each flow j is assigned a weight φj and the amount
of service given to backlogged flows is proportional to their
weights. Here, at a link with fixed capacity C, the service rate
of a backlogged flow j at time t is given by φj∑

k∈Q(t) φk
C, where

Q(t) is the set of flows that have a backlog at time t. Since the
set Q(t) is random and the values ∆jk depend on Q(t), it is not
feasible to characterize the ∆jk by constants. More generally,
any scheduling algorithm for which a time limit ∆jk can only
be given in terms of a random variable is not a ∆-scheduler.

A. Service Curves for ∆-Schedulers

We will characterize the service available to a flow j ∈ N
at a node with fixed capacity C and a ∆-scheduler in terms of
a service curve in the sense of Eq. (5). All flows in N \ {j}
comprise the cross traffic at the node. Before we present the
service curve in Theorem 1 we introduce some notation.

For any locally FIFO scheduler, let Wj(t) denote the delay of
an arrival from flow j at time t, defined as

Wj(t) = inf {s ≥ 0 | Dj(t+ s) ≥ Aj(t)} . (6)

It is convenient to view Wj as a function that is defined at all
times.

For given constants {∆jk}j,k∈N , we define

∆jk(y) = min {∆jk, y} (7)

to capture arrivals with higher precedence that occur within a
time interval of length y. More specifically, consider an arrival
from flow j at time t that still resides in the scheduler at time
t + y (y > 0), i.e., Wj(t) > y. With respect to this arrival,
traffic from flow k that is transmitted earlier must arrive no later
than t+ ∆jk(y).

If ∆jk = −∞, arrivals from flow k never have precedence
over traffic from flow j, and can be excluded from a delay anal-
ysis. We define Nj and N−j as

Nj = {k ∈ N |∆jk > −∞} , N−j = Nj \ {j} ,

to specify the subset of flows that may have an impact on the
delay Wj of traffic from flow j.

Finally, we denote by I(.) the indicator function, where
I(expr) = 1 if ‘expr’ is true, and I(expr) = 0 otherwise.
The following theorem specifies a family of statistical service
curves for flow j at a node with ∆-scheduling:

Theorem 1: Given a ∆-scheduler operating at a link with ca-
pacity C and a set of flows N with traffic at the link. For
each flow k ∈ N , let Gk be a statistical sample path bound
with bounding function εk(σ) satisfying Eq (2). Then, for each
θ ≥ 0, the function

Sj(t; θ) =
[
Ct−

∑
k∈N−j

Gk(t− θ + ∆jk(θ))
]

+
I(t > θ) (8)

is a statistical service curve with bounding function

εs(σ) = inf∑
σk=σ

∑
k∈N−j

εk(σk) .

The theorem generalizes a service curve characterization that
has been known for FIFO [8] to all ∆-schedulers and to a prob-
abilistic setting. In the special case where the arrivals to flow k

are bounded by deterministic envelopes Ek satisfying Eq. (1),
the theorem says that for each θ ≥ 0, the function

Sj(t; θ) =
[
Ct−

∑
k∈N−j

Ek(t− θ + ∆jk(θ))
]

+
I(t > θ) (9)

is a deterministic service curve in the sense of Eq. (3).

Proof: Fix a time t ≥ 0. LetBtjk(s) denote the backlogged
traffic from flow k at time s with higher or equal precedence
than an arrival from flow j at time t. This can be expressed as
follows:

Btjk(s) = Ak (min {s, t+ ∆jk})−Dk(s)

= Ak (t+ ∆jk(s− t))−Dk(s) . (10)

Let x̂t be the last time before t when the scheduler does not
have such a backlog, that is,

x̂t = sup
{
s ≤ t |

∑
k∈NjB

t
jk(s) ≤ 0

}
. (11)

No traffic that arrives earlier than x̂t contributes to the delay of
an arrival from flow j at time t. Note that Eq. (11) implies that
Aj(x̂t) = Dj(x̂t). With Eq. (11), we can rewrite Eq. (6) as

Wj(t) = inf {s ≥ 0 | Dj(x̂t, t+ s) ≥ Aj(x̂t, t)} .
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Consider first the case where the delay at time t exceeds θ,
that is, Wj(t) > θ. Since ∆-schedulers are work-conserving, in
the entire interval [x̂t, t+ θ] the link is transmitting traffic from
flows in Nj at rate C. We get

C(θ + t− x̂t) =
∑
k∈NjDk(x̂t, t+ θ) . (12)

In the interval [x̂t, t+θ], the link is only transmitting traffic with
higher precedence than the tagged arrival. Since arrivals from
flow k with higher precedence than the tagged arrival must occur
before t+∆jk(θ), we have for each k thatAk(x̂t, t+∆jk(θ)) ≥
Dk(x̂t, t+θ). Applying this inequality in Eq. (12) gives a lower
bound on the transmitted traffic from class j:

Dj(x̂t, t+ θ) ≥ [C(θ+ t− x̂t)−
∑

k∈N−j

Ak(x̂t, t+ ∆jk(θ))]+ .

We can view the right hand term as a lower bound on the ca-
pacity available to flow j that is left unused by the other flows.
Using that Dj(x̂t) = Aj(x̂t), we can rewrite the inequality as

Dj(t+ θ) ≥ Aj(x̂t) + [C(θ + t− x̂t)

−
∑

k∈N−j

Ak(x̂t, t+ ∆jk(θ))]+I(t− x̂t > 0) . (13)

Note that the indicator function always evaluates to 1. On the
other hand, in the case where Wj(t) ≤ θ, we know that

Dj(t+ θ) ≥ Aj(t) , (14)

because the scheduler is locally FIFO.
Eqs. (13) and (14) can be summarized in the statement that

Dj(t) ≥ inf
s≤t

{
Aj(s) +

[
C(t− s)

−
∑

k∈N−j

Ak(s, t− θ + ∆jk(θ))
]

+
I(t− s > θ)

}
(15)

for all t ≥ 0 and all θ ≥ 0. To see this, we first replace t by t−θ
in both inequalities, then set s = x̂t for Eq. (13) and s = t − θ
for Eq. (14).

Now suppose that we have sample paths so that at time t we
have

sup
s≤t

{∑
k∈N−j Ak(s, t− θ + ∆jk(θ))

−
∑
k∈N−j Gk(t− s− θ + ∆jk(θ))− σ

}
≤ 0 . (16)

Inserting this into Eq. (15) yields the service curve

Dj(t) ≥ inf
s≤t

{
Aj(s) +

[
C(t− s)

−
∑

k∈N−j

Gk(t− s− θ + ∆jk(θ))− σ
]

+
I(t− s > θ)

}
≥ Aj ∗ [Sj − σ]+(t; θ) . (17)

Choosing {σk}k∈N−j such that σ =
∑
k∈N−j σk, we estimate

the bounding function as follows:

P
(
Dj(t) ≥ Aj ∗ [Sj − σ]+(t; θ)

)
≥ P

(
Eq. (16) holds

)
≥ P

(
∀k ∈ N−j : sup

s≤t

{
Ak(s, t− θ + ∆jk(θ))

− Gk(t− s− θ + ∆jk(θ))
}
≤ σk

)
(18)

≥ 1−
∑

k∈N−j

P
(

sup
s≤t−θ+∆jk(θ)

{
Ak(s, t− θ + ∆jk(θ))

− Gk(t− θ + ∆jk(θ)− s)
}
> σk

)
(19)

≥ 1−
∑

k∈N−j

εk(σk) .

In Eq. (18) we restrict the event by requiring that in Eq. (16)
each flow k ∈ N−j satisfies its envelope Gk for some allowed
choice of σk. For Eq. (19) we have first applied the union bound
and then used that the supremum cannot be assumed for s >
t − θ + ∆jk(θ) to restrict the range of s. In the last step, we
have used that Gk is a statistical sample path bound. The claim
follows by minimizing over {σk}k∈N−j .

B. Tightness of the Service Curve

We make the case that the service curve in Theorem 1 ac-
curately characterizes a scheduler, by showing that we can ob-
tain necessary and sufficient conditions for meeting given delay
bounds.

Let Sj be a statistical service curve with bounding function
εs(σ), as defined in Eq. (5), and let Gj be a statistical sam-
ple path envelope with bounding function εg(σ), as defined in
Eq. (2). Select d(σ) as the smallest value satisfying

Gj(t) + σ ≤ Sj(t+ d(σ)) , ∀t ≥ 0 , (20)

and set
ε(σ) = inf

σ=σ1+σ2

{εg(σ1) + εs(σ2)} . (21)

From [6] we have that d(σ) is a probabilistic delay bound that
satisfies

P (Wj(t) > d(σ)) < ε(σ) , ∀t ≥ 0,∀σ ≥ 0 . (22)

We apply this probabilistic delay bound to the service curve of
the ∆-scheduler from Theorem 1. Setting θ = d(σ) in Eq. (8),
and inserting the service curve into Eq. (20) we obtain

sup
t>0

{
Gj(t) + σ −

[
C(t+ d(σ))

−
∑

k∈N−j

Gk(t+ ∆jk(d(σ)))
]

+

}
≤ 0 .

Since ∆jj = 0 in all locally FIFO schedulers, we can replace
Gj(t) by Gj(t+ ∆jj(d)). Collecting terms, we get

sup
t>0

{∑
k∈Nj

Gk(t+ ∆jk(d(σ))) + σ − Ct
}
≤ Cd(σ) . (23)
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For σ = 0 and d = d(0), this condition has the same structure
as the probabilistic schedulability conditions from [3], which
were derived without using service curves. This indicates that
the service curve from Theorem 1 yields similar delay bounds
as those obtained with a ‘direct’ analysis of a specific scheduling
algorithm.

The following theorem shows that the deterministic analogue
of Eq. (23) is tight in the sense that it yields a necessary and suf-
ficient condition for meeting a delay bound. Here, the envelopes
Gk are replaced by deterministic sample-path envelopesEk (sat-
isfying Eq. (1)), Sj is given by Eq. (9), and σ = 0, ε(σ) = 0.

Theorem 2: Given a set of flowsN arriving at a buffered link
of fixed-rate capacity C and a ∆-scheduler. Assume that the
arrivals to each flow k ∈ N are bounded by a deterministic
envelope function Ek satisfying Eq. (1). If

sup
t>0

{∑
k∈Nj

Ek(t+ ∆jk(d))− Ct
}
≤ Cd (24)

for some d > 0, then the delay of traffic from flow j does not
exceed d. If the envelope functions Ek are concave, then the
condition is tight, in the sense that the worst-case delay is given
by d.

Condition (24) recovers the necessary and sufficient condi-
tions for meeting a deterministic delay bound d under FIFO, SP,
and EDF from [7], [18]. We point out that deterministic enve-
lope functions that provide a tight description for an arrival flow
are typically well approximated by concave functions. This fol-
lows from the fact that the smallest deterministic envelope func-
tion for an arrival sample path is always subadditive.

Proof: Sufficiency of Eq. (24) follows directly from the
deterministic version of Eqs. (20) and (22). To prove necessity
for concave envelope functions, we assume that the condition in
Eq. (24) is violated for t∗, that is,∑

k∈Nj

Ek(t∗ + ∆jk(d)) > C(d+ t∗) , (25)

and show that this violation results in a delay bound violation.
Consider a transmission scenario where the scheduler is

empty at time t = 0, and immediately after t = 0, each flow
k 6= j generates arrivals to the scheduler such that Ak(t) =

Ek(t). Arrivals from flow j also satisfy Aj(t) = Ej(t) with the
additional requirement that there is an arrival from flow j at t∗.
The backlogged traffic from flow k at time swith higher or equal
precedence than an arrival from flow j at time t∗ is Bt

∗

jk(s), as
defined in Eq. (10). Defining

Bt
∗

j (s) =
∑
k∈Nj

Bt
∗

jk(s) ,

we obtain that for s ∈ [0, t∗ + d] the following holds:

Bt
∗

j (s) =
∑
k∈Nj

(
Ak(t∗ + ∆jk(s− t∗))−Dk(s)

)
=
∑
k∈Nj

Ek(t∗ + ∆jk(s− t∗))− Cs . (26)

...1 2 Hthrough traffic  

cross traffic  cross traffic  cross traffic  

Fig. 1. Multi-hop network.

Since all Ek are assumed to be concave and nondecreasing, and
∆jk(s − t∗) is concave, we have that Bt

∗

j (t) is concave in the
interval [0, t∗ + d]. Since Bt

∗

j (0) = 0 by construction of the ar-
rival pattern, and Bt

∗

j (t∗ + ∆jk(d)) > 0 due to the assumption
in Eq. (25), we have that Bt

∗

j (s) > 0 for s ∈ [0, t∗ + d). Not-
ing that for t > t∗, Bt

∗

j describes the backlogged traffic that is
transmitted before the arrival from flow j at time t∗, the arrival
cannot be transmitted by time t∗ + d, resulting in a delay bound
violation.

IV. END-TO-END DELAY ANALYSIS

We next use the service curve from the previous section to an-
alyze end-to-end delays for ∆-schedulers across a path of mul-
tiple hops. We study the delay of a traffic flow (with index ‘0’)
that traverses a sequence ofH nodes as shown in Fig. 1, and that
experiences cross traffic at each node. We do not assume inde-
pendence of cross traffic and through traffic. The cross traffic at
nodes can be heterogeneous, and we useN h

c to denote the set of
cross-traffic flows at the h-th node. Each node has a fixed rate
capacity, with Ch denoting the rate at the h-th node. Each node
uses a ∆-scheduler for packet transmission, but the scheduling
algorithm may be different at each node. We denote by ∆h

0k the
scheduler dependent constants at node h for the through traffic
flow 0 and a cross traffic flow k ∈ N h

c . In the derivations we
adopt a discrete time system (t = 0, 1, . . .).

We compute end-to-end delay bounds for exponentially
bounded arrival processes, where the arrivals A of each flow
satisfy for all s ≤ t and for σ ≥ 0

P (A(s, t) > ρ(t− s) + σ) ≤Me−ασ , (27)

where M ≥ 1 and ρ, α > 0 are constants. Such traffic is said
to have Exponentially Bounded Burstiness (EBB) [24]. We will
write A ∼ (M,ρ, α) to denote an EBB arrival process with the
given constants.

Remark: For EBB arrivals and a network as in Fig. 1, the
asymptotic growth of end-to-end delays inH is Θ(H logH) for
all ∆-schedulers. This follows from the scaling analysis in [4]
for a packetized arrival model. The upper bound ofO(H logH)

for delays in BMUX from [4] holds for all ∆-schedulers since
delays with BMUX are larger than those of any ∆-scheduler.
The lower bound of Ω(H logH) in [4] was derived for a net-
work without any cross traffic. Since all ∆-schedulers are lo-
cally FIFO, the lower bound holds for any ∆-scheduler.

A statistical sample path envelope satisfying Eq. (2) for the
EBB arrival process from Eq. (27) can be computed with the
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union bound as

G(t) = (ρ+ γ)t , ε(σ) =
Me−ασ

1− e−αγ
,

for any choice of γ > 0. We assume that the through traffic
is an EBB flow A0 ∼ (M0, ρ0, α0) that traverses a path of H
nodes. The EBB parameters of each cross traffic flow k ∈ N h

c is
Ak ∼ (Mk, ρk, αk). We denote by Gk and εk(σ), respectively,
the statistical sample path envelope and bounding function of
flow k. Using the statistical sample path envelopes, Theorem 1
provides for the through traffic at the h-th node the service curve

Sh(t; θh) =
[
Cht

−
∑
k∈Nhc

(ρk + γ)
[
t−θh+∆h

0k(θh)
]
+

]
+
I(t > θh), (28)

εh(σ) = inf∑
k∈Nhc

σk=σ

∑
k∈Nhc

Mke
−αkσk

1− e−αkγ
. (29)

We assume that the arrival rates satisfy the stability condition

ρ0 +
∑
k∈Nhc

ρk < Ch , h = 1, . . . ,H ,

and choose the free parameter γ to satisfy

0 < γ < min
h

Ch −
∑
k∈Nhc

ρk − ρ0

h+ 1
. (30)

Since γ influences the rate of the envelope as well as the value of
the bounding function, the choice of γ must make a trade-off. In
our analysis, we assume that γ is arbitrary, but fixed, and obtain
its optimal value numerically.

The value of the violation probability in the above equation
can be found by taking advantage of a property derived in [6],
which states that, for any set of constants (Mj , ρj , αj) with j =

1, 2, . . . , N ,

inf∑N
j=1 σj=σ

N∑
j=1

Mje
−αjσj =

N∏
j=1

(Mjαjw)
1

αjw e−σ/w , (31)

where w = 1/α1 + 1/α2 + . . . + 1/αN . This yields for the
bounding function in Eq. (29)

εh(σ) = Mhe−α
hσ , (32)

where

αh =
( ∑
k∈Nhc

1/αk

)−1

,Mh =
∏
k∈Nhc

(
Mkαk

αh(1− e−αkγ)

)αh

αk

.

(33)

The statistical service curve given by Eqs. (28) and (32) de-
scribes the service available to the through flow at the h-th
node. We next use the min-plus algebra of the stochastic net-
work calculus to derive a probabilistic end-to-end delay bound
from these per-node service curves.

A. Probabilistic End-to-end Delay Bound

Following a network calculus approach for computing end-to-
end delay bounds for a path of nodes, we proceed in two steps.
First, we use the per-node service curves for ∆-schedulers above
to obtain a statistical network service curve for the through flow
on the entire path of H nodes. Second, we use this network
service curve in the single-node delay bound from Eq. (20).

Since the bounding function in Eq. (32) has an exponential
decay, it clearly satisfies

∫∞
0
εh(x)dx < ∞. This allows us to

use a result in [6, Theorem 1] which provides a statistical net-
work service curve Snet satisfying Eq. (5). In the discrete-time
version of the network service curve, the through flow receives
a service curve for the entire network of H nodes given by

Snet(t; θ) = S1 ∗ S2
γ ∗ . . . ∗ SH(H−1)γ(t; θ) , (34)

where θ = (θ1, . . . , θH) and Sh(h−1)γ(t; θ) = Sh(t; θ) − (h −
1)γt. Compared with the deterministic case, the convolution of
statistical service curves incurs at each node an additional rate
degradation of γ. The corresponding bounding function is given
by

εnet(σ) = inf∑H
h=1 σ

h=σ

{
εH(σH) +

H−1∑
h=1

∞∑
j=0

εh(σh + jγ)
}
.

(35)

We apply this result to derive Snet and εnet from the per-node
service curves given by Eqs. (28) and (32).

For BMUX, that is, ∆ = ∞, the functions Sh are simple
rate functions and the convolution in (34) is easily computed as
the minimum of the rates [6, Eq. (24)]. However, for general
∆, the service curves Sh are neither convex nor concave, and
a computation of the convolution in Eq. (34) to obtain Snet is
not straightforward. We resolve this problem by showing that
the Sh can be represented as the min-plus convolution of two
terms, one of which is concave and the other a simple shift func-
tion. With this decomposition and by exploiting basic properties
of the min-plus algebra we will be able to obtain an analytical
expression for Snet.

By Eq. (30), and since θh − ∆h
0k(θh) is non-decreasing in

θh, the term in the outer brackets of Eq. (28) is non-negative,
and we can write

Sh(h−1)γ(t; θh) = S̃h ∗ δθh(t) .

Here, δ is the shift function defined by Eq. (4), and

S̃h(t) = (Ch − (h− 1)γ)(t+ θh)

−
∑
k∈Nhc

(ρk + γ)
[
t+ ∆h

0k(θh)
]
+
. (36)

Note that the term inside the large square brackets of Eq. (28)
increases with θh. We will always take θh large enough so that

(Ch − (h− 1)γ)θh ≥
∑
k∈Nhc

(ρk + γ)
[
∆h

0k(θh)
]
+
. (37)
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(Otherwise, Sh(h−1)γ could be increased by increasing θh.) With

this choice of θh, we see that S̃h is nonnegative, strictly increas-
ing, and concave in t. Using the associativity and commutativity
of the min-plus algebra, we can obtain an expression for Snet as
follows:

Snet(t; θ) =
(
S̃1 ∗ δθ1

)
∗ . . . ∗

(
S̃H(H−1)γ ∗ δθH

)
(t)

=
(
S̃1 ∗ . . . ∗ S̃H(H−1)γ

)
∗
(
δθ1 ∗ . . . ∗ δθH

)
(t)

= min
h=1,...,H

{
S̃h
}
∗ δ∑H

h=1 θ
h(t)

= min
h=1,...,H

{
S̃h(t−

∑H
h=1 θ

h)
}
I(t >

∑H
h=1 θ

h) .

The second line in the above computation applies the associa-
tivity and commutativity of the min-plus convolution. The third
line uses that the convolution of concave functions is their point-
wise minimum, and that δa ∗ δb = δa+b.

For the bounding function εnet of the network service curve
in Eq. (35) we estimate with Eq. (31) that

εnet(σ) = inf∑H
h=1 σ

h=σ

{MHe−α
HσH

1− e−αHγ
+

H−1∑
h=1

Mhe−α
hσh

(1− e−αhγ)2

}
= Mnete−α

netσ, (38)

where

αnet =
( H∑
h=1

1/αh
)−1

,

Mnet ≤
H∏
h=1

(
Mhαh

(1− e−αhγ)2αnet

)αnet/αh
e−α

netσ.

Having derived a network service curve for the through flow
in the network shown in Fig. 1, we can now obtain a bound
for the end-to-end delays, denoted by dnet(σ), by applying
the single node delay bound from Eqs. (20)–(22), where εnet

from Eq. (38) takes the place of εs(σ), and εg(σ) is given by
M0e

−α0σ

1−eα0γ
. We evaluate the bounding function in Eq. (22) with

another application of Eq. (31) as

Pr{W (t) ≥ dnet(σ)} ≤
(Mnet

α0

) α0
α0+αnet

( M0

αnet
) αnet

α0+αnet

× (αnet + α0)e
−α0α

net

α0+αnet
σ
. (39)

It remains to compute dnet. Per Eq. (20),

∀t ≥ 0 : Snet(t+ dnet(σ); θ) ≥ (ρ0 + γ)t+ σ (40)

is a sufficient condition for dnet(σ) to be a probabilistic delay
bound. The stability assumption and our choice of γ guarantees
that Eq. (40) is automatically satisfied for t sufficiently large,
since Snet(t) grows linearly with rate

min
h

{
Ch − hγ −

∑
k∈Nhc

ρk

}
> ρ0 + γ .

Since the left hand side of Eq. (40) is concave in t, it suffices to
verify the condition in Eq. (40) for t = 0. Thus, we determine
dnet(σ) as the smallest d such that

∀h = 1, . . . ,H : S̃h(d−
∑H
h=1 θ

h) ≥ σ ,

subject to
dnet(σ) ≥

∑H
h=1 θ

h . (41)

The θh’s should be selected to minimize dnet(σ), yielding the
following optimization problem:

dnet(σ) = min
θ1...θh

min
{
d ≥

H∑
h=1

θh
∣∣∣

min
h=1,...,H

{
(Ch − (h− 1)γ)(d+ θh −

∑H
j=1 θ

j)

−
∑
k∈Nhc

(ρk + γ)
[
d+ ∆h

0k(θh)−
∑H
j=1 θ

j
]
+

}
≥ σ

}
.

Here, the values of θh are subject to the constraint in Eq. (37).
For H = 1, since θ1 − ∆1

0k(θ1) is non-decreasing in θ1, the
optimal choice is θ1 = d for all ∆-schedulers. This will give
the same results as the single node analysis in Section III-B. For
H > 1, the optimal choice of θh depends on the value of ∆h

0k.
With the change of variables X = dnet(σ) −

∑H
h=1 θ

h, the
optimizing problem takes the following form:

Minimize dnet(σ) = X +
∑H
h=1 θ

h (42)

subject to

(Ch − (h−1)γ)(X + θh)−∑
k∈Nhc

(ρk+γ)
[
X + ∆h

0k(θh)
]
+
≥ σ, h = 1, . . . H ,

X ≥ 0 , θh ≥ θh∗ , h = 1, . . . H ,

where θh∗ is the smallest number such that Eq. (37) holds.
Even though this optimization problem is not generally con-

vex, since ∆h
0k(θh) is concave in θh when ∆h

0k > 0, it can be
solved explicitly as follows. For each value of X , let θh(X) be
the smallest choice of θh that satisfies the constraints of the op-
timization problem. Then θh(X) is a piece-wise linear function
of X , with at most two corners for each element in N h

c , where
one corner is due to the condition θh ≥ θh∗ , and the other cor-
ner is due either to the definition of ∆h

0k(θh) (if ∆h
0k < 0) or

to enforcing the non-negativity of the term
[
X + ∆h

0k(θh)
]
+

(if
∆h

0k > 0). Thus, θh is a piece-wise linear function of X , with
at most 1 + 2|N h

c | corners (including X = 0). Inserting these
values for θh, the objective function becomes a piece-wise lin-
ear function of the single variable X . Since such a function has
its minimum at one of the corners, the optimization is solved by
evaluating the objective functions for at most 1+

∑H
h=1(2|N h

c |)
points, and taking the minimum.

B. Closed-Form Solutions

We now consider a few illuminating special cases where we
can obtain closed-form expressions for the end-to-end delay
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bound. To achieve a closed form we must reduce the set of
available parameters. Suppose each node has the same fixed
capacity link with rate C, and the cross traffic at each node is
given by a single flow, given by an identically distributed ar-
rival process Ac ∼ (M,ρc, α). The through flow is given by
A0 ∼ (M,ρ0, α). We also assume that the same ∆-scheduling
algorithm is used at each node, with ∆0c denoting the constant
for the through traffic flow (with index 0) with respect to the
cross traffic flow. With these choices, we obtain αnet = α/H ,
Mnet ≤ MH

(1−e−αγ)2 , and Eq. (39) implies that

Pr{W (t) ≥ dnet(σ)} ≤ M(H + 1)

(1− e−αγ)2
e−

α
H+1σ . (43)

Since the objective function in Eq. (42) is linear, it assumes its
minimum at a point where H + 1 constraints hold with equality.
In such a point, we must have θ1 = . . . = θK = 0, and 0 <

θK+1 ≤ . . . ≤ θH for some K. We will now describe how to
identify this point.

We reduce the problem to a minimization problem in the sin-
gle variable X . For X ≥ 0, let θh(X) be the smallest nonnega-
tive solution of(
C − (h− 1)γ

)(
X + θh

)
− (ρc + γ)

[
X + ∆0c(θ

h)
]
+
≥ σ .

This choice ensures that the h-th constraint in Eq. (42) is satis-
fied with equality whenever θh(X) > 0, and we obtain

dnet(σ) = min
X≥0

{
X +

H∑
h=1

θh(X)

}
. (44)

Clearly, θh(X) is a strictly decreasing function ofX in the range
where θh(X) > 0. Once we have identified the index K de-
scribed above, we can drop the first K summands and consider
only θh(x) for h > K. The minimum is assumed at a point
where the derivative d

dX

{
.
}

changes from negative to positive.
We distinguish two cases. For ∆0c ≥ 0, we compute its

derivative as

d

dX
θh(X) =

{
− C−ρc−hγ
C−(h−1)γ , θh > ∆0c ,

−1 , 0 < θh < ∆0c .

It follows that the optimal K necessarily satisfies∑
h>K

C − ρc − hγ
C − (h− 1)γ

< 1 . (45)

Given K ≥ 1, we set

X =
σ

C − ρc −Kγ
. (46)

For K = 0 we set X = 0. The optimal K must also satisfy
θh(X) > ∆0c for all h > K. We take K to be the smallest
index with these properties. Finally, we determine dnet(σ) from
Eq. (44).

For ∆0c ≤ 0, the function θh(X) is convex, and

d

dX
θh(X) =

{
−1 , X < −∆0c ,

− C−ρc−hγ
C−(h−1)γ , X > −∆0c .

As above, K should be chosen so that Eq. (45) holds. If K ≥ 1,
set

X = max

{
σ

C − (K − 1)γ
,
σ + (ρc + γ)∆0c

C − ρc −Kγ

}
. (47)

If K = 0 set X = −∆0c. We take K to be the smallest index
satisfying Eq. (45).

We do not claim that these choices are optimal. However, in
practice, K is usually close to H , resulting in a near-optimal
choice.

To compute a probabilistic delay bound, we first set the right
hand side of Eq. (43) equal to the desired violation probability
and solve for σ, and then find dnet(σ) by solving the optimiza-
tion problem in Eq. (42) according to the procedure outlined
above. Since there is no explicit term for γ, the optimization is
done numerically over γ.

There are several special cases where we can find explicit so-
lutions to the optimization problem in Eq. (42):

• ∆0c = ∞: This is the case of blind multiplexing. Here, we
obtain that the optimal solution is θ1 = . . . = θH = 0, and we
get

d(σ) = X =
σ

C − ρc −Hγ
, (48)

which is the same delay bound found in [6].
• ∆0c = 0: This is the case of FIFO. Here, the optimiza-

tion problem greatly simplifies, because the constraints are lin-
ear. The second condition in Eq. (45) is always satisfied, leaving
only the first condition. We choose K to be the smallest integer
that satisfies Eq. (45), determine X from Eq. (46), and compute

θh =
(h−K)γX

C − (h− 1)γ
, for h > K .

The resulting delay bound is

d(σ) =
σ

C − ρc −Kγ

(
1 +

∑
h>K

(h−K)γ

C − (h− 1)γ

)
. (49)

• γ = 0: This case arises in a deterministic scenario, in which
bounds are never violated. Note that by setting M = eBα and
letting α→∞ in the EBB model in Eq. (27), we obtain a leaky
bucket with E(t − s) = R(t − s) + B. From Eq. (42), we
see that necessarily θh = θ for all h. Then the solution to the
optimization gives either θ = 0 or X = 0, resulting in

d = min
{[B0 +HBc −Rc · [∆0c]−

]
+

C −Rc
,

H

C

[
(B0 +HBc + ∆0c)

]
+

}
.
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For different values of ∆0c, we obtain end-to-end delay bounds
that apply to the deterministic network calculus. For FIFO
scheduling, i.e., ∆0c = 0, this is weaker than the correspond-
ing bound obtained in [15], which is given by

d =
B0

C−Rc
+
H

C
Bc .

It remains open whether the difference of the bounds is due to a
principal limitation of applying the stochastic network calculus
to a deterministic traffic scenario, or if a sharpened analysis of
the network service curve may strengthen the result.

Studying the optimization problem, we discover that the delay
bounds of FIFO approach that of blind multiplexing when the
utilization of the cross traffic ρc is small or H is large. The
reason is that the first condition in Eq. (45) forces K to be close
to H , which in turn forces Eq. (49) (with ∆0c = 0) to converge
to the blind multiplexing delay bound Eq. (48). In the numerical
examples in the next section, we will see that FIFO approaches
the delay bounds of BMUX even for modest path lengths and
link utilizations.

V. NUMERICAL EXAMPLES

We present numerical examples of the end-to-end delay
bounds derived in this paper, where we assume that the time unit
is T = 1 ms. As traffic, we use discrete-time on-off Markov-
Modulated Process with two states (OFF= 1, ON= 2), where
the probabilities of the transitions ON→ OFF and OFF→ ON
are denoted by p12 and p21. In one time unit in the ON state,
the process transmits a fixed amount of data denoted by P .
We assume that p12 + p21 ≤ 1. The effective bandwidth
eb(s, t) = 1

st logE[esA(t)] of such a process is bounded by [5]

eb(s, t) ≤ 1

s
log

1

2

(
p11 + p22e

sP+

+
√

(p11 + p22esP )2 − 4(p11 + p22 − 1)esP
)
,

where p11 = 1−p12 and p22 = 1−p21. IfA denotes the arrivals
of an aggregate of N independent such flows, the traffic com-
plies to the EBB model in Eq. (27) with A ∼ (1, N · eb(s, t), s).

We use traffic parameters that characterize a compressed
video source with high burstiness. The peak rate is set to
1.5 Mbps (megabit per second) and the average rate is 150 kbps
(kilobit per second), resulting in a peak-to-average traffic ratio
of 10. The average size of a burst, corresponding to a frame,
is set to approximately 15 kb. Such a traffic source is mod-
eled by setting the parameters to P = 1.5 kb, p11 = 0.989

and p22 = 0.9. Both through and cross traffic flows have these
characteristics.

We consider a network as in Fig. 1, where all nodes have the
same capacity C = 100 Mbps, and all nodes use the same ∆-
scheduling algorithm, where we set ∆0c := ∆. The number
of through flows is N0 and the number of cross flows at each
node is Nc. All flows have the same characteristics as discussed
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Fig. 2. Example 1: End-to-end delay bounds of through traffic for EDF (d∗0 <

d∗c ), BMUX, and FIFO as a function of the total utilization U (H = 2, 5, 10,
U0 = 15% (constant), ε = 10−9).

above. The load on a link is denoted by the utilizationU , defined
as a percentage of utilized capacity U = (N0 +Nc) · 0.15/100.
We use U0 and Uc, to denote the utilization due to through and
cross traffic, respectively, with U = U0 + Uc. In all examples,
we compute end-to-end delay bounds for the through flows with
a violation probability set to ε = 10−9.

A. Example 1

We evaluate the end-to-end delay bounds computed in Sec-
tion IV as a function of the total utilization U . We consider the
scheduling algorithms BMUX (for reference), FIFO, and EDF.
For EDF we set the a priori delay constraints of the through
traffic (d∗0) and the cross traffic (d∗c ) at each node to satisfy
∆ = d∗0 − d∗c = −10. Note that, for scheduling purposes, only
the relative difference of the delay constraints is relevant. In
the example, the number of through flows is kept constant at
N0 = 100, corresponding to a utilization of Uo = 15%, while
the number of through flows is increased, so that the total uti-
lization U = U0 + Uc covers a range of 20% ≤ U ≤ 95%. We
include results for path lengths of H = 2, 5, 10.

In Fig. 2 we see that the delay bounds of FIFO are virtu-
ally identical to those of BMUX as early as H = 5. At the
same time, the delay bounds of BMUX and FIFO are noticeably
larger than those of EDF, and the difference seems to increase
with the network size. On the other hand, for a network with
only two hops, H = 2, the BMUX delays bounds are much
higher than those of FIFO and EDF. Note that, since the BMUX
bounds from [6] represent the state-of-the-art for end-to-end de-
lay bound analysis, the graphs for EDF illustrate the benefits of
applying the scheduler-aware analysis from this paper.

B. Example 2

This example examines in more detail how scheduling algo-
rithms influence delays in a network. We use the same setup as
in Example 1, however, we keep the link utilization constant at
U = 50% and instead vary the traffic mix Uc/U . For EDF we
consider two cases: shorter delay constraints for through traf-



11

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

Traffic mix (Uc/U)

En
d−

to
−e

nd
 d

el
ay

 b
ou

nd
 (m

s)

 

 

BMUX
EDF (Δ = +10)
FIFO
EDF (Δ = −10)

H = 2

H = 10

H = 5

Fig. 3. Example 2: End-to-end delay bounds of through traffic as a function of
the traffic mix Uc/U (H = 2, 5, 10, U = 50% (constant), ε = 10−9).
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Fig. 4. Example 3: End-to-end delay bounds of through traffic vs. path length
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fic (∆ = −10) and longer delay constraints for through traffic
(∆ = 10). The results are shown in Fig. 2. Even though the
total utilization at the node is constant, we observe different de-
lay bounds for the evaluated schedulers. Interpreting FIFO as
an EDF scheduler with identical a priori delay constraints, i.e.,
d∗0 = d∗c , and BMUX as an EDF scheduler with d∗0 = ∞ and
d∗c < ∞, we see, for H = 2, that for d∗0 > d∗c end-to-end de-
lay bounds become more sensitive to increased cross traffic. On
the other hand, for d∗0 < d∗c , we see less sensitivity to the traffic
mix. This is expected, since cross traffic mostly has lower prece-
dence, while through traffic maintains its locally FIFO property.
When the path length H is increased, these effects are dimin-
ished as the scaling law for the delays of ∆-schedulers makes
all schedulers have a similar performance as BMUX, where in-
creased cross traffic results in a steep increase of delay bounds.

C. Example 3

We illustrate the scaling of end-to-end delay bounds as a func-
tion of the path length H . Using the same MMPP traffic pa-
rameters as before, we set N0 = Nc, and compute the delay
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Fig. 5. Example 4: End-to-end delay bounds with mix of link schedulers
(U0 = Uc, U = 50%, ε = 10−9) .

bounds for different values of U = 10, 50, 90%. For EDF, we
set delay constraints at each node so that ∆ = −100, given a
shorter a priori delay constraint to the cross traffic. Since we are
considering longer path lengths, which incur longer delays, we
have changed the value of ∆ compared to the previous exam-
ples. For BMUX, FIFO, and EDF we compute delay bounds as
discussed in Section IV. For BMUX, we additionally present a
delay analysis that is based on adding up per-node delay bounds,
using a discrete-time version of such an analysis in [6, Sec-
tion IV.A]. In Fig. 4 we see that the method of adding per-node
delay bounds yields loose bounds. In fact, the growth of delays
can be shown to be O(H3 logH) with discrete time. The de-
lay bounds using our network service curve increase essentially
linearly for all schedulers, following the predicted asymptotic
growth of Θ(H logH). These findings generalize a comparison
of a network delay analysis with a node-by-node analysis for
BMUX in [6] for blind multiplexing. Note that, for the depicted
range ofH , the delay bounds for FIFO and BMUX appear iden-
tical when network nodes have a higher load, while delays for
EDF (with the selected a priori delay constraints) are noticeably
lower.

D. Example 4

Taking advantage of our ability to analyze heterogeneous net-
works, we evaluate the impact of changing the link scheduling at
a single node on a network path with H nodes. We use the same
traffic characteristics as before, with U = 50% and N0 = Nc.
The results, shown in Fig. 5, consider several scenarios. BMUX
indicates a network where all nodes give lower priority to the
through traffic, i.e., ∆h = ∞. As expected this results in the
largest delays for the through traffic. The curve that yields the
lowest delays is labeled as ‘∆h = −100 (h = 1, . . . ,H)’.
This is a scenario where all schedulers are EDF, and where the
through traffic has a delay constraint which is 100 ms shorter
than that of the cross traffic. The remaining curves use a mix of
schedulers. In the curve labeled ‘∆1 = 0, ∆h = −100 (h =



12

2, . . . ,H)’, the first node uses FIFO and the other nodes use
EDF with the given delay constraints. And the curve labeled
‘∆1 = ∞, ∆h = −100 (h = 2, . . . ,H)’, has BMUX at the
first node. The results indicate that changing a single scheduler
on a path can have a noticeable impact on the end-to-end delays.
While the distortion caused by the ‘different’ scheduler appears
to gradually increase with large H , even for H = 50 the impact
of changing a single scheduler on this path remains noticeable.

VI. CONCLUSION

We presented an end-to-end analysis of probabilistic delay
bounds for ∆-schedulers, a class of algorithms that can be de-
fined in terms of constants which specify time intervals when
arrivals have precedence over buffered traffic. We derived a sta-
tistical service curve that can characterize the operations of any
given ∆-scheduler to a degree that it recovers tight delay bound
conditions. We performed an end-to-end delay bound analysis
by providing explicit solutions to an optimization problem. We
presented numerical examples that illustrated the impact of the
choice of the scheduling algorithm on end-to-end delays. We
observed that delay bounds of FIFO frequently approach those
of blind multiplexing when the number of traversed nodes is
large. At the same time, the delays of EDF scheduling were
generally markedly different, and maintained the difference on
long paths. Thus, our results suggest that an accurate end-to-
end analysis should take into consideration the specifics of the
scheduling algorithms at packet switches.
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