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Abstract

Modern networks have become increasingly complex over the past years in terms of control

algorithms, applications and service expectations. Since classical theories for the analysis of

telephone networks were found inadequate to cope with these complexities, new analytical

tools have been conceived as of late. Among these, the stochastic network calculus has given

rise to the optimism that it can emerge as an elegant mathematical tool for assessing network

performance.

This thesis argues that the stochastic network calculus can provide new analytical insight

into the scaling properties of network performance metrics. In this sense it is shown that

end-to-end delays grow as Θ(H log H) in the number of network nodes H , as opposed to the

Θ(H) order of growth predicted by other theories under simplifying assumptions. It is also

shown a comparison between delay bounds obtained with the stochastic network calculus

and exact results available in some product-form queueing networks.

The main technical contribution of this thesis is a construction of a statistical network

service curve that expresses the service given to a flow by a network as if the flow traversed

a single node only. This network service curve enables the proof of the O(H log H) scaling

of end-to-end delays, and lends itself to explicit numerical evaluations for a wide class of

arrivals. The value of the constructed network service curve becomes apparent by showing

that, in the stochastic network calculus, end-to-end delay bounds obtained by adding single-

node delay bounds grow as O(H3).

Another technical contribution is the application of supermartingales based techniques in

order to evaluate sample-path bounds in the stochastic network calculus. These techniques
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are suitable to arrival processes with stationary and independent increments, and improve the

performance bounds obtained with existing techniques.



Acknowledgments

I would like to express my deep gratitude to those who sustained the development of this

dissertation with their professionalism, inspiration and encouragement.

This dissertation would never have been possible without the continuous help and sup-

port of my advisors Jörg Liebeherr and Almut Burchard. They were instrumental to the

development of this dissertation from its inception to its final polished form. Their intellec-

tual contribution is present throughout, as the majority of the results and views presented

herein are the product of our collaboration. I will be forever indebted to Jörg and Almut for

their professionalism in educating, mentoring and inspiring me. I feel fortunate to have been

their student; their guidance, patience and adherence to high standards have played a central

role in my evolution as a scholar. I can only hope that I will have a similarly great influence

on others.

I would also like to thank Stephen D. Patek, John A. Stankovic and Stephen G. Wilson,

whose thoughtful insights and suggestions were invaluable to this dissertation. I feel honored

to have had them on my committee.

I am profoundly grateful to those professors who recognized my interest in science and

encouraged my early intellectual evolution. In particular, I thank my math teachers Nicolae
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Chapter 1

Introduction

For almost two decades network calculus has evolved as a new theory for the performance

analysis of communication networks. The theory was conceived in 1991 by Cruz as a deter-

ministic network calculus in two seminal works [37, 38]. One year later Kurose in [73], and

Chang in [25] published the first extensions of Cruz’s works in a probabilistic setting, that

marked the debut of stochastic network calculus. Ever since, many researchers have con-

tributed to the development of network calculus, in both its deterministic and probabilistic

directions.

While network calculus is a relatively recent theory, the problem of network analysis that

has motivated the calculus has a much longer history. Studies on network analysis date as

far back as 1909 and 1917 when Erlang published his seminal works (see Brockmeyer et.

al. [19]) on the analysis of telephone networks. Erlang’s work represented the foundation for

queueing theory, which has become an important branch of applied mathematics. Among its

many applications, queueing theory was instrumental in dimensioning telephone networks.

The first studies on data networks analysis were conducted by Kleinrock [67] and closely

preceded the appearance of the Internet in the late 1960s. These studies undertook a queueing

theoretical approach and were based on earlier results developed by Jackson [58]. Subsequent

research in this direction led to the development of queueing networks theory, as an extension

of queueing theory to multiple queues, and which has become an influential framework for

1



Chapter 1. Introduction 2

networks analysis (see Bertsekas and Gallager [10]).

Queueing networks theory is generally restricted to the Poisson traffic model which has

been shown to accurately represent telephone networks traffic characterized by low variabil-

ity. With the deployment of voice and video applications in the Internet, characterized by a

high variability of traffic, the Poisson model was found to be inadequate to describe traffic in

modern data networks. To improve the accuracy in predicting network performance metrics,

new theories for network analysis were conceived in the 1980s and 1990s, such as the theory

of effective bandwidth and the network calculus.

For the rest of this introduction, we first discuss some of the difficulties that arise in data

network analysis. Then we give a brief overview of existing theories for network analysis.

We then present the statement and the main contributions of this thesis. Finally we map out

how the rest of the thesis will be organized.

1.1 Key Issues in Analyzing Data Networks

In contrast to telephone networks, there are two factors that significantly complicate the anal-

ysis of data networks. The first is that most data networks are based on a packet switching

technology, as opposed to the circuit switching technology used in telephone networks. The

second is that traffic in data networks is more complex than the simple traffic in telephone

networks.

Let us consider the network model depicted in Figure 1.1. The network consists of nodes

(packet switches) with fixed capacity. Flows carrying data traffic traverse the network, and

each node may be transited by more than one flow.

Figure 1.1: A network model
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With packet switching, the data of each flow is divided into packets, and each node serves

the packets of the incoming flows according to some scheduling algorithm. For example,

if the nodes implement static priority schedulers, then a node can serve packets belonging

to a flow as long as there are no incoming packets belonging to flows of higher priorities.

Different flows at a node may thus receive different service rates. Also, each flow may

receive different service rates at different nodes. This sharing of the capacity of a node by

the packets of multiple flows is usually called statistical multiplexing [10].

In comparison to other switching technologies, e.g., circuit switching which allocates a

fixed service rate to each flow at a node, statistical multiplexing results in a better utilization

of network resources. Indeed, since data flows usually transmit at their peak rate only a

fraction of the time, statistical multiplexing can be up to 100 times more efficient than circuit

switching (see Roberts [98]).

A consequence of packet switching is that network nodes require the availability of

buffers to temporarily store packets when the amount of packets to be served exceeds the

nodes’ capacity. As effects of buffering, packets may experience different queueing delays

in the buffers, and the performance of end-to-end flows may be highly variable. Buffering

represents thus a key challenge in network performance analysis.

Another challenge in analyzing packet-switched data networks stems from the character-

istics of traffic. Unlike traffic in telephone networks which can be adequately modelled with

Poisson processes, traffic in data networks is more complex as it exhibits high variability or

correlations. The high variability of traffic is usually referred to as traffic burstiness, and can

be determined for instance by ‘clustered’ interarrival times followed by long idle periods. In

general, analyzing traffic models for bursty traffic is more complicated than analyzing traffic

described with Poisson models.
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1.2 Theories for Network Analysis

In this section we provide an overview of analytical methods to analyze performance mea-

sures (e.g. delays, backlog) and statistical multiplexing in packet networks.

Queueing theory played an important role in the justification of packet-switching tech-

nology in the early 1960s. By that time, queueing theory was already a well established

theory, and widely applied for analyzing circuit-switched telephone networks [46,47]. In the

simplest form, an output link at a packet switch is modelled as an M/M/1 queue. The under-

lying assumption is that packet arrivals are governed by a Poisson process and packet sizes

follow an exponential distribution. The flow of traffic through multiple nodes is modelled as

a sequence of concatenated M/M/1 queueing systems. Jackson showed in [58] that in such a

network, the queues behave as independent M/M/1 queues. The steady-state distribution of

such a network can be described and exactly solved as a product of the steady-state distribu-

tion of each queue. A queueing network with this property is called a product form queueing

network.

Modelling a packet network as a network of M/M/1 queues, however, requires indepen-

dence assumptions on arrivals, service times and routing. In particular, the assumption of

independence of service times means that, in the model, the size of a packet changes as the

packet traverses multiple nodes. While this assumption does not hold in practice, the simplic-

ity of the product form made queueing networks a popular tool for the quantitative analysis of

packet networks. Work by Baskett et. al. [8] and Kelly [63] relaxed the assumptions on the

service time distributions and routing, but maintained the assumption that external arrivals

are Poisson and that service times distributions are independent.

The emergence of high-speed data networks in the 1980s has permitted the development

of bandwidth demanding network applications such as voice or video. A particular character-

istic of voice and video applications is that the transmitted traffic exhibits burstiness. Since

Poisson models cannot capture burstiness, more complex traffic models have been proposed

to analyze voice and video applications.
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Markov-Modulated Fluid (MMF) models have been used by Anick, Mitra and Sondhi

in [2] to derive exact solutions for the buffer overflow probability at a node fed by statistically

independent flows. The analysis of statistical multiplexing for voice sources (see Daigle and

Langford [42]), and video sources (see Maglaris et. al. [85]), is also based on MMF models.

A fluid traffic model dispenses with the notion of packets (see Jagerman et. al. [59]), and

is justified in scenarios where the number of packets is large relative to a chosen time scale.

For example, a flow is described in [2] as a sequence of exponentially distributed ‘On’ and

‘Off’ periods; while in the ‘On’ state, the flow transmits at a constant rate, and is idle in the

‘Off’ state. Markov-Modulated Poisson Processes (MMPP) (see Heffes and Lucantoni [55])

is another model for the analysis of bursty traffic, such as voice and video [101]. This model

is characterized by a support Markov chain; while in a state of the chain, a traffic source

transmits as a Poisson process with a certain rate. Burstiness is captured with MMF and

MMPP models by using different transmission rates for different states of the underlying

Markov chains.

The discovery in the early 1990s that Internet traffic exhibits self-similarity and long-

range dependence (LRD) (see Leland et. al. [75]) has led to an abandoning of Poisson

traffic models (see Paxson and Floyd [93]). Other relevant studies that confirmed the ex-

istence of self-similarity and LRD include [93] for wide area networks traffic, Crovella and

Bestavros [35] for world-wide-web traffic, and Beran et. al. [9] for variable bit rate video.

Self-similar or LRD traffic is fundamentally different from Markov-modulated traffic, and

requires new analytical approaches. Traffic exhibits self-similarity if the corresponding rate

process looks similar when plotting at multiple time-scale resolutions, ranging over several

orders of magnitude; by contrast, the rate process corresponding to Markov-modulated traffic

flattens out as the time-scale resolution is increased. Traffic exhibits LRD if it is characterized

by correlations ‘at distance’; by contrast, Markov-modulated processes are characterized by

short range dependence, meaning that they have a limited memory (Poisson processes have

zero memory). In general, self-similarity is not equivalent to LRD. For example, Brownian
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motion is self-similar but does not exhibit LRD [92].

Several traffic models, such as fractional Brownian motion (FBM) (see Norros [89]) or

stable Lévy processes (see Mikosch et. al. [88]), have been proposed to formally capture self-

similarity and LRD. The analysis of these models, using techniques such as large-deviations

(see Duffield and O’Connell [43]), or extremal properties of Gaussian processes (see Mas-

soulié and Simonian [86]), confirmed analytically that self-similarity is fundamentally dif-

ferent from Markov-modulated models. Indeed, self-similar traffic yields non-exponential

queueing behavior [43,86,89], while Markov-modulated traffic is characterized by exponen-

tial queueing behavior [2, 55].

One of the most influential frameworks in analyzing statistical multiplexing in the 1990s

is the effective bandwidth (see Hui [56], Gibbens and Hunt [51], or Guérin et. al. [54]). The

effective bandwidth is associated to a flow, describing its minimum required bandwidth to

meet certain service guarantees (e.g. buffer overflow probability); this bandwidth is a scalar

between the average and peak rate of the flow. A common assumption in deriving effective

bandwidths is the asymptotic representation of the steady-state buffer overflow probability

P (B > σ) ≈ e−θσ, for some θ > 0. This approximation is used for Markov-modulated

arrivals, which are characterized by an exponential queueing decay. Then, the effective

bandwidths of n flows Aj at a link with capacity C are represented by αAj
(θ), such that

∑
αAj

(θ) < C. One way to explicitly construct effective bandwidths αAj
(θ) is based on

large deviations theory. Concretely, αAj
(θ) :=

Λj(θ)

θ
, where Λj(θ) = limt→∞ 1

t
log E

[
eθAj(t)

]

is the asymptotic decay rate function of flow j (see Whitt [113]). For example, such a rela-

tionship has been established for two-states Markov-modulated processes (see Chang [26]),

or more general Markov-modulated processes, including MMPP [113].

An attractive feature of effective bandwidth is that the effective bandwidth of an aggre-

gate of flows can be represented as the sum of the individual flows’ effective bandwidth. A

drawback, however, of effective bandwidths formulations based on the approximation with

large buffer asymptotics is that the statistical multiplexing may not be accurately captured.



Chapter 1. Introduction 7

In this sense, Choudhury et. al. [32] point out that when multiplexing many flows which are

more bursty than Poisson, the violation probabilities (in the asymptotic approximations) may

be overestimated by several orders of magnitude. Consequently, the prediction of statistical

multiplexing may be pessimistic.

An alternative approach for defining effective bandwidth was proposed by Kelly [64]. For

stationary flows, effective bandwidths are defined as αAj
(θ, t) := 1

θt
log E

[
eθAj(t)

]
, and are

known for a wide variety of arrivals (e.g. Markov-modulated, FBM) [64]. This definition of

effective bandwidth is similar to the previous construction αAj
(θ). The difference is the time

parameter t in the definition of αAj
(θ, t), which turned out to have a critical role in capturing

statistical multiplexing (see Courcoubetis et. al. [34]).

In the early 1990s, Cruz proposed an entirely new approach for analyzing backlog and

delays in networks [36], that later evolved into the deterministic network calculus (see

Chang [29], Le Boudec and Thiran [16]). The novelty of network calculus is that arrivals

and service are represented with envelope functions [36] and service curves (see Cruz [39]),

respectively. Envelope functions set worst case descriptions of arrivals, and service curves

set lower bounds on the amount of service received by flows. A consequence of these worst

case representations is the worst case representation of performance bounds. Thus, the deter-

ministic network calculus can be used for the analysis of network applications which require

strict performance guarantees.

A fundamental feature of the deterministic network calculus is that the derivation of

end-to-end performance bounds can be reduced to the single-node case. Indeed, using the

(min, +) algebra formulation of deterministic network calculus (see Agrawal et. al. [1],

Le Boudec [14], Chang [29]), the service given to a flow along a network path can be ex-

pressed using a network service curve, as if the flow traversed a single node only. A draw-

back, however, of the deterministic network calculus is that it cannot capture statistical multi-

plexing. The reason is that worst case descriptions of arrivals add, meaning that the envelope

representation of an aggregate of a large number of flows may be too conservative, further
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reflecting into overly pessimistic performance bounds.

The stochastic network calculus is an extension of the deterministic network calculus,

motivated by the need to capture statistical multiplexing. The main idea is to extend the

concepts of the deterministic network calculus into probabilistic frameworks. For example, a

wide variety of studies concern with statistical representations of envelopes [5,12, 26, 40, 73,

105, 116, 118], or service curves [22, 40, 96]. Statistical envelopes can be constructed from

effective bandwidth representations (see Li et. al. [76]), which are already known for many

types of arrivals. Also, statistical service curves can be constructed for several scheduling

algorithms [76].

Using statistical characterizations for arrivals or service, the stochastic network calculus

yields probabilistic performance bounds, that carry over relatively easy from the determin-

istic network calculus (see Burchard et. al. [22], Yin et. al. [118], Li et. al. [76]). By

allowing for small violation probabilities in the derivation of performance measures, statisti-

cal multiplexing can be captured with the stochastic network calculus by using results from

probability theory (e.g. Central Limit Theorem in Knightly [70] and Boorstyn et. al. [12], or

large deviations tools [12, 26, 76, 110, 111]).

The single-node analysis with the stochastic network calculus has provided satisfactory

results and interesting insights in network analysis. For example, it was shown that given

some probabilistic delay constraints on flows belonging to several classes of arrivals, the

number of admissible flows saturates the available capacity at high data rates [76,77]. More-

over, the backlog and delay analysis with the network calculus yields probabilistic bounds

which hold for all values (e.g. the backlog size), and not only in a log-asymptotic sense as

predicted with other modern theories for networks analysis (e.g. effective bandwidth). An

important insight provided with the calculus is that at high date rates, statistical multiplexing

may dominate the effects of link scheduling; this means that simple scheduling algorithm

may suffice in Internet routers (see Liebeherr [77]).

A significant challenge in the stochastic network calculus consists in formulating statis-
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tical network service curves, that can carry the properties of deterministic network service

curves in probabilistic settings (e.g. the derivation of end-to-end performance bounds). Sta-

tistical end-to-end performance bounds can also be derived by adding single-node bounds

(see Yaron and Sidi [116]); however, the bounds obtained in this way tend to degrade rapidly

in the number of nodes. The technical difficulties associated to the formulation of statistical

network service curves led to the introduction of additional assumptions, such as the statis-

tical independence of service (see Chang [29], Fidler [48]), additional requirements on the

service curves (see Burchard et. al. [22]), or dropping policies at the nodes (see Li et. al. [76],

Ayyorgun and Cruz [4]).

Therefore, unlike the single-node analysis which is quite well understood, the stochastic

network calculus literature concerning the multi-node analysis left open questions. One is

related to the construction of a statistical network service curve without relying on the ad-

ditional assumptions mentioned above. Others concern the accuracy of end-to-end backlog

and delay bounds obtained with the stochastic network calculus, or the impact on the per-

formance bounds by assuming statistical independence. These fundamental questions have

motivated this thesis.

Before presenting the main contributions of this thesis, let us mention that the mathemat-

ical framework of the network calculus is expressed in terms of linear algebra, elementary

calculus, and basic probability theory. We thus believe that the calculus is suitable to be

employed by network engineers for performance evaluation purposes.

1.3 Thesis Statement and Contributions

As significant progress has been recently made in the area of the stochastic network calcu-

lus [5, 13, 22, 29, 33, 48, 76, 82, 105, 118], we share the vision of Liebeherr et. al. [78] who

assert that: “stochastic network calculus can potentially lead to the development of simple

models and fast computational methods for communication networks that are very different

from the networks and protocols used today”. This thesis attempts to advance the stochastic
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network calculus and demonstrate its applicability to analyze packet networks, as expressed

in the following statement.

Thesis Statement: The stochastic network calculus provides new analytical insights into the

scaling behavior of network delays.

The thesis makes contributions in the stochastic network calculus in three directions:

theory, applications, and relationships with other theories.

Theory: We propose two formulations of a stochastic network calculus. The first, devel-

oped in conjunction with Burchard and Liebeherr (see [33]), is suitable for analyzing network

scenarios where arrivals at each node are generally statistically independent, but arrivals and

service across the nodes may be statistically correlated. In other words, statistical multiplex-

ing gain is achieved at a single node, whereas arrivals and service across the network may

conspire in creating adversarial events.

The literature contains other formulations of a stochastic network calculus for statistically

correlated arrivals and service at the nodes (e.g. Yaron and Sidi [116], Cruz [40], or Li et.

al. [76]). Compared to these, the novelty of our formulation is the construction of a statistical

network service curve that lends itself to explicit numerical evaluations for a wide class of

commonly used traffic models. Moreover, our construction gives new insight into the scaling

behavior of probabilistic end-to-end performance bounds in networks.

The second network calculus formulation combines the first calculus formulation men-

tioned above, and a calculus formulation due to Chang [29] and Fidler [48] that is suitable

for independent arrivals and service. In this way the statistical independence of arrivals or

service can be exploited, where available. A scenario where the resulting network calcu-

lus formulation is useful is a network with independent arrivals at the nodes, but correlated

service times (e.g. a network with identical service times of packets at the nodes).

We apply the second calculus formulation to the class of arrivals processes having sta-

tionary and independent increments. To do so, we integrate in network calculus a technique

used by Kingman to derive backlog bounds in GI/GI/1 queues (see [66]). The technique is
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based on applying a maximal inequality to suitable constructed supermartingales (see [52],

page 496). We show that with the maximal inequality, single-node performance bounds can

be improved in the stochastic network calculus.

Applications: We consider the class of Exponentially-Bounded-Burstiness (EBB) ar-

rivals (see Yaron and Sidi [116]) which includes many Markov-modulated processes and

regulated arrivals. Also, we consider the class of EBB service curves which set lower bounds

on the service whose violation probabilities are expressed with exponential functions. The

service model is either fluid, i.e., a fraction of a packet becomes available for service as soon

as processed upstream, or packetized, i.e., each packet becomes available for service as soon

as fully processed upstream.

We apply our first calculus formulation to an abstract network scenario in which a flow

with EBB arrivals traverses H nodes in series, each providing EBB service. For this scenario

we demonstrate that end-to-end backlog and delay bounds of the flow grow as O(H log H).

We include examples of networks where end-to-end bounds scale in this fashion by consider-

ing both fluid and packetized service models; explicit end-to-end delay bounds are provided

in each case.

The derivation of O(H log H) end-to-end bounds is a consequence of our construction

of statistical network service curves. To further reflect the importance of the network service

curve, we show that the derivation of end-to-end bounds by using the alternative method of

adding per-node bounds, as suggested for instance by Yaron and Sidi [116], yields results that

grow asO(H3). The difference between the two scaling behaviors of end-to-end bounds, es-

tablished in a joint work with Burchard and Liebeherr (see [33]), provides strong evidence on

the benefits of using a statistical network service curves in the stochastic network calculus.

Similar benefits are known in the deterministic network calculus (see Le Boudec and Thi-

ran [16]), or a stochastic network calculus with statistically independent arrivals and service

(see Fidler [48]).

The significance of the O(H log H) scaling behavior of end-to-end bounds is further
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supported by a corresponding Ω(H log H) scaling behavior, established in a joint work with

Burchard and Liebeherr (see [21]). We derive this lower bound result for a specific network

scenario with EBB arrivals and service. This is done in a tandem network with H nodes,

Poisson arrivals and exponentially distributed packet sizes that are maintained across the

nodes. The emerging Θ(H log H) result clearly indicates that performance bounds in net-

works have a different scaling behavior than is predicted with other analytical tools. For ex-

ample, queueing networks theory predicts a O(H) order of growth of end-to-end bounds, by

making additional simplifying assumptions on the statistical independence of service times

at the nodes.

Relationship to Existing Theories: One of the main concerns in using theories which

express the arrivals and service in terms of bounds is whether the obtained backlog and delay

bounds are accurate enough to be applied to practical problems. We attempt to provide

insight into the accuracy of stochastic network calculus performance bounds by establishing

a relationship with queueing networks theory. Concretely, we apply our second stochastic

network calculus formulation in network scenarios which are amenable to an exact analysis

with queueing networks theory, and compare the exact results with the bounds obtained with

the network calculus approach.

In the single-node case we construct network calculus models for M/M/1, M/D/1 or

M/M/1 queues with priorities. In these scenarios, the network calculus bounds closely match

the exact results. For multi-node networks we derive network calculus bounds in M/M/1

queueing networks. When compared to the exact results, we find that the calculus bounds

are reasonably accurate in scenarios with small amounts of cross traffic. By increasing the

amount of cross traffic, the calculus bounds become more conservative.

The two network calculus formulations in this thesis permit the derivation of bounds in

M/M/1 networks where arrivals and service at the nodes may be either statistically indepen-

dent or correlated. The purpose of analyzing such scenarios is to quantify the impact of

assuming statistical independence on end-to-end delays. We consider scenarios where statis-
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tical correlations exist either among arrivals, service, or both. We also derive performance

bounds by using either a fluid or packetized service model, thus providing with evidence on

scenarios where the (approximative) fluid service model is justified.

1.4 Thesis Structure

The remaining part of the thesis is structured as follows.

In Chapter 2 we provide a background on the deterministic network calculus. We start

with the description of arrivals and service by deterministic envelopes and service curves, re-

spectively. Then we summarize existing results on single-node performance bounds, and

finally discuss results on multi-node performance bounds obtained with network service

curves, as opposed to adding per-node bounds.

In Chapter 3 we motivate the extension of the deterministic network calculus to a prob-

abilistic setting and survey the literature on the stochastic network calculus. We review ex-

isting models of statistical envelopes and service curves, and then discuss the problem of

constructing statistical network service curves.

In Chapter 4 we formulate a stochastic network calculus that is suitable to analyze net-

work scenarios where arrivals and service at the nodes may be statistically correlated. Here

we present the main result of the thesis, i.e., the construction of a statistical network service

curve.

In Chapter 5 we use the statistical network service curve constructed in Chapter 4 to

analyze how performance bounds scale with the number of nodes in the network. Specifically,

in the case of networks with EBB arrivals and service, we compute explicit end-to-end delay

bounds and demonstrate that they grow as O(H log H). We also prove a corresponding

Ω(H log H) lower bound on end-to-end delays for a particular queueing model. We provide

numerical examples to illustrate the difference between the end-to-end bounds obtained with

the network service curves and by adding per-node bounds, and also the difference between

the upper and lower bounds.
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In Chapter 6 we formulate a stochastic network calculus that can exploit the statistical

independence of arrivals or service, where available. We also consider the special case of

arrival processes with stationary and independent increments, for which tighter performance

bounds can be obtained.

In Chapter 7 we investigate the accuracy of performance bounds derived with the stochas-

tic network calculus formulation from Chapter 6. For the single-node case we consider three

common queueing models (M/M/1, M/M/1 with priorities and M/D/1), and for the multi-

node case we consider M/M/1 networks. Using numerical examples, the bounds obtained

using the calculus approach are compared with exact results. We also investigate the role of

statistical independence assumptions of arrivals and service in network calculus. Finally, we

discuss whether a fluid service model is justified to approximate the more realistic packetized

service model.

In Chapter 8 we present conclusions and future work.



Chapter 2

Background on the Deterministic Network

Calculus

In this chapter we first introduce notation and describe the network model considered in this

thesis. Then we give background on the deterministic network calculus as it applies to topics

in this thesis. The background includes discussions on envelope and service curve functions

to characterize the arrivals and service, respectively. Then we discuss how to compute single-

node and multi-node performance bounds on the backlog and delay of a flow.

2.1 Network Model

In this thesis we consider the network model depicted in Figure 2.1. An aggregate of through

arrival flows (through traffic) traverses H nodes arranged in series, and each node is also

transited by an aggregate of cross arrival flows (cross traffic). This network is referred to as a

network with cross traffic. Each node has a fixed capacity C and the network is stable, i.e., the

capacity C is greater than the average arrivals rate at each node. The performance measures

of interest are bounds on the end-to-end backlog and delay processes corresponding to the

through traffic.

The simplified network considered in Figure 2.1 corresponds to the view of a flow travers-

ing a possibly larger network. Although we do not restrict the topology of this larger network

15
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Figure 2.1: A network with cross traffic

(e.g. cycles are permitted), we make two critical assumptions regarding the flow’s path. First,

routing is always fixed, i.e., the flow’s data follows the same path for the entire duration of

its transmission. Second, and most importantly, we require descriptions of the cross traffic at

each node on the path of the through flow. With the network calculus, such descriptions can

be constructed for instance in networks with acyclic topologies.

We assume a continuous time model starting at time zero. We represent an incoming data

flow at a node by an arrival process A(t), and the corresponding outgoing data flow by a

departure process D(t), where t represents time. A(t) and D(t) represent the cumulative

arrivals and departures, respectively, in the interval [0, t]. Unless otherwise specified, the data

unit is taken to be as one bit. The processes A(t) and D(t) are left-continuous, nondecreasing

and satisfy the causality condition D(t) ≤ A(t). Also, the arrival process satisfies the initial

condition A(0) = 0. Occasionally, it is convenient to use the doubly-indexed arrival process

A(s, t) defined for all 0 ≤ s ≤ t as

A(s, t) , A(t)− A(s) .

Each node has a buffer to store excess data. A backlog process B(t) models the amount

of data in the buffer at any time t ≥ 0. If A(t) and D(t) denote the arrivals and departures,

respectively, at the node, then B(t) is defined as

B(t) , A(t)−D(t).
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The buffer is infinitely sized such that the equation is well-defined.

Besides the backlog process, another measure of interest is the delay experienced by the

data units of a flow at the node. The delay is defined by the process

W (t) , inf
{

d : A(t− d) ≤ D(t)
}

, (2.1)

for some arrivals A(t) and departures D(t). We note that W (t) expresses the virtual delay

experienced by a data unit departing at time t. If A(t) is the only flow at the node, then W (t)

depends of the backlog process B(t) and the node’s rate. If there are additional flows at the

node, then W (t) also depends on the scheduling mechanism.

2.2 Deterministic Envelope

One of the original ideas pioneered in network calculus is that traffic is presumably unknown,

but subject to some regularity constraints (see Cruz [37]). Concretely, the arrivals of a flow

are bounded by a deterministic envelope function for all intervals of time.

In the case when the arrivals of a flow may violate the bounds set by the envelope, then

mechanisms are needed to shape the surplus arrivals. For example, a traffic regulator shapes

the arrivals by delaying those arrivals violating the envelope bounds. In contrast, a traffic

policer simply drops the surplus arrivals. The output traffic resulted by either regulating or

policing must satisfy with the envelope, and it should also be the maximum possible with this

property. In other words, a shaper should output as much as possible, but within the bounds

set by the envelope.

The definition of a deterministic envelope function is given by Cruz [37].

Definition 2.1 (DETERMINISTIC ENVELOPE) A nonnegative and nondecreasing function

G(t) is a deterministic envelope for an arrival process A(t) if for all 0 ≤ s ≤ t

A(t)− A(s) ≤ G(t− s) . (2.2)
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Figure 2.2: An example of an envelope function G(t) and two sample arrivals: A1(t) satisfy-
ing the envelope, and A2(t) violating the envelope in the interval [s, t].

In other words, a traffic envelope sets an upper bound on the arrivals in any interval of time.

This bound is invariant under time shift, i.e., A(s, t) and A(s+u, t+u) have the same bound

for all u ≥ 0.

Given an envelope G(t) there is an infinite number of sample arrivals A(t) satisfying the

constraint from Eq. (2.2). One example is the arrival process A(t) = 0 for all t ≥ 0. If G(t)

is a sub-additive function1, then the arrival process defined by A(0) = 0 and A(t) = G(t)

for all t > 0 also satisfies Eq. (2.2). The reason is that if G(t) is an envelope function for

A(t) then the sub-additive closure of G(t), i.e., the biggest sub-additive function smaller than

G(t), is also an envelope function for A(t) (see Chang [29], page 38). Figure 2.2 illustrates

an envelope function G(t) together with two sample arrivals. The arrivals A1(t) satisfy the

constraint of the envelope at all times. The arrivals A2(t) satisfy the envelope in the time

interval [0, s], but violate the envelope in the interval [s, t].

Next we review three examples of traffic envelopes. The so-called leaky-bucket envelope

is described by the function

G(t) = rt + σ .

If G(t) is an envelope for the arrival process A(t), then r is an upper bound on the long-term

1A function f(t) is sub-additive if f(s + t) ≤ f(s) + f(t) for all s, t.
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average rate of the arrivals A(t), i.e.,

r ≥ lim sup
t→∞

A(t)

t
.

The parameter σ is an upper bound on the instantaneous burst of the arrivals, namely the

amount of arrivals in a very short interval of time ∆t → 0.

The second example of an envelope is used in the specification of the IntServ architecture

[18] of the Internet. Assuming that the data unit of arrivals is one packet, the envelope

function is given by

G(t) = min {rt + σ, P t + L} ,

where r and σ are defined as before. The parameter P sets an upper bound on the peak rate,

i.e., the maximum arrival rate over any interval of time, and L sets an upper bound on packet

sizes.

The third example of an envelope is the multiple leaky-bucket envelope proposed by

Cruz [38]. For n leaky-buckets, the corresponding envelope takes the form

G(t) = min
i=1,...,n

{rit + σi} .

where ri are rates, and σi are bursts. Unlike the leaky-bucket envelope, the multiple leaky-

bucket envelope captures the property that the rate of arrivals decreases over sufficiently

large intervals. A generalization of the multiple-leaky bucket envelope model is the Deter-

ministically Bounding INterval-length Dependent (D-BIND) model which allows for non-

necessarily concave envelope functions (see Knightly and Zhang [72]).

2.3 Deterministic Service Curve

Network calculus represents service either explicitly with scheduling algorithms [37,81,90],

or with service curves [1,14,28,41] that offer an unknown representation of service, but sub-
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ject to some regularity constraints. The advantage of using service curves is that scheduling

can be separated from performance analysis, i.e., performance metrics are derived in the

same fashion for many scheduling algorithms by first representing the properties of schedul-

ing with service curves. In this thesis we consider the representation of service with service

curves in a (min, +) algebra setting [1, 14, 28].

One way to understand the service curve concept is by analogy with linear-systems the-

ory [74], as illustrated by Cruz and Okino [41], Le Boudec and Thiran [16], pp. xiv, and

Liebeherr et. al. [79]. Let us first introduce the convolution operator ‘∗’ of two functions

f(t) and g(t) in the linear-systems theory

f ∗ g(t) ,
∫ ∞

−∞
f(s)g(t− s)ds. (2.3)

If f(t) = 0 and g(t) = 0 for all t < 0 then the integration in Eq. (2.3) is taken over the

interval [0, t].

For a linear and time-invariant (LTI) system, let us consider the impulse-response h(t) of

the system, i.e., the output signal produced by the system for the input signal δ(t) defined as

δ(t) ,





0, t 6= 0

undefined, t = 0
, (2.4)

such that
∫∞
−∞ δ(s)ds = 1.

Then, for any input signal u(t), the corresponding output signal y(t) satisfies for all t

y(t) = u ∗ h(t) . (2.5)

The equation is a consequence of the linearity and time-invariance properties of LTI systems.

The relationship between the input and output signals is illustrated in Figure 2.3.

By analogy, in network calculus, the departures at a node are related to the corresponding
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Figure 2.3: An LTI system: the output signal is represented as the convolution between the
input signal and the impulse-response: y(t) = u ∗ h(t).

arrivals by a convolution operator. However, the convolution in network calculus is defined

in a modified algebra, called the (min, +) algebra (see Baccelli et. al. [7]). In this algebra,

the usual operations of addition and multiplication are replaced by the operations of infimum

(minimum) and addition, respectively, as illustrated in Table 2.1

Operations in the usual algebra Operations in the (min, +) algebra
a + b min {a, b}
a · b a + b

Table 2.1: Arithmetic operations in the usual and the (min, +) algebra.

The convolution operator ‘∗’ in the (min, +) algebra is defined for all t ≥ 0 as

f ∗ g(t) , inf
0≤s≤t

{f(s) + g(t− s)} . (2.6)

We note that in both algebras we used the same symbol ‘∗’ for convolution. For the rest of

this thesis ‘∗’ will stand for the (min, +) convolution operator.

The definition of a deterministic service curve is given by Cruz and Okino [41].

Definition 2.2 (DETERMINISTIC SERVICE CURVE) A nonnegative, nondecreasing function

S(t) is a deterministic service curve for an arrival process A(t) if the corresponding depar-

ture process D(t) satisfies for all t ≥ 0

D(t) ≥ A ∗ S(t) (2.7)
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Figure 2.4: A service curve in network calculus. The departures are lower-bounded by the
convolution between the arrivals and the service curve: D(t) ≥ A ∗ S(t).

In other words, a (deterministic) service curve S(t) sets a lower bound on the amount of

service received by the arrivals A(t) at the node. This relationship is illustrated in Figure 2.4.

Unlike Eq. (2.5) which holds with equality, Eq. (2.7) holds as an inequality. For this rea-

son the system from Figure 2.4 is not a (min, +) linear system. It becomes linear, however,

when there exists a function S(t) such that the relationship in Eq. (2.7) holds with equality

for all pairs (A(t), D(t)) of arrivals and departures [79]. An example of such a function is

the system’s output when the input is the burst function

δ(t) ,





0, t = 0

∞, t > 0
,

that is the corresponding impulse function in the (min, +) algebra of the input signal from

Eq. (2.4).

One typical example of a service curve is the constant-rate (see Le Boudec and Thi-

ran [16], pp. 18). It is represented by the function

R(t) = rt ,

and expresses the behavior of a node with constant rate. For example, if a node with constant

rate r serves an arrival flow A(t), then the corresponding departure process D(t) satisfies for

all t ≥ 0

D(t) = A ∗ R(t) .

Another example of a service curve is the latency-rate (see Stiliadis and Varma [106]).
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To define it, let us now introduce the notation

[x]+ , max {x, 0}

for the positive part of a number x. A latency-rate service curve is a shifted version of the

constant-rate service curve, i.e., is represented by a function

S(t) = r [t− d]+ ,

for some latency (delay) d ≥ 0. This type of a service curve guarantees a maximum delay

d for the first data unit seen in a busy period of the flow (a maximum period of time during

which the average arrivals’ rate of the flow is above r).

A special type of a service curve is the strict service curve (see Cruz and Okino [41]), that

is a function S(t) setting a lower bound on the amount of departures in any (system) busy

period of length t (a system busy period is an interval of time where the backlog process

B(t) is always positive). Formally, S(t) is a strict service curve if for any time interval [s, t]

during which the backlog is positive the following holds

D(t)−D(s) ≥ S(t− s) . (2.8)

A strict service curve is also a service curve but the converse is not necessarily true. For

this reason strict service curves provide more accurate characterizations of service at a node,

and lead to improved bounds for the performance measures (see Le Boudec and Thiran [16],

pp. 29). A drawback of strict service curves is that they are not closed under convolution, i.e.,

the convolution of strict service curves does not necessarily result in a strict service curve.

The deterministic network calculus provides constructions of service curves for several

scheduling algorithms. Here we consider the case of a static priority (SP) scheduling algo-

rithm which assigns priorities to the flows and selects for transmission a flow with a positive
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backlog and the highest priority. The scheduler is workconserving, i.e., always active when

the backlog is positive. When dealing with delay processes we further assume that the ar-

rivals within a single flow are scheduled in a FIFO (First-In-First-Out) order; this is usually

referred to as locally-FIFO.

Consider the construction of service curves for a flow, or an aggregate of flows, which

receives the lowest priority at an SP scheduler. These service curves are suggestively referred

to as leftover service curves, since they express the capacity left unused by the higher priority

flows. Leftover service curves provide thus a worst-case description of service, and have the

property that they are guaranteed by any workconserving scheduling mechanism. The next

theorem (see Chang [29], pp. 60) provides such a construction.

Theorem 2.3 (LEFTOVER SERVICE CURVE) Consider a workconserving node with fixed

capacity C serving a tagged flow A(t), and another flow Ac(t) with an envelope function

Gc(t). Then, a service curve given by the node to the tagged flow A(t) is given by the function

S(t) = [Ct− Gc(t)]+ . (2.9)

Let us next briefly sketch a proof of the theorem. Arguments from the proof will be used

in later chapters.

Denote by Dc(t) the departure process corresponding to Ac(t). Because Ac(t) has higher

priority, the function R(t) = Ct is a constant-rate service curve for the cross flow satisfying

Eq. (2.7) with equality, i.e.,

Dc(t) = Ac ∗ R(t) .

The function R(t) is also a service curve for the aggregate process A(t) + Ac(t), such
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that the output process D(t) of the tagged flow can be written as follows

D(t) = (D(t) + Dc(t))−Dc(t)

= (A + Ac) ∗ R(t)− Ac ∗ R(t)

≥ inf
0≤s≤t

{A(s) + Ac(s) +R(t− s)−min {Ac(t), Ac(s) +R(t− s)}}

≥ inf
0≤s≤t

{A(s) + max {R(t− s)− (Ac(t)− Ac(s)) , 0}}

≥ inf
0≤s≤t

{A(s) + max {C(t− s)− Gc(t− s), 0}}

= A ∗ S(t) ,

showing that the function S(t) from Eq. (2.9) is a leftover service curve for the tagged flow.

The third line follows from Ac ∗ R(t) ≤ min {Ac(t), Ac(s) +R(t− s)}. In the fourth line

we reordered terms, and the fifth line follows from the definition of the envelope Gc(t) for the

cross flow.

2.4 Single-Node Performance Bounds

The deterministic network calculus provides bounds on the performance measures of interest

at the node, given an envelope description of the arrivals at a node, and a service curve relating

the arrivals with the corresponding departures. Some of the bounds are concisely expressed

with the deconvolution operator ‘®’ defined for two functions f(t) and g(t) as

f ® g(t) = sup
s≥0

{f(t + s)− g(s)} .

The next theorem (from Le Boudec and Thiran [16], pp. 22-23) gives bounds on the

backlog and delay processes of a flow at a node, and also constructs an output envelope for

the flow.

Theorem 2.4 (PERFORMANCE BOUNDS) Consider a flow at a node with arrivals and de-

partures given by the processes A(t) and D(t), respectively. Assume that the arrivals are
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bounded by an envelope G(t), and that the node provides a service curve S(t) to the flow.

Then following deterministic bounds hold.

1. OUTPUT ENVELOPE: The function G®S is a deterministic envelope for the departures

D(t), i.e., for all 0 ≤ s ≤ t

D(t)−D(s) ≤ G ® S(t− s) .

2. BACKLOG BOUND: A bound on the backlog process B(t) is given for all t ≥ 0 by

B(t) ≤ G ® S(0) .

3. DELAY BOUND: A bound on the delay process W (t) is given for all t ≥ 0 by

W (t) ≤ inf {d : G(s) ≤ S(s + d) for all s ≥ 0} .

If G(t) is sub-additive, G(0) = 0 and S(0) = 0, then the backlog and delay bounds are

tight, in the sense that there exist arrivals that actually meet the bounds given in the theorem

(see Le Boudec and Thiran [16], pp. 27).

To illustrate the simplicity of performance analysis with network calculus, let us next

briefly sketch the proof for the backlog bound. Using the definition of the backlog process

we can write

B(t) = A(t)−D(t) ≤ A(t)− A ∗ S(t)

≤ sup
0≤s≤t

{A(t)− A(s)− S(t− s)}

≤ sup
0≤s≤t

{G(t− s)− S(t− s)}

≤ G ® S(0) . (2.10)

The first line follows from the definition of the service curve. The convolution operator is
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then expanded in the second line. The third line follows from the definition of an envelope,

and is finally rewritten in terms of the deconvolution operator.

2.5 Deterministic Network Service Curve

A fundamental property of the network calculus is that service curves can be concatenated.

If a flow is described with service curves at each node along a network path, then the flow

can be described with a single service curve, called a network service curve, along the entire

network path. The flow can thus be regarded as traversing a single node only, such that

end-to-end performance bounds can be obtained by applying single-node results.

Figure 2.5: A flow with service curves at multiple nodes.

The next theorem (from Le Boudec and Thiran [16], pp. 28) formalizes the concatenation

property of service curves.

Theorem 2.5 (DETERMINISTIC NETWORK SERVICE CURVE) Consider a flow traversing

H nodes in series, as in Figure 2.5. Assume that each node h provides a service curve Sh(t)

to the flow. Then, the service given to the flow by the network as a whole can be expressed

with the network service curve

Snet(t) = S1 ∗ S2 ∗ . . . ∗ SH(t) , (2.11)

in the sense that for all t ≥ 0

Dnet(t) ≥ Anet ∗ Snet(t) .
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The critical information used in the proof is that the departures at a node coincide with

the arrivals at the next immediate node (i.e. Dh = Ah+1 for all h = 1, . . . , H − 1). Using

this information, the proof is straightforward by applying the associativity property of the

convolution operator ‘∗’ in the (min, +) algebra. Indeed, one can write for all t ≥ 0

DH(t) ≥ AH ∗ SH(t)

= DH−1 ∗ SH(t)

≥ (
AH−1 ∗ SH−1

) ∗ SH(t)

= DH−2 ∗ (SH−1 ∗ SH
)
(t)

≥ . . .

≥ A1 ∗ (S1 ∗ S2 ∗ . . . ∗ SH
)
(t) .

In general, the numerical complexity of the convolution operation from Eq. (2.11) is small

because the functions Sh are deterministic. Consider for example that all functions Sh(t) are

constant-rate service curves with some rates rh for h = 1, . . . , H . Then the corresponding

network service curve is simply given for all t ≥ 0 by

Snet(t) = inf {r1, . . . , rH} t ,

that is Snet(t) is a constant-rate service curve as well, and its rate is the minimum rate of the

service curves in the convolution.

To illustrate the benefits of network service curves we next apply Theorem 2.5 to compute

explicit end-to-end backlog and delay bounds in a particular network scenario, followed by

the analysis of their scaling properties. We will then compare the obtained bounds with

corresponding end-to-end bounds obtained using an alternative method of adding per-node

bounds, i.e., without using a network service curve.

Let us first review the Landau notation for the asymptotic behavior of functions.
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Definition 2.6 (LANDAU NOTATION) For two positive functions f(t) and g(t) we denote

f(t) = O(g(t)) (asymptotic upper bound) and f(t) = Ω(g(t)) (asymptotic lower bound) if

the fractions f(t)/g(t) and g(t)/f(t), respectively, are bounded as t → ∞. Also, f(t) =

Θ(g(t)) (asymptotic equivalence) if both f(t) = O(g(t)) and f(t) = Ω(g(t)).

Figure 2.6: A network with cross traffic and leaky-bucket envelopes

We use the following notations and settings in the network from Figure 2.6. At each

node h = 1, . . . , H , we denote the arrivals and departures of the through traffic by Ah(t) and

Dh(t), respectively. Also, we denote the arrivals of the cross traffic at node h by Ah(t). For

simplicity we assume that the through and cross traffic are constrained by the same leaky-

bucket envelope

G(t) = rt + σ ,

with rate r and burst σ. Finally, we assume a stability condition, i.e., the capacity C at

each node is greater than the total arrival rate 2r at each node. The performance measures

of interest are bounds on the end-to-end backlog Bnet(t), and the end-to-end delay W net(t)

corresponding to the through flow.

To derive end-to-end delay bounds we first invoke Theorem 2.3 yielding a leftover service

curve Sh(t) for the through flow at each node h

Sh(t) = [(C − r)t− σ]+ . (2.12)

Given the per-node leftover service curves Sh(t) from Eq. (2.12), Theorem 2.5 yields the
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network service curve

Snet(t) = S1 ∗ S2 ∗ . . . ∗ SH(t)

= inf
s1+···+sH=t

{
[(C − r)s1 − σ]+ + · · ·+ [(C − r)sH − σ]+

}

≥ [(C − r)t−Hσ]+ .

In the last equation we used that [x]+ + [y]+ ≥ [x + y]+ for any numbers x, y. To simplify

notation we let Snet(t) = [(C − r)t−Hσ]+ to be the network service curve; we can do

so because, in general, if a function S(t) is a service curve for some arrivals A(t) then any

function smaller than S(t) is a service curve as well.

The single-node results from Theorem 2.4 now yields the end-to-end backlog bound

Bnet(t) ≤ sup
u≥0

{ru + σ − (C − r)u + Hσ}

≤ (H + 1)σ .

The corresponding end-to-end delay bound is

W net(t) ≤ (H + 1)
σ

C − r
.

These end-to-end bounds grow according to

Bnet(t) = O (H) , W net(t) = O (H) . (2.13)

For comparison, we now turn to the derivation of end-to-end bounds using the method of

adding per-node bounds. To derive per-node bounds at a node h we first need an envelope

description for the intermediary arrival process Ah(t). Applying the output envelope bound

from Theorem 2.4 with the service curve derived in Eq. (2.12), and using that Dh(t) =
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Ah+1(t), we get the envelope description

A2(t)− A2(s) ≤ G ® S1(t− s)

≤ sup
u≥0

(r(t− s + u) + σ − (C − r)u + σ)

≤ r(t− s) + 2σ ,

at the second node. Then, inductively, the envelopes descriptions for the through flow at each

node h are given by

Ah(t)− Ah(s) ≤ r(t− s) + hσ . (2.14)

Having an envelope and service curve description for the through flow at each node h

(Eqs. (2.14) and (2.12)), Theorem 2.4 yields the per-node backlog bounds

Bh(t) ≤ sup
u≥0

(ru + hσ − (C − r)u + σ)

≤ (h + 1)σ .

Similarly, the per-node delay bounds are given by

W h(t) ≤ (h + 1)
σ

C − r
.

Finally, a bound on the end-to-end backlog Bnet(t) is obtained by adding the per-node

bounds Bh(t) for h = 1, . . . , H , i.e., for all t ≥ 0

Bnet(t) ≤ H(H + 3)

2
σ . (2.15)

Similarly, the end-to-end delay bound is given for all t ≥ 0 by

W net(t) ≤ H(H + 3)

2

σ

C − r
.
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From the last two equations we conclude that the method of adding per-node bounds

yields end-to-end backlog and delay bounds characterized by a quadratic growth in the num-

ber of network nodes H , i.e.,

Bnet(t) = O (
H2

)
, W net(t) = O (

H2
)
, (2.16)

as opposed to the linear growth in H observed in Eq. (2.13). We also remark that the bounds

from Eq. (2.13) are always smaller than the bounds from Eq. (2.16), i.e., the improvement

of the network service curve method over the method of adding per-node bounds is not only

asymptotic, but it holds for all the values of the traffic descriptions.

The property of a network service curve to yield O (H) end-to-end bounds is related to

the so-called ‘pay-bursts-only-once’ property (see Le Boudec and Thiran [16], pp. 28, where

a comparison between the two methods is carried out for two nodes). This property suggests

that the burst of a flow contributes to the end-to-end bound as if the flow traversed a single

node only. In our example, the contribution of the through flow to the end-to-end backlog

bound from Eq. (2.13) is a single burst σ; the remaining burst Hσ stems from the individual

bursts of each of the cross flows. In contrast, the contribution of the through flow to the end-

to-end backlog bound from Eq. (2.15) is in the order of O (H2) bursts, obtained by adding

the linearly increasing bursts of the through flow at each traversed node.

Another interpretation on the improved performance of the method of using network

service curves over the method of adding per-node bounds is provided by Chang (see [29],

pp. 87). The former method accounts for the fact that the maximum delay at each node may

be not experienced by the same data unit. In contrast, the latter method simply adds the

worst-case delays at each node.



Chapter 3

State of the Art in the Stochastic Network

Calculus

In this chapter we review prior work in the stochastic network calculus. The main concepts

and results of the calculus are discussed by closely following the structure used in the pre-

vious chapter. Let us first discuss the motivation of extending the deterministic network

calculus to a probabilistic setting.

3.1 The Need for a Probabilistic Extension of Network Cal-

culus

The deterministic network calculus is a theory for the worst-case performance analysis of

networks. Because the arrivals are represented with deterministic envelopes, the calculus

may yield overly pessimistic performance bounds as argued in the following.

A drawback of using deterministic envelopes is that they cannot accurately capture the

statistical properties of arrivals. Consider for example a Bernoulli traffic source. At discrete

instants of time, equally spaced, the source emits P data units with probability p, and is idle

with probability 1− p. We call P the peak rate, and denote r = pP as the average rate. The

33
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Figure 3.1: Bernoulli traffic source A(t) with peak-rate envelope Pt and average-rate enve-
lope rt.

smallest deterministic envelope describing the Bernoulli source is the function

G(t) = Pt , (3.1)

for the source may potentially transmit at each instance of time. However, the probability

of such an event is zero. Moreover, the law of large numbers gives that the corresponding

cumulative arrival process A(t) behaves asymptotically as

A(t) ∼ rt ,

for large values of time t. In other words, the cumulative arrival process behaves asymptoti-

cally as if the source transmits at r data units at each instance of time. Therefore, especially

for small probabilities p, the envelope G(t) from Eq. (3.1) is too conservative to model a

Bernoulli source over long periods of time; for illustration see Figure 3.1. It then follows

that backlog and delay bounds may be too conservative since they increase with the envelope

function (see Theorem 2.4).

A closely related limitation of deterministic envelopes is that they cannot account

for statistical multiplexing. Consider N arrival flows represented by the processes

A1(t), A2(t), . . . , AN(t), and assume that each flow is bounded by the same leaky-bucket

envelope with rate r and burst σ. Then, the aggregate arrivals A(t) =
∑N

i=1 Ai(t) of all flows
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is bounded by the leaky-bucket envelope

G(t) = Nrt + Nσ .

The key problem with the aggregate envelope G(t) is that the corresponding burst Nσ

may overestimate the actual burst of the aggregate arrivals. Although all flows may simul-

taneously experience the same burst σ, the probability of such an event is small under some

mild statistical independence assumptions on the arrivals, and when N is large enough. In

fact, the Central Limit Theorem implies that the aggregate burst of the arrivals is in the order

of O(
√

N), when the number of flows N is large. Consequently, the corresponding perfor-

mance bounds are likely to grow as O(
√

N), which is much smaller than the O(N) order

of growth predicted with the deterministic network calculus (see for instance the bounds

computed in Section 2.5, properly scaled by N ).

It is thus possible to capture statistical multiplexing gain when accounting for the statis-

tical properties of arrivals, e.g., statistical independence. The cost of capturing the statistical

multiplexing is that the predicted performance bounds may be violated with some probabil-

ities ε. For instance, a buffer may overflow with probability ε, if its size is set to a value σ

satisfying

Pr
(
B(t) > σ

)
≤ ε .

In practice, the violation probabilities corresponding to performance bounds are chosen

to be negligible, i.e., in the order of 10−6 to 10−9. Nonetheless, substantial statistical mul-

tiplexing gain can be achieved for such extreme choices of the violation probabilities. This

observation has partly motivated the extension of the deterministic network calculus in a

probabilistic setting.
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3.2 Statistical Envelope

Traffic is generally described in the stochastic network calculus by statistical envelopes,

which are probabilistic extensions of deterministic envelopes. There are several formulations

of statistical envelopes which can be classified with regard to whether the envelope functions

are either non-random or random. For each envelope we discuss construction methods and

expose the class of arrivals covered by the envelope.

3.2.1 Statistical envelope as non-random function

A statistical envelope sets bounds on the arrivals. The bounds may be violated with some

probabilities specified by an error function.

The Exponentially Bounded Burstiness (EBB) model (Yaron and Sidi [116]) defines sta-

tistical envelopes as non-random functions.

Definition 3.1 (EBB ENVELOPE) An arrival process A(t) is bounded by an EBB envelope

with rate r if there exist the constants M, θ > 0 such that for all 0 ≤ s ≤ t and σ ≥ 0

Pr
(
A(t)− A(s) > r(t− s) + σ

)
≤ Me−θσ . (3.2)

The function G(t) = rt is the EBB statistical envelope, and ε(σ) = Me−θσ is the corre-

sponding error function. The constant M is usually referred to as prefactor. In general, both

the rate r and the prefactor M depend on θ. The constant θ is called the exponential decay

rate and determines the shape of the error function. In turn, the shape of the error function is

closely related the traffic models covered by the envelope.

The EBB envelope model relates to the linear envelope process model proposed by Chang

[26]. The linear envelope model can be expressed using the following effective bandwidth

characterization for a stationary process A(t), for all t, θ > 0 [64]

αA(θ, t) =
1

θt
log E

[
eθA(t)

]
. (3.3)
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A stationary arrival process A(t) is bounded by a linear envelope process with rate r and

burst σ, for a choice of θ > 0, if for all t ≥ 0

tαA(θ, t) ≤ rt + σ . (3.4)

In general, both the rate r and the burst σ depend on θ.

If a linear envelope model has a rate r and burst σ, then it reduces to the EBB model with

the same rate r, prefactor M = eθσ, and decay rate θ; this follows from the Chernoff bound

(see Eq. (3.32)). The converse is also true, i.e., the EBB envelope model reduces to a linear

envelope model; this follows from Lemma 1 in Li et. al. [76].

Yaron and Sidi propose two methods to construct EBB envelopes for an arrival pro-

cess [116]. The first method assumes a bound on the moment generating function of the

arrivals. This method is equivalent to the above construction of an EBB envelope given a

linear envelope model. The second method is based on the relationship between an arrival

process and the corresponding backlog process: if the arrival process is EBB then the backlog

process has an exponentially decaying rate, and vice-versa. Therefore, any arrival process for

which the backlog process has an exponential decaying rate can be expressed with an EBB

envelope. Markov-modulated processes are typical examples of processes with an exponen-

tial decay rate of the backlog.

To express arrival processes for which the decay rate of the corresponding backlog pro-

cess is not necessarily exponential, the EBB model was generalized in several ways. One such

generalization is the Stochastically Bounded Burstiness (SBB) envelope model (Starobinski

and Sidi [105]). The SBB model generalizes the EBB model in that the error function ε(σ)

in now required to only be n-fold integrable, i.e.,

∫
. . .

∫

︸ ︷︷ ︸
n times

ε(u)dun < ∞ ,
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and not necessarily an exponential.

When compared to the EBB model, one advantage of the SBB model is that it covers a

broader class of traffic. In particular, SBB envelopes describe FBM arrivals with an error

function given by ε(σ) = e−θσα , for some decay rate θ > 0 and a parameter 0 < α < 1 that

relates to the Hurst parameter of the FBM. This type of error function has a decay rate that

is slower than the exponential decay rate corresponding to the EBB model, yet it satisfies the

n-fold integrability condition (see Yin et. al. [118]).

Another advantage of SBB envelopes is that they can give a more accurate representations

of arrivals represented by Markov-modulated processes than EBB envelopes [105]. By allow-

ing the error function to be a sum of exponentials, i.e., ε(σ) =
∑

i Mie
−θiσ, the SBB model

can capture the property that the backlog process associated to some Markovi-modulated

arrivals experience a loss probability with two regions.

Figure 3.2: The cell and burst regions corresponding to Markov-modulated traffic. The buffer
overflow probability is represented on a logarithmic scale (from [105])

Figure 3.2 illustrates the two regions by showing the buffer overflow probability, on a

logarithmic scale, as a function of the buffer size. The following explanation of the two

regions is provided by Schwartz [101]. For small buffer sizes, i.e., the cell region, the loss

probability decays fast. The reason is that the dynamic of the system is mainly driven by the

arrival rates in some states that may generate high bursts over short interval of times. For

bigger buffer sizes, i.e., the burst region, the decay of the loss probability slows down as

arrival bursts generated over short periods are absorbed by the buffer, and the probability that
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the underlying Markov chain changes states increases.

The (local) effective envelope model is another statistical envelope model which extends

the scope of the EBB model, and was proposed by Boorstyn et. al. [13]. An arrival process

A(t) is bounded by an effective envelope G(t, ε), for some violation probability ε > 0, if for

all 0 ≤ s ≤ t

Pr
(
A(t)− A(s) > G(t− s, ε)

)
≤ ε . (3.5)

Next we review two constructions of effective envelopes. The first construction is given

for an aggregate of regulated flows. Let us first introduce the concept of rate variance enve-

lope (see Knightly [70, 71]) for a stationary arrival process A(t) as

RV (t) , V ar

(
A(t)

t

)
, (3.6)

where V ar(X) , E
[
(X − E [X])2] denotes the variance of a random variable X . Given N

deterministically-regulated flows, each with the rate variance RV (t), an effective envelope is

obtained in [13] using the Central Limit Theorem

G(t, ε) = Nrt + z
√

Nt
√

RV (t) , (3.7)

where z ≈
√
| log(2πε)|, and r = lims→∞

A(t,t+s)
s

is the upper bound on the long-term arrival

rate of A(t). The effective envelope from Eq. (3.7) includes the first and second moments

of the arrivals. The envelope captures statistical multiplexing since the underlying burst

determined by the variance scales as O(
√

N) in the number of flows.

A second construction of an effective envelope is proposed by Li et. al. [76] using the

effective bandwidth of an arrival flow from Eq. (3.3). Suppose that an arrival process A(t)

has the effective bandwidth αA(θ, t), and let some violation probability ε > 0. Then, the
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corresponding statistical envelope G(t, ε) is given by [76]

G(t, ε) = inf
θ>0

{
tαA(θ, t)− log ε

θ

}
.

The importance of this result is that it enables the applicability of network calculus to a

wide class of arrivals, for which effective bandwidths are available (e.g. Markov-modulated

processes, deterministically regulated or FBM). We point out that the method from [76] can

also be used to the construction of SBB envelopes.

The multiplexing gain obtained using effective envelopes constructed as above is nu-

merically evaluated for regulated traffic by Boorstyn et. al. [13], MPEG video traces by

Liebeherr [77], and Markov-modulated and FBM traffic by Li et. al. [76].

The statistical envelope models considered so far (EBB, SBB, effective envelope) have

in common the idea of bounding probabilities involving only two points of the history of

an arrival processes; we denoted these points above by s and t. Next we review statistical

envelopes which bound probabilities involving the entire past history of an arrival process;

such envelopes are usually referred to as sample-path envelopes (see Burchard et. al. [23]).

The generalized Stochastically Bounded Burstiness (gSBB) model (see Yin et. al. [118])

is an example of sample-path envelopes. An arrival process A(t) is bounded by a gSBB

envelope with upper rate r and error function ε(σ) if for all t ≥ 0 and σ ≥ 0

Pr

(
sup

0≤s≤t
(A(t)− A(s)− r(t− s)) > σ

)
≤ ε(σ) . (3.8)

This envelope model appeared first in Cruz [40], and later in Ayyorgun and Feng [5], under

different names.

An advantage of the gSBB model is that it extends the class of traffic models covered by

the SBB model. In particular, the gSBB model captures heavy-tailed traffic characterized by

a power law decay of the error function, i.e., ε(σ) = σ−α with 1 < α ≤ 2.

Although the gSBB model appears more stringent than the SBB model, they are closely
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related. Indeed, the gSBB model reduces to the SBB model, subject to the condition that the

corresponding error function ε(σ) is n-fold integrable. Conversely, suppose that an arrival

process A(t) is bounded by an SBB envelope G(t) = rt with error function ε(σ). Then, for

any choice of δ > 0, the arrival process A(t) is described using the gSBB envelope

Pr

(
sup

0≤s≤t
(A(t)− A(s)− (r + δ)(t− s)) > σ

)
≤ 1

δ

∫ ∞

σ

ε(u)du .

The gSBB envelope has a bigger rate r + δ, and the corresponding error function is obtained

by integrating the error function corresponding to the SBB envelope [118].

gSBB envelopes can also be constructed following a procedure proposed by Jiang and

Emstad [62]. Consider a node with capacity C and some arrival flows with unknown statisti-

cal envelopes. If a backlog bound with some error function ε(σ) is available, then the arrival

process can be described with gSBB envelope G(t) = Ct and error function ε(σ).

A second example of a sample-path envelope model is the sample-path effective envelope

model (see Burchard et. al. [23]). An arrival process A(t) is bounded by a sample-path

effective envelope G(t, ε), for some violation probability ε > 0, if for all t ≥ 0

Pr
(

sup
0≤s≤t

(A(t)− A(s)− G(t− s, ε)) > 0
)
≤ ε . (3.9)

This model generalizes the effective envelope model in a similar way that the gSBB model

generalizes the SBB model. The gSBB and sample-path effective envelopes enable the

derivation of single-node performance bounds (e.g. backlog, delay, output envelopes) which

resemble to the corresponding bounds in the deterministic network calculus (for more details

see Section 3.4.4).

The third example of a sample-path envelope model is the global effective envelope model

proposed by Boorstyn et. al. [13]. An arrival process A(t) is bounded by a global effective

envelope sample-path G(t, β, ε) for an interval Iβ = [u, u + β) of length β, and for some
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violation probability ε > 0, if

Pr

(
sup

u≤s≤t<u+β
(A(t)− A(s)− G(t− s, β, ε)) > 0

)
≤ ε . (3.10)

Unlike the gSBB and sample-path effective envelopes, the global effective envelope sets

probabilistic bounds on interarrivals in a fixed interval of time Iβ . The attribute “global”

is justified since the global effective envelope model posses stronger requirements on the

interarrivals than the sample-path effective envelope model, by letting two free variables (i.e.

s and t in Eq. (3.10)) compared to a single free variable (i.e. u in Eq. (3.9)).

Global effective envelopes G(s, β, ε) can be constructed from statistical envelopes G(s, ε)

satisfying Eq. (3.5), for any interval of time Iβ (see Boorstyn et. al. [13]). The actual con-

struction implies that the violation probability ε in Eq. (3.10) grows with the length β of the

interval Iβ . Consequently, global effective envelopes are relevant only for finite time inter-

vals that yield violation probabilities less than one in Eq. (3.10). Busy periods are typical

examples of such intervals (see [13]). For stationary arrival processes, if Eq. (3.10) holds for

a single interval of length Iβ , then it holds for all intervals of same length [13].

An advantage of the effective envelope and global effective envelope models is that they

allow the derivation of schedulability conditions in the stochastic network calculus for sev-

eral scheduling algorithms [13], in a manner that resembles the corresponding schedulability

conditions in a deterministic context (see Liebeherr et. al. [81]). Since the global effective

envelope model is stronger than the effective envelope model, the former model leads to more

conservative schedulability conditions than the latter.

To further support the claim from the beginning of the section that statistical envelopes

lead to statistical multiplexing gain, let us refer next to the works of Knightly [70, 71],

Boorstyn et. al. [13], and Liebeherr [77]. The authors derive schedulability conditions for

admitting a maximum number of flows at a node, under some delay constraints and some vio-

lation probabilities. The conditions involve the statistical envelope for an aggregate of flows,
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and are extensions of the corresponding schedulability conditions concerning deterministic

delay guarantees (see Liebeherr et. al. [81]). For example, let the statistical envelope G(t, ε),

in the sense of Eq. (3.5), for an aggregate of N flows. Then, a FIFO node with capacity C

can guarantee delays less than d for the flows with a violation probability less than ε, if the

following condition given by Boorstyn et. al. [13]

sup
t≥0

{G(t, ε)− Ct} ≤ Cd

holds (i.e. the N flows can be admitted under the service requirements). Similar conditions

are available for SP or EDF (Earliest Deadline First) scheduling as well. The results obtained

using the schedulability conditions from [13, 70, 71, 77] closely match the results obtained

from simulations or based on average-rate utilizations, indicating that a network calculus

with statistical envelopes accounts for most of the available statistical multiplexing gain.

3.2.2 Statistical envelope as random process

One can also use random processes to serve as statistical envelopes. Unlike statistical en-

velopes defined as non-random functions, the statistical envelopes defined as random pro-

cesses do not necessarily require error functions to capture the violation probabilities of the

bounds.

Statistical envelopes may be defined in two ways, depending on the ordering relationship

used between arrivals and envelopes. The first type of envelope is based on the notion of

stochastic ordering [107]. A random variable X is stochastically smaller than a random

variable Y , and we write this as X ≤st Y , if for all real z

Pr (X > z) ≤st Pr (Y > z) .

Using stochastic ordering, Kurose [73] defines a statistical envelope as follows. A non-

negative random process G(t) is a statistical envelope for an arrival process A(t) if for all
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0 ≤ s ≤ t

A(t)− A(s) ≤st G(t− s) . (3.11)

We will use the convention that the capital letter G denotes envelopes defined as random

processes.

To give an example of a statistical envelope, in a discrete-time setting, consider the

Bernoulli source described in Section 3.1 transmitting P data units with probability p in a

time unit, and being idle with probability 1−p. Then, the corresponding arrival process A(t)

is bounded according to

A(t)− A(s) ≤st P ·B(t− s, p) , (3.12)

where B(t, p) is a binomial random variable (counting the number of succeses in t indepen-

dent trials, where the probability of a success is p). Compared to the deterministic envelope

from Eq. (3.1), the statistical envelope from Eq. (3.12) captures the long-term average rate of

the Bernoulli source by invoking the expectation of binomial random variables. Similar ex-

amples of statistical envelopes defined with binomial distributions are provided in [73, 120].

In a continuous time setting, Zhang and Knightly [120] consider a Markov-modulated

fluid model with two states (an underlying Markov chain with two states determines, based

on the current state, whether a source transmits at some positive rates r1 or r2). The statistical

envelope bounding the corresponding arrivals is then given by

G(t) =

∫ t

0

{
r1Is(u)=1 + r2Is(u)=2

}
du , (3.13)

where s(u) denotes the state of the Markov chain at time u, and Ix denotes the indicator

function

Ix =





1, x = true

0, x = false
,

for some logical clause x.

The second type of statistical envelope is based on the notion of almost surely ordering.
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A random variable X is almost surely smaller than a random variable Y , and we write this as

X ≤ Y a.s., if

Pr(X > Y ) = 0 .

A.s. ordering implies stochastic ordering but the converse is not necessarily true.

Using a.s. ordering, statistical envelopes can be defined as follows.

Definition 3.2 (STATISTICAL ENVELOPE with a.s. Ordering) A nonnegative, doubly-

indexed random process G(s, t) is a statistical envelope for an arrival process A(t) if for

all 0 ≤ s ≤ t

A(t)− A(s) ≤ G(s, t) a.s. . (3.14)

The random process G(s, t) is assumed to be decreasing in s, increasing in t, and to satisfy

G(s, t) = G(s, u)+G(u, t) for all 0 ≤ s ≤ u ≤ t. To derive performance bounds one usually

needs the availability of bounds on the moment generating function (MGF) of G(s, t), i.e.,

bounds on E
[
eθG(s,t)

]
for some θ > 0 [29,48]. The linear envelope model from Eq. (3.4) pro-

vides with such bounds; see also Eq. (3.37) below concerning with the derivation of backlog

bounds.

The definition closely resembles to the definition of the deterministic envelope from

Eq. (2.2). The difference is that the envelope is now defined with a doubly-indexed random

process. Also, the statistical envelope with a.s. ordering belongs to the class of the statistical

envelopes with stochastic ordering from Eq. (3.11), because a.s. ordering implies stochastic

ordering. The two examples of statistical envelopes from Eqs. (3.12) and (3.13), properly

rewritten with two indexes, are also examples of statistical envelopes with a.s. ordering. For

example, in the case of the Bernoulli source, the corresponding statistical envelope with a.s.

ordering is

G(s, t) = P ·B(s, t, p) ,

where B(s, t, p) is a binomial random variable that counts the number of successes in the

interval (s, t].
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An immediate construction of statistical envelopes with a.s. ordering is the following.

Suppose that the cumulative arrivals A(t) are described with a random process X(t) (e.g.

a Poisson process with some arrival rate). Then, the corresponding statistical envelope is

defined as

G(s, t) = X(t)−X(s) ,

such that Eq. (3.14) holds with equality. In other words, the random process X(t) is an

envelope for itself. Providing an envelope G(s, t) with a.s. ordering for an arrival process

A(s, t) is particularly useful when there are available bounds on the MGF of G(s, t), but

no available immediate bounds on the MGF of A(s, t). If bounds do exist for the MGF of

A(s, t) then one should view A(s, t) as the envelope itself (this implicit view is adopted by

Chang [29] and Fidler [48]).

Let us next clarify why statistical envelopes with a.s. ordering need to be defined with two

indexes. Note that in the case of the Bernoulli source, the realizations of the binomial random

variables B(s, t, p) and B(s + u, t + u, p) may be different for all u 6= 0. In other words, the

interarrivals A(s, t) and A(s + u, t + u) are not correlated. Instead, if statistical envelopes

with a.s. ordering were defined with a single index, e.g., in the case of the Bernoulli source

G(t) = P ·B(t, p) ,

then the interarrivals would be subject to correlations. Concretely, if for some sample-path

the realization of the random variable G(t) were small, then A(t + s)− A(s) would have to

be small as well for all s ≥ 0.

Since the statistical envelopes reviewed in this section are defined as random processes,

they capture the statistical properties of arrivals. More importantly, they can account for

statistical multiplexing, as pointed out in [73,120] for the case of statistical envelopes defined

with stochastic ordering, and in [48] for the case of statistical envelopes defined with a.s.

ordering. It is not yet studied which type of statistical envelopes, i.e., defined as either non-
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random functions or random processes, better capture statistical multiplexing.

3.3 Statistical Service Curve

Here we review extensions of deterministic service curves to a probabilistic setting. The

resulting statistical service curves set probabilistic bounds on the service received by a flow,

or an aggregate of flows, at a node.

Similar to statistical envelopes, statistical service curves can be either defined as non-

random functions, or as random processes. We next discuss these statistical service curves,

and then show the construction of statistical leftover service curves.

3.3.1 Statistical service curve as non-random function

Similar to the statistical envelopes as non-random functions from Section 3.2.1, statistical

service curves as non-random functions are defined with error functions that capture the

violation probabilities of the bounds set on the service.

The following statistical service curve is introduced by Cruz in [40].

Definition 3.3 (STATISTICAL SERVICE CURVE) A nonnegative, nondecreasing function

S(t) is a statistical service curve with error function ε(σ) for an arrival process A(t) if

the corresponding departure process D(t) satisfies for all t ≥ 0 and σ ≥ 0

Pr
(
D(t) + σ < A ∗ S(t)

)
≤ ε(σ) . (3.15)

In the definition from [40], S(t) is called a service curve with deficit profile ε(σ). If S(t) is

a linear function and ε(σ) is an exponential function, then S(t) is an EBB statistical service

curve [21].

Another formulation of a statistical service curve is given by Burchard et. al. in [22], and

is called effective service curve. A nonnegative, nondecreasing function S(t) is a statistical
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service curve with violation probability ε for an arrival process A(t) if the corresponding

departure process D(t) satisfies for all t ≥ 0

Pr
(
D(t) < A ∗ S(t)

)
≤ ε . (3.16)

An effective service curve differs from the statistical service curve from Definition 3.3 in that

by fixing t, Eq. (3.16) sets a single violation probability, whereas Eq. (3.15) sets multiple

violation probabilities depending on σ. On the other hand, the statistical service curve from

Definition 3.3 reduces to an effective service curve. Indeed, if S ′(t) satisfies Eq. (3.15) with

an error function ε′(σ), then the function

S(t) = S ′(t)− σ

is an effective service curve with violation probability ε if ε′(σ) = ε.

A modified definition of an effective service curve is given by Burchard et. al. [22] by

using a modified definition of the convolution operator. The modified convolution operator

‘∗t’ is defined for all l > 0 by

A ∗t S(l) = min

{
S(l), B(t) + inf

x≤l
(A(t, t + l − x) + S(x))

}
, (3.17)

where B(l) denotes the backlog process at the node. The key difference from the usual

convolution operator ‘∗’ from Eq. (2.6) is that the definition of A ∗t S(l) dispenses with

the past arrivals A(0, t), but takes into account the backlog at the node at time t. Note that

by setting t = 0, the modified convolution operator ‘∗t’ reduces to the usual convolution

operator.

With the modified convolution operator, the function S(t) is called an l-adaptive effective

service curve for intervals of length l, with violation probability εl, if the departure process
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at the node satisfies for all t ≥ 0 and 0 ≤ x ≤ l

P r
(
D(t, t + x) < A ∗t S(x)

)
≤ εl . (3.18)

This definition is relaxed in [23] where an adaptive statistical service curve is defined as in

Eq. (3.18), but only for x = l.

A stronger formulation of an adaptive effective service curve, called strong adaptive ef-

fective service curve, is defined in [22] by modifying Eq. (3.18) to

Pr
(
∀[t, t + x] ∈ Il : D(t, t + x) < A ∗t S(x)

)
≤ εl ,

where Il is any interval of length l. The advantage of strong adaptive effective service curves

is that their concatenation results in network service curves, in an exact manner that the

concatenation of deterministic service curves results in deterministic network service curves

[22].

For the rest of the section we review constructions of statistical leftover service curves.

In this sense, consider a workconserving node with fixed capacity C serving a tagged flow

A(t), and a cross flow Ac(t). Assume SP scheduling at the node, and that the cross flow

receives higher priority. As pointed out in Section 2.3, the service curve construction for the

low priority flow A(t) holds for all workconserving scheduling mechanisms.

Consider the case when the cross flow is bounded by a global effective envelope

Gc(t, T, ε1) for some T > 0 and violation probability ε1, according to Eq. (3.10). Assume

also that T sets a bound on the busy period at the node satisfying for all t ≥ 0

Pr
(
t− t > T

)
≤ ε2 , (3.19)

where t denotes the beginning of the last busy period containing t. Then, Liebeherr et.
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al. [80] construct the following statistical leftover service curve for the tagged flow

S(t) = Ct− Gc(t, T, ε1) (3.20)

with violation probability ε1 + ε2, that complies with Eq. (3.16).

A drawback of the construction from Eq. (3.20) is that the bound T on the busy period

requires the availability of a deterministic envelope for the aggregate arrivals A(t) + Ac(t).

Unless the deterministic envelope provides with an accurate characterization for the aggre-

gate arrivals, the busy period bound T may be too pessimistic. Moreover, since the violation

probability ε1 corresponding to the statistical envelope Gc(t, T, ε1) is usually proportional

with T , the violation probability ε1 + ε2 corresponding to S(t) may be too large.

Consider now the case when the cross flow is bounded by an effective envelope Gc(t, ε1)

with violation probability ε1, complying with Eq. (3.5). Assume also that T is a bound on

the busy period satisfying Eq. (3.19). Then, a statistical leftover service curve for the tagged

flow, complying with Eq. (3.16), is given by

S(t) = Ct− Gc(t, ε1) , (3.21)

with an error function that is proportional to the busy period bound T (see Li et. al. [76]).

Unlike the construction from [80], the busy period bound obtained in [76] does not require

the availability of deterministic envelopes for the aggregate arrivals.

If the cross flow is bounded by a sample-path effective envelope Gc(t, ε1), complying with

Eq. (3.9), then the function S(t) in Eq. (3.21) is an adaptive effective service curve for any

interval of length l with error function ε (see Burchard et. al. [23]).

For the last construction of a statistical leftover service curve as a non-random function,

consider the case when the cross flow is described with gSBB envelopes. The next theorem

from Liu et. al. [82] provides such as construction.

Theorem 3.4 (STATISTICAL LEFTOVER SERVICE CURVE as non-random function) As-
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sume that the cross flow Ac(t) is bounded by a gSBB envelope Gc(t) = rt with error function

ε(σ) according to Eq. (3.8). Then, a statistical service curve given by the node to the tagged

flow A(t) is given by the non-random function

S(t) = [Ct− Gc(t)]+ , (3.22)

with error function ε(σ), according to Definition 3.3.

Let us next sketch the proof. Fix t, σ ≥ 0 and assume that on a particular sample-path the

inequalities

Ac(t)− Ac(s) ≤ Gc(t− s) + σ (3.23)

hold for all 0 ≤ s ≤ t.

When constructing the deterministic leftover service curve in the proof sketch of Theo-

rem 2.3 we showed the inequality

D(t) ≥ inf
0≤s≤t

(
A(s) + [C(t− s)− (Ac(t)− Ac(s))]+

)

Using Eq. (3.23) it immediately follows that

D(t) + σ ≥ A ∗ S(t) .

Therefore

Pr
(
D(t) + σ < A ∗ S(t)

)
≤ Pr

(
Eq. (3.23) fails

)

≤ ε(σ) ,

i.e., S(t) is a statistical leftover service curve for the tagged flow.

Although statistical leftover service curves provide worst-case probabilistic bounds on

the service, they lead to similar performance bounds, at high data rates, to the performance
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bounds obtained with statistical service curves constructed for EDF and GPS (Generalized

Processor Sharing) scheduling; corresponding constructions are provided in [76]. It thus

appears that scheduling is dominated by statistical multiplexing (see Liebeherr [77], Li et.

al. [76]).

3.3.2 Statistical service curve as random process

To define statistical service curves as random processes we first define a convolution operator

for two doubly-indexed functions f and g as

f ∗ g(u, t) , inf
u≤s≤t

{f(u, s) + g(s, t)} .

for all 0 ≤ u ≤ t. If u = 0, we make the convenient notation

f ∗ g(t) , f ∗ g(0, t) .

A definition of a statistical service curve is given by Chang [29].

Definition 3.5 (STATISTICAL SERVICE CURVE with a.s. Ordering) A nonnegative, doubly-

indexed random process S(s, t) is a statistical service curve for an arrival process A(t) if the

corresponding departure process D(t) satisfies for all t ≥ 0

D(t) ≥ A ∗ S(t) a.s. . (3.24)

In the terminology from [29], the process S(s, t) is called a dynamic F-server.

We will use the convention that the capital letter S denotes service curves defined as ran-

dom processes. The random process S(s, t) is decreasing in s, increasing in t, and satisfies

S(s, t) = S(s, u)+S(u, t) for all 0 ≤ s ≤ u ≤ t. As in the case of statistical envelopes as ran-

dom processes, statistical service curves as random processes usually require the availability
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of bounds on the moment generating function of S(s, t), in particular bounds on E
[
e−θS(s,t)

]

for some θ > 0 [29, 48].

The representation with two indexes is necessary to capture the variability of service over

intervals of same lengths. This is similar to the representation of the statistical envelopes

from Definition 3.2 with doubly-indexed random processes G(s, t) (see the discussion con-

cerning doubly-indexed vs. single-indexed processes from Section 3.2.2). We point out that

a representation of statistical service curves with single-indexed random processes S(t) is

introduced by Qiu et. al. [95, 96] using stochastic ordering.

The next theorem (from Fidler [48]) provides a construction of leftover service curves as

random processes.

Theorem 3.6 (STATISTICAL LEFTOVER SERVICE CURVE as random process) Assume that

the cross flow Ac(t) is bounded by a statistical envelope Gc(s, t), according to Definition 3.2.

Then, a service curve given by the node to the tagged flow A(t) is represented by the doubly-

indexed random process

S(s, t) = [C(t− s)−Gc(s, t)]+ . (3.25)

The obtained service curve S(s, t) complies with the formulation from Definition 3.5. It is

generally useful in applications when A(t) and Gc(s, t) are statistically independent. Sim-

ilar constructions are available when the arrivals are described with single-indexed random

processes and stochastic ordering [96].

We point out that the statistical representation of service leads to statistical multiplexing

gain (see Qiu et. al. [95, 96] for the case of statistical service curves defined as random

processes, and Liebeherr et. al. [80] for the case of statistical service curves defined as non-

random functions).
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3.4 Single-Node Performance Bounds

The stochastic network calculus provides probabilistic performance bounds for three main

scenarios that depend on whether statistical descriptions are given for arrivals, service, or

both.

The first scenario describes arrivals with statistical envelopes, while the representation

of service is either implicitly given by a scheduling algorithm (see Kurose [73], Yaron and

Sidi [116,117], Chang [26], Zhang and Knightly [120], Zhang et. al. [121], Knightly [69–71],

Starobinski and Sidi [105], Boorstyn et. al. [13], Yin et. al. [118], Liebeherr [77], Yu et.

al. [119]), or is explicitly given with deterministic service curves (see Qiu et. al. [95, 96],

Ayyorgun and Feng [5, 6], Liu et. al. [82], Jiang and Emstad [62]). The second scenario

describes arrivals with deterministic envelopes and service with statistical service curves (see

Burchard et. al. [22, 23]); this resembles much to the single-node deterministic network cal-

culus. The third scenario describes arrivals with statistical envelopes, service with statistical

service curves, and it is a relatively simple extension at a single node of the first scenario (see

Qiu et. al. [95, 96], Chang [29], Li et. al. [76], Jiang et. al. [60, 61], Fidler [48]).

Probabilistic performance bounds can also be obtained in scenarios with deterministic en-

velopes and deterministic service. The key idea is to account for the statistical multiplexing

gain characteristic to multiplexing multiple independent regulated flows. For this reason, this

scenario reduces to the first scenario above. Some authors address the statistical multiplexing

for several scheduling algorithms such as SP (see Knightly [71], Boorstyn et. al. [13]), GPS

(see Elwalid and Mitra [44]), or EDF (see Sivaraman et. al. [103,104]). Kesidis and Konstan-

topoulos [65] derive probabilistic backlog bounds for independent regulated flows at constant

rate servers. These bounds are improved by Chang et. al. [30]. Further improvements of the

bounds, and extensions to servers described by service curves are provided by Vojnovic and

Le Boudec [111, 112]. Analysis of statistical multiplexing for regulated sources at bufferless

links is investigated by Elwalid et. al. [45], Lo Presti et. al. [94], or Reisslein et. al. [97].

This section deals with the scenario when the arrivals are represented by statistical en-
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velopes, and service are represented by deterministic service curves. This scenario is rep-

resentative for exposing the major difficulties in the stochastic network calculus, and the

corresponding techniques for the derivation of single-node performance bounds.

Li et. al. [76] isolate the key problem in the stochastic network calculus analysis of

bounds. Suppose that an arrival process A(t) =
∑

i Ai(t) is served at a node with capacity

C, i.e., the node can be represented by a constant-rate deterministic service curveR(t) = Ct.

Reich’s equation gives the expression of the backlog process B(t) for all σ ≥ 0

Pr
(
B(t) > σ

)
= Pr

(
sup

0≤s≤t
(A(s, t)− C(t− s)) > σ

)
. (3.26)

The difficulty in evaluating the right-hand side of Eq. (3.26) is that the value s∗ attaining

the supremum is a random variable. This is a fundamental reason for which the stochastic

network calculus is considered to be hard.

Next we review four network calculus techniques to evaluate the backlog bound from

Eq. (3.26), in a discrete-time setting.

3.4.1 With lower bound approximation

Boorstyn et. al. [13] discuss the following approximation to evaluate Eq. (3.26)

Pr

(
sup

0≤s≤t
(A(s, t)− C(t− s)) > σ

)
≈ sup

0≤s≤t
Pr

(
A(s, t)− C(t− s) > σ

)
. (3.27)

The right-hand side of Eq. (3.27) is a lower bound on the corresponding left-hand side,

rather than an upper bound. Since we are generally interested in the upper bound, we refer

to Eq. (3.27) as an upper bound approximation with a lower bound. Choe and Shroff [31]

showed using simulations that this approximation is accurate for Guassian arrival processes.

Next we review several works in the stochastic network calculus literature that use the

approximation from Eq. (3.27). Kurose [73], and Zhang and Knightly [120] use Eq. (3.27)
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to derive delay bounds for FIFO and SP scheduling, respectively. In these works the ar-

rivals Ai(t) are bounded with statistical envelopes Gi(t) in the sense of stochastic ordering,

according to Eq. (3.11). An approximative upper bound for the backlog takes the expression

Pr (B(t) > σ) ≈ sup
0≤s≤t

Pr

(∑
i

Gi(s, t)− C(t− s) > σ

)
. (3.28)

Knightly [69] proposes a slight improvement to Eq. (3.28) by restricting the range of s in

the supremum to the interval [t−T, t], where T is a bound on the busy period. Such a bound,

however, requires a deterministic envelope G(t) for the aggregate arrivals A(t), and can be

computed as in [26]

T = inf {s : G(t) ≤ Ct} . (3.29)

A problem with Eq. (3.28) is that the evaluation of the right-hand side probability, either

using convolutions or the Fast Fourier Transform, can be costly when the number of arrival

flows Ai(t) is large. Assuming statistical independence for the arrivals, Knightly [70, 71]

proposes to evaluate Eq. (3.28) by approximating the sum
∑

i Gi(t) with the Central Limit

Theorem and using the rate variance envelopes defined in Eq. (3.6). A similar method is used

by Qiu et. al. in [95, 96].

The approximation from Eq. (3.27) is discussed by Boorstyn et. al. [13] to derive ad-

mission regions for several scheduling algorithms. Different from the previously mentioned

works, the arrivals Ai(t) are bounded in [13] using statistical envelopes as non-random func-

tions, i.e., effective envelopes Gi(t, εi) complying with Eq. (3.5). For this reason, the deriva-

tion of performance bounds does not encounter the problem of evaluating sums of random

variables, as it appears in Eq. (3.28).

We next sketch the argument from Boorstyn et. al. [13] for the derivation of a backlog

bound. Suppose that for a fixed s with s ≤ t the inequalities

Ai(s, t) ≤ Gi(t− s, εi) (3.30)
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hold for all i. Set G(t) =
∑

i Gi(t, εi) and σ = G®R(0) in Eq. (3.27); recall thatR(t) = Ct.

It immediately follows that

Pr
(
B(t) > G ® S(0)

)
≈ Pr

(
Eq. (3.30) fails for some i

)

≤
∑

i

εi . (3.31)

The last equation follows from the definition of the statistical envelopes Gi(t, εi). It is im-

portant to note that this argument requires Eq. (3.30) to hold for a single s, because of the

approximation from Eq. (3.27). An immediate consequence of dispensing with this approx-

imation is that a proof for the backlog bound would require Eq. (3.30) to hold for all the

values of s, leading to further complications. These will be addressed in the next section.

3.4.2 With Boole’s inequality

A rigorous way to evaluate Eq. (3.26) relies on Boole’s inequality, used in conjunction with

the Chernoff bound. Let us first state these two results from probability theory. Given n

nonnegative random variables X1, X2, . . . , Xn, Boole’s inequality states that

E
[

sup
i=1,...,n

Xi

] ≤
n∑

i=1

E [Xi] .

Another form of the inequality which we frequently use states that for all σ

Pr
(

sup
i=1,...,n

Xi ≥ σ
) ≤

n∑
i=1

Pr (Xi ≥ σ) .

Given a random variable X , the Chernoff bound states that for any positive θ and all

x > 0

Pr
(
eθX ≥ x

) ≤ 1

x
E

[
eθX

]
. (3.32)

Let us also state the following useful result which gives a bound for series of terms that

appear in the violation probabilities of performance bounds. Let a nonnegative, nonincreasing
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and integrable function f(t). Then for all t

∞∑
s=t+1

f(s) ≤
∫ ∞

t

f(u)du , (3.33)

In particular
∑
s≥1

e−as ≤ 1

a
, (3.34)

for any a > 0. The left-hand side of Eq. (3.34) is a geometric series that converges to

∑
s≥1

e−as =
e−a

1− e−a
.

In general, we prefer the bound from Eq. (3.34) that lends to simpler formulas than the exact

result.

Using Boole’s inequality, Eq. (3.26) becomes

Pr (B(t) > σ) ≤
t−1∑
s=0

Pr (A(s, t) > C(t− s) + σ) . (3.35)

The right-hand side of Eq. (3.35) can be further evaluated depending on the types of

statistical envelopes used for the aggregate arrivals A(t). Yaron and Sidi [116] evaluate the

right-hand side of Eq. (3.35) for the special case when the arrivals A(t) are bounded by an

EBB envelope with rate r < C and error function ε(σ) = Me−θσ, as follows

Pr (B(t) > σ) ≤
t−1∑
s=0

Pr (A(s, t) > r(t− s) + (C − r)(t− s) + σ)

≤
∑
s≥1

Me−θ(C−r)se−θσ

≤ M

θ(C − r)
e−θσ . (3.36)

The first equation represents the capacity C as r+(C−r), which permits the direct application

of the EBB definition in the second equation. The last equation uses the inequality from
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Eq. (3.34).

A similar derivation for the backlog bound, i.e., as in Eq. (3.36), can be given for the

case when the arrivals are bounded with SBB envelopes. The obtained bound is always

finite because of the integrability condition on the corresponding error function ε(σ) (see

Starobinski and Sidi [105]).

A related derivation of the backlog bound is given by Chang [26]. Suppose that the

arrivals A(t) are bounded by a linear envelope process with rate r < C and burst σ′, for a

choice of θ > 0, according to Eq. (3.4). Then, a bound on the backlog process can be derived

from Eq. (3.26) as follows

Pr (B(t) > σ) ≤ Pr
(
eθ sup0≤s<t(A(s,t)−C(t−s)) > eθσ

)

≤ E
[
eθ sup0≤s<t(A(s,t)−C(t−s))

]
e−θσ

≤
∑
s≥1

E
[
eθ(A(s)−Cs)

]
e−θσ

≤ eθσ′

θ(C − r)
e−θσ , (3.37)

for all σ ≥ 0. The first equation uses that θ > 0, and then the Chernoff bound and Boole’s

inequality are applied. The rest follows as in Eq. (3.36). The same bound can be obtained

by first representing the linear envelope process with an EBB envelope, as shown in Sec-

tion 3.2.1, and then invoking Eq. (3.36).

The steps illustrated in Eq. (3.37) for the derivation of a backlog bound can be reproduced

in the case of statistical envelopes G(s, t) defined as random processes with a.s. ordering

(Eq. (3.14)), subject to the availability of bounds on E
[
eθG(s,t)

]
for some choice of θ > 0

(see Chang [29] and Fidler [48]). The derivation from Eq. (3.37) can also be reproduced in

the case when service is described with statistical service curves S(s, t) with a.s. ordering

(Eq. (3.24)), subject to the availability of bounds on E
[
e−θS(s,t)

]
for some choice of θ > 0

(see Chang [29] and Fidler [48]); the term C(t − s) in the first line of Eq. (3.37) is to be

replaced by S(s, t). In the case of statistical envelopes G(s, t) and service curves S(s, t) as
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random processes, these are further required to be statistically independent.

3.4.3 With a-priori busy period bounds and Boole’s inequality

Suppose here that the arrivals A(t) are bounded by an effective envelope G(t, ε) with violation

probability ε, according to Eq. (3.5). Following the argument from Li et. al. [76], we first

show that without a-priori bounds on the busy period the direct use of Boole’s inequality to

derive backlog bounds may lead to infinite estimates of the violation probabilities.

Assume that for a particular sample-path the following inequalities

A(s, t) ≤ G(t− s, ε) (3.38)

hold for all 0 ≤ s ≤ t. Then Reich’s equation (Eq. (3.26)) yields

B(t) ≤ G ®R(0) ,

such that we arrive at

Pr
(
B(t) > G ®R(0)

)
≤ Pr

(
Eq. (3.38) fails

)

≤
∑
s≤t

ε . (3.39)

Recall that R(t) = Ct is a deterministic service curve for a node with capacity C. The last

equation follows from Boole’s inequality. By taking t → ∞, the estimate for the violation

probability in Eq. (3.39) becomes unbounded making the corresponding backlog bound not

useful.

A solution to the problem of obtaining infinite violation probabilities is provided by Li

et. al. [76]. The idea is to use an a-priori bound T on the busy period satisfying Eq. (3.19)

with some violation probability ε2. Then, to obtain a backlog bound with finite violation
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probability we can follow the steps from Eqs. (3.38)-(3.39) and replace Eq. (3.38) with

A(s, t) ≤ G(t− s, ε) for all t− T ≤ s ≤ t.

The backlog bound takes now the expression

Pr (B(t) > G ®R(0)) ≤ Tε + ε2 ,

and the violation probability Tε + ε2 is always finite. The term Tε stems from applying

Boole’s inequality for T times, rather than for t times as in Eq. (3.39). The term ε2 stems from

the a-priori bound T on the busy period. The value of ε2 is 0 when a deterministic envelope

G(t) for the arrivals A(t) is available (see the construction of T from Eq. (3.29)). Otherwise,

the value of ε2 can be obtained as the finite sum of a convergent series (see Lemma 1 in [76]).

The main reason for the statistical envelopes G(t, ε) require a-priori busy period bounds

is that the envelopes are defined for a single violation probability ε. In contrast, EBB or SBB

envelopes do not necessarily require such a-priori bounds since they are defined for multiple

violation probabilities ε(σ). This flexibility leads to convergent series when applying Boole’s

inequality to derive backlog bounds (see for instance Eq. (3.36)).

3.4.4 With sample-path statistical envelope

Perhaps the most straightforward way to derive performance bounds in a calculus with statis-

tical envelopes and deterministic service curves is by assuming the existence of gSBB [5,118]

or sample-path effective envelopes [23].

First we consider the case of gSBB envelopes. The next theorem, restating results from

[5, 118] in our notations, gives probabilistic bounds for the output envelope, backlog and

delay processes at a node.

Theorem 3.7 (PROBABILISTIC PERFORMANCE BOUNDS - from gSBB envelopes) Consider

a flow at a node with arrivals and departures given by the processes A(t) and D(t), respec-
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tively. Assume that the arrivals are bounded by the gSBB envelope G(t) = rt with error

function ε(σ), according to Eq. (3.8). If the node provides the deterministic service curve

S(t) to the flow, then the following probabilistic bounds hold.

1. OUTPUT ENVELOPE: The function G ®S is an SBB statistical envelope for the depar-

tures D(t), i.e., for all 0 ≤ s ≤ t and σ ≥ 0

Pr
(
D(t)−D(s) > G ® S(t− s) + σ

)
≤ ε(σ) ,

subject to the condition that the error function is n-fold integrable.

2. BACKLOG BOUND: A probabilistic bound on the backlog process B(t) is given for all

t, σ ≥ 0 by

Pr
(
B(t) > G ® S(0) + σ

)
≤ ε(σ) .

3. DELAY BOUND: A probabilistic bound on the delay process W (t) is given for all

t, σ ≥ 0 by

Pr
(
W (t) > d(σ)

)
≤ ε(σ) ,

where

d(σ) = inf {d : G(s) + σ ≤ S(s + d) for all s ≥ 0} .

The theorem hold for more general expressions of G(t). Also, as shown in Section 3.2.1, a

gSBB output envelope can be further derived from the obtained SBB output envelope. The

obtained probabilistic bounds in the theorem are similar to the corresponding deterministic

bounds from Theorem 2.4. This indicates that, in the single-node case, the analysis with the

deterministic network calculus carries over to a probabilistic setting.

Following [118] we next sketch the proof for the backlog bound for a general expression

of G(t). This is similar to the corresponding proof for the backlog with the deterministic

network calculus (see Eq. (2.10)). Fix t, σ and assume that for a particular sample-path the
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following inequalities

A(t)− A(s) ≤ G(t− s) + σ (3.40)

hold for all 0 ≤ s ≤ t. Then, Theorem 2.4 yields the (deterministic) backlog bound

B(t) ≤ G ® S(0) + σ ,

such that

Pr
(
B(t) > G ® S(0) + σ

)
≤ Pr

(
Eq. (3.40) fails

)

≤ Pr

(
sup

0≤s≤t
(A(t)− A(s)− G(t− s)) > σ

)

≤ ε(σ) .

We note that the obtained backlog bound simply follows from the definition of the gSBB

envelope G(t) (see Eq. (3.8)). Moreover, if G(t) = rt with r ≤ C, the backlog bound

becomes [5]

Pr
(
B(t) > σ

)
≤ ε(σ) .

The apparent simplicity of the bounds from Theorem 3.7 comes at the cost of requir-

ing the availability of gSBB envelopes, which can be constructed from SBB envelopes (see

Section 3.2.1). We point out that the performance bounds obtained from gSBB envelopes,

constructed from SBB envelopes, match exactly the performance bounds obtained from SBB

envelopes (e.g. as in Eq. (3.36)).

Let us next suppose that a flow is bounded by a sample-path effective envelope G(t, εg)

satisfying for some εg > 0

Pr
(

sup
0≤s≤t

(A(t)− A(s)− G(t− s)) > 0
)
≤ εg ,

according to Eq. (3.9). Also, assume that a node offers the flow a statistical adaptive service
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curve S(t) with violation probability εl for intervals of length l (according to Eq. (3.18)). If

the parameter l satisfies the condition

G(l) < S(l) ,

then one can derive single-node performance bounds for the flow (see Burchard et. al. [23]).

For instance, a probabilistic bound on the backlog is given by

Pr
(
B(t) > G ® S(0)

)
≤ εg + εl

S(l)

S(l)− G(l)
.

3.5 The Problem of Statistical Network Service Curve

In this section we discuss existing solutions for the problem of formulating statistical net-

work service curves from statistical service curves descriptions. We consider both cases of

statistical service curves defined as non-random functions and random processes. As in a de-

terministic context, these network service curve are useful to reduce the end-to-end network

analysis to a single-node analysis.

The search for statistical network service curves has been motivated by the need to repro-

duce the benefits of deterministic network service curves (see Section 2.5) in a probabilistic

setting. Unlike in the deterministic context, the formulation of statistical network service

curves from service curves defined as non-random functions was shown to be a difficult prob-

lem (see Li et. al. [76], Burchard et. al. [23]). Let us first illustrate the technical challenge of

the problem by describing the argument presented in [23, 76].

Consider a through flow crossing a network with H nodes as in Figure 2.5. We denote the

arrivals and departures at nodes h = 1, 2, . . . , H by the processes Ah(t) and Dh(t), respec-

tively. Each node h offers the flow a statistical service curve Sh(t) according to Eq. (3.16),

i.e.,

Pr
(
Dh(t) < Ah ∗ Sh(t)

) ≤ ε
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for some ε > 0.

The straightforward application of Boole’s inequality to derive a statistical network ser-

vice curve leads to unbounded violation probabilities. Consider the derivation at the first two

nodes only; the derivation can then be inductively extended to the entire network. Assume

that for some t ≥ 0

D2(t) ≥ A2 ∗ S2(t) , (3.41)

and that for a particular sample-path the following inequalities

D1(s) ≥ A1 ∗ S1(s) (3.42)

hold for all 0 ≤ s ≤ t.

Expanding the convolution in Eq. (3.41) and then inserting Eq. (3.42) yields

D2(t) ≥ inf
0≤s≤t

{
A2(s) + S2(t− s)

}
(3.43)

≥ inf
0≤s≤t

{
A1 ∗ S1(s) + S2(t− s)

}
(3.44)

≥ A1 ∗ S1 ∗ S2(t) . (3.45)

Since we started with Eqs. (3.41)-(3.42) we arrive at

Pr
(
D2(t) < A1 ∗ S1 ∗ S2(t)

) ≤ Pr (Eq. (3.41) fails) + Pr (Eq. (3.42) fails)

≤ ε + tε .

The term tε in the violation probability stems from applying the definition of the service

curve S1(t) for t times, as required by the assumption from Eq. (3.42). By taking t → ∞
the violation probability becomes unbounded. Consequently, the obtained statistical network

service curve has a practical value only for bounded intervals of time.

The key reason for obtaining unbounded estimates for the violation probability is that

the value of s attaining the infimum in Eq. (3.43) is a random variable. Since this random
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variable can take any values in the interval [0, t], the continuation of Eq. (3.43) (as shown

in Eqs. (3.44)-(3.45)) requires the sample-path inequalities from Eq. (3.42), whose violation

probabilities’ sum is unbounded. Although the same argument is used to derive a determinis-

tic service curve, the difference is that each of the inequalities in Eq. (3.42) are never violated

in a deterministic context.

Based on the above argument, Burchard et. al. [23] conclude that the expression for a

deterministic network service curve from Eq. (2.11) does not simply carry over in a statistical

setting. In the following we review three solutions for formulating statistical network service

curves as non-random functions.

One way to solve the problem of unbounded estimates of violation probabilities for statis-

tical network service curves is proposed by Li et. al. [76]. The authors assume the existence

of an a-priori bound T on the busy period at the first node satisfying Eq. (3.19) with some

violation probability ε2. Then, replacing Eq. (3.42) with

D1(s) ≥ A1 ∗ S1(s) for all t− T ≤ s ≤ t ,

and following the steps from Eqs. (3.43)-(3.45) we arrive at

Pr
(
D2(t) ≤ A1 ∗ S1 ∗ S2(t)

) ≤ ε + Tε + ε2 .

The violation probability for the network service curve is now finite for all the values of t.

This idea is similar to the idea of obtaining finite violation probabilities for backlog bounds

(see Section 3.4.3).

A limitation of the technique with a-priori busy period bounds is that it cannot be directly

extended to more than two nodes. Although busy periods bounds can be easily derived at the

first node, as mentioned in Section 3.4.3, the derivation of busy period bounds at the down-

stream nodes requires additional assumptions. In particular, the authors of [76] introduce a

delay threshold d∗, such that the fraction of the flow’s data exceeding this threshold at each
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node h is dropped. With this assumption, the arrivals at node h satisfy for all s ≤ t

Ah(t)− Ah(s) ≤ A1(t)− A1
(
[s− (h− 1)d∗]+

)
.

Therefore, busy period bounds at each node h can be obtained as for the first node, but from

a shifted version of the arrivals A1(t). Consequently, statistical network service curves can

be derived with finite violation probabilities.

Another solution for obtaining statistical network service curves with finite violation

probabilities is proposed by Burchard et. al. [23]. Rather than relying on assumptions such as

a-priori bounds on some performance measures, the authors of [23] use a modified definition

of a statistical service curve, i.e., the adaptive statistical service curve from Eq. (3.18), based

on a modified definition of the convolution operator from Eq. (3.17).

An important property of the adaptive statistical service curve is that it leads to network

service curves expressed as in the deterministic network calculus. In this sense, consider the

multi-node scenario from Figure 2.5. Assume that each node h provides the flow a service

curve Sh(t) satisfying Eq. (3.18) with some violation probability εl, for intervals of length

l > 0. Then, the service given to the flow by the network as a whole can be expressed using

the network service curve [23]

Snet(t) = S1 ∗ S2 ∗ . . . ∗ SH(t) ,

satisfying Eq. (3.18) as follows

Pr
(
Dnet(t, t + l) < Anet ∗t Snet(l)

)
≤ εl(1 + (H − 1)l) .

The violation probability above is bounded for all the values of t. The choice for the param-

eter l is usually made in conjunction with the derivation of performance bounds.

A third formulation of a statistical network service curve, given with a non-random func-
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tion, is proposed by Ayyorgun and Cruz [4]. The formulation is based on the concept of a

service curve with loss that is defined next.

Consider a flow whose arrivals A(t) count the number of packets in the time interval [0, t].

Also, let a function S(t). For the k’th packet of the flow, we assign the deadline

Dk = inf {t : A ∗ S(t) ≥ k} (3.46)

Then S(t) is a service curve curve with loss parameter α if at least an α fraction of the flow’s

packets meet the deadlines assigned in Eq. (3.46). Moreover, the fraction 1− α of the flow’s

packets which do not meet their assigned deadlines are dropped.

We recall that the idea of introducing the deadlines for dropping some of the traffic is

also used in [76]. In terms of implementation, the dropping policy from [76] appears to be

simpler since a single deadline is assigned for all packets, whereas Eq. (3.46) assigns different

deadlines for different packets.

To extend a service curve with loss to the multi-node case, consider the network scenario

from Figure 2.5. Assume that Sh(t) is a service curve with loss parameter αh at node h.

Then, the function

Snet(t) = S1 ∗ S2 ∗ . . . ∗ SH(t)

is a network service curve with loss parameter
∏

αh that is clearly bounded [4].

A limitation of the model is that each node has to implement a scheduling algorithm to

guarantee the dropping requirements of the model. Such an algorithm is given in [4] and

resembles the SCED (Service Curve Earliest Deadline) scheduling algorithm [100].

Next we review the construction of statistical network service curves from statistical ser-

vice curves defined as random processes, in particular the model with a.s. ordering from

Definition 3.5. For such service curves, the construction of network service curves is much

simpler than in the case of statistical service curves defined as non-random functions.

Suppose that each node h in the network from Figure 2.5 offers a statistical service curve



Chapter 3. State of the Art in the Stochastic Network Calculus 69

Sh(s, t) to the flow. Then, the construction of the corresponding network service curve is

straightforward, i.e.,

Snet(s, t) = S1 ∗ S2 ∗ . . . ∗ SH(s, t) . (3.47)

This result extends the corresponding result from the deterministic network calculus (see

Eq. (2.11)). As in a deterministic setting, the proof of Eq. (3.47) follows from the associativity

property of the convolution operator.

We note that the construction from Eq. (3.47) is possible for the service curve model (i.e.

Definition 3.5) dispenses with error functions. Unlike in the case of statistical service curve

models defined with error functions, the expansion of the convolution in Eqs. (3.43)-(3.45)

for service curves defined without error functions does not lend, by default, to unbounded

violation probabilities.

The application of the statistical network service curve from Eq. (3.47) to derive end-to-

end performance bounds for a flow requires the statistical independence of the service curves

Sh for all h = 1, . . . , H (Sh should be also independent of the flow’s arrivals). Also, the

moment generating functions of the service curves must be finite (this assumption prevents

the application of the calculus to heavy-tailed arrivals). Under these assumptions, Fidler [48]

provides a calculus based on moment generating functions that yields explicit end-to-end

bounds. For the network from Figure 2.1, the end-to-end bounds obtained in [48] grow as

O(H). Therefore, the ‘pay-burst-only-once’ property, shown in the deterministic network

calculus, holds in a probabilistic setting as well.

A long-standing problem in the stochastic network calculus concerns the formulation of

statistical network service curves without relying on a-priori bounds on the busy periods [76],

or modified definitions of statistical service curves [4, 23], or statistical independence of

arrivals/service [29, 48]. In the next chapter we will provide a solution which was developed

with Burchard and Liebeherr in [33]. This is the central result of this thesis.

Finally we point out that as in the deterministic network calculus, the stochastic network

calculus provides an alternative method to derive end-to-end performance bounds by adding
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per-node bounds (see [73, 82, 105, 116]). The derivation of per-node bounds requires the

iterative construction of output statistical envelope description for the through flow at each

traversed node. However, as we have seen in Section 2.5, the problem with these iterative

constructions is that the burstiness of the through flow appears in the expressions for each

of the output envelopes, further reflecting into the single-node backlog and delay bounds.

Consequently, end-to-end bounds are obtained by adding the burstiness of the through flow

for multiple times, and are likely to be overly pessimistic. In fact, we will show in Section 5.1

that for case of the network with cross traffic from Figure 2.1 and EBB envelopes, end-to-

end delay bounds scale as O(H3). This is even more pessimistic than the O(H2) scaling

established in Section 2.5 for leaky-bucket envelopes.



Chapter 4

The Construction of a Statistical Network Service

Curve

In this chapter we present a stochastic network calculus formulation which is generally suit-

able to analyze network scenarios where arrivals and service at network nodes may be statisti-

cally correlated; nonetheless, statistical multiplexing can be accounted for within aggregates

of independent flows. The results from this chapter were developed in a joint work with

Burchard and Liebeherr (see [33]).

The novelty of the presented formulation is the construction of a statistical network ser-

vice curve. Compared to the deterministic network service curve, the constructed statistical

network service curve has a slightly reduced rate. This rate relaxation implies bounded error

functions corresponding to the network service curves. Accordingly, we claim that the con-

structed statistical network service curve is a solution to the problem left open at the end of

the previous chapter.

Applications of this network calculus with a statistical network service curve will be

provided in Chapter 5, where the scaling properties of end-to-end delay bounds in the network

with cross traffic from Figure 2.1 are discussed.

For the rest of this chapter we closely follow the structure used in the previous two chap-

ters: we first describe the models for statistical envelopes and service curves, then we show

how to derive single-node performance bounds, and finally we provide a construction of a

71
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statistical network service curve.

4.1 Statistical Envelope

We use the network model introduced in Chapter 2. Additionally, we introduce a parameter

τ0 for discretizing time in convolution operations.

To model the arrivals of a flow at a node, we use the following envelope model.

Definition 4.1 (STATISTICAL ENVELOPE) A nonnegative and nondecreasing function G(t)

is a statistical envelope with error function ε(σ) for an arrival processes A(t) if for all 0 ≤
s ≤ t and all σ

Pr
(
A(t)− A(s) > G(t− s) + σ

)
≤ ε(σ) . (4.1)

Note that if G(t) = rt and ε(σ) = Me−θσ for some r,M, θ > 0, then we have an EBB

envelope (see also Definition 3.1).

The error function ε(σ) is nonnegative and nonincreasing. We do not restrict the sign of

σ, but we assume without loss of generality that

ε(σ) ≥ 1 for all σ < −G(0) . (4.2)

Moreover, when modelling arrivals in the network from Figure 2.1, we usually require the

following integrability condition

∫ ∞

0

∫ ∞

σ

ε(u)dudσ < ∞ . (4.3)

This condition is necessary for instance when deriving end-to-end performance bounds in

the network from Figure 2.1. Concretely, if the cross traffic is described as in Definition 4.1,

then the derivation of statistical leftover service curves requires the error functions to be

integrable. Furthermore, the convolution of the statistical leftover service curves requires the
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integrals of the error functions to be integrable themselves, whence the doubly integrability

condition from Eq. (4.3).

The statistical envelope model generalizes the EBB and SBB models in that it allows for

envelope functions which are not necessarily linear in time. This generalization is particularly

useful when constructing statistical envelopes from effective bandwidth expressions which

depend on the time parameter, as it is the case for FBM or multiplexed regulated arrivals (see

Li et. al. [76]). For example, a statistical envelope corresponding to FBM arrivals with Hurst

parameter 1/2 < H < 1 can be written as

G(t) = rt + KtH ,

where r is the long term rate and K is a constant. The corresponding error function takes the

form ε(σ) = e−σα , where 0 < α < 1 depends on H .

For an integrable error function ε(σ) and a positive number a it is convenient to introduce

the function

ε̃a(σ) =
1

a

∫ ∞

σ

ε(u)du, (4.4)

as an upper bound (see Eq. (3.33)) for the discrete sum

∞∑
j=1

ε (σ + ja) .

The next lemma makes a connection between the statistical envelope from Definition 4.1

and the sample-path statistical envelope from Eq. (3.8). The result will be used to the con-

struction of statistical leftover service curves and to the derivation of single-node performance

bounds.

Lemma 4.2 (SAMPLE-PATH STATISTICAL ENVELOPE) Assume that G(t) is a statistical en-

velope for an arrival process A(t) with an integrable error function ε(σ). Then for any choice
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of τ0 > 0 and δ > 0

Pr

(
A(t) > inf

0≤u≤s
{A(u) + G(t + τ0 − u) + δ(s + τ0 − u) + σ}

)
≤ ε̃δτ0(σ) , (4.5)

for all 0 ≤ s ≤ t and all σ.

The parameter τ0 is used for discretizing the probability event in Eq. (4.5). The explicit

use of τ0 in Eq. (4.5) will later simplify formulas. By letting s = t and τ0 = 0 in Eq. (4.5),

the result reduces to the corresponding result from [118] for the construction of sample-path

statistical envelopes (see also Section 3.2.1). The advantage of this generalization is that it

results in output envelopes which have smaller rates than those constructed for the particular

case when s = t in Eq. (4.5) (for further technical details see Theorem 4.6).

PROOF. Fix δ, τ0 > 0, 0 ≤ s ≤ t, and σ ≥ 0. We estimate the event in Eq. (4.5) using

Boole’s inequality. Since the infimum is taken for continuous-time u, we first discretize the

event with step τ0.

For 0 ≤ u ≤ s we let j = b s−u
τ0
c be the integer part of s−u

τ0
, so that

[s− (j + 1)τ0]+ < u ≤ s− jτ0 .

Furthermore, since A(t) and G(t) are nondecreasing functions, we can bound the probability

in Eq. (4.5) as follows

P

(
A(t) > inf

0≤u≤s
{A(u) + G(t + τ0 − u) + δ(s + τ0 − u) + σ}

)

≤ Pr
(
A(t) > inf

j=0,...,b s
τ0
c

{
A ([s− (j + 1)τ0]+) + G (t− [s− (j + 1)τ0]+)

+δ(j + 1)τ0 + σ
})

≤
b s

τ0
c∑

j=0

Pr
(
A(t)− A ([s− (j + 1)τ0]+) > G (t− [s− (j + 1)τ0]+)

+δ(j + 1)τ0 + σ
)

.
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In the last equation we applied Boole’s inequality. Using the definition of a statistical enve-

lope and the monotonicity of ε(σ), we can apply Eq. (3.33) and bound the sum by

∞∑
j=0

ε (σ + (j + 1)δτ0) ≤ 1

δτ0

∫ ∞

σ

ε(u)du = ε̃δτ0(σ) , (4.6)

which completes the proof. ¤

4.2 Statistical Service Curve

To model the service received by a flow at a node, we use the following statistical service

curve formulation.

Definition 4.3 (STATISTICAL SERVICE CURVE) Let τ0 > 0. A nondecreasing function S(t)

is a statistical service curve with error function ε(σ) for an arrival process A(t) if the corre-

sponding departure process D(t) satisfies for all t ≥ 0 and all σ

Pr
(
D(t) < A ∗ [S − σ]+ (t + τ0)

)
≤ ε(σ) . (4.7)

The error function ε(σ) is nonnegative and nonincreasing. As in the case of error func-

tions for statistical envelopes, we do not restrict the sign of σ, but we assume without loss of

generality that

ε(σ) ≥ 1 for all σ < S(τ0). (4.8)

Moreover, when modelling the service in the network from Figure 2.1, we usually require the

integrability condition ∫ ∞

0

ε(u)du < ∞ . (4.9)

This condition relates to the doubly-integrability condition from Eq. (4.3) in that error func-

tions corresponding to statistical service curves may be obtained by integrating error func-

tions corresponding to statistical envelopes (see also Theorem 4.5 below).
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Definition 4.3 extends Cruz’s service model from Definition 3.3 in two ways. First, we

impose a positivity constraint in order to simplify the analysis of scenarios with negative

service curve functions. Second, we explicitly use a discretization parameter τ0 and let the

convolution span the extended time interval [0, t + τ0]; this will simplify formulas. We point

out that because we extended the interval in the convolution, the formulation from Eq. (4.7)

appears stronger than Cruz’s formulation; the next lemma shows that there is no loss of

generality in doing so.

Lemma 4.4 Consider an arrival process A(t), the corresponding departure process D(t),

and an error function ε(σ). If a nondecreasing function Ŝ(t) satisfies

Pr
(
D(t) < A ∗

[
Ŝ − σ

]
+

(t)
)
≤ ε(σ) , (4.10)

and ε(σ) ≥ 1 for all σ < Ŝ(0), then the function

S(t) = Ŝ(t− τ0)

is a statistical service curve in the sense of Definition 4.3, for some τ0 > 0.

PROOF. Using the positivity of A(t), the proof immediately follows from the relationship

A ∗ [S − σ]+ (t + τ0) ≤ A ∗
[
Ŝ − σ

]
+

(t) , (4.11)

for all t, τ0 ≥ 0, and all σ. Note that the condition from Eq. (4.8) on the error function ε(σ)

is satisfied because S(τ0) = Ŝ(0). ¤

The next theorem provides a construction for statistical leftover service curves. The result

will be used to analyze end-to-end performance bounds in the network with cross traffic from

Figure 2.1.
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First, let us introduce a convenient notation. For a real function f(t) and a real number δ

we define the function

fδ(t) , f(t) + δt . (4.12)

The key property of the function fδ(t) is that its rate is obtained by adding δ to the rate of

the function f(t). We note that the sign of δ is not restricted. In our calculus, the function

f can be either an envelope or a service curve. In the former case the parameter δ is usually

positive, and in the latter case the parameter δ is usually negative.

Theorem 4.5 (STATISTICAL LEFTOVER SERVICE CURVE) Consider a node with capacity

C serving two arrival processes A(t) and Ac(t), whose corresponding departure processes

are D(t) and Dc(t), respectively. Assume that G(t) is a statistical envelope for Ac(t) with

an integrable error function ε(σ). Then for any choice of a discretization parameter τ0 and

δ > 0, the function

S(t) = Ct− Gδ(t) (4.13)

is a statistical service curve for A(t) with error function ε̃δτ0(σ − Cτ0).

If the error function ε(σ) satisfies the stronger integrability condition from Eq. (4.3), then

the function ε̃δτ0(σ) in the theorem satisfies the integrability condition from Eq. (4.9).

PROOF. Fix δ, τ0 > 0, t ≥ 0, and some σ. Assume that for a particular sample-path the

following inequality

Ac(t) ≤ inf
0≤s≤t

{Ac(s) + Gδ(t + τ0 − s) + σ} . (4.14)

holds. We recall from the proof of Theorem 2.3 that

D(t) ≥ inf
0≤s≤t

{
A(s) + [C(t− s)− (Ac(t)− Ac(s))]+

}
. (4.15)
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Inserting Eq. (4.14) into Eq. (4.15) yields

D(t) ≥ inf
0≤s≤t

{
A(s) + [C(t− s)− Gδ(t + τ0 − s)− σ]+

}

≥ A ∗ [S − σ]+ (t + τ0) .

Since we started by assuming Eq. (4.14) we arrive at

Pr
(
D(t) < A ∗ [S − σ − Cτ0]+ (t + τ0)

) ≤ Pr (Eq. (4.14) fails)

≤ ε̃δτ0(σ) .

In the last equation we applied Lemma 4.2 with s = t. Furthermore we can replace σ with

σ − Cτ0 and obtain that S(t) is a statistical service curve with error function ε̃δτ0(σ − Cτ0).

Lastly, we need to prove that ε̃δτ0(σ − Cτ0) ≥ 1 whenever σ < S(τ0). For such a value

of σ we can write

ε̃δτ0(σ − Cτ0) ≥ ε̃δτ0 (S(τ0)) ≥ ε̃δτ0 (−G(τ0)− δτ0)

≥ 1

δτ0

∫ −G(τ0)−

−G(τ0)−δτ0

ε(u)du ≥ inf
−G(τ0)−δτ0≤u<−G(τ0)

ε(u)

≥ 1 .

In the first line we used the monotonicity of ε̃δτ0(σ). In the second line we used the mono-

tonicity of G(t) and reduced the domain of the integration. In the last line we used Eq. (4.2),

i.e., ε(u) ≥ 1 for all u < −G(0). ¤

4.3 Single-Node Performance Bounds

Here we show how to derive single-node performance bounds for a flow described with a

statistical envelope and service curve.
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Theorem 4.6 (PROBABILISTIC PERFORMANCE BOUNDS) Consider a flow at a node with

arrivals and departures given by the processes A(t) and D(t), respectively. Assume that G(t)

is a statistical envelope for A(t) with an integrable error function εa(σ). Also, the service

available to the flow is given by a statistical service curve S(t) with error function εs(σ). Fix

a discretization parameter τ0 > 0, δ > 0, and define for all σ

ε(σ) = ε̃a
δτ0
∗ εs(σ) . (4.16)

Then the following probabilistic bounds hold.

1. OUTPUT ENVELOPE: The function G ®S−δ is a statistical envelope for the departures

D(t) with error function ε(σ), i.e., for all 0 ≤ s ≤ t and all σ

Pr
(
D(t)−D(s) > G ® S−δ(t− s) + σ

)
≤ ε(σ) , (4.17)

2. BACKLOG BOUND: A probabilistic bound on the backlog process B(t) is given for all

t ≥ 0 and all σ by

Pr
(
B(t) > Gδ ® S(0) + σ

)
≤ ε(σ) . (4.18)

3. DELAY BOUND: A probabilistic bound on the delay process W (t) is given for all

t, σ ≥ 0 by

Pr
(
W (t) > d(σ)

)
≤ ε(σ) , (4.19)

where

d(σ) = inf {d : Gδ(s) + σ ≤ S(s + d) for all s ≥ 0} . (4.20)

The bounds on the backlog and delay processes B(t) and W (t), respectively, do not

depend on the time parameter t. Assuming that the system converges to a steady-state, it

then follows that the bounds hold as well for the steady-state backlog and delay processes

limt→∞ B(t) and limt→∞ W (t), respectively.
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The literature contains similar results on single-node performance bounds, which are

obtained using other formulations of statistical envelopes and service curves (see for instance

[23, 82]). The technical contribution of our result is that the output envelope from Eq. (4.17)

has a smaller rate than the rates of the output envelopes derived in the literature, usually

taking the form Gδ ® S(t). This improvement stems from our particular characterization of

sample-path statistical envelopes in Lemma 4.2.

PROOF. Fix δ, τ0 > 0, 0 ≤ s ≤ t and σ. Also, let σa and σs such that σa + σs = σ.

Assume for the moment that σs ≥ S(τ0). Also, assume that for a particular sample-path

the following inequalities

A(t)− A(u) ≤ G(t + τ0 − u) + δ(s + τ0 − u) + σa , (4.21)

hold for all 0 ≤ u ≤ s, and that

D(s) ≥ A ∗ [S − σs]+ (s + τ0) . (4.22)

To derive the output envelope bound we write

D(t)−D(s) ≤ A(t)− A ∗ [S − σs]+ (s + τ0)

≤ sup
0≤u≤s

{
A(t)− A(u)− [S(s + τ0 − u)− σs]+

}

≤ sup
0≤u≤s

{G(t + τ0 − u)− S−δ(s + τ0 − u) + σa + σs}

≤ G ® S−δ(t− s) + σ .

In the first line we applied Eq. (4.22). In the next line we could restrict the range of the

convolution because σs ≥ S(τ0). Then we applied Eq. (4.21) and the definition of the decon-

volution operator.
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Since we started by assuming Eqs. (4.21) and (4.22), we arrive at

Pr (D(t)−D(s) > G ® S−δ(t− s) + σ) ≤ Pr (Eqs. (4.21) or (4.22) fail)

≤ ε̃a
δτ0

(σa) + εs(σs) . (4.23)

In the last equation we applied Lemma 4.2.

The derivation for the backlog bound is similar. Assume that Eqs. (4.21) and (4.22) hold

for s = t, such that we can write

B(t) = A(t)−D(t)

≤ A(t)− A ∗ [S − σs]+ (t + τ0)

≤ sup
0≤u≤t

{
A(t)− A(u)− [S(t + τ0 − u)− σs]+

}

≤ sup
0≤u≤t

{Gδ(t + τ0 − u)− S(t + τ0 − u) + σa + σs}

≤ Gδ ® S(0) + σ .

Since we started by assuming Eqs. (4.21) and (4.22), we arrive at

Pr (B(t) > Gδ ® S(0) + σ) ≤ Pr (Eqs. (4.21) or (4.22) fail)

≤ ε̃a
δτ0

(σa) + εs(σs) . (4.24)

In the last equation we applied Lemma 4.2 for s = t.

Consider now the case when σs < S(τ0). From the properties of statistical service curves

(see Eq. (4.8)) we get that εs(σs) ≥ 1, implying that Eqs. (4.23) and (4.24) still hold. This

proves the output envelope and backlog bounds from Eqs. (4.17) and (4.18), respectively.

For the output envelope we also need to prove that ε(σ) ≥ 1 whenever σ < −G®S−δ(0).

For such a value of σ we have from the definition of the deconvolution operator and the

monotonicity of S(t) that

σa + σs < −G(0) + S(τ0) .
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It then follows that either σa < −G(0) or σs < S(τ0). Using Eqs. (4.2) and (4.8) we obtain

that either εa(σa) ≥ 1 or εs(σs) ≥ 1, further yielding ε(σ) ≥ 1.

Last, to prove the delay bound, we fix σ ≥ 0. Also, fix d satisfying Eq. (4.20), and let

t ≥ d. We assume that Eq. (4.21) holds for s = t − d, and for t replaced by t − d. Also,

assume that Eq. (4.22) holds for s = t. We can write

D(t)− A(t− d) ≥ inf
0≤u≤t+τ0

{
A(u)− A(t− d) + [S(t + τ0 − u)− σs]+

}

≥ min

{
inf

0≤u≤t−d
{−Gδ(t− d + τ0 − u) + S(t + τ0 − u)− σ} , 0

}

≥ 0 .

In the second line we used that the values of the infimum for u > t−d are always nonnegative.

In the last line we used the property of d from Eq. (4.20).

Since we started by assuming Eqs. (4.21) and (4.22), we arrive at

Pr (W (t) > d) = Pr (A(t− d) > D(t)) ≤ Pr (Eqs. (4.21) or (4.22) fail)

≤ ε̃a
δτ0

(σa) + εs(σs) .

In the last equation we applied Lemma 4.2 for s = t − d. The proof is completed by mini-

mizing after d, σa and σs.

4.4 Statistical Network Service Curve

Here we present the main result of this chapter, that is the formulation of a statistical network

service curve.

Theorem 4.7 (STATISTICAL NETWORK SERVICE CURVE) Consider a flow traversing H

nodes in series as in Figure 4.1. For all h = 1, . . . , H assume that Sh(t) is a statistical

envelope for the flow at node h with error function function εh(σ) satisfying the integrability
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condition from Eq. (4.9). Then, for every choice of δ > 0, the function

Snet = S1 ∗ S2
−δ ∗ . . . ∗ SH

−(H−1)δ (4.25)

is a statistical network service curve with an error function given by

εnet = ε̃1
δτ0
∗ . . . ∗ ε̃H−1

δτ0
∗ εH (4.26)

Figure 4.1: A flow with statistical service curves at multiple nodes.

Let us make some remarks about our result. The formula for the statistical network

service curve closely resembles to the formula for the deterministic network service curve

given in Theorem 2.5. The main difference is that the rates of the service curve functions

Sh(t) are relaxed by (h−1)δ for h = 2, . . . , H . These relaxations are critical to the derivation

of a bounded error function for the network service curve.

The free parameters δ and τ0 that appear in the theorem can be chosen to optimize single-

node performance bounds. For example, the derivation of an end-to-end delay bound can be

reduced to

Pr
(
W net(t) > d

) ≤ ε(d) ,

where the value of ε(d) depends on δ and τ0, which can be optimized. In practice, optimizing

the parameter δ can significantly improve on the bounds, whereas optimizing the parameter

τ0 does not result in significantly smaller bounds. A procedure to optimize these parameters

will be provided in Section 5.1.

The proof of the theorem uses the next lemma that constructs sample-path descriptions

for statistical service curves. With these descriptions the statistical network service curve will

then be derived using a similar argument as for the derivation of a deterministic network ser-
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vice curve. In Section 3.4.4 we have shown a similar derivation of single-node performance

bounds based on sample-path descriptions for statistical envelopes.

Lemma 4.8 (SAMPLE-PATH STATISTICAL SERVICE CURVE) Consider a statistical service

curve S(t) with an error function ε(σ) that satisfy the integrability condition from Eq. (4.9).

Then for any choice of τ0 > 0, δ > 0, and all t ≥ 0 and σ, we have

Pr

(
sup

0≤s≤t

{
A ∗ [S − δ(t + τ0 − s)− σ]+ (s)−D(s)

}
> 0

)
≤ ε̃δτ0(σ) . (4.27)

PROOF. Fix δ, τ0 > 0, t ≥ 0 and σ. We evaluate the event in Eq. (4.27) using Boole’s

inequality. Since the supremum is taken for continuous-time s, we discretize the event with

step τ0.

For 0 ≤ s ≤ t we let j = b t−s
τ0
c be the integer part of t−s

τ0
. This gives

[t− (j + 1)τ0]+ < s ≤ t− jτ0 . (4.28)

Furthermore, since A(t), D(t), and S(t) are nondecreasing functions, we can bound the

probability event from Eq. (4.27) as follows

Pr

(
sup

0≤s≤t

{
A ∗ [S − δ(t + τ0 − s)− σ]+ (s)−D(s)

}
> 0

)

≤ Pr
(

sup
j=0,...,b t

τ0
c

{
A ∗ [S − δ(j + 1)τ0 − σ]+ (t− jτ0)−D([t− (j + 1)τ0]+)

}
> 0

)

≤
b t

τ0
c∑

j=0

P
(
A ∗ [S − δ(j + 1)τ0 − σ]+ (t− jτ0)−D([t− (j + 1)τ0]+) > 0

)
.

In the last equation we applied Boole’s inequality. Using the definition of a statistical service

curve and the monotonicity of ε(σ), we can bound the sum by

∞∑
j=0

ε (σ + (j + 1)δτ0) ≤ 1

δτ0

∫ ∞

σ

ε(u)du = ε̃δτ0(σ) , (4.29)
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which completes the proof. ¤

PROOF OF THEOREM 4.7. Fix δ, τ0 > 0, t ≥ 0, and σ. Let Ah(t) and Dh(t) denote the

arrivals and departures, respectively, at node h. Also, denote Anet := A1 and Dnet := DH .

Let σh for h = 1, 2, . . . , H such that
∑H

h=1 σh = σ.

Assume for the moment that σH ≥ SH(τ0). Also, assume that for a particular sample-

path the following inequalities

Dh(s) ≥ Ah ∗ [Sh − δ(t + τ0 − s)− σh
]
+

(s) (4.30)

hold for all 0 ≤ s ≤ t and all h = 1, 2, . . . , H − 1, and that

DH(t) ≥ AH ∗ [SH − σH
]
+

(t + τ0) . (4.31)

Expanding the convolution in Eq. (4.31) yields

DH(t) ≥ inf
0≤s≤t+τ0

{
AH(s) +

[SH(t + τ0 − s)− σH
]
+

}

≥ inf
0≤s≤t

{
AH(s) +

[SH(t + τ0 − s)− σH
]
+

}
(4.32)

The restriction of the infimum in Eq. (4.32) is justified by the assumption that SH(τ0)−σH ≤
0, and the monotonicity properties of AH(t), DH(t) and SH(t). Furthermore, by inserting

the inequality from Eq. (4.31) for h = H − 1, we obtain

DH(t) ≥ inf
0≤u≤s≤t

{
AH−1(u) +

[SH−1(s− u)− δ(t + τ0 − s)− σH−1
]
+

+
[SH(t + τ0 − s)− σH

]
+

}

≥ inf
0≤u≤s≤t

{
AH−1(u) +

[SH−1(s− u) + SH
−δ(t + τ0 − s)−

H∑

h=H−1

σh
]
+

}
.

In the last equation we used the inequality [x]+ + [y]+ ≥ [x + y]+ for all real numbers x and

y.
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After iterating the procedure of inserting the inequalities from Eq. (4.31) for h = H −
2, . . . , 1, we eventually obtain

DH(t) ≥ inf
0≤x1≤···≤xH≤t

{
A1(x1) +

[S1(x2 − x1) + S2
−δ(x

3 − x2) + . . .

+SH
−(H−1)δ(t + τ0 − xH)−

H∑

h=1

σh
]
+

}
.

The infimum in the last equation can be extended to [0, t + τ0], such that we can contract the

infimum into a convolution

Dnet(t) ≥ Anet ∗ [Snet − σ
]
+

(t + τ0) .

Since we started by assuming Eqs. (4.30) and (4.31), we arrive at

Pr
(
Dnet(t) < Anet ∗ [Snet − σ

]
+

(t + τ0)
)

≤
H−1∑

h=1

Pr (Eq. (4.30) fails for some s ≤ t) + Pr (Eq. (4.31) fails)

≤
H−1∑

h=1

ε̃h
δτ0

(σh) + εH(σH) . (4.33)

In the last equation we applied Lemma 4.8, and the definition of a statistical service curve.

Assume now that σH < SH(τ0). From the properties of statistical service curves (see

Eq. (4.8)) we get that εH(σH) ≥ 1, implying that Eq. (4.33) still holds. This proves that

Snet(t) is a statistical network service curve with error function εnet(σ).

Lastly, we need to prove that εnet(σ) ≥ 1 whenever σ < Snet(τ0). Let us assume by

contradiction that σh ≥ Sh(τ0) for all h = 1, . . . , H . It then follows that

σ =
H∑

h=1

σh ≥
H∑

h=1

Sh(τ0) ≥ Snet(τ0) ,
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which contradicts with the choice of σ < Snet(τ0). It then follows that there exists h such that

σh < Sh(τ0). This implies that εh(σh) ≥ 1, and further that εnet(σ) ≥ 1, which completes

the proof. ¤



Chapter 5

Scaling Properties of End-to-End Delay Bounds

In this chapter we study the scaling properties of probabilistic end-to-end delay bounds com-

puted using the network calculus with statistical network service curve from Chapter 4. The

results presented herein were derived in joint works with Burchard and Liebeherr (see [33]

and [21]).

The contribution of this chapter is a set of results demonstrating that, under suitable as-

sumptions on arrivals and service, end-to-end delays in the network with cross traffic from

Figure 2.1 grow as Θ(H log H). The main assumption is that the arrivals of the through flow

are described by an EBB envelope, and its service at the nodes is described by EBB service

curves. We first present an abstract result (Theorem 5.1) which establishes the O(H log H)

upper bound on end-to-end delays. This result is then used to derive end-to-end delay bounds

in networks with both a fluid-flow service model (Section 5.1), and a packetized service

model (Section 5.2). For a network with packetized service we also establish a correspond-

ing Ω(H log H) lower bound on end-to-end delays (Section 5.2.2).

The Θ(H log H) scaling behavior of end-to-end bounds established in this chapter is

different from the Θ(H) scaling behavior predicted by other theories for network analysis,

such as the deterministic network calculus or queueing networks theory. The difference of

the two scaling behaviors stems from the different assumptions on the traffic models and

the statistical independence of traffic and service. For example, in the deterministic network

88
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calculus, traffic is described with deterministic envelopes which set worst-case bounds on

the arrivals. As a consequence, a given flow receives some worst-case guarantees along a

network path. Since these guarantees hold with probability one, end-to-end performance

bounds for the flow grow as Θ(H). In contrast, traffic described with EBB envelopes can be

arbitrarily large, but with exponentially decaying probabilities. It is the rare events of some

very high bursts which contribute to the extra ‘log H’ factor in the Θ(H log H) scaling of

end-to-end bounds established in this chapter.

In M/M/1 queueing networks, end-to-end (exact) delays grow as Θ(H) [68]. The reason

is that traffic and service at the queues are assumed to be statistically independent, such that

the end-to-end delays can be obtained by adding independent random variables (i.e. the per-

node (exact) delays at the queues). We point out that the M/M/1 queueing model falls within

the class of EBB envelopes and service curves.

A recent development of the stochastic network calculus, pursued by Fidler [48] using

techniques based on moment generating functions proposed by Chang [29], established the

Θ(H) scaling of end-to-end delays. The critical assumption there is that traffic and service

at the nodes are statistically independent; also, the arrivals must have bounded MGFs. In

contrast, the Θ(H log H) result established in this chapter does not rely on the statistical

independence assumptions of traffic or service at the nodes.

We mention that, in general, the service of a flow in a packet network at different nodes is

correlated because each packet has the same size at the traversed nodes. More exactly, service

times at downstream nodes are correlated with packet sizes. One way to enforce the statistical

independence of service, as done in M/M/1 (packet) queueing networks, is by assuming that

each packet has statistically independent sizes at each traversed node [67]. Another way is by

using a fluid-flow service model which dispenses with the notion of a packet, i.e., the service

unit is infinitesimal. In contrast, the stochastic network calculus formulation from Chapter 4

does not require the statistical independence of service, and can be thus applied to realistic

network scenarios with correlated service.
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Assume that the arrival processes in the network from Figure 2.1 are stationary, and that

the network is stable, i.e., the average rate of the aggregated traffic at each node is smaller than

the service capacity. We also assume the existence of a steady-state W net for the end-to-end

delay process W net(t). At a single node the existence of a steady-state is guaranteed under

some conditions of stationarity and ergodicity of the arrival processes (see Loynes [84]). In

general, the existence of a steady-state W net is not guaranteed, especially because the through

and cross traffic may be correlated. We point out that the assumption on the existence of a

steady-state does not imply a loss of generality of our results since we derive bounds on

W net(t) for all times t; as these bounds do not depend on t, it is convenient to dispense with

the index t in notation.

We will analyze W net through the quantiles of its distribution. For 0 < z < 1, the

z-quantile of the distribution of W net is defined as

wnet(z) = inf
{
w : Pr

(
W net > w

) ≤ 1− z
}

. (5.1)

Figure 5.1 illustrates the z-quantile wnet(z). In general we choose values of z that are

close to one, i.e., z = 1− ε where typical values of ε are 10−6 or 10−9.

Figure 5.1: The z-quantile wnet(z).

Next we present the main result of this chapter, i.e., an upper bound on end-to-end delays.
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Let us first recall that an arrival process A(t) is bounded by an EBB envelope G(t) = rt if

Pr (A(t)− A(s) > G(t− s) + σ) ≤ Me−θσ ,

for some values M and θ (see Definition 4.1). Also, S(t) = rt is an EBB service curve if

Pr
(
D(t) < A ∗ [S − σ]+ (t + τ0)

) ≤ Me−θσ ,

for some values M , θ, and τ0 (see Definition 4.3).

Theorem 5.1 (O(H log H) END-TO-END DELAY BOUNDS). Consider a flow traversing

H nodes in series. Assume that G(t) = rat is an EBB statistical envelope for the flow with

error function εa(σ) = Mae
−θaσ, where ra,Ma, θa > 0. Also, for all h = 1, . . . , H , assume

that S(t) = rst is an EBB statistical service curve for the flow at node h with error function

εs(σ) = Mse
−θsσ, where rs > ra and Ms, θs > 0. Then for each 0 < z < 1 there exist γ1

and γ2 depending on H , where γ1 is uniformly bounded in H and γ2 = O(H), such that

Pr
(
W net > γ1H log (γ2H)

)
≤ 1− z .

Explicit values for γ1 and γ2 are provided in the proof. We assume the same rate rs for

the service curves at the nodes in order to simplify notation; using different rates does not

change the growth behavior of γ1 and γ2. The condition rs > ra is used for stability.

The definition of the z-quantile w(z) gives

wnet(z) ≤ γ1H log (γ2H) ,

implying the following result.

Corollary 5.2 The z-quantile wnet(z) of the distribution of the steady-state end-to-end
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delay W net satisfies

wnet(z) = O(H log H) .

The proof of the theorem uses the following result concerning extreme values of convex

functions.

Lemma 5.3 Let the positive numbers Mj, θj for j = 1, . . . , n. Then for any σ ≥ 0,

inf
σ1+···+σn=σ

n∑
j=1

Mje
−θjσj =

n∏
j=1

(Mjθjw)
1

θjw e−
σ
w ,

where w =
∑n

j=1
1
θj

.

PROOF. Fix σ ≥ 0 and let us define the functions

f (σ1, . . . , σn) =
n∑

j=1

Mje
−θjσk

and g (σ1, . . . , σn) = σ1 + · · · + σn. We solve the problem of minimizing the function

f (σ1, . . . , σn) subject to the condition g (σ1, . . . , σn) = σ using the method of Lagrange

multipliers. The gradient condition of the Lagrange multipliers method yields

∇{f (σ1, . . . , σn) + λ (g (σ1, . . . , σn)− σ)} = 0 ,

where λ > 0 is to be determined from the equation. We obtain that

λ = Mjθje
−θjσj , (5.2)

for all j = 1, . . . , n.
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Let us introduce now pj = 1
θjw

for j = 1, . . . , n. Since
∑n

j=1 pj = 1 we can write

λ =
n∏

j=1

λpj =
n∏

j=1

(Mjθj)
pj e−

Pn
j=1 pjθjσj

=
n∏

j=1

(Mjθj)
pj e−

σ
w . (5.3)

Using Eqs. (5.2) and (5.3) we finally obtain that

inf
g(σ1,...,σn)=σ

f (σ1, . . . , σn) =
n∑

j=1

λ

θj

=
n∏

j=1

(Mjθjw)
1

θjw e−
σ
w .

The solution is unique by the strict convexity of f . ¤

PROOF OF THEOREM 5.1. The proof has two steps. We first derive a statistical network

service curve for the flow, and then apply single-node results.

Fix δ, τ0 > 0 and t, σ ≥ 0. Using Theorem 4.7 we obtain the statistical network service

curve

Snet(t) = S ∗ S−δ ∗ . . . ∗ S−(H−1)δ(t)

= inf
xh≥0,x1+···+xH=t

{rsx1 + (rs − δ)x2 + · · ·+ (rs − (H − 1)δ)xH}

= (rs − (H − 1)δ) t .

The corresponding error function is given by

εnet(σ) = ε̃s
δτ0
∗ . . . ∗ ε̃s

δτ0︸ ︷︷ ︸
H−1 times

∗εs(σ) , (5.4)

where

ε̃s
δτ0

(σ) =
1

δτ0

∫ ∞

σ

Mse
−θsudu =

Ms

θsδτ0

e−θsσ .

Having the statistical envelope G(t) and the statistical service curve Snet(t), we can now
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derive a bound on the end-to-end delay W (t). Let us choose δ such that

δ ≤ rs − ra

H
. (5.5)

Then, Eq. (4.20) from Theorem 4.6 yields

d(σ) = inf
{
d : Gδ(s) + σ ≤ Snet(s + d) for all s ≥ 0

}

= inf
{
d : (ra + δ) (s) + σ ≤ (rs − (H − 1)δ) (s + d) for all s ≥ 0

}

=
σ

rs − (H − 1)δ
.

It then follows that a delay bound is given by

Pr

(
W net(t) >

σ

rs − (H − 1)δ

)
≤ ε̃a

δτ0
∗ εnet(σ) , (5.6)

where

ε̃a
δτ0

(σ) =
1

δτ0

∫ ∞

σ

Mae
−θaudu =

Ma

θaδτ0

e−θaσ .

Expanding the convolution in the right-hand side of Eq. (5.6) yields

Pr

(
W net(t) >

σ

rs − (H − 1)δ

)

≤ inf
σ1+···+σH+1=σ

{
Ma

θaδτ0

e−θaσ1 +
H∑

j=2

Ms

θsδτ0

e−θsσj + Mse
−θsσH+1

}
.

We next compute the infimum with Lemma 5.3. Denoting for convenience

α = Hθa + θs ,

replacing σ with d (rs − (H − 1)δ), and letting t →∞ yields

Pr
(
W net > d

) ≤ α

θa

M
θs
α

a M
Hθa

α
s

(
1

θsδτ0

)α−θa
α

e−
θaθs

α
(rs−(H−1)δ)d . (5.7)
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For 0 < z < 1, let us define γ1, γ2 as

γ1 =
α

Hθaθs (rs − (H − 1)δ)
,

γ2 =
1

1− z

α

Hθa

M
θs
α

a M
Hθa

α
s

(
1

θsδτ0

)α−θa
α

.

From Eq. (5.5) we obtain that γ1 is uniformly bounded in H , and γ2 = O(H).

Finally, by equating the right-hand side of Eq. (5.7) with 1− z, we arrive at

Pr
(
W net > γ1H log (γ2H)

)
≤ 1− z ,

which completes the proof. ¤

5.1 Network with Fluid Service

In this section we compute explicit end-to-end delay bounds in the network with cross traffic

from Figure 2.1, and analyze their scaling properties. We use the method of first deriving a

statistical network service curve and then applying single-node results, as in Theorem 5.1.

For comparison, we also use a second method based on first deriving per-node bounds and

then adding the single-node results.

To derive simple formulas we assume a fluid service model throughout this section. In the

context of a packet network, the fluid service model pretends that each fraction of a packet

becomes available for service as soon as processed upstream. In other words, a packet can

be in service at multiple nodes at the same time. The fluid model is thus an approximative

model which is generally justified at high data rates (numerical results illustrating the impact

of assuming a fluid service model will be presented in Chapter 7).

The main finding of this section is that the method of using a statistical network service

curve yields end-to-end delay bounds which grow as O(H log H), whereas the method of

adding per-node bounds yields end-to-end delay bounds which grow as O (H3). The differ-
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ence in the two orders of growths provides conclusive evidence that statistical network service

curves lend to significantly smaller network bounds than the corresponding network bounds

obtained by adding per-node bounds. Moreover, the bounds obtained with the network ser-

vice curve are always smaller than the bounds obtained by adding single-node results. We

recall similar advantages of using network service curves in the deterministic network calcu-

lus (see Section 2.5), and in the stochastic network calculus where arrivals and service at the

nodes are statistically independent (see Section 3.5).

In the following we compute end-to-end delay bounds using the method of a statistical

network service curve. Let us first give a result which will be frequently used for optimization

purposes throughout the rest of the thesis.

Lemma 5.4 Let a positive number a. Then

inf
x>0

eax

x
= ea , (5.8)

and the extremum is attained at x = 1/a.

The proof follows immediately from the convexity of the minimized function.

Consider now the network with cross traffic from Figure 2.1, and assume that the through

flow A(t) is bounded by an EBB statistical envelope

G(t) = rt ,

with error function ε(σ) = e−θσ, where r, θ > 0. Also, at each node h, assume that the cross

flow Ah(t) is bounded by an EBB statistical envelope

Gc(t) = rct ,

with error function εh(σ) = e−θσ, where rc > 0. Note that all the cross flows have identical

envelopes, in order to keep the notation simple. Also, we assume for stability that the capacity
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of each node is C > r + rc.

Having the statistical envelopes for the cross flows at each node, Theorem 4.5 gives that

for all δ, τ0 > 0 the function

S(t) = (C − rc − δ) t , (5.9)

is a statistical (EBB) service curve at each node h with error function

εs(σ) =
1

δτ0

∫ ∞

σ−Cτ0

e−θudu =
eθCτ0

θδτ0

e−θσ .

Next, using the EBB statistical envelope and the EBB statistical service curves for the

flow just derived, we obtain bounds on the (steady-state) end-to-end delay W net from Theo-

rem 5.1 with the parameters

ra = r, Ma = 1, θa = θ, and

rs = C − rc − δ, Ms =
eθCτ0

θδτ0

, θs = θ .

Plugging these values into Eq. (5.7) we obtain for all d ≥ 0 the delay bound

Pr
(
W net > d

) ≤ (H + 1)

(
e

θ
2
Cτ0

θδτ0

) 2H
H+1

e−
θ

H+1
(C−rc−Hδ)d , (5.10)

provided that we choose δ according to Eq. (5.5), i.e.,

δ ≤ C − (r + rc)

H + 1
.

With Lemma 5.4, the values of τ0 and δ which minimize the delay bound from Eq. (5.10)

are

τ0 =
2

θC
, and

δ = min

{
2

θd
,
C − (r + rc)

H + 1

}
. (5.11)



Chapter 5. Scaling Properties of End-to-End Delay Bounds 98

With these values, the end-to-end delay bound becomes

Pr
(
W net > d

) ≤ (H + 1)

(
eC

2δ

) 2H
H+1

e−
θ

H+1
(C−rc−Hδ)d . (5.12)

Setting the right-hand side of Eq. (5.12) equal to 1− z for some 0 < z < 1, and solving

for d, the z-quantile wnet(z) of the distribution of W net is bounded by

d =
H + 1

θ (C − rc −Hδ)
log

(
H + 1

1− z

(
eC

2δ

) 2H
H+1

)
. (5.13)

It remains to choose δ. Since the optimal value of δ from Eq. (5.11) depends on d, the

value of d in Eq. (5.13) can be determined for numerical purposes using an iterative method.

We first let δ = C−(r+rc)
H+1

in Eq. (5.13) yielding a value d0. We then let d = d0 in Eq. (5.11)

yielding a value δ which is finally used in Eq. (5.13).

We recall that the order of growth of wnet(z) is given by Theorem 5.1, i.e.,

wnet(z) = O(H log H) .

For the rest of this section we compute for comparison end-to-end delay bounds using the

method of adding per-node results.

To derive bounds on the delay process W h(t) at nodes h = 1, . . . , H with Theorem 4.6,

we first need the statistical envelope descriptions for the through flow at each node. We show

by induction that a statistical envelope at node h is given by the function

Gh(t) = rt ,

with error function

εg,h(σ) =

(
Ce

δ

)h2+h−2
2h

e−
θ
h

σ ,
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where the parameter δ > 0 satisfies the condition

δ ≤ C − (r + rc)

2
.

The case h = 1 is satisfied by the EBB description of the through flow. Assume now that

we have the statistical envelope Gh(t) at node h and let us derive the statistical envelope at

node h + 1. Having the statistical service curve S(t) at node h from Eq. (5.9) and invoking

Theorem 4.6, we obtain that

Gh+1(t) = Gh ® S−δ(t)

= sup
s≥0

{r(t + s)− (C − rc − 2δ)s}

= rt

is a statistical envelope at node h + 1 with error function

εg,h+1(σ) = ε̃g,h
δτ0
∗ εs(σ)

= inf
σ1+σ2=σ





h

θδτ0

(
Ce

δ

)h2+h−2
2h

e−
θ
h

σ1 +
eθCτ0

θCτ0

e−θσ2



 .

Applying Lemma 5.3 with θ1 = θ/h and θ2 = θ we arrive at

εg,h+1(σ) = (h + 1)
e

θCτ0
h+1

θδτ0

(
Ce

δ

)h2+h−2
2(h+1)

e−
θ

h+1
σ

=

(
Ce

δ

) h2+3h
2(h+1)

e−
θ

h+1
σ , (5.14)

which completes the induction. In the last equation we optimized τ0 = (h + 1)/(θC) using

Lemma 5.4.
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Next we compute bounds on the delay WH(t) with Theorem 4.6. Eq. (4.20) yields

d(σ) = inf
{
d : Gh

δ (s) + σ ≤ S(s + d) for all s ≥ 0
}

= inf {d : (r + δ)s + σ ≤ (C − rc − δ)(s + d) for all s ≥ 0}

=
σ

C − rc − δ
.

By letting t →∞, it then follows that for any d > 0 we have the (steady-state) per-node

delay bounds

Pr
(
W h > d

) ≤ εg,h+1 ((C − rc − δ)d) .

Adding the per-node delay bounds we obtain for the (steady-state) end-to-end delay pro-

cess W net

Pr
(
W net > d

) ≤ inf
d1+···+dH=d

{
H∑

h=1

Pr
(
W h > dh

)
}

.

Evaluating the infimum with Lemma 5.3 we obtain

Pr
(
W net > d

) ≤ Ke−
2θ

H(H+3)
(C−rc−δ)d , (5.15)

where

K =
H(H + 3)

2

(
Ce

δ

) (H+1)(H+5)
3(H+3)

H∏

h=1

(h + 1)−
2(h+1)

H(H+3) . (5.16)

The optimal value of δ which minimizes the delay bound from Eq. (5.15) is obtained with

Lemma 5.4, i.e.,

δ = min

{
H(H + 1)(H + 5)

6θd
,
C − (r + rc)

2

}
. (5.17)

Setting the right-hand side of Eq. (5.15) equal to 1 − z, the z-quantile wnet(z) of the

distribution of W net is bounded by d where

d =
H(H + 3)

2θ(C − rc − δ)
log

(
K

1− z

)
. (5.18)
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It remains to choose δ. Since the optimal value of δ from Eq. (5.17) depends on d, the

value of d in Eq. (5.18) can be determined for numerical purposes using an iterative method.

We first let δ = C−(r+rc)
2

in Eq. (5.18) yielding a value d0. We then let d = d0 in Eq. (5.17),

and the resulting value of δ is finally used in Eq. (5.18).

The order of growth of wnet(z) is now obtained by analyzing the constant K from

Eq. (5.16). We can write

log(K) = O(log(H)) +O(H)− 1

H(H + 3)

H∑

h=1

(h + 1) log(h + 1)

= O(H) .

Using the quadratic term from Eq. (5.18) we finally obtain that

wnet(z) = O (
H3

)
.

We have thus shown that the method of using a statistical network service curve yields

much tighter end-to-end delay bounds than the method of adding per-node results.

5.2 Network with Packetized Service

Rather than considering a fluid service model for packet networks, as in the previous section,

we now consider a more realistic packetized service model. In this model packets become

available for service at a node no sooner than fully processed at the next node upstream.

We first show how the packetized service model can be expressed in the terms of net-

work calculus. Then we show that end-to-end delays in the network from Figure 2.1 grow

as O(H log H) when accounting for packetization. In other words, packetization does not

change the O(H log H) established in the previous section for networks with fluid service.

Finally we establish the Ω(H log H) lower bound on delays in a tandem network (no cross

traffic), thus proving the Θ(H log H) scaling behavior of delays.
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Let us consider the network with cross traffic from Figure 2.1 where the capacity of each

node is C. The arrivals of the through flow A1(t) are represented by a compound Poisson

process, where packets arrive with rate λ and have exponentially distributed sizes Xi with

mean 1/µ. Formally, we write

A1(t) =

N(t)∑
i=1

Xi , (5.19)

where N(t) is a Poisson process with mean λt. Similarly, the arrivals of the cross flows

Ah(t), for h = 1, . . . , H , are represented by compound Poisson processes with arrival rates

λc, and exponentially distributed packet sizes with mean 1/µ. Scheduling at the nodes is

work-conserving and locally FIFO, such that our derivations hold even for the worst-case

scenario when the packets of cross flows have preemptive priorities over the packets of the

through flow. We denote the utilization factor by ρ = (λ+λc)/(µC), and assume for stability

that ρ < 1.

Consider the expression for the effective bandwidth of the through flow, i.e., α(θ, t) =

λ
µ−θ

for some 0 < θ < µ, and all t ≥ 0 [52]. Then, following the construction of statistical

envelope from effective bandwidth presented in [76], the through flow is bounded by an EBB

statistical envelope

G(t) =
λ

µ− θ
t (5.20)

with error function ε(σ) = e−θσ. This is obtained using the Chernoff bound as shown below

for any 0 ≤ s ≤ t, σ ≥ 0, and some choice of θ > 0

Pr

(
A(t)− A(s) >

λ

µ− θ
(t− s) + σ

)
≤ E

[
eθ(A(t)−A(s))

]
e−θ λ

µ−θ
(t−s)e−θσ

= e−θσ .

Similarly, at each node h, the cross flow Ah(t) is bounded by an EBB statistical envelope

Gh(t) =
λc

µ− θc

t (5.21)
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with error function εh(σ) = e−θcσ, for some 0 < θc < µ.

To account for the effects of a packetized service model, we represent each node as a con-

catenation between a fluid server with rate C and a packetizer. The fluid server serves packets

according to the fluid service model used in the previous section. The packetizer, denoted

here by P µ, has the role of a delay element that ensures that packets become available for ser-

vice downstream after they have been fully processed upstream. We mention that packetizers

have also been used in the context of the deterministic network calculus (see Parekh and Gal-

lager [91], Le Boudec [15]). The packetizers introduced herein delay packets whose sizes are

described by a distribution function, whereas the packetizers introduced in the deterministic

network calculus delay packets whose sizes are always bounded.

Figure 5.2: A statistical packetizer P µ at the first node in a network with cross traffic.

In Figure 5.2 we illustrate the first node in the network from Figure 2.1. On one hand the

fluid server is represented by a deterministic constant-rate service curve R(t) = Ct, i.e., the

output process D̃(t) satisfies for all t ≥ 0

D̃(t) = A1 ∗ R(t) . (5.22)

Using the expression of the arrivals A1(t) from Eq. (5.19), we can also write

D̃(t) =

M(t)∑
i=1

Xi + Xf (t) ,

where M(t) denotes the number of packets fully processed by time t, and Xf (t) denotes the

processed fraction of the packet (if any) currently in service at time t; if the server is idle at
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time t, then Xf (t) = 0. The process D̃(t) is thus a virtual output process which represents

the fluid output of the through flow at the fluid server.

On the other hand the packetizer P µ takes the fluid output D̃(t) as input, and produces

the packetized output process D1(t) satisfying

D1(t) =

M(t)∑
i=1

Xi .

This accounts for the fact that the second node can start processing a packet no sooner than

the packet was completely processed by the fluid server at the first node. It then follows

inductively that packetizers account for packetization in the entire network. Also, note that

there is no loss in generality in assuming that the cross flows are not required to pass through

packetizers (see Le Boudec [15]).

The next lemma shows that packetizers can be represented with statistical service curves.

Lemma 5.5 Consider the network node represented in Figure 5.2, where packets arrive ac-

cording to an exponential distribution with mean 1/µ. Then for any discretization parameter

τ0 > 0 the function

Sµ(t) = Ct

is a statistical envelope for the packetizer P µ with error function

εµ(σ) = eµCτ0e−µσ .

PROOF. Fix τ0 > 0 and t ≥ 0, and let us denote t as the beginning of the last busy period

containing t at the fluid server. If Xf (t) denotes the fraction already processed of the packet

currently in service at the fluid server at time t, then

u , t− Xf (t)

C
(5.23)
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is the time when the processing of the packet was started. It then follows that

D1(t)−D1(t) = C(u− t) . (5.24)

We can write

Pr
(
D1(t) < A1 ∗ [Sµ − σ]+ (t)

) ≤ Pr
(
D1(t) < D1(t) + [C(t− t)− σ]+

)

≤ Pr (C(t− u) > σ)

≤ Pr (Xf (t) > σ)

≤ e−µσ .

In the first line we used that t is the beginning of a busy period. In the second line we applied

Eq. (5.24). In the third line we applied the definition of u from Eq. (5.23), and in the last line

we invoked the exponential distribution of packets’ sizes.

We can now apply Lemma 4.4 and obtain that for all t ≥ 0 and σ

Pr
(
D1(t) < A1 ∗ [Sµ − σ]+ (t + τ0)

) ≤ eµCτ0e−µσ ,

which completes the proof. ¤

5.2.1 Upper bound

Here we compute end-to-end delay bounds in the network from Figure 2.1, and analyze their

scaling properties. First we consider the simple case of a tandem network, i.e., there is no

cross traffic. Then we consider the case of a network with positive cross traffic.

Using the deterministic service curve description of the fluid server from Eq. (5.22), and

the statistical service curve description of the packetizer from Lemma 5.5, we represent the

service offered by each node in the network from Figure 2.1 to the through flow by the EBB
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statistical service curve

S(t) = R ∗ Sµ(t)

= Ct ,

with error function

εs(σ) = eµCτ0e−µσ .

Having also the EBB statistical envelope for the through flow from Eq. (5.20), we next

derive bounds on the end-to-end delay W net(t). We invoke Theorem 5.1 with the parameters

ra =
λ

µ− θ
, Ma = 1, θa = θ, and

rs = C, Ms = eµCτ0 , θs = µ .

Plugging these values into Eqs. (5.7), and choosing δ that satisfies the condition

0 < δ ≤
C − λ

µ−θ

H
,

we obtain the delay bound for d ≥ 0

Pr
(
W net > d

) ≤ α

θ

(
eµCτ0

)Hθ
α

(
1

µδτ0

)α−θ
α

e−
θµ
α

(C−(H−1)δ)d ,

where

α = Hθ + µ .

Using Lemma 5.4 we minimize the violation probability with τ0 = α−θ
HθµC

, yielding the

delay bound

Pr
(
W net > d

) ≤ Ke−
θµ
α

(C−(H−1)δ)d , (5.25)
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where

K =
α

θ

(
HθCe

δ(α− θ)

)α−θ
α

.

Furthermore, setting the right-hand side of Eq. (5.25) equal to 1− z for some 0 < z < 1,

the z-quantile wnet(z) of the distribution of W net is bounded by

d =
α

θµ(C − (H − 1)δ)
log

(
K

1− z

)
. (5.26)

According to Lemma 5.4, the optimal value of δ is given by

δ = inf

{
α− θ

(H − 1)θµd
,
C − λ

µ−θ

H

}
.

Since δ depends on d, the value of d in Eq. (5.26) can be determined for numerical purposes

using the iterative method presented after Eq. (5.13).

The order of growth of wnet(z) is given by Theorem 5.1, i.e.,

wnet(z) = O(H log H) .

For the rest of the section we consider the case of the network from Figure 2.1 with

positive cross traffic.

Having the statistical envelopes for the cross traffic from Eq. (5.21), we first apply Theo-

rem 4.5 to derive a statistical leftover service curve for the through flow at each fluid server

h for h = 1, . . . , H . The service curves are given for any δ > 0 by the functions

T h(t) =

(
C − λc

µ− θc

− δ

)
t , (5.27)

with error functions

εT,h(σ) =
eθcCτ0

θcδτ0

e−θcσ . (5.28)

Next, having the description of the packetizers from Lemma 5.5, we invoke Theorem 4.7
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to derive a statistical network service curve for the concatenation between a fluid server and

the corresponding packetizer. The service curve is given at each node h by the function

Sh(t) = T h ∗ Sµ
−δ(t)

= inf
0≤s≤t

{(
C − λc

µ− θc

− δ

)
s + (C − δ)(t− s)

}

=

(
C − λc

µ− θc

− δ

)
t .

The corresponding error function is

εh(σ) = ε̃T,h
δτ0
∗ εµ(σ)

= inf
σ1+σ2=σ

{
eθcCτ0

(
1

θcδτ0

)2

e−θcσ1 + eµCτ0e−µσ2

}

=
θc + µ

θc

((
eθcCτ0

θcδτ0

)2
θc

µ

) µ
θc+µ

e−
θcµ

θc+µ
σ .

In the last line we applied Lemma 5.3.

Having the EBB statistical envelope for the through flow from Eq. (5.20), we now derive

bounds on the end-to-end delay W net by invoking Theorem 5.1 with the parameters

ra =
λ

µ− θ
, Ma = 1, θa = θ, and

rs = C − λc

µ− θc

− δ, Ms =
θc + µ

θc

((
eθcCτ0

θcδτ0

)2
θc

µ

) µ
θc+µ

, θs =
θcµ

θc + µ
.

Plugging these values into Eq. (5.7) after first enforcing the condition

δ ≤
C − λ

µ−θ
− λc

µ−θc

H + 1
,

we obtain the delay bound

Pr
(
W net > d

) ≤ Ke−
θθcµ

γ (C− λc
µ−θc

−Hδ)d , (5.29)
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where

K =
γ

θ

(
2HCeθµ

δβ

)β
γ

(θc + µ)
(H−1)θ(θc+µ)

γ

(
1

θc

)Hθθc
γ

(
1

µ

)β−Hθµ
γ

,

γ = Hθ(θc + µ) + θcµ , and

β = (3H − 1)θµ + (H − 1)θθc + θcµ .

In the derivation we applied Lemma 5.4 that gives τ0 = β
2HCθθcµ

.

Setting the right-hand side of Eq. (5.29) equal to 1−z for some 0 < z < 1, the z-quantile

wnet(z) of the distribution of W net is bounded by

d =
γ

θθcµ(C − λc

µ−θc
−Hδ)

log

(
K

1− z

)
. (5.30)

According to Lemma 5.4, the optimal value of δ is given by

δ = inf

{
β

Hθθcµd
,
C − λ

µ−θ
− λc

µ−θc

H + 1

}
.

Since δ depends on d, the value of d in Eq. (5.30) can be computed for numerical purposes

with the iterative method presented after Eq. (5.13).

The order of growth of wnet(z) is given by Theorem 5.1, i.e.,

wnet(z) = O(H log H) .

5.2.2 Lower bound

Here we show that end-to-end delays of packets in a tandem network are bounded from below

by Ω(H log H).

First, let us make some important remarks about the differences between the delays of

packets, and the virtual delays from Eq. (2.1) which we usually compute with the network

calculus. Consider a single node where packets arrive as a Poisson process with rate λ and
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have exponentially distributed service times with mean 1/(µC). Denote tn as the departure

time of packet n, and let t0 = 0. Also, denote Yn as the service time of packet n, and W ′
n

as the delay of packet n. Let W (t) the virtual delay from Eq. (2.1) under either a fluid or

packetized service model. Assuming a stability condition, let W ′ as the steady-state delay of

packets, and W as the steady-state delay of W (t).

We observe that while the packets’ delays W ′
n are always positive, the calculus de-

lays satisfy W (t) = 0 whenever t does not belong to a busy period. In other words,

Pr (W (t) = 0) = 1− ρ, where ρ = λ/(µC). Also, we have that for all t ∈ [tn−1, tn)

W (t) ≤ W ′
n ≤ W (t) + Yn ,

which yields that E[W ] ≤ E[W ′], and E[W ′] − E[W ] ≤ 1/(µC). This means that for

numerical purposes, the difference between the two delays is negligible. In a multi-node sce-

nario, one can similarly show an O(H) difference between the end-to-end delays of packets

and the virtual end-to-end delay computed with the calculus.

Now we give the main result of this section.

Theorem 5.6 (Ω(H log H) END-TO-END DELAY BOUNDS) Consider a flow traversing a

tandem network with H nodes, each having capacity C. The arrivals of the flow consist

of packets arriving with rate λ and having exponentially distributed packet sizes with mean

1/µ. All inter-arrival times and packet sizes are stationary and independent. Denote by W net

the steady-state end-to-end delay of the packets. Then for each 0 < z < 1 there exist two

constants γ1 and γ2 such that

Pr
(
W net < γ1H log (γ2H)

)
≤ z . (5.31)

From the definition of the z-quantile wnet(z) (see Eq. (5.1)) we have that

wnet(z) ≥ γ1H log (γ2H) ,
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implying the following result.

Corollary 5.7 The z-quantile wnet(z) of the distribution of the steady-state end-to-end delay

of packets W net satisfies

wnet(z) = Ω(H log H) .

The lower bound remains valid in a network with cross traffic because the effect of adding

cross traffic in the tandem network is an increase of the end-to-end delays. In conjunction

with Corollary 5.2, and the observations we made at the beginning of this section about the

differences between packets’ and virtual delays, we obtain the scaling behavior of delays in

networks with EBB envelopes and EBB service curves.

Corollary 5.8 The z-quantile wnet(z) of the distribution of the steady-state end-to-end de-

lays of packets W net satisfies

wnet(z) = Θ(H log H) .

A critical assumption in the theorem leading to the Ω(H log H) lower bounds for the end-

to-end delays is that packets maintain their sizes at each of the traversed nodes. Analyzing

such networks is difficult due to the correlations which arise between service at different

nodes. To see where these correlations stem from, suppose that a very large packet arrives

at the first node; then, the next packet is likely to experience very large queueing delays at

each node along the network path, due to the high processing times of the large packet at the

nodes.

Before proving the theorem let us review some related literature concerning the analysis

of tandem networks with identical service times. A simple approach to analyze a packet-

switched network, where the sizes of packets are implicitly identical, relies on Kleinrock’s

independence assumption [67]. The assumption states that the size of each packet is inde-

pendently re-sampled at each of the traversed node. With this assumption, the network has a

product-form (under proper assumptions on arrivals and service time distributions), and exact
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results are readily available. Although not realistic, the independence assumption can lead

to reasonably good approximations in certain scenarios (e.g. densely-connected networks or

high utilizations) [10].

One of the first attempts for the analysis of a tandem network with identical service times

was pursed by Boxma [17]. For a network with two nodes, Poisson arrivals and general

service times distribution, Boxma derives the steady-state delay distribution of the delay at

the second node. Also, he shows that the (positive) correlations of the delays at the two

nodes are much higher than in the case of independent service times of packets. In a G/G/1

tandem network characterized by general arrivals and service time distributions, Calo shows

in [24] that the delays of any packet at the network nodes, starting with the second, are

nondecreasing. More precisely, Vinogradov shows that the delays grow as Θ(log h), where

h is the node, for Poisson input and exponentially distributed service times [109].

In [108] Vinogradov provides the expression for the steady-state end-to-end delay distri-

bution, starting with the second node, for Poisson arrivals and general service times. This

result is later extended to general arrivals by Le Gall [50]. Consider the case of a tan-

dem network with H + 1 nodes, packets arriving with rate λ < 1, and exponentially dis-

tributed service times with mean one. If W h denote the steady-state delay of packets at

nodes h = 1, . . . , H + 1, then we have according to [108] for all d ≥ 0

Pr
(
W 2 + · · ·+ WH+1 ≤ d

)
=

(1− λ)
(
1− e−

d
H

)
x

(
d
H

)

λe−
d
H

e
−H

R∞
d
H

x(t)dt
, (5.32)

where x(u) is the solution in x of the equation

x = λ

(
1− 1

x + 1
e−(x+1)u

)
. (5.33)

Vinogradov also shows in [109] that the expectation of the end-to-end delay for Poisson

arrivals and exponentially distributed service times grows as Θ(H log H) for H → ∞; note

that Corollary 5.8 reproduces this result.
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Let us remark that the end-to-end delay distribution from Eq. (5.32) is not explicit, and

numerical results are difficult to compute. Concretely, one needs to solve the transcendental

equation (5.33), and further compute the integral of the solution in Eq. (5.32). In light of this

apparent limitation of Eq. (5.32), the contribution of Theorem 5.6 is that it provides a simple

expression for the end-to-end delay lower bound, that quickly lends to numerical results.

Also, unlike the end-to-end delay expression from Eq. (5.32), Theorem 5.6 accounts for the

first node in the tandem network.

Now we turn to the proof of Theorem 5.6, which will use a maximal inequality for su-

permartingales due to Doob. In order to state this inequality, let us first briefly introduce the

concept of a supermartingale (we follow Grimmett and Stirzaker [52]).

Definition 5.9 (SUPERMARTINGALE) Let a continuous-time stochastic process X =

{X(t) : t ≥ 0} such that X(t) is integrable for all t, i.e., E [|X(t)|] < ∞. Let also a family

F = {Ft : t ≥ 0} of sub-σ-algebras ofF satisfying two properties: (1)Fs ⊆ Ft for all s ≤ t,

and (2) X(t) is Ft-measurable for all t ≥ 0. (X, F) is a supermartingale if the inequality

E [X(t) ‖ Fs] ≤ X(s) a.s.,

holds for all 0 ≤ s ≤ t.

The family of σ-algebras F is appropriately called a filtration to reflect the inclusion

property (1) from the definition. We usually work with σ-algebras Ft of the form

Ft = σ {X(s) : s ≤ t} ,

i.e., the σ-algebras generated by the past history of the process. Automatically, the family

of σ-algebras constructed in this way satisfies the property (2) in the definition. To simplify

notation, we usually say that X(t) is a supermartingale when the corresponding filtration is

implied.
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The quantity E [X(t) ‖ Fs] is the expectation of X(t) conditioned on the σ-algebra Fs.

This type of conditional expectation is a random variable itself and satisfies the following

useful properties.

Lemma 5.10 (BASIC PROPERTIES OF CONDITIONAL EXPECTATION) Let X, Y two random

variables, and let G a σ-algebra satisfying G ⊆ F . If X is statistically independent of G then

E [X ‖ G] = E [X] a.s..

If X is G-measurable then

E [XY ‖ G] = XE [Y ‖ G] a.s..

Now we present Doob’s maximal inequality.

Lemma 5.11 (DOOB’S MAXIMAL INEQUALITY - [52]) Let (X, F) a nonnegative super-

martingale. Then we have

Pr

(
sup

0≤s≤t
X(s) > x

)
≤ E [X(0)]

x
, (5.34)

for all t ≥ 0 and x > 0.

PROOF OF THEOREM 5.6. Fix 0 < z < 1. For any j ≥ 1 let the following variables.

Xj : inter-arrival time between the (j − 1)th and jth packets

Yj : the service time of packet j

TH,j : the departure time of jth packet from node H

WH,j : total delay experienced by the jth packet across the network
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For n ≥ 1 we can bound TH,n as

TH,n ≥ sup
0≤j≤n

{
j∑

i=0

Xi + HYj +
n∑

i=j+1

Yi

}
,

where we denoted for convenience X0 = 0 and Y0 = 0. The equation states that for any

j ≤ n the following is true: TH,n is greater than the arrival time of the jth packet at the first

node, plus the minimum time required by the jth packet to traverse the network, and plus the

total service times of packets j + 1, . . . , n at node H .

Since the nth packet arrives at the first node at time
∑n

i=1 Xi, it immediately follows that

its end-to-end delay WH,n is bounded below by

WH,n ≥ sup
0≤j≤n

{
HYj +

n∑
i=j+1

(Yi −Xi)

}
.

In terms of probabilities, we have that for all d ≥ 0 and K > 0

Pr (WH,n ≥ d)

≥ Pr

(
sup

0≤j≤n

{
HYj +

n∑
i=j+1

(Yi −Xi)

}
≥ d

)

≥ Pr

(
sup

0≤j≤n

{
HYj −K(n− j) +

n∑
i=j+1

(Yi −Xi) + K(n− j)

}
≥ d

)

≥ Pr

(
sup

0≤j≤n
{HYj −K(n− j)} ≥ d

)

−Pr

(
inf

0≤j≤n

{
n∑

i=j+1

(Yi −Xi) + K(n− j)

}
< 0

)
. (5.35)

In the last line we used the implication

{
sup

j
aj ≥ 0

}
⇒

{
sup

j
{aj + bj} ≥ 0

} ⋃ {
inf
j

bj < 0

}
,

for some numbers aj, bj . Also, K is a free parameter which is to be chosen below such that
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the the two probabilities in Eq. (5.35) are properly balanced.

We now evaluate the second term of the right-hand side of Eq. (5.35). Let 0 < θ < λ and

choose K such that
λ

λ− θ

µC

µC + θ
e−θK = 1− z . (5.36)

Using the following notations for all 1 ≤ j ≤ n

Uj = − (Yn−j+1 −Xn−j+1) ,

Sj =

j∑
i=1

Ui , and

Tj = eθ(Sj−Kj) ,

the last probability in Eq. (5.35) can be rewritten as

P

(
sup

1≤j≤n
Tj > 1

)
. (5.37)

This will be estimated next.

Let the filtration of σ−algebras Fj = σ (U1, U2, . . . , Uj). We have for any j ≥ 1 that

E [Tj+1 ‖ Fj] = E
[
Tje

θ(Uj+1−K) ‖ Fj

]

= TjE
[
eθ(Uj+1−K)

]

= Tj
λ

λ− θ

µC

µC + θ
e−θK

≤ Tj .

In the second and third lines we applied the statistical independence of Xi and Yi (see the

properties of conditional expectation from Lemma 5.10). In the third line we used the mo-

ment generating functions E
[
eθXj

]
= λ

λ−θ
and E

[
e−θYj

]
= µC

µC+θ
. In the last line we used

the definition of K from Eq. (5.36).

Since Tj ≥ 0 for all j it then follows that Tj is a (discrete-time) supermartingale. Invoking
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Doob’s maximal inequality for supermartingales (Lemma 5.11) we have that

P

(
sup

1≤j≤n
Tj > 1

)
≤ E [T1]

≤ λ

λ− θ

µC

µC + θ
e−θK

≤ 1− z . (5.38)

We now turn to the first term in Eq. (5.35). Choosing a value d such that

P

(
sup

0≤j≤n
(HYj −K(n− j)) ≥ d

)
= 2(1− z) ,

Eqs. (5.35) and (5.38) yield

Pr (WH,n ≥ d) ≥ 1− z . (5.39)

Moreover, Eq. (5.38) implies that

1− 2(1− z) =
n∏

j=0

(
1− e−

µC
H

(d+Kj)
)

,

such that we can write

log(1− 2(1− z)) =
n∑

j=0

log
(
1− e−

µC
H

(d+Kj)
)
≤ −

n∑
j=0

e−
µC
H

(d+Kj)

≤ −
e−

µC
H

d
(
1− e−

µC
H

(n+1)K
)

1− e−
µC
H

K

≤ − H

µCK
e−

µC
H

d . (5.40)

In the second line we applied the inequality log(1− x) ≤ −x for all 0 ≤ x < 1. In the third

line we evaluated the series, and in the last line we let n → ∞ and applied the inequality

1− e−x ≤ x for all x ≥ 0.
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From Eq. (5.40) we can choose

γ1 =
1

µC
, and

γ2 = − 1

µCK log(1− 2(1− z))
.

Since W net = limn→∞ WH,n, it follows from Eq. (5.39) that the proof is complete. ¤

5.3 Numerical Examples

In this section we present two sets of numerical examples. In the first we illustrate the delay

bounds derived in Section 5.1 in the case of a network with cross traffic, Markov-modulated

On-Off arrivals, and a fluid service model. In the second we compare the upper and lower

bounds on end-to-end delays derived in Sections 5.2.1 and 5.2.2 for tandem networks and a

packetized service model.

5.3.1 Markov-modulated On-Off processes

Here we present numerical examples which illustrate that the method of using a statisti-

cal network service curve yields much smaller end-to-end delay bounds than the method of

adding per-node delay bounds. Delay bounds with the two methods have been computed in

Section 5.1.

We assume that the through traffic and each cross traffic at nodes h = 1, . . . , H consist

of aggregates of statistically independent Markov-modulated On-Off processes, which can

be defined as follows. Let a two-state homogenous and continuous-time Markov chain X(t)

with the transition matrix

Q =



−µ µ

λ −λ


 .

The two states of X(t) are denoted ‘On’ and ‘Off’, and µ and λ represent the transition rates
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from the ‘On’ state to the ‘Off’ state, and vice-versa, respectively. In the steady-state, the

average spending time of the process X(t) in the ‘On’ state is 1
µ

, and the average spending

time in the ‘Off’ state is 1
λ

[101]. Therefore, the value

T =
1

µ
+

1

λ
(5.41)

is the average time for the Markov process X(t) to change states twice. Also, T reflects the

burstiness of the process with small values of T indicating a low burstiness and vice-versa.

Figure 5.3: A Markov-modulated On-Off traffic model.

A continuous-time arrival process A(t) is a Markov-modulated On-Off process driven by

a Markov process X(t) if the arrival rate of the process is either P or zero, depending whether

X(t) is in the ‘On’ and ‘Off’ states, respectively. Figure 5.3 illustrates a Markov-modulated

On-Off process.

In our network scenario, we assume that there are N through flows and Nc cross flows at

each node. Consider the expression of the effective bandwidth for a single Markov-modulated

On-Off process A(t) (see Chang [26], Kelly [64])

αA(θ, t) ≤ 1

2θ

(
Pθ − µ− λ +

√
(Pθ − µ + λ)2 + 4λµ

)
. (5.42)

Then, using the statistical independence of the flows and the Chernoff bound (see also Li et.

al. [76]), we obtain that the function

G(t) =
N

2θ

(
Pθ − µ− λ +

(
(Pθ − µ + λ)2 + 4λµ

) 1
2

)
t

is an EBB statistical envelope for the through traffic with error function ε(σ) = e−θσ for any
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θ > 0. Analogous expressions for the cross traffic envelopes are obtained with N replaced by

Nc. These descriptions further permit the calculation of the delay bounds given in Eqs. (5.13)

and (5.18) from Section 5.1.

Burstiness T P r µ λ
(ms) (Mbps) (Mbps) (ms−1) (ms−1)

low 10 1.5 0.15 1.0 0.11
high 100 1.5 0.15 0.1 0.01

Table 5.1: Parameters of a Markov-modulated On-Off Markov process.

Let us consider the following numerical settings. Time is measured in milliseconds and

we plot bounds on the z-quantiles wnet(z) with z = 1 − 10−9. The capacity of each node

is C = 100 Mbps. The peak rate of a flow is P = 1.5 Mbps and the average rate is r =

0.15 Mbps. We consider both the case of Markov processes with high burstiness (T = 10 ms)

and small burstiness (T = 100 ms). Note that the values of P , r, and T determine the values

for the transition rates µ and λ (see Table 5.1). Lastly, the only unknown variable, i.e., θ, is

subject to numerical optimizations.
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Figure 5.4: End-to-end delay wnet(z) for Markov-modulated On-Off processes as a function
of the number of flows N + Nc (H = 1, 2, 5, 10, T = 10 ms (low burstiness), N = Nc,
z = 1− 10−9)

In Figures 5.4.(a) and (b) we show the bounds on the z-quantiles wnet(z) obtained with

the method of using a statistical network service curve (Eq. (5.13)), and with the method of
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adding per-node bounds (Eq. (5.18)), as a function of the total number of flows N + Nc. We

consider several number of nodes (H = 1, 2, 5, and 10), equal share of through and cross

flows at each node (N = Nc), and low burstiness for a flow (T = 10 ms). We observe that

as the number of nodes increases, the differences between the bounds obtained with the two

methods become more accentuate. Also, the bounds obtained with Eq. (5.18) are much more

sensitive than the bounds from Eq. (5.13) when the number of nodes H increases.
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Figure 5.5: End-to-end delay wnet(z) for Markov-modulated On-Off processes as a function
of the number of flows N + Nc (H = 1, 2, 5, 10, T = 100 ms (high burstiness), N = Nc,
z = 1− 10−9)

In Figures 5.5.(a) and (b) we consider similar numerical settings as in Figures 5.4.(a) and

(b), but for flows with higher burstiness (T = 100 ms). Because the flows are more bursty, the

resulted delay bounds are more pessimistic than the corresponding bounds in Figures 5.4.(a)

and (b).

In Figure 5.6 we show the bounds on the z-quantiles wnet(z) obtained with the two meth-

ods as a function of the total number of flows N + Nc. Different from Figure 5.4 is that we

now consider different percentages p of the through flows out of the total number of flows

(p = 10% and 90%). Figure 5.6.(a) shows that for a small number of nodes (H = 2) the dif-

ferences between the bounds obtained with the two methods are relatively small depending

on the load of through traffic. However, as Figure 5.6.(b) shows, the differences between the

bounds become more pronounced when the number of nodes increases (H = 10).
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Figure 5.6: End-to-end delay wnet(z) as a function of the number of flows N + Nc (N =
10%, 90% out of the total number of flows N + Nc, H = 2, 10, T = 10ms, z = 1− 10−9)

In Figure 5.7 we show the bounds on the z-quantiles wnet(z) obtained with the two meth-

ods as a function of the total number of nodes H . We now consider two utilization factors

(ρ = 0.5 and ρ = 0.9) and set T = 10 ms, and N = Nc. The figure best illustrates the

O(H log H) and O (H3) scaling behaviors of the end-to-end delay bounds obtained with the

two methods.
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Figure 5.7: End-to-end delay wnet(z) as a function of the number of nodes H in the network
(utilization factor ρ = 0.5, 0.9, T = 10 ms, N = Nc, z = 1− 10−9)
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5.3.2 Comparison between upper and lower bound

Here we give numerical examples to illustrate a comparison between the upper bound from

Eq. (5.26), and the corresponding lower bound from Theorem 5.6. We recall that both

bounds were derived in tandem networks with Poisson arrivals, exponentially distributed

packet sizes, identical service times at the nodes, and a packetized service model.

We also plot the exact results obtained by using Kleinrock’s independence assumption

stating that the size of each packet is independently regenerated at each traversed node [67].

Additionally, we show simulation results on wnet(z) obtained as follows. We start with an

empty network and record the largest 100 delays among the first 108 packets that complete

service. The smallest of the recorded delays is the simulated value of wnet(z).

We consider the following numerical settings. Time is measured in milliseconds and we

plot bounds on the z-quantiles wnet(z) with z = 1 − 10−6. The capacity of each node is

C = 100 Mbps and the average size of packets is 1/µ = 400 Bytes [87]. We note that for an

utilization factor ρ, the arrival rate of packets is λ = ρµC. Lastly, the unknown variable θ (in

the expression for the upper bound from Eq. (5.26)) is numerically optimized.
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Figure 5.8: End-to-end delay wnet(z) as a function of the number of nodes H (utilization
factor (ρ = 0.1 and ρ = 0.9), C = 100 Mbps, average packet size µ−1 = 400 Bytes,
z = 1− 10−6)

In Figure 5.8 we show the end-to-end delay bounds as a function of the total number of
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nodes H in the network. We consider both low utilization factor (ρ = 0.1) in Figure 5.8.(a),

and high utilization factor (ρ = 0.9) in Figure 5.8.(b). The figures show that the utilization

factor has little impact on simulation results, a fact that is captured by both the upper and

lower bounds. The formula for the exact result is too optimistic at low utilizations, and

becomes more accurate at high utilizations. The last observation has also been pointed out

in the literature (see [10]), in order to explain in which scenarios Kleinrock’s independence

assumption is justified.
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Figure 5.9: End-to-end delay wnet(z) as a function of the number of the utilization factor
ρ (number of nodes (H = 5 and H = 25), C = 100 Mbps, average packet size µ−1 =
400 Bytes, z = 1− 10−6)

In Figure 5.9 we show (on a logarithmic scale) the end-to-end delay bounds by varying

the utilization factor ρ (the last shown value is ρ = 0.999). We consider a small number of

nodes (H = 5) in Figure 5.9.(a), and a high number of nodes (H = 25) in Figure 5.9.(b). The

figures shows that both the lower and upper bounds are quite accurate at utilization factors

less than 0.8. At high utilizations the lower bound does not capture the exponential increase

of the delay, whereas the upper bound is too pessimistic.

For small number of nodes, the formula for the exact results predicts overly optimistic

delays at low utilizations, becomes accurate at high utilization, but predicts overly pessimistic

delays at very high utilizations (e.g. ρ = 0.999). For high number of nodes, the formula for
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the exact results is inaccurate at most utilizations; the formula even predicts more pessimistic

delays than the upper bounds around an utilization factor of ρ = 0.97.



Chapter 6

Accounting for Statistical Independence

The network calculus formulation presented in Chapter 4 is generally suitable to analyze net-

work scenarios where arrivals and service at the nodes may be statistically correlated. Con-

sequently, the calculus may yield pessimistic end-to-end performance bounds in scenarios

with independent arrivals or service. To account for statistical independence across multi-

ple nodes, and yet capture possible correlations among arrivals or service, we now extend

the network calculus formulation with moment generating functions proposed by Chang [29]

and Fidler [48].

The key extension of the proposed network calculus formulation is a new statistical ser-

vice curve model. Similar to the service models used in [29,48], the proposed service model

can account for statistical independence of service across multiple nodes. Unlike the service

models from [29, 48], the proposed service model permits the analysis of network scenarios

where service at the nodes may be statistically correlated.

One scenario where the proposed network calculus formulation is particularly useful is a

network with statistically independent cross traffic and a packetized service model. If packets

maintain their sizes along the traversed nodes, then the service at the nodes is statistically

correlated. These correlations can be captured within the proposed service curve model, and

yet the statistical independence of the cross traffic can be accounted for. Another scenario is

a network with correlated cross traffic, packetized service model, but where the size of each

126
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packet is independently re-sampled at each traversed node. Although both arrivals and service

are clearly correlated, the proposed network calculus can exploit the statistical independence

of service arising from re-sampling the packets sizes. In the next chapter we will derive

explicit delay bounds for these two network scenarios.

As in [29, 48], the methods in this chapter are restricted to the class of arrival processes

having bounded moment generating functions. In particular, the class of heavy-tailed ar-

rival processes is not covered. Besides the general case of arrivals with bounded MGFs, we

also consider the special case of stationary arrivals with independent increments, for which

improved performance bounds can be derived.

The rest of this chapter is organized as follows. In Sections 6.1-6.4 we consider inde-

pendent arrivals or service: we give the arrivals and service descriptions, and then present

results on single-node performance bounds and the construction of statistical network ser-

vice curves. In Section 6.5 we specialize to the case of arrival processes with stationary and

independent increments.

6.1 Statistical Envelope

As in the network calculus formulation proposed by Chang [29] and Fidler [48], we charac-

terize the arrivals by bounds on their moment generating functions (MGF). Unlike in [29,48],

we now work in a continuous time setting.

Definition 6.1 (MGF ENVELOPE FOR ARRIVALS) An arrival process A(t) is bounded by

an MGF envelope, with rate r and prefactor M , for some choice of θ > 0, if for all 0 ≤ s ≤ t

E
[
eθA(s,t)

] ≤ Meθr(t−s) . (6.1)

In general, both the rate r and the prefactor M depend on θ.
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If the arrival process is stationary, the MGF envelope model is equivalent to the linear en-

velope model from Eq. (3.4); note that the rate r in Eq. (6.1) equals to the effective bandwidth

αA(θ, t) in Eq. (3.4).

Next we relate the MGF envelope model from Definition 6.1 with the statistical enve-

lope model from Definition 4.1. This result will later enable relating results obtained in this

chapter with results obtained using the network calculus formulations from Chapter 4.

Lemma 6.2 Suppose that an arrival process A(t) is bounded by an MGF envelope with rate

r and prefactor M for some choice of θ > 0. Then the function

G(t) = rt (6.2)

is a statistical envelope for A(t) with error function ε(σ) = Me−θσ, in the sense of Defini-

tion 4.1 (G(t) is an EBB envelope).

The proof of the lemma follows directly from the Chernoff bound.

6.2 Statistical Service Curve

We use a statistical service curve model that combines the service curve models from Defi-

nitions 3.5 and 4.3. In this way the new service model can capture correlations between the

service at different nodes, and yet it can account for statistical independence of service where

available.

Definition 6.3 (STATISTICAL SERVICE CURVE) A doubly-indexed random process S(s, t)

is a statistical service curve with error function ε(σ) for an arrival process A(t) if the corre-

sponding departure process D(t) satisfies for all t ≥ 0 and σ

Pr
(
D(t) < A ∗ [S − σ]+ (t + τ0)

)
≤ ε(σ) , (6.3)

where τ0 is a discretization parameter.
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The random process S(s, t) is decreasing in s, increasing in t, and satisfies S(s, t) =

S(s, u)+S(u, t) for all 0 ≤ s ≤ u ≤ t. The error function ε(σ) is assumed to be nonnegative

and nonincreasing.

This statistical service curve is different from the one used in the calculus from Section 4

in that S(s, t) is now defined as a random process. If S(s, t) is non-random and depends only

on t−s then Definition 6.3 reduces to Definition 4.3, and we further impose the condition on

ε(σ) from Eq. (4.8). If S(s, t) is random and ε(σ) = 0 for all σ, then Definition 6.3 reduces

to Definition 3.5 with τ0 = 0.

Since service curves are defined here as random processes, it is convenient to use an

MGF envelope model to bound them (see Fidler [48]). Unlike the MGF envelope model

from Definition 6.1 bounding the arrivals from above, we now bound the service curves from

below.

Definition 6.4 (MGF BOUND FOR SERVICE CURVES) A statistical service curve S(s, t)

has an MGF (exponential) bound, with rate r and prefactor M , for some choice of θ > 0, if

for all 0 ≤ s ≤ t

E
[
e−θS(s,t)

] ≤ Me−θr(t−s) . (6.4)

In general, both the rate r and the prefactor M depend on θ.

The next result is an adaptation of Lemma 4.2 that was used for the derivation of single-

node results in the calculus from Chapter 4. Unlike Lemma 4.2 where the arrivals are de-

scribed with statistical envelopes, the arrivals herein are described with MGF envelopes.

Lemma 6.5 (SAMPLE-PATH BOUNDS WITH BOOLE’S INEQUALITY) Suppose that an ar-

rival process A(t) is bounded for some choice of θ > 0 by an MGF envelope with rate ra

and prefactor Ma. For some discretization parameter τ0, let a statistical service curve S(s, t)

statistically independent of A(t). For the same θ, S(s, t) has an MGF bound with rate rs and

prefactor Ms = M ′
s

(b t−s
τ0
c+H−1

H−1

)
for some integer H > 0, where M ′

s does not depend on t−s.

Denote M = MaM
′
s, r = rs − ra, and assume for stability that r > 0. Then we have for all



Chapter 6. Accounting for Statistical Independence 130

t ≥ 0 and σ

Pr

(
sup

0≤s≤t
{A(t)− A(s)− S(s, t + τ0)} > σ

)
≤ M

(
1

θrτ0

)H

e−θσ . (6.5)

In applications, H corresponds to the number of nodes. The case when Ms does not depend

on t − s corresponds to H = 1. The complementary case correspond to H > 1; the de-

pendency is caused by the binomial factor which generally stems from evaluating multi-node

convolutions (for further technical details see Theorem 6.8).

PROOF. Fix t ≥ 0 and σ. Using the discretization technique used in the proof of

Lemma 4.2, we can write

Pr

(
sup

0≤s≤t

{
A(t)− A(s)− [S(s, t + τ0)− σ]+

}
> 0

)

≤ Pr

(
sup
j≥0

{
A(t)− A

(
[t− (j + 1)τ0]+

)− S (t− jτ0, t + τ0)
}

> σ

)

≤ M
∑
j≥1

(
j + H − 1

H − 1

)
e−θrjτ0e−θσ

≤ M

(
1−

(
1

1− e−θrτ0

)H
)

e−θσ

≤ M

(
1

θrτ0

)H

e−θσ .

In the third line we applied Boole’s inequality. In the fourth line we used
∑

j≥0

(
j+H−1
H−1

)
aj =

(
1

1−a

)H for all 0 < a < 1 (see [48]). Last we used that
(

1
1−e−x

)H − 1 ≤ (
1
x

)H for all x > 0.

The proof is thus complete. ¤

For the rest of this section we show how to construct statistical leftover service curves that

satisfy Definition 6.4. The presented result will be used in the next chapter for the derivation

of end-to-end performance bounds in networks with cross traffic where arrivals are described

with MGF envelopes as in Definition 6.1.
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Theorem 6.6 (STATISTICAL LEFTOVER SERVICE CURVE) Consider a node with capacity

C serving two arrival processes A(t) and Ac(t), whose corresponding departure processes

are D(t) and Dc(t), respectively. Assume that Ac(t) is bounded by an MGF envelope with

rate rc and prefactor 1 for some choice of θ > 0, and that rc < C. Fix τ0. Then we have the

following two constructions.

1. The process

S(s, t) = [C (t− s− τ0)− Ac (s, t− τ0)]+ (6.6)

is a statistical service curve for A(t) with error function zero. It has an MGF bound

with rate C − rc and prefactor eθ(C−rc)τ0 .

2. For any choice of δ > 0 the process

S(s, t) = [C − rc − δ]+ (t− s) (6.7)

is a statistical service curve for A(t) with error function ε(σ) = eθCτ0

θδτ0
e−θσ.

On one hand, the construction from Eq. (6.6) extends the corresponding construction

from Theorem 3.6 to a continuous time setting. It is generally useful when A(t) and Ac(t)

are statistically independent. On the other hand, the construction from Eq. (6.7) extends the

corresponding construction from Theorem 4.5 to arrivals described with MGF envelopes; in

this case S(s, t) is a non-random function. The second construction is useful when A(t) and

Ac(t) may be statistically correlated.

PROOF. Fix t ≥ 0 and δ > 0. For the first case we invoke Theorem 3.6 and obtain that

the function T (s, t) = [C(t− s)− Ac(s, t)]+ satisfies

D(t) ≥ A ∗ T (t) a.s. . (6.8)

Next, as in Lemma 4.4, it can be shown that the function S(s, t) = T (s, t− τ0) is a statistical

leftover service curve in the sense of Definition 6.3. The corresponding MGF bound for the
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service curve S(s, t) follows from expanding E
[
e−θS(s,t)

]
.

For the second case we first apply Lemma 6.2 and obtain that the function G(t) = rct is a

statistical envelope for Ac(t) with error function ε(σ) = e−θσ. Then the claim from Eq. (6.7)

follows directly by invoking Theorem 4.5, which completes the proof. ¤

6.3 Single-Node Performance Bounds

The next result gives single-node performance bounds for a flow having the arrivals described

with MGF envelopes as in Definition 6.1, and service described with the service curve model

from Definition 6.3.

Theorem 6.7 (PROBABILISTIC PERFORMANCE BOUNDS) Consider a flow at a node with

arrivals and departures denoted by the processes A(t) and D(t), respectively. For some

discretization parameter τ0, assume that the service available to the flow is given by a sta-

tistical service curve S(s, t), that is statistically independent from A(t), with error function

εs(σ). For some choice of θ > 0 assume that A(t) is bounded by an MGF envelope with

rate ra and prefactor Ma, and also S(s, t) has an MGF bound with rate rs and prefactor

Ms = M ′
s

(b t−s
τ0
c+H−1

H−1

)
for some integer H > 0, where M ′

s does not depend on time param-

eters. Denote M = MaM
′
s, r = rs − ra, and assume for stability that r > 0. Also, let us

define the error function

ε(σ) = inf
σa+σs=σ

{
M

(
1

θrτ0

)H

e−θσa

+ εs (σs)

}
. (6.9)

Then we have the following probabilistic bounds.

1. OUTPUT RATE ENVELOPE: If H = 1 and εs(σ) = 0 for all σ, then the output process

D(t) is bounded by an MGF envelope with rate ra and prefactor M
(

1
θrτ0

)H

.
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2. BACKLOG BOUND: A bound on the backlog process B(t) is given for all t, σ ≥ 0 by

Pr
(
B(t) > σ

)
≤ ε(σ) . (6.10)

3. DELAY BOUND: A bound on the delay process W (t) is given for all t, σ ≥ 0 by

Pr
(
W (t) >

σ

rs

)
≤ ε(σ) . (6.11)

Let us make some observations about the theorem. First, in the case when the service

curve is given by the function S(s, t) = rs(t − s), the backlog and delay bounds in the the-

orem are exactly the bounds obtained with Theorem 4.6. This can be shown by applying

Lemma 6.2 to express the arrival process with a statistical envelope in the sense of Defini-

tion 4.1. Second, in the case when S(s, t) = rs(t − s) and εs = 0, then the backlog bound

was derived by Chang in [26] in a discrete-time setting. If εs(σ) = 0 similar bounds were

derived by Fidler in [48] in a discrete-time setting. Last, the results in the theorem depend on

the discretization parameter τ0; we will later apply these results and show how to optimize τ0

using convex optimizations.

PROOF. Fix τ0 > 0. To prove the output rate envelope let us choose 0 ≤ s ≤ t, such that

we can write

E
[
eθ(D(t)−D(s))

] ≤ E
[
eθ(A(t)−A∗S(s+τ0))

]

≤ E
[
eθ supj≥0{A(t)−A([s−(j+1)]+)−S((j+1)τ0)}]

≤ MaM
′
se

θra(t−s)
∑
j≥1

(
j + H − 1

H − 1

)
e−θ(rs−ra)jτ0

≤ M

(
1

θrτ0

)H

eθra(t−s) .

In the first line we used that D(t) ≤ A(t) and that D(s) ≥ A ∗ S (s + τ0) a.s.. In the second

line we used the discretization technique used in the proof of Lemma 4.2. In the third line we
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used Boole’s inequality and the rest follows as in the proof of Theorem 6.5.

To prove the backlog bound, let us choose σ ≥ 0 and σa, σs such that σa + σs = σ.

Assume that for a particular sample-path the following inequalities

A(t)− A(s) ≤ S(s, t + τ0) + σa , (6.12)

hold for all 0 ≤ s ≤ t. Also, assume that

D(t) ≥ A ∗ [S − σs]+ (t + τ0) . (6.13)

Then we can express the backlog process as follows.

B(t) ≤ A(t)−D(t)

≤ sup
0≤s≤t+τ0

{
A(t)− A(s)− [S(s, t + τ0)− σs]+

}

≤ σ .

In the second line we used Eq. (6.13), and in the third line we used Eq. (6.12).

Since we started by assuming Eqs. (6.12) and (6.13), we arrive at

Pr (B(t) > σ) ≤ P (Eqs. (6.12) or (6.13) fail)

≤ M

(
1

θrτ0

)H

e−θσa

+ εs (σs)

In the last equation we applied Lemma 6.5 and the definition of the statistical service curve.

Minimizing over σa + σs = σ we obtain Eq. (6.10).

Finally, to prove the delay bound, let us choose t, σ ≥ 0 and σa, σs such that σa +σs = σ.

Denote d = σ
rs

, and assume that for a particular sample-path the inequalities

A(t− d)− A(s) ≤ [S(s, t− d + τ0) + S(t− d + τ0, t + τ0)− σs]+ (6.14)
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hold for all 0 ≤ s ≤ t − d. Also, assume that Eq. (6.13) holds. From Eq. (6.14) we

successively obtain

sup
0≤s≤t−d

{
A(t− d)− A(s)− [S(s, t + τ0)− σs]+

} ≤ 0

⇒ sup
0≤s≤t+τ0

{
A(t− d)− A(s)− [S(s, t + τ0)− σs]+

} ≤ 0

⇒ A(t− d) ≤ D(t)

⇒ W (t) ≤ d .

In the second line we extended the range of the supremum using the positivity constraints. In

the third line we applied Eq. (6.13), and then we used the definition of the delay process.

As in the proof for the backlog bound, we arrive at

Pr (W (t) > d) ≤ P (Eqs. (6.14) or (6.13) fail)

≤ M

(
1

θrτ0

)H

e−θrsdeθσs

+ εs(σs)

≤ M

(
1

θrτ0

)H

e−θσa

+ εs(σs) .

In the second line we applied Lemma 6.5 with σ = S(t− d + τ0, t + τ0)− σs. The proof is

completed by minimizing over σa + σs = σ. ¤

6.4 Statistical Network Service Curve

Let us consider now a flow traversing H nodes in series. For some discretization parameter

τ0 > 0 and all h = 1, . . . , H , assume that Sh(s, t) is a statistical service curve for the

flow at node h with error function εh(σ), in the sense of Definition 6.3. Next we provide

the construction for the corresponding statistical network service curve for the flow. We

distinguish two cases.

If all the error functions εh(σ) = 0 for all σ, then we have the same statistical network
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service as in Eq. (3.47), i.e.,

Snet(s, t) = S1 ∗ S2 ∗ . . . ∗ SH(s, t) . (6.15)

Otherwise, if εh(σ) ≥ 0 then the corresponding statistical network service curve is given for

any choice of δ > 0, as in Eq. (4.25), by

Snet(s, t) = S1 ∗ S2
−δ ∗ . . . ∗ SH

−(H−1)δ(s, t) , (6.16)

with the error function from Eq. (4.26) (the proof for Eq. (6.16) follows the lines of the proof

for Theorem 4.7, but for service curves defined with doubly-indexed random processes). In

applications, we require the statistical independence of the service curves Sh(s, t) in both

Eqs. (6.15) and (6.16).

Having the expressions from Eqs. (6.15) and (6.16), we next derive the MGF bounds for

the statistical network service curves. To keep the notation simple, we only consider the

special case of identical service curves.

Theorem 6.8 (MGF BOUND FOR STATISTICAL NETWORK SERVICE CURVE). Consider

the multi-node scenario from the beginning of this section. For some choice of θ > 0, assume

that the service curves Sh(s, t) are independent, and each has an MGF bound with rate

rs and prefactor Ms that does not depend on time parameters. Then the flow’s statistical

network service curve has the MGF bound

E
[
e−θSnet(s,t)

]
≤ Mnete−θrs(t−s) , (6.17)

where the prefactor Mnet depends on the construction of the network service curve.

1. If the statistical network service curve is given by Eq. (6.15) then

Mnet = MH
s

(b t−s
τ0
c+ H − 1

H − 1

)
e(H−1)θrsτ0 . (6.18)
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2. If the statistical network service curve is given by Eq. (6.16) then

Mnet = MH
s

(b t−s
τ0
c+ H − 1

H − 1

)
e
(H−1)θ

�
rs+δ+δb t−s

τ0
c
�
τ0 . (6.19)

We remark that the construction from Eq. (6.17), with network service curve as in

Eq. (6.15), extends a result of Fidler [48] to the continuous time setting.

PROOF. Fix δ, τ0 > 0 and 0 ≤ s ≤ t. In the first case we can expand the MGF of

Snet(s, t) by applying Boole’s inequality and the discretization technique used in the proof

of Lemma 4.2.

E
[
e−θSnet(s,t)

]
≤ E

[
sup

s≤x1≤···≤xH−1≤t
e−θ(S1(s,x1)+···+SH(xH−1,t))

]

≤
∑

0≤j1≤···≤jh−1≤b t−s
τ0
c
E

[
e−θ(S1(s,[t−(j1+1)]+τ0)+···+SH((t−jH−1)τ0,t))

]

≤ MHe(H−1)θrsτ0e−θrs(t−s)
∑

0≤j1≤···≤jh−1≤b t−s
τ0
c
1

≤ MH

(b t−s
τ0
c+ H − 1

H − 1

)
e(H−1)θrsτ0e−θrs(t−s) .

In the third line we expanded the MGF of Sh(s, t) by using statistical independence, and then

collected terms. In the forth line the binomial coefficient is the number of combinations with

repetitions.

For the second case we proceed similarly as in the first case.

E
[
e−θSnet(s,t)

]
≤ E

[
sup

s≤x1≤···≤xH−1≤t
e−θ(S1(s,x1)+···+SH

−(H−1)δ
(xH−1,t))

]

≤ E

[
sup

s≤x1≤···≤xH−1≤t
e−θ(S1(s,x1)+···+SH(xH−1,t))eθδ((H−1)t−(x1+···+xH−1))

]

≤
∑

0≤j1≤···≤jH−1≤b t−s
τ0
c
E

[
e−θ(S1(s,(t−(j1+1))τ0)+···+SH((t−jH−1)τ0,t))

]
eθδ

PH−1
h=1 (jh+1)τ0

≤ MH

(b t−s
τ0
c+ H − 1

H − 1

)
e(H−1)θ(rs+δ)τ0e−θrs(t−s)e

(H−1)θδb t−s
τ0
cτ0 .
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In the last line we bounded each jh by b t−s
τ0
c. The proof is thus complete. ¤

6.5 The Special Case of Stationary Processes with Indepen-

dent Increments

We now consider the case of arrival and service processes having stationary and independent

increments. Examples of such processes include Poisson or compound Poisson processes.

We will show that by accounting for these properties we can improve the single-node results

obtained so far. In this sense we present a tighter construction of a statistical leftover service

curve, and also improved single-node performance bounds.

The stationary and independent increments properties of a process A(t) are formally ex-

pressed as follows.

1. Stationary Increments:

Pr
(
A(s, t) ≤ x

)
= Pr

(
A(s + u, t + u) ≤ x

)
(6.20)

for all s ≤ t and u, x ≥ 0.

2. Independent Increments: A(u, v) and A(s, t) are statistically independent for all u ≤
v ≤ s ≤ t.

As we have shown in Section 3.4, the evaluation of backlog and delay bounds in the

stochastic network calculus reduces to the evaluation of sample-path bounds. The technique

which we used so far in the network calculus formulations from Chapters 4 and 6 was based

on Boole’s inequality (see also Section 3.4.2). This technique does not exploit the indepen-

dent increments properties of arrivals, where available, and is more appropriate for processes

with correlated increments. To account for the independent increments properties, we pro-

pose to evaluate sample-path bounds using Doob’s maximal inequality for supermartingales

(see Lemma 5.11).
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The technique of using maximal inequalities to evaluating sample-path bounds is ap-

plied in a classical note by Kingman [66] to derive exponential backlog bounds in GI/GI/1

queues. Since Kingman’s note, several works use related supermartingales techniques to de-

rive exponential bounds. For example, Ross [99] improves Kingman’s bounds. Extensions

of Kingman’s bounds to the case of Markov-modulated arrivals are carried out by Buffet and

Duffield [20], Artiges and Nain [3], or Liu et. al. [83]. An extension to the multi-node case

for stochastic linear systems under the (max, +) algebra is carried out by Chang [27].

The application of Doob’s maximal inequality for continuous-time processes does not

require a discretization parameter τ0. For this reason, we use the definition of a statistical

service curve from Definition 6.3 with τ0 = 0.

We now present a critical result for the evaluation of sample-path bounds. Unlike

Lemma 6.5 that uses Boole’s inequality to evaluate sample-path bounds, the next result uses

Doob’s maximal inequality.

Lemma 6.9 (SAMPLE-PATH BOUNDS WITH DOOB’S MAXIMAL INEQUALITY) Suppose

that an arrival process A(t) is bounded for some choice of θ > 0 by an MGF envelope

with rate ra and prefactor Ma ≤ 1. Let also a statistical service curve S(s, t) that has an

MGF bound with rate rs and prefactor Ms ≤ 1, for the same θ. Assume that the inequality

ra ≤ rs (6.21)

holds, and that A(t) and S(s, t) are independent processes having stationary and indepen-

dent increments. Then we have for all t, σ ≥ 0

Pr (A(t) > A ∗ S(t) + σ) ≤ e−θσ . (6.22)

PROOF. Fix t, σ ≥ 0. First, using the stationary and independent increments properties,
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we can rewrite the probability in Eq. (6.22) as follows

Pr

(
sup

0≤s≤t
{A(s)− S(s)} > σ

)
= Pr

(
sup

0≤s≤t
eθ(A(s)−S(s)) > eθσ

)
. (6.23)

Let us now construct the process

Y (s) = eθ(A(s)−S(s)) , (6.24)

and the corresponding filtration F = {Fs : s ≥ 0} with Fs = σ {Y (u) : 0 ≤ u ≤ s}, for all

s ≥ 0. For u, s ≥ 0 we can write

E [Y (s + u) ‖ Fs] = E
[
Y (s)eθ(A(s,s+u)−S(s,s+u)) ‖ Fs

]

= Y (s)E
[
eθ(A(s,s+u)−S(s,s+u)) ‖ Fs

]

≤ Y (s)MaMse
−θ(rs−ra)u

≤ Y (s) ,

which shows that Y (s) is a nonnegative supermartingale; note that the integrability of Y (s)

is guaranteed by the a-priori bounds on the MGF’s of A(t) and S(s, t). In the second and

third lines we used the properties of conditional expectation from Lemma 5.10, and also the

stationary and independent increments properties. In the last line we used the condition from

Eq. (6.21).

Therefore, we can apply Doob’s maximal inequality from Lemma 5.11 to evaluate

Eq. (6.23)

Pr

(
sup

0≤s≤t
eθ(A(s)−S(s)) > eθσ

)
≤ E [Y (0)] e−θσ

≤ e−θσ ,

which completes the proof. ¤
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In the following we address the construction of a statistical leftover service curve. This

improves Theorem 6.6 for the special case of arrival processes with stationary and indepen-

dent increments. We only consider the case of arrivals which may be statistically correlated.

Note that the construction of leftover service curves in the case of statistically independent

arrivals does not involve the evaluation of sample-path bounds (see Eq. (6.6) in Theorem 6.6).

Theorem 6.10 (STATISTICAL LEFTOVER SERVICE CURVE FOR ARRIVALS WITH STA-

TIONARY AND INDEPENDENT INCREMENTS) Consider a node with capacity C serving two

arrival processes A(t) and Ac(t), whose corresponding departure processes are D(t) and

Dc(t), respectively. Assume that Ac(t) has stationary and independent increments and is

also bounded by an MGF envelope with rate rc and prefactor M ≤ 1 for some choice of

θ > 0, and that rc ≤ C. Then the function

S(s, t) = (C − rc) (t− s) (6.25)

is a statistical service curve for A(t) with error function ε(σ) = e−θσ.

The rate of the leftover service curve from Eq. (6.25) is larger than the rate of the leftover

service curve from Eq. (6.7). Also, unlike the error function from Theorem 6.6, the error

function in Eq. (6.25) is not obtained as a series.

PROOF. Fix t ≥ 0 and σ. Assume that for a particular sample-path the following inequal-

ity

Ac(t) ≤ inf
0≤s≤t

{Ac(s) + rc(t− s) + σ} . (6.26)

holds. We recall from the proof of Theorem 2.3 that

D(t) ≥ inf
0≤s≤t

{
A(s) + [C(t− s)− (Ac(t)− Ac(s))]+

}
. (6.27)
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Inserting Eq. (6.26) into Eq. (6.27) yields

D(t) ≥ inf
0≤s≤t

{
A(s) + [C(t− s)− rc(t− s)− σ]+

}

≥ A ∗ [S − σ]+ (t) .

Since we started by assuming Eq. (6.26) we arrive at

Pr
(
D(t) < A ∗ [S − σ]+ (t)

) ≤ Pr (Eq. (6.26) fails)

≤ e−θσ .

Here we applied Lemma 6.9 for the arrival process Ac(t) and the function T (s, t) = rc(t−s)

which is to replace the process S(s, t) from Lemma 6.9. The proof is thus complete. ¤

For the rest of this section we address the derivation of single-node performance bounds.

In this sense, we extend Theorem 6.7 to the special case of processes with stationary and

independent increments.

Theorem 6.11 (PROBABILISTIC PERFORMANCE BOUNDS FOR PROCESSES WITH STA-

TIONARY AND INDEPENDENT INCREMENTS) Consider a flow at a node with arrivals and

departures given by the processes A(t) and D(t), respectively. The service available to the

flow is given by a statistical service curve S(s, t) with error function εs(σ). For some choice

of θ > 0 assume that A(t) is bounded by an MGF envelope with rate ra and prefactor

Ma ≤ 1, and also S(s, t) has an MGF bound with rate rs and prefactor Ms ≤ 1. Assume

that the inequality

ra ≤ rs

holds, and that A(t) and S(s, t) are independent processes having stationary and indepen-

dent increments. Also, let us define the error function

ε(σ) = inf
σa+σs=σ

{
e−θσa

+ εs(σs)
}

.
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Then we have the following probabilistic bounds:

1. BACKLOG BOUND: A bound on the backlog process B(t) is given for all t, σ ≥ 0 by

Pr
(
B(t) > σ

)
≤ ε(σ) . (6.28)

2. DELAY BOUND: A bound on the delay process W (t) is given for all t, σ ≥ 0 by

Pr
(
W (t) >

σ

rs

)
≤ ε(σ) . (6.29)

PROOF. Let t, σ ≥ 0 and σa, σs such that σa + σs = σ. Following the proof for the

backlog bound in Theorem 6.7 we arrive at

Pr (B(t) > σ) ≤ Pr

(
sup

0≤s≤t
{A(t)− A(s)− S(s, t)} > σa

)

+Pr
(
D(t) < A ∗ [S − σs]+ (t)

)

≤ e−θσa

+ εs (σs) .

In the last equation we applied Lemma 6.9 and the definition of the statistical service curve.

Let us denote d = σ
rs

. Following the proof for the delay bound in Theorem 6.7 we arrive

at

Pr (W (t) > d) ≤ Pr

(
sup

0≤s≤t−d
{A(t− d)− A(s)− S(s, t− d)} > S(t− d, t)− σs

)

+Pr
(
D(t) < A ∗ [S − σs]+ (t)

)

≤ e−θrsdeθσs

+ εs(σs)

≤ e−θσa

+ εs(σs) .

In the second line we applied Lemma 6.9 and the definition of the statistical service curve,

and finally we replaced d with σ
rs

. The proof is completed by minimizing over σa + σs = σ.

¤



Chapter 7

Comparison of Delay Bounds with Exact Results

Unlike other theories for network analysis which express performance metrics such as back-

log or delay in terms of exact results, the stochastic network calculus yields performance

bounds. For this reason, a potential concern in using the calculus for network analysis is

whether the obtained backlog or delay bounds are sufficiently tight.

The purpose of this chapter is to shed light on the accuracy of performance bounds ob-

tained with the calculus. Towards this goal, we derive network calculus bounds in network

scenarios where exact results are available, and then show numerical comparisons between

the obtained bounds and the exact results.

There are several factors which may influence the accuracy of network calculus perfor-

mance bounds. First, traffic is usually expressed in terms of statistical envelopes which set

bounds on the arrivals. Second, the common technique for evaluating sample-path bounds

relies on Boole’s inequality (see Section 3.4.2) which may be loose since it allows for corre-

lations within arrival processes. Third, the analysis of a network with cross traffic relies on a

worst-case service view for the through traffic by constructing leftover service curves.

Statistical envelopes provide tight characterizations for a wide class of arrival processes

due to accounting for statistical multiplexing (see Boorstyn et. al. [12], or Li et. al. [76]). For

this reason, our comparison study will mainly focus on the impact of using Boole’s inequality

to the estimation of sample-path bounds, and the impact of using leftover service curves to

144
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derive performance bounds.

The next two sections treat the single-node and the multi-node cases, respectively. The

third section then provides numerical comparisons for each case.

7.1 The Single-Node Case

In this section we derive network calculus delay bounds for three queueing models where

exact results are available: M/M/1, M/D/1 and M/M/1 queues with two priorities. We find

that the bounds obtained are tight at most utilization factors. This provides evidence that

the method of using Boole’s inequality for estimating sample-path bounds is quite accurate.

Also, we show improved bounds by accounting for the independent increments property of

arrivals.

For the case of the M/M/1 queue with priorities we focus on the expected delay for the

lower priority packets. We derive bounds by first constructing a statistical leftover service

curve, and then deriving bounds on the expected delay. The obtained bounds are very accurate

when compared to the exact results, unless the amount of lower priority flows is negligible

when compared to the amount of high priority packets. This indicates that leftover service

curves provide an accurate characterization for the service received by the lowest priority

flows at a SP scheduler.

7.1.1 The M/M/1 queue

We consider the following M/M/1 queueing model. Let a node with capacity C where packets

arrive according to an exponential distribution with mean inter-arrival distance 1/λ. The size

of each packet i is denoted by Xi and is exponentially distributed with mean 1/µ. We assume

that the inter-arrival times and the packet sizes are statistically independent. We denote the

utilization factor by ρ = λ/(µC), and assume for stability that ρ < 1.
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The exact distribution of the steady-state delay of packets W ′ in the M/M/1 queue is given

by [68]

P
(
W ′ > d

)
= e−µC(1−ρ)d . (7.1)

Next we derive two network calculus (virtual) delay bounds for the M/M/1 queue ac-

cording to Eq. (2.1). First we invoke Theorem 6.7 that evaluates sample-path bounds with

Boole’s inequality, and second we invoke Theorem 6.11 that evaluates sample-path bounds

with Doob’s inequality by accounting for the independent increments properties of arrivals.

To fit the queueing model with network calculus, we model the arrival process as in

Subsection 5.2, i.e.,

A(t) =

N(t)∑
i=1

Xi . (7.2)

where N(t) is a Poisson process with mean λt.

Since the effective bandwidth of A(t) is αA(θ, t) = λ
µ−θ

for some choice of θ with 0 <

θ < µ, we obtain that A(t) is bounded by an MGF envelope (see Definition 6.1) with rate

and prefactor given by

ra =
λ

µ− θ
, Ma = 1 . (7.3)

On the other hand, the service at a single queue can be modelled for any choice of the

discretization parameter τ0 with the statistical service curve

S(s, t) = C (t− s− τ0) ,

and error function ε(σ) = 0 for σ ≥ 0, and ε(σ) = 1 for σ < 0, according to Definition 6.3.

We have that S(s, t) has an MGF bound with rate and prefactor given by

rs = C , Ms = eθCτ0 , (7.4)

for the same θ > 0 as above.
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Choosing

θ < µ(1− ρ) , (7.5)

we see that ra < rs, as necessary for Theorem 6.7. We can now plug the values from

Eqs. (7.3) and (7.4) into Theorem 6.7 and obtain the delay bound for all σ ≥ 0

Pr
(
W (t) >

σ

rs

)
≤ inf

σa+σs=σ

{
MaMs

θ (rs − ra) τ0

e−θσa

+ ε(σs)

}

≤ eθCτ0

θ
(
C − λ

µ−θ

)
τ0

e−θσ .

Optimizing τ0 = 1/(θC) with Lemma 5.4, replacing σ with dC, and letting t → ∞ yields

the steady-state delay bound for all d ≥ 0

Pr
(
W > d

)
≤ 1

1− ρ

1− θ
µ

e−θCd . (7.6)

This bound can be further optimized over θ, subject to the constraint from Eq. (7.5).

Let us now derive a delay bound using Theorem 6.11 that accounts for the independent

increments property. Since there is no need for the discretization parameter τ0, the statistical

service curve is now given by

S(s, t) = C(t− s) ,

with error function ε(σ) = 0 for σ ≥ 0, and ε(σ) = 1 for σ < 0, satisfying Definition 6.3

with τ0 = 0. We have that S(t) has an MGF bound with rate and prefactor given by

rs = C , Ms = 1 . (7.7)

The processes A(t) and S(s, t) have stationary and independent increments, and are also

statistically independent. As before, by imposing the condition on θ from Eq. (7.5), we can

plug the values from Eqs. (7.3) and (7.7) into Theorem 6.11 and obtain the delay bound for
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all d ≥ 0

Pr
(
W (t) > d

)
≤ inf

σ

{
e−θrsdeθσ + ε(σ)

}

≤ e−θCd .

In this case we can optimize the value of θ by letting θ → µ(1− ρ), yielding the steady-state

delay bound

P
(
W > d

)
≤ e−µC(1−ρ)d . (7.8)

Although Eq. (7.8) looks exactly as Eq. (7.1), we would like to point out that W ′ and W

are different steady-state delays (for more details see the related discussion from the begin-

ning of Section 5.2.2).

The next result gives the asymptotic improvement of the delay bound from Eq. (7.8) over

the delay bound from Eq. (7.6), when the utilization factor ρ approaches one.

Theorem 7.1 For 0 < z < 1, let d1(z) and d2(z) be the bounds on the z-quantiles from

Eq. (7.6) and Eq. (7.8), respectively. Then for ρ → 1 we have

d1(z)− d2(z) = Ω

(
log(1− ρ)−1

1− ρ

)
.

The result shows that the benefits of using the independent increments property are sub-

stantial at very high utilizations.

PROOF. From Eq. (7.6) we have that

d1(z) = − 1

θC
log

(
1− ρ

1− θ
µ

)
(1− z) ,

and from Eq. (7.8) we have that

d2(z) =
1

θC
log

1

1− z
,
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Using that θ < µ we get

d1(z)− d2(z) ≥ 1

θC
log

(
1

1− ρ

)
.

Finally, using the constraint on θ from Eq. (7.5), the main claim follows. ¤

7.1.2 The M/M/1 queue with priorities

We now consider an M/M/1 network node serving a through and a cross flow. The packets

of the flows arrive according to Poisson processes with rates λ and λc, respectively, and have

exponentially distributed sizes with mean 1/µ. The packets of the cross flow have preemptive

priority over the packets of the through flow. The capacity of the server is C, and we assume

for stability that the utilization factor ρ = (λ + λc)/(µC) is less than one.

With queueing theory we have the exact result on the expectation E [W ′] of the steady-

state delay of the low priority flow’s packets (see Gross and Harris [53])

E [W ′] =
µC − λc(1− ρ)

µC (µC − λc) (1− ρ)
. (7.9)

Next we derive a bound with network calculus on E [W ], where W is the corresponding

steady-state virtual delay according to Eq. (2.1).

The through and the cross flows are represented by the processes A(t) =
∑N(t)

i=1 Xi and

Ac(t) =
∑Nc(t)

i=1 Yi, respectively, where N(t) and Nc(t) are Poisson processes with rates λ

and λc, respectively; also Xi and Yi are independent and exponentially distributed with mean

1/µ. As before we obtain that A(t) and Ac(t) are bounded by MGF envelopes with rates and

prefactors given by

ra =
λ

µ− θ
, Ma = 1 , (7.10)

rc =
λc

µ− θ
, Mc = 1 ,
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for some choice of θ with 0 < θ < µ.

Having the description of the cross flow from above we can apply Theorem 6.10 and

obtain that the function

S(s, t) = C(t− s)− Ac(s, t)

is a statistical leftover service curve for the through flow satisfying Definition 6.3 with τ0 = 0.

We then obtain that S(s, t) has an MGF bound with rate and prefactor given by

rs = C − λc

µ− θ
, Ms = 1 . (7.11)

Choosing

θ < µ(1− ρ) , (7.12)

we see that ra < rs, as required for Theorem 6.11. Since A(t) and S(s, t) have station-

ary and independent increments, we can plug the values from Eqs. (7.10) and (7.11) into

Theorem 6.11 and obtain the steady-state delay bound for all d ≥ 0

P
(
W > d

)
≤ e−

λ(1−ρ)
ρ

d , (7.13)

after letting θ → µ(1− ρ) (see Eq. (7.12)), and t →∞.

Next, using the formula for the expectation

E [W ] =

∫ ∞

0

Pr (W > x) dx ,

we obtain the upper bound

E [W ] ≤ ρ

λ (1− ρ)
. (7.14)

Let us compare asymptotically the bound from Eq. (7.14) with the exact result from

Eq. (7.9). By letting the percentage of through traffic approach zero (i.e. λ → 0), we observe

that the exact result is bounded, whereas the upper bound converges to infinity. This indicates
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that for very small amount of through traffic, the upper bound is overly pessimistic (see also

the corresponding numerical results for further observations).

7.1.3 The M/D/1 queue

The M/D/1 queueing model is similar to the M/M/1 queueing model, with the exception that

the size Xi of each packet i is now constant, i.e., Xi = 1/µ for all i.

The distribution of the steady-state delay W ′ of packets is given by [57]

P
(
W ′ > d

)
= 1− (1− ρ)eλd

T∑

k=0

(kρ− λd)k

k!
e−(k−1)ρ , (7.15)

where T = bdµc denotes the largest integer less than or equal to dµ. It is known that this

formula poses numerical complications when ρ approaches one, due to the appearance of

large alternating, very nearly cancelling terms (note that the factor kρ − λd is negative).

There are several numerical algorithms to evaluate Eq. (7.15), of which we choose one due

to Iversen and Staalhagen [57].

We next derive two network calculus virtual delay bounds (according to Eq. (2.1)) with

Theorems 6.7 and 6.11.

The network calculus models for fitting the M/D/1 queue are similar to those for the

M/M/1 queue with one difference. Since the size of each packet is now a constant, we have

that the effective bandwidth of the arrival process A(t) from Eq. (7.2) is given for all θ > 0

by

αA(θ, t) =
1

θt
log

(
E

[
eθA(t)

])

=
1

θt
log

(∑
n≥0

E
[
eθ
Pn

i=1 Xi

]
e−λt (λt)n

n!

)

=
λ

θ

(
e

θ
µ − 1

)

From here it follows that A(t) is now bounded by an MGF envelope with rate and prefactor
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given by

ra =
λ

θ

(
e

θ
µ − 1

)
, Ma = 1 . (7.16)

Choosing

ρ
µ

θ

(
e

θ
µ − 1

)
< 1 , (7.17)

we see that ra < rs, as required for Theorem 6.7. We can now plug the values from

Eqs. (7.16) and (7.4) into Theorem 6.7, and after optimizing τ0 = 1/(µC), we obtain the

steady-state delay bound for all d ≥ 0

Pr
(
W > d

)
≤ e

1− ρµ
θ

(
e

θ
µ − 1

)e−θCd . (7.18)

The arrival process A(t) is a compound Poisson processes, such that we can plug the

values from Eqs. (7.16) and (7.7) into Theorem 6.11, and obtain the steady-state delay bound

for all d ≥ 0

P
(
W > d

)
≤ e−θCd , (7.19)

This bound is similar to the bound from Eq. (7.8) obtained for a M/M/1 queue; the difference

is that the parameter θ is now subject to the restriction from Eq. (7.17), rather than Eq. (7.5).

To quantify the benefits of accounting for the independent increments property of arrivals,

we next give a similar result to the one from Theorem 7.1, but for the M/D/1 queue.

Theorem 7.2 For 0 < z < 1, let us denote d1(z) and d2(z) as the bounds on the z-quantiles

of the delay bounds from Eq. (7.18) and Eq. (7.19), respectively. Then for ρ → 1 we have

d1(z)− d2(z) = Ω

(
log(1− ρ)−1

1− ρ

)
.

We remark that the asymptotic benefits of accounting for the independent increments

property are similar for the M/M/1 and M/D/1 queues.
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PROOF. Following the the proof of Theorem 7.1, we arrive at

d1(z)− d2(z) ≥ 1

θC
log


 1

1− ρµ
θ

(
e

θ
µ − 1

)



≥ 1

θC
log

(
1

1− ρ

)
.

In the last line we used the inequality ex ≥ x + 1 for all x ≥ 0.

Furthermore, from the constraint on θ from Eq. (7.17) we obtain that θ = O(1−ρ), which

completes the proof. ¤

7.2 The Multi-Node Case

In this section we continue the discussion on the accuracy of network calculus bounds by

analyzing multi-node networks. Besides deriving bounds in scenarios with exact solutions,

we also derive bounds by relaxing the assumptions of the statistical independence of arrivals

or service, that are necessary for the existence of exact solutions. The latter bounds provide

insight into the role of statistical independence in network calculus.

We consider the network with cross traffic from Figure 2.1 where we make the follow-

ing assumptions. The through flow and each of the cross flows consist of packets arriving

according to Poisson processes with rates λ and λc, respectively. The size of each packet is

exponentially distributed with mean 1/µ, and the size of each of the through flow’s packets is

independently regenerated at each traversed node [67]. We assume statistical independence

among the Poisson processes and the sizes of packets. The network is stable, i.e., the utiliza-

tion factor ρ = (λ + λc)/(µC) is less than one. Under these assumptions, the network is an

M/M/1 network and exact results are available [67].

If the scheduling at the nodes is FIFO, then the steady-state end-to-end delay of packets
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W net′ of the through flow has a Gamma distribution Γ(µC(1− ρ), H) [68]:

P (W net′ > d) =

(
H−1∑

k=0

(µC(1− ρ)d)k

k!

)
e−µC(1−ρ)d . (7.20)

In the following we use the network calculus formulation from Chapter 6 to derive bounds

on the virtual end-to-end delay according to Eq. (2.1) (see also the discussion from the be-

ginning of Section 5.2.2 concerning packets’ delays vs. virtual delays). We consider three

scenarios.

1. Scenario with independent arrivals and independent service times (Section 7.2.1): We

consider that both arrivals and service times are statistically independent; exact solu-

tions are available in this scenario (e.g. Eq. (7.20). Unlike the exact results which

hold for FIFO scheduling, the network calculus bounds are obtained by assuming that

the through flow has a lower priority than the cross flows at the nodes. The obtained

bounds are thus expected to be more pessimistic than the exact results.

2. Scenario with correlated arrivals and independent service times (Section 7.2.2): We

consider the case when the cross flows may be correlated, but we account for the sta-

tistical independence due to regenerating the packets’ sizes of the through flow at the

traversed nodes. By comparing the bounds obtained in this scenario with the bounds

from Section 7.2.1 we address the impact of accounting for the statistical independence

of arrivals in network calculus.

3. Scenario with independent arrivals and correlated service times (Section 7.2.3): We

consider the case when the packets of the through flow maintain their sizes at the tra-

versed nodes (i.e. inducing statistical correlations of the service), but the arrivals are

statistically independent. By comparing the bounds obtained in this scenario with the

bounds from Section 7.2.1, we address the impact of accounting for the statistical in-

dependence of service in network calculus.
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For numerical comparisons, we also consider the scenario with both correlated arrivals

and service times. This is the most pessimistic scenario and the corresponding bounds are

available in Section 5.2.

We point out that by allowing for correlated arrivals, our results are not restricted to some

particular joint distributions on the arrivals, but they rather hold for any arbitrary correlation

structures; the same remark holds in the case of correlated service.

The bounds for the above scenarios are derived using a packetized service model. For the

first two scenarios we also derive bounds using a fluid service model. These bounds permit

a discussion on whether the assumption of using a fluid service model, which yields simpler

bounds than the packetized service model, is justified in network calculus.

To fit the queueing network with network calculus we represent the arrivals by compound

Poisson processes, as done in Section 5.2. Accordingly, we obtain that the through arrival

flow A(t) is bounded by an MGF envelope with rate and prefactor given by

ra =
λ

µ− θ
, Ma = 1 , (7.21)

and each of the cross arrival flows Ah(t) are bounded by an MGF envelope with rate and

prefactor given by

rc =
λc

µ− θ
, Mc = 1 ,

for some choice of θ with 0 < θ < µ (see also Section 7.1.1).

To account for the packetized model of service, we recall from Section 5.2 that each node

in the network from Figure 2.1 can be represented as the concatenation between a fluid flow

server and a packetizer P µ. The next result gives a statistical service curve representation for

a packetizer, that is useful when the service times are statistically independent.

Lemma 7.3 Consider the network node represented in Figure 5.2. Then the function

Sµ(s, t) = [C(t− s)−Xf (t)]+ ,
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is a statistical service curve for the packetizer P µ with error function εµ = 0, in the sense

of Definition 6.3 with τ0 = 0, where Xf (t) denotes the time already spent in service by the

packet (if any) at the fluid server at time t.

We note that the theorem complements Lemma 5.5 which considers the case of corre-

lated service times. Also, we remark our preference for a service curve construction which

dispenses with a discretization parameter τ0. The reason is that when such service curves

are convolved, we can obtain simpler expressions for the rate envelope of the corresponding

network service curves (with Theorem 6.8). Then we can express the derived network ser-

vice curve according to Definiton 6.3, that further accounts for a discretization parameter, by

invoking Lemma 4.4. Last we can derive performance bounds with Theorem 6.7.

PROOF. We closely follow the proof of Lemma 5.5. Fix t ≥ 0, and let us denote t as the

beginning of the last busy period before t at the fluid server. If Xf (t) denotes the fraction

already processed of the packet currently in service at the fluid server at time t, then

u = t− Xf (t)

C

is the starting processing time of the packet currently serviced. It then follows that

D1(t) = D1(t) + C(u− t)

= A1(t) + C

(
t− Xf (t)

C
− t

)

= A1(t) + Sµ(t, t)

≥ A1 ∗ Sµ(t) ,

which completes the proof. ¤
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7.2.1 Independent arrivals and service

Here we derive network calculus delay bounds by accounting for the statistical independence

of both arrivals and service times. In the last part we derive further bounds by using a fluid

service model, rather than a packetized service model.

Let us consider the representation of each of the network nodes as in Figure 5.2 (i.e. as the

concatenation between a fluid server and a packetizer P µ). By enforcing the condition that

θ < µ− λc/C, we can invoke Theorem 6.6 (by dispensing with the discretization parameter

τ0) and obtain that the function

T h(s, t) = [C(t− s)− Ah(s, t)]+ (7.22)

is a statistical leftover service curve at the hth fluid server. Then, by using the service curve

representation of each packetizer as in Lemma 7.3, we further obtain with Eq. (6.15) that each

node in the network from Figure 2.1 can be described with the statistical (network) service

curve

Sh(s, t) = T h ∗ Sµ,h(s, t)

= inf
s≤u≤t

(
[C(u− s)− Ah(s, u)]+ +

[
C(t− u)−Xh

f (t)
]
+

)

≥ [
C(t− s)− Ah(s, t)−Xh

f (t)
]
+

,

where Xh
f (t) denotes the fraction already processed of the packet currently in service (if any)

at node h at time t. Moreover, each service curve Sh(s, t) has an MGF bound with rate and

prefactor given by

rs = C − rc , Ms =
µ

µ− θ
,

where we used that E
[
eθXh

f (t)
]

= µ
µ−θ

.

Next we can construct the statistical network service curve for the through flow along the

H nodes. At this point we make the transition to a service curve representation with the dis-
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cretization parameter τ0 (complying with Definition 6.3). Using Eq. (6.15) and Lemma 4.4,

we obtain the statistical network service curve

Snet(s, t) = S1 ∗ . . . ∗ SH(s, t− τ0) ,

that has (according to Eq. (6.18) from Theorem 6.8) an MGF bound with rate and prefactor

given by

rnet = rs , Mnet =

(
µ

µ− θ
e2θrsτ0

)H (b t−s
τ0
c+ H − 1

H − 1

)
.

We remark that the contribution of using Lemma 4.4 to the prefactor Mnet from Eq. (6.18)

in Theorem 6.8 is eHθrsτ0 .

Finally, having the through flow’s MGF envelope description from Eq. (7.21) and the

network service curve just derived, we can invoke Theorem 6.7 and derive delay bounds.

First, let us denote

r = rs − ra

and enforce the stability condition that

r > 0 ⇔ θ < µ(1− ρ) .

Then Eq. (6.11) from Theorem 6.7 gives the delay bound for all σ ≥ 0

P
(
W net(t) >

σ

rnet

)
≤

(
e2θrsτ0

θrτ0

µ

µ− θ

)H

e−θσ .

Optimizing the discretization parameter τ0 = 1
2θrs

, as in Lemma 5.4, replacing σ with d · rnet,

and letting t →∞ we obtain the steady-state delay bound for all d ≥ 0

P
(
W net > d

) ≤
(

e
2rs

r

µ

µ− θ

)H

e−θ(C− λc
µ−θ )d . (7.23)

Rather than considering a packetized service model, we now assume that the network
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treats traffic in a fluid manner. With this assumption we can view each node in the network

from Figure 2.1 as a fluid server, and consequently derive the leftover service curves

Sh(s, t) = [C(t− s)− Ah(s, t)]+ ,

i.e., the expression for T h(s, t) from Eq. (7.22).

To derive end-to-end delay bounds we can proceed as before, with the difference that the

prefactor of the MGF bound of Sh(s, t) is now Ms = 1, rather than Ms = µ
µ−θ

.

The steady-state delay bound assuming the fluid service model thus becomes

P
(
W net > d

) ≤
(

e
2rs

r

)H

e−θ(C− λc
µ−θ )d . (7.24)

7.2.2 Correlated arrivals, independent service

Here we derive network calculus bounds for the M/M/1 network by dispensing with the

statistical independence of cross arrivals, but accounting for the statistical independence of

service arising from independently re-sampling the sizes of the through packets at each tra-

versed node. In the last part we derive further bounds by also assuming a fluid service model.

As in the previous section, let a positive number θc such that θc < µ− λc/C, and denote

rs(θc) = C − λc

µ− θc

.

Since each of the cross arrival processes Ah(t) has stationary and independent increments,

we can apply Theorem 6.10 and obtain that the function

T h(s, t) = rs(θc)(t− s)

is a statistical (leftover) service curve for the through flow at the hth fluid server with error

function εs(σ) = e−θcσ. Since the error function corresponding to the service curve Sµ,h
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from Lemma 7.3 is zero, we further obtain that for some τ0 > 0 the function

Sh(s, t) = T h ∗ Sµ,h(s, t− τ0)

≥ [
rs(θc)(t− s)−Xh

f (t)− rs(θc)τ0

]
+

is a statistical service curve for the through flow at the hth node in the network from Figure 2.1

with error function εs(σ) (as before, Xh
f (t) denotes the fraction already processed of the

packet currently in service (if any) at node h at time t). We remark that this service curve

complies with Definition 6.3, by accounting for the discretization parameter τ0.

Next we construct the statistical network service curve Snet(s, t) as in Eq. (6.16) for the

through flow along the H nodes. The corresponding error function is given as in Eq. (4.26)

from Theorem 4.7, i.e.,

εnet(σ) = ε̃s
δτ0
∗ . . . ∗ ε̃s

δτ0︸ ︷︷ ︸
H−1 times

∗εs(σ) ,

where

ε̃s
δτ0

(σ) =
1

δτ0

∫ ∞

σ

e−θcudu =
1

θcδτ0

e−θcσ ,

for some δ > 0. Using Lemma 5.3 we can optimize the expression of the error function as

εnet(σ) = H

(
1

θcδτ0

)H−1
H

e−
θc
H

σ .

On the other hand, we have from Theorem 6.8 (more exactly Eq. (6.19)) that Snet(s, t)

has an MGF bound with rate and prefactor given by

rnet = rs(θc)− (H − 1)δ ,

Mnet =

(
µ

µ− θ

)H

e(2H−1)θrs(θc)τ0e(H−1)θδτ0

(b t−s
τ0
c+ H − 1

H − 1

)
. (7.25)

Finally, having the through flow’s rate envelope description from Eq. (7.21) and the net-

work service curve just derived, we can invoke Theorem 6.7 and derive delay bounds. First,
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let us denote

r = rnet − ra

and enforce the stability condition that

r > 0 ⇔ δ <
1

H − 1

(
C − λ

µ− θ
− λc

µ− θc

)
.

Then Eq. (6.11) from Theorem 6.7 gives the delay bound for all σ ≥ 0

P
(
W net(t) >

σ

rnet

)
≤ inf

σa+σs=σ

{
M ′

(
1

θrτ0

)H

e−θσa

+ εnet(σs)

}
,

where M ′ =
(

µ
µ−θ

)H

eH(2θrs(θc)+δ)τ0 (obtained by slightly relaxing the term before the bino-

mial factor in Eq. (7.25)).

We can optimize this expression using Lemma 5.3. Then, replacing σ with d · rnet, and

letting t →∞ we obtain the steady-state delay bound for all d ≥ 0

Pr
(
W net > d

) ≤ Ke−
θθc
α (C− λc

µ−θc
−(H−1)δ)d , (7.26)

where

K =
α

θc

(
µ

µ− θ

)Hθc
α

(
Heθc (2rs(θc) + δ)

βr

) β
α (r

δ

) (H−1)θ
α

(
θc

θ

) θ
α

α = Hθ + θc

β = (H − 1)θ + Hθc .

Let us assume now that the network treats traffic in a fluid manner. As shown at the

end of Section 7.2.1, the derivation of the corresponding bounds proceeds as before with

the difference that the term µ
µ−θ

is to be replaced by 1. Consequently, the steady-state delay
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bound takes the form

Pr
(
W net > d

) ≤ Ke−
θθc
α (C− λc

µ−θc
−(H−1)δ)d , (7.27)

where

K =
α

θc

(
Heθc (2rs(θc) + δ)

βr

) β
α (r

δ

) (H−1)θ
α

(
θc

θ

) θ
α

,

and α, β are as above.

7.2.3 Independent arrivals, correlated service

Here we derive network calculus bounds for the M/M/1 network by accounting for the sta-

tistical independence of cross arrivals, but assuming identical service times for packets at the

traversed nodes.

Following the steps from the previous sections, we first apply Theorem 6.6 and

Lemma 5.5 and obtain that the function

Sh(s, t) = [C(t− s)− Ah(s, t)]+

is a statistical service curve (in the sense of Definition 6.3) for the through flow at the hth

node with error function εh(σ) = eµCτ0e−µσ, for some τ0 > 0. Let us observe that the service

curve has an MGF bound with rate and prefactor given by

rs = C − rc , Ms = 1 ,

for some positive θ with θ < µ− λc

C
.

Next we construct the statistical network service curve Snet(s, t) as in Eq. (6.16) for the

through flow along the H nodes. The corresponding error function is given as in Eq. (4.26)
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from Theorem 4.7, and can be written after optimizations with Lemma 5.3 as

εnet(σ) = HeµCτ0

(
1

µδτ0

)H−1
H

e−
µ
H

σ .

for some δ > 0.

On the other hand, we have from Theorem 6.8 (more exactly Eq. (6.19)) that Snet(s, t)

has an MGF bound with rate and prefactor given by

rnet = rs − (H − 1)δ , Mnet = e(H−1)θ(rs+δ)τ0

(b t−s
τ0
c+ H − 1

H − 1

)
.

Finally, having the through flow’s rate envelope description from Eq. (7.21) and the net-

work service curve just derived, we can invoke Theorem 6.7 and derive delay bounds. First,

let us denote

r = rnet − ra

and enforce the stability condition that

r > 0 ⇔ δ <
1

H − 1

(
C − λ + λc

µ− θ

)
.

Then Eq. (6.11) from Theorem 6.7 yields the following delay bound for all σ ≥ 0

P
(
W net(t) >

σ

rnet

)
≤ inf

σa+σs=σ

{(
eθ(rs+δ)τ0

θrτ0

)H

e−θσa

+ εnet(σs)

}
.

We can optimize this expression using Lemma 5.3. Then, replacing σ with d · rnet, and

letting t →∞ we obtain the steady-state delay bound for all d ≥ 0

Pr
(
W net > d

) ≤ Ke−
θµ
α (C− λc

µ−θ
−(H−1)δ)d , (7.28)
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where

K =
α

µ

(
Heµ (C + rs + δ)

βr

) β
α (r

δ

) (H−1)θ
α

(µ

θ

) θ
α

α = Hθ + µ

β = (H − 1)θ + Hµ .

7.3 Numerical Examples

We consider a similar numerical setting as in Section 5.3.2: time is measured in milliseconds

and we plot bounds on the z-quantiles wnet(z) with z = 1− 10−9; also, the capacity of each

node is C = 100 Mbps and the average size of packets is 1/µ = 400 Bytes.

First we recall from Section 5.2.2 that the difference between exact packets’ delays and

the virtual delays computed with the calculus is negligible for numerical purposes.

7.3.1 The single-node case

Here we present numerical comparisons between exact results on packets delays and network

calculus virtual delay bounds for the M/M/1, M/D/1, and M/M/1 queues with priorities.

In Figure 7.1.(a) we show the delay bounds from Eq. (7.6) obtained with Theorem 6.7

(based on Boole’s inequality) and the exact results from Eq. (7.1) for the M/M/1 queue. The

bounds from Eq. (7.8) obtained with Theorem 6.11 (based on Doob’s maximal inequality)

look exactly as the exact results, but they are bounds on the steady-state virtual delay. In Fig-

ure 7.1.(b) we show the delay bounds from Eqs. (7.18) and (7.19) obtained with Theorem 6.7

and Theorem 6.11, respectively, and the exact results from Eq. (7.15) for the M/D/1 queue.

We show the bounds as a function of the utilization factor ρ; the bounds closely match the

exact results at utilization factors ρ < 0.9 and are not depicted.

For both the M/M/1 and M/D/1 queues, the bounds obtained with Theorem 6.11 improve

the bounds obtained with Theorem 6.7 because they take advantage of the independent in-
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(a) M/M/1 queue

0.9 0.92 0.94 0.96 0.98 1
0

25

50

75

100

125

150

175

200

Utilization factor ρ

D
e
la

y
(m

s)

Upper bound (with Boole’s ineq.)
Upper bound (with Doob’s ineq.)
Exact result

(b) M/D/1 queue

Figure 7.1: Delay w(z) in M/M/1 and M/D/1 queues as a function of the utilization factor ρ
(C = 100 Mbps, average packet size µ−1 = 400 Bytes, z = 1− 10−9)

crements properties of arrival processes. The improvement becomes visible at very high

utilization. This indicates that the use of Boole’s inequality can lead to conservative bounds,

but only at a very high utilizations.

In Figure 7.2 we show the bounds from Eq. (7.14) and the exact results from Eq. (7.9)

for the expected delay of the lower priority flow in the M/M/1 queue. We show the bounds

as a function of the utilization factor ρ and consider two percentages of lower priority traffic:

(a) low (p = 0.1) and (b) very low (p = 0.01). We observe that in the former case the

upper bounds closely match the exact results; the match becomes more pronounced when

increasing the percentage of lower priority traffic. However, for very low percentages of

through traffic, the upper bounds can become extremely conservative when compared to the

exact results. The gap between the two vanishes when ρ → 1, as pointed out at the end of

Section 7.1.2.

7.3.2 The multi-node case

Here we present numerical examples illustrating three aspects of the network calculus bounds

derived in Sections 7.2.1-7.2.3: (1) how conservative are the bounds when compared to exact

results, (2) how do they behave when relaxing the independence assumptions of arrivals or
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(a) p = 0.1
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(b) p = 0.01

Figure 7.2: Expected delay for the lowest priority flow in an M/M/1 queue as a function of
the utilization factor ρ (C = 100 Mbps, percentage of through traffic (p = 0.1 and p = 0.01),
average packet size µ−1 = 400 Bytes)

service, and (3) how do they behave when neglecting packetization.

In Figure 7.3 we show the bounds obtained using the statistical assumptions on both

arrivals and service (Eq. (7.23)), and the exact results, as a function of the number of nodes.

We consider both a moderate utilization factor (ρ = 0.75) in Figure 7.3.(a), and a high

utilization factor (ρ = 0.9) in Figure 7.3.(b). There are three different plots for the upper

bounds, each reflecting a different percentage p of through traffic, out of the total traffic mix:

p = 0.1, p = 0.5, and p = 0.9, respectively (note that the exact results do not depend of

p). We observe that for moderate utilization factors and high percentages of through traffic

the calculus bounds are reasonably accurate. However, when the amount of cross traffic is

increased, the calculus bounds become pessimistic. This indicates that the representation

of the service for the through flow with leftover service curves may be too conservative

(this observation is also supported by the corresponding discussion from Section 7.1.2). At

higher utilizations, the network calculus bounds become pessimistic even for high amounts

of through traffic; also, the bounds for higher amounts of cross traffic degrade more rapidly

than in the case of lower utilizations.

Similar conclusions can be drawn from Figure 7.4, which shows the bounds as a function

of the utilization factor ρ for two cases: (a) small number of nodes (H = 5), and (b) large
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Figure 7.3: Comparison of network calculus bounds with exact results in an M/M/1 network.
End-to-end delay wnet(z) as a function of the number of nodes H (C = 100 Mbps, utilization
factor (ρ = 0.75 and ρ = 0.9), percentage of through traffic (p = 0.1, p = 0.5, and p = 0.9),
average packet size µ−1 = 400 Bytes, z = 1− 10−9)
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(b) H = 25

Figure 7.4: Comparison of network calculus bounds with exact results in an M/M/1 network.
End-to-end delay wnet(z) as a function of the utilization factor ρ (number of nodes (H = 5
and H = 25), C = 100 Mbps, percentage of through traffic (p = 0.1, p = 0.5, and p = 0.9),
average packet size µ−1 = 400 Bytes, z = 1− 10−9)
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(a) p = 0.9
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Figure 7.5: The impact of relaxing the statistical independence assumptions of arrivals and
service in an M/M/1 network. End-to-end delay wnet(z) as a function of the number of nodes
H (C = 100 Mbps, utilization factor ρ = 0.75, percentage of through traffic (p = 0.9 and
p = 0.5), average packet size µ−1 = 400 Bytes, z = 1− 10−9)

number of nodes (H = 25). The calculus bounds are quite accurate for small number of

nodes, and a low percentage of through traffic. However, increasing the number of nodes or

the amount of cross traffic leads to much more pessimistic bounds.

In Figure 7.5 we illustrate the behavior of calculus bounds by relaxing the statistical in-

dependence assumptions of arrivals and service. We plot the end-to-end delay bounds as

a function of the number of nodes H and consider two cases: (a) large amount of through

traffic (p = 0.9), and (b) medium amount of through traffic (p = 0.5). The plots correspond

to Eqs. (7.23), (7.28), (7.26), and (5.29), respectively, in an increasing order of the bounds.

Both figures show that dispensing with the independence of service has a similar effect on

the bounds, in both cases of independent or correlated arrivals. Dispensing with the inde-

pendence assumption of arrivals has a much more noticeable effect in Figure 7.5.(b), due to

the increase in the amount of cross traffic. The bounds obtained for correlated arrivals but

independent service appear to be more pessimistic than the bounds obtained for independent

arrivals bur correlated service, i.e., correlations within arrivals have a more noticeable effect

than correlations within service.

Similar conclusions can be drawn from Figure 7.6, that is similar to Figure 7.5, but it
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Figure 7.6: The impact of relaxing the statistical independence assumptions of arrivals and
service in an M/M/1 network. End-to-end delay wnet(z) as a function of the utilization factor
ρ (number of nodes (H = 5 and H = 25), C = 100 Mbps, percentage of through traffic
(p = 0.5), average packet size µ−1 = 400 Bytes, z = 1− 10−9)
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Figure 7.7: The impact of using a fluid service model in an M/M/1 network. End-to-end
delay wnet(z) as a function of the utilization factor ρ (number of nodes (H = 5 and H = 25),
C = 100 Mbps, percentage of through traffic (p = 0.5), average packet size µ−1 = 400 Bytes,
z = 1− 10−9)
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shows the bounds (on a logarithmic scale) as a function of the utilization factor ρ for two

cases: (a) small number of nodes (H = 5), and (b) large number of nodes (H = 25). Also,

in both cases (a) and (b) we let an equal share of through and cross traffic (p = 0.5). Re-

markably, the figures show that for both independent and correlated arrivals, the assumption

of identical service times for packets is justified at high utilizations. This observation is first

pointed out in the context of queueing networks theory (for independent arrivals only) by

means of simulations, whereas we reach it by means of analytical and numerical results.

Last, Figure 7.7 illustrates the effects of dispensing with the packetized service model at

the nodes. We consider a small number of nodes (H = 5) in Figure 7.7.(a) and a higher

number of nodes (H = 25) in Figure 7.7.(b). In both figures we consider both correlated

and independent arrivals, and plot the bounds as a function of the utilization factor. For the

case of correlated arrivals, the bounds obtained using the two service models (packetized and

fluid) closely match in all situations. A similar behavior is observed for independent arrivals,

with the difference that the fluid model predicts more optimistic bounds than the packetized

model, but only at very low utilization factors. Based on the figures, we can conclude that

using a fluid flow service model is generally justified at high data rates.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

We have made theoretical contributions in the stochastic network calculus, and have provided

new analytical insights into the scaling behavior of network delays.

1. A stochastic network calculus formulation with a new statistical network service

curve: We have formulated a stochastic network calculus that is generally suitable to analyze

network scenarios where arrivals and service at the nodes may be statistically correlated. We

have provided mathematical models to characterize arrivals and service, and have also pre-

sented analytical results for the derivation of single-node and multi-node bounds on network

performance metrics such as backlog or delay.

The main technical contribution of this calculus formulation, and of this thesis in general,

is the construction of a new statistical network service curve. The network service curve

provides a service description for a flow in a network, as though the flow had traversed a

single-node only. The network service curve allows the computation of multi-node perfor-

mance bounds using single-node results. The proposed statistical network service curve can

be applied to a wide class of arrivals, and lends itself to explicit numerical results. We point

out that the formulation of such network service curves was a long-standing research prob-

lem.

171
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2. The existence of Θ(H log H) scaling of network performance metrics: We have applied

our statistical network service curve in a network scenario with EBB arrivals and service, and

have shown that it yields end-to-end performance bounds which grow as O(H log H). This

scaling behavior is much smaller than the corresponding O(H3) scaling behavior of end-to-

end bounds obtained by using the alternative method of adding per-node bounds proposed in

the early 1990s.

For a particular network scenario with EBB arrivals and service, we have also shown

the Ω(H log H) scaling of network performance bounds. The resulting Θ(H log H) result

demonstrates a different scaling behavior of network performance bounds than is currently

predicted with existing analytical tools. For example, queueing networks theory predicts a

linear scaling behavior, i.e., Θ(H), by relying on simplifying assumptions of the statistical

independence of arrivals and service at the nodes.

3. A stochastic network calculus formulation accounting for statistical independence: We

have formulated a stochastic network calculus that can account for the properties of statistical

independence of arrivals or service at the nodes, where available. Unlike other formulations

of the calculus which require the independence of both arrivals and service, our formulation

also allows for correlations between either arrivals or service at different nodes. A scenario

where the proposed network calculus formulation is particularly useful is a network with

statistically independent cross traffic, but statistically correlated service at the nodes. These

correlations are generally inherent in packet networks since each packet maintains its size

constant at each of the traversed nodes.

We have specialized the second calculus formulation to the class of arrival processes

characterized by stationary and independent increments properties. Using these additional

properties, we have applied supermartingales based techniques in network calculus. The

benefit of using these techniques is that we could improve existing bounds in the network

calculus, especially at high utilizations of the nodes.

4. Relationship with existing theories: We have investigated the accuracy of stochastic
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network calculus bounds by comparing them with exact results available in product-form

queueing networks. In the single-node case, we have shown for M/M/1, M/D/1, and M/M/1

queues with priorities, that the network calculus bounds are quite accurate. In the multi-node

case, we have shown that the network calculus bounds can become accurate in M/M/1 net-

works where the amount of cross traffic is low. We have quantified the impact of accounting

for statistical independence in the multi-node analysis with the calculus, and have also shown

that fluid service models provide good approximations for packetized service models at high

utilizations.

8.2 Future Work

Here we outline some open problems in the stochastic network calculus, and possible appli-

cations of the calculus to networking problems.

A problem of interest in the stochastic network calculus theory concerns the existence of

‘convolution-form’ networks, i.e., the class of networks in which the service given to flows

can be expressed in terms of (min, +) convolution formulas. Networks with cross traffic,

fixed routing, and arrivals described with statistical envelopes satisfying certain integrability

conditions have been shown in this thesis to have a convolution-form. It is an open problem

whether networks with arbitrary topologies, possibly containing cycles, probabilistic routing,

and more general classes of arrivals can also be described with convolution formulas. A po-

tential insight into this direction may be offered by the results of Wischik [114] who showed

that under certain asymptotic regimes, the per-flow effective bandwidths are preserved at the

output of a link, i.e., the characteristics of traffic are preserved within networks.

The aim of seeking a general result on the existence of convolution-form networks is to

enable the performance analysis of networks in a simplified manner, as it is currently the case

for product-form queueing networks. Convolution-form networks may exist for a much larger

class of arrival processes than the class of Poisson processes, which represents a restriction

for product-form networks.
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Another theoretical problem concerns the formulation of a stochastic network calculus

which can enable the derivation of backlog and delay bounds for the class of heavy-tailed

arrivals processes. Such processes present interest since they have been shown to model

traffic in networks (see Park and Willinger [92]). We have pointed out that the calculus

formulation from Chapter 6 does not apply to heavy-tailed processes, because they have

unbounded moment generating functions. Also, the calculus formulation from Chapter 4

may not apply to heavy-tailed processes in some scenarios, such as networks with heavy-

tailed cross traffic; the reason is that the construction of leftover service curves, followed by

the derivation of network service curve, would result in unbounded error functions.

In Chapter 6 we have shown that the stochastic network calculus can exploit the properties

of independent increments of arrival processes in the single-node case. It is currently open

whether similar results hold in the multi-node case, which may significantly improve the

delay bounds obtained in Chapter 7 for M/M/1 networks.

A possible application of the stochastic network calculus is to the computation of per-user

throughput capacity and delay bounds in multi-hop wireless networks. There are currently

many results available in this directions concerning access mechanisms such as ALOHA (see

Silvester and Kleinrock [102]) or the distributed coordination function (DCF) characteristic

to 802.11 wireless networks (see Bianchi [11]). The potential benefit of using the calculus is

that it can yield bounds on both the capacity and delay distributions. Also, the calculus can

compute delay bounds for a wide class of arrival traffic; existing results concerning average

delays are available only for specific arrivals, such as Bernoulli or infinite arrival models.

The key challenge in applying the calculus to the analysis of wireless networks is cap-

turing with statistical service curve the noise induced by collisions and the different power

levels used for transmissions. Possible insights into this problem may be offered by related

works of Wu and Negi [115], Jiang and Emstad [61], and Fidler [49]. Having available the

service curves within cells, i.e., areas where nodes can hear each other, end-to-end results on

capacity or delay can be then obtained with the convolution theorem.



Glossary of Notation

Notation Description Page

D-BIND Deterministic Bounding INterval-length Dependent en-

velope model

19

EBB Exponentially Bounded Burstiness envelope model 36

EDF Earliest Deadline First scheduling algorithm 43

FBM Fractional Brownian Motion 6

FIFO First In First Out scheduling algorithm 23

GPS Generalized Processor Sharing scheduling algorithm 51

gSBB generalized Stochastically Bounded Burstiness enve-

lope model

40

LRD Long range dependence 5

LTI Linear Time-Invariant system 20

MGF Moment Generating Function 45

MPEG Moving Picture Experts Group video compression stan-

dard

40

SBB Stochastically Bounded Burstiness envelope model 37

SCED Service Curve-based Earliest Deadline First scheduling

algorithm

68

SP Static Priority scheduling algorithm 23

(min, +) (min, +) algebra 20
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Notation Description Page

—a Superscript referring to arrivals 78

—a Subscript referring to arrivals 91

—s Superscript referring to service 78

—s Subscript referring to service 91

—c Subscript referring to cross traffic 24

—h Subscript referring to cross traffic at node h 29

—h Superscript referring to through traffic at node h 29

—net Superscript referring to through traffic across the net-

work

29

A(t), A(s, t) Arrival process 16

D(t), D(s, t) Departure process 16

B(t) Backlog process 16

W (t) Delay process 17

w(z) z-quantile 90

G(t) Envelope function (deterministic or statistical) 17

G(t), G(s, t) Statistical envelope as random process 44

G(t, ε) Effective envelope function 39

G(t, β, ε) Global effective envelope function 41

S(t) Service curve function (deterministic or statistical) 21

R(t) Constant-rate service curve function (deterministic or

statistical)

22

S(t), S(s, t) Service curve as random process 52

ε Violation probability value 39

z Violation probability value (usually z = 1− ε) 90
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Notation Description Page

ε(σ) Error function for statistical envelope or service curve 78

ε̃a(σ) The integral of an error function: 1
a

∫∞
σ

ε(u)du 73

u, s, t Time indexes 17

t The start of the busy period containing t 49

C Capacity at the node 15

H Number of nodes in the network 15

h Node index 29

r Traffic rate 18

P Traffic peak rate 33

δ Relaxation rate (e.g. S−δ(t) = S(t)− δt) 77

σ Traffic burst 18

d, d(σ) Delays 98

θ Exponential decay rate in the violation probability;

space parameter in effective bandwidth

36

M Prefactor in exponentially decaying violation probabil-

ity functions

36

K,α, β, γ Constants 108

λ, µ Transition rates between the states of a Markov-

modulated On-Off process

118

λ Arrival rates of packets (through flows) 101

µ Service rate of packets 101

Xf (t) Processed fraction of a packet 103

αA(θ, t) Effective bandwidth of an arrival flow A(t) 36

B(t, p) Binomial random variable 44
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Notation Description Page

E [X] Expectation of a random variable 36

E [X ‖ F ] Conditional expectation of X with respect to the σ-

algebra F
113

Γ(x,H) Gamma distribution 153

I Indicator function 44

V ar [X] Variance of a random variable X 39

f ≈ g Approximative pointwise equality of two functions 34

f , g Equality by definition 16

∗ (min, +) convolution operator 21, 52

∗t (min, +) modified convolution operator 48

® (min, +) deconvolution operator 25

f(t) = O(g(t)) Landau Big-Oh asymptotic notation 28

f(t) = Ω(g(t)) Landau Big-Omega asymptotic notation 28

f(t) = Θ(g(t)) Landau Big-Theta asymptotic notation 28

e Euler’s constant: e = 2.718281 . . . 96

[x]+ Positive part max {x, 0} of a number x 22

log(x) Natural logarithm of x 36

¤ Halmos symbol to end a proof 75



Index

Busy period, 23

of a flow, 23

Convolution, 21

of doubly-indexed functions, 52

Deterministic envelope, 17

IntServ (example), 19

leaky-bucket (example), 18

Deterministic service curve, 21

constant-rate (example), 22

latency-rate (example), 23

leftover, 24

EBB, see Statistical envelope

Effective bandwidth, 36

Effective envelope, see Statistical envelope

Effective service curve, see Statistical ser-

vice curve

Envelope, see Deterministic envelope, Sta-

tistical envelope

Expectation, 36

Filtration, 113

Function

indicator, 44

sub-additive, 18

Global effective envelope, see Statistical

envelope

gSBB, see Statistical envelope

Inequality

Boole, 57

Chernoff, 57

Doob (maximal), 114

Landau notation, 29

Leaky-bucket, see Deterministic envelope

Network

tandem, 105

with cross traffic, 15

Network service curve, 27

Deterministic, 27

Statistical, 69

Packetizer, 103

Pay-bursts-only-once, 32

Process, 16

Arrivals, 16
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Backlog, 16

Delay, 17

Departures, 16

SBB, see Statistical envelope

Scheduling, 23

earliest eadline first, 43

FIFO, 24

generalized processor sharing, 52

locally-FIFO, 24

static priority, 23

workconserving, 24

Statistical envelope, 36

as non-random function, 36

EBB, 36

effective envelope, 39

global effective envelope, 41

gSBB, 40

SBB, 37

as random process, 43

with a.s. ordering, 45

with stochastic ordering, 44

Statistical service curve, 47

as non-random function, 47

adaptive, 48

EBB, 47

effective service curve, 47

leftover, 50

network, 82

as random process, 52

leftover, 53

network, 69

Traffic source (examples)

Bernoulli, 33

Compound Poisson, 102

FBM, 73

Markov-modulated On-Off, 119

Variance, 39

z-quantile, 90
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[86] L. Massoulié and A. Simonian. Large buffer asymptotics for the queue with fractional

Brownian input. Journal of Applied Probabability, 36(3):894–906, September 1999.

[87] S. McCreary and K. Claffy. Trends in wide area IP traffic patterns. In Proceeings of

13th ITC Specialist Seminar on Internet Traffic Measurement and Modeling, Septem-

ber 2000.

[88] T. Mikosch, S. Resnick, H. Rootzn, and A. Stegeman. Is network traffic approximated
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