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Abstract—Generalized Processor Sharing (GPS), which pro-
vides the theoretical underpinnings for fair packet scheduling
algorithms, has been studied extensively. However, a tight for-
mulation of the available service to a flow only exists for traffic
that is regulated by affine arrival envelopes and a constant-rate
link. In this paper, we show that the universal service curve by
Parekh and Gallager can be extended to concave arrival envelopes
and links with time-variable capacity. We also dispense with the
previously existing assumption of a stable system.

I. INTRODUCTION

Expressions for the available service at a link with Gen-
eralized Processor Sharing scheduling derived in [4], [5] are
widely credited for the first formulation of a service curve in
the network calculus. The so-called universal service curve for
a link with rate R and GPS scheduling derived in [4], [5] is
given by

S(t) = max
M⊆N

Rt−
∑
j∈M (σj + ρj t)∑
j 6∈M φj

, (1)

where N is the set of flows with weights (φj)j∈N . The
universal service curve yields a (strict) per-flow service curve
Si(t) = φiS(t) for a flow i ∈ N . The service curves are
derived under the assumptions that (i) the arrival traffic of
each flow j ∈ N in a time interval of length τ is bounded
by an affine arrival envelope Ej(τ) = σj + ρjτ , and (ii) the
system is stable in the sense that the total average arrival
rate does not exceed the link capacity (

∑
j∈N ρj ≤ R). For

general scenarios, where the Ej are not necessarily affine and
the system may be unstable (

∑
j∈N ρj > R), a pessimistic

estimate for the available service can be given by the minimum
guaranteed rate φ∑

j∈N φj
R. This estimate can be somewhat

improved by using knowledge of the arrival envelopes [3],
[6], [7]. If the envelopes of the arrivals in Eq. (1) are replaced
by envelopes for the departures, a generalization to non-affine
envelopes is easily achieved. As pointed out in [2, Sec. IV.C],
since a departure envelope of a flow can be expressed as a min-
plus deconvolution of its arrival envelope and per-flow service
curve, this only results in implicit expressions for (minimum)
per-flow service curves.

In this paper, we provide the following extensions to the per-
flow (strict) service curves obtained from the universal service
curve in Eq. (1):
• Arrival envelopes can be arbitrary concave functions;
• The link may have a time-variable capacity;
• The link need not be stable.

These relaxations are achieved by generalizing the concepts of
feasible ordering in [4] and feasible partition in [8]. Note that
the extension to time-variable service rates enables the compu-
tation of the available service for hierarchical schedulers [1].
We will show that the derived service curve is best-possible.

In Sec. II we state the main result. We provide a brief
description of max-min fairness in Section III, and then
introduce the key notion of feasible subsets. This notion is used
in Sec. IV to derive backlog and output bounds. In Sec. V, we
prove the main result, Theorem 1. Sec. VI discusses GPS for
general monotone arrival and service processes. We conclude
the paper in Sec. VII.

II. STATEMENT OF THE MAIN RESULT

Let A and D denote the arrival and departure processes
for a flow or an aggregate of flows arriving at a service
element. (Arrivals and departures for different flows will
be distinguished by subscripts). The backlog is denoted by
B(t) = A(t) − D(t). The cumulative service process of the
element will be described by a function C(t). The arrivals in a
half-open interval [s, t) are denoted by A(s, t) := A(t)−A(s),
and correspondingly for the departures and the service. We
always assume that arrival, departure, and service processes
are nondecreasing and left-continuous, with A(t) = D(t) =
C(t) = 0 for t ≤ 0, and D(t) ≤ A(t) for all t.

We say that the service element is workconserving, if
D(s, t) = C(s, t) on every interval that contains no idle pe-
riod, and D(s, t) ≤ C(s, t) otherwise. An important example
is the constant-rate link, C(t) = Rt, which serves traffic at
the constant rate R whenever the backlog is positive. In case
the service process is given as a time-varying rate Ċ(t), then
the service element is workconserving if the departure rate
satisfies Ḋ(t) = Ċ(t) whenever there is a backlog at t.

Throughout this paper, we consider a finite set N of flows
arriving to a service element. Each flow j ∈ N is associated
with a positive weight φj > 0.

Definition 1. A Generalized Processor Sharing (GPS) sched-
uler is a workconserving scheduling algorithm which ensures
that for any 0 ≤ s < t and any flow i ∈ N that is backlogged
on the entire interval (s, t), the departures satisfy

Di(s, t)

φi
≥ Dj(s, t)

φj
for all j ∈ N . (2)

Our main result provides a lower bound on Di(s, t) in terms
of the parameters of the scheduler, the service process, and the
traffic arriving to each of the flows j ∈ N .



To proceed, we need some more notation. An envelope for
an arrival function A is a nondecreasing function E such that

A(s, t) ≤ E(t− s) for all 0 ≤ s ≤ t .

We also say that the arrivals comply to E and write A . E .
By convention we set E(τ) = 0 if τ ≤ 0. Without loss of
generality, envelopes can be taken to be subadditive.

A nondecreasing function S is a strict service curve for a
flow at a service element if D(s, t) ≥ S(t− s) whenever the
flow is backlogged on the entire interval (s, t). By convention,
S(τ) = 0 for τ ≤ 0. Without loss of generality, a strict service
curve may be taken to be superadditive and nonnegative.

For the special case of a workconserving service element,
a function C is a strict service curve if

C(s, t) ≥ C(t− s) for all 0 ≤ s ≤ t .

We say that the service process complies to C and write C &
C. In particular, C(t) = Rt is a strict service curve for the
workconserving link with constant rate R.

Theorem 1 (Leftover service curve). Let N be a finite set of
flows arriving to a GPS scheduler, as in Definition 1. Assume
that C & C. Fix i ∈ N . For each j ∈ N \ {i}, let Ej be an
envelope with Aj . Ej . If C is convex and each Ej is concave
in t, then

Si(t) := max
M⊆N\{i}

φi∑
j 6∈M φj

(
C(t)−

∑
j∈M
Ej(t)

)
(3)

is the best-possible strict service curve for flow i.

We refer to Si as the leftover service curve available to
flow i under GPS. Note that there are no hypotheses on the
arrivals from flow i. If no envelope is available for some flow
j ∈ N , a conservative estimate can be obtained by setting
Ej(t) = +∞ for all t > 0.

By construction, Si is nonnegative, nondecreasing, and
convex in t, with Si(0) = 0 and φi∑

j∈N φj
C ≤ Si ≤ C.

We will show that Si(t) equals the service that flow i receives
in a scenario where it is backlogged on (0, t), the flows j 6= i
are greedy (Aj = Ej), and the service element is lazy (C = C),
see Lemma 6.

Eq. (3) and the definition of the GPS scheduler are reminis-
cent of expressions for max-min fairness. In the proof of the
theorem we will exploit this connection. The convexity and
concavity assumptions will play an important role.

III. MAX-MIN FAIRNESS AND FEASIBLE SUBSETS

Let N be a collection of players. As in Sec. II, let (φj)j∈N
be positive weights. Each player j ∈ N requests a nonneg-
ative share xj of a resource X . An allocation (yj)j∈N with
0 ≤ yj ≤ xj for j ∈ N is max-min fair, if

∑
j∈N yj =

min
{∑

j∈N xj , X
}

, and for each i ∈ N with yi < xi

yi
φi
≥ yj
φj

for all j ∈ N . (4)

Here, yi represents the share allocated to player i. The first
condition requires the allocation to be waste-free, that is,

the entire resource must be used unless the requests of all
players are satisfied. Eq. (4) specifies that small requests are
satisfied in full while large requests are served in proportion to
their weights (φj). It is known that these conditions uniquely
determine the allocation. Explicitly, yi = min{xi, φif} with

f := max
M⊂N

X −
∑
j∈M xj∑

j 6∈M φj
. (5)

The value f is called the fair share associated with the
allocation problem. By convention, for M = N the fraction
takes the value −∞ if the numerator is negative and +∞
otherwise. The maximum is attained by the set of satisfied
players,

Msat :=
{
j ∈ N

∣∣ xj ≤ φjf} . (6)

Clearly, the fair share is nonnegative and jointly convex in xj
and X . It is nondecreasing in X and nonincreasing in each xj .
Its value is finite if and only if

∑
i∈N xi > X , and it satisfies

the lower bound f ≥ X∑
j∈N φj

.

Different from Eq. (3), the maximum in Eq. (5) ranges over
all subsets M ⊂ N . The two formulas are related as follows.

Lemma 1. Let M ⊂ N be a non-empty subset, and i ∈ M .
Then either

xi
φi
≤

X −
∑
j∈M\{i} xj∑

j 6∈M\{i} φj
≤

X −
∑
j∈M xj∑

j 6∈M φj

or both inequalities are reversed.

Proof. If M = N , then the inequalities hold if and only if∑
j∈N xj ≤ X . Otherwise, set x′i := X −

∑
j∈M xj and

φ′i :=
∑
j 6∈M φj > 0, and write

X −
∑
j∈M\{i} xj∑

j 6∈M\{i} φj
=
xi + x′i
φi + φ′i

= λ
xi
φi

+ (1− λ)
x′i
φ′i

= λ
xi
φi

+ (1− λ)
X −

∑
j∈M xj∑

j 6∈M φj
,

where λ = φi

φi+φ′i
lies strictly between 0 and 1. Therefore

either both inequalities hold, or both fail.

As a consequence of the lemma, the fair allocation to flow i
can also be computed by yi = min{xi, fi}, where

fi := max
M⊂N\{i}

φi∑
j 6∈M φj

(
X −

∑
j∈M

xj

)
. (7)

We next consider the impact that a subset of requests can
have on a max-min fair allocation.

Definition 2. Let M ⊂ N , and X > 0. A collection of
requests (xj)j∈M is feasible, if

max
j∈M

xj
φj
≤
X −

∑
j∈M xj∑

j 6∈M φj
. (8)



In that case, M is called a feasible subset of N for the data
(φj)j∈N , (xj)j∈M , and X .

Feasibility of (xj)j∈M means that Msat, the set of satisfied
players from Eq. (6), contains M , regardless of the values in
the set (xj)j 6∈M . Conversely, for any set of requests (xj)j∈N ,
the corresponding subset Msat is feasible. By way of exam-
ples, a single request xi is feasible if xi ≤ φi∑

j∈N φj
X . A full

set of requests (xj)j∈N is feasible if
∑
j∈N xj ≤ X .

Remark. Feasible subsets are closely related to the notion of
feasible orderings introduced in [4, Sec. V.C]. By definition, a
feasible ordering (“≺”) is a total order on N with the property
that

xk
φk

<
X −

∑
j≺k xj∑

j�k φj
for all k ∈ N .

One can verify that for any feasible ordering, the downsets
Mk := {j | j � k} are feasible subsets. Feasible subsets
are also downsets for the partial order induced by the feasible
partition defined in [8].

The next lemma will be used to construct chains of feasible
subsets. In the case where M = N and

∑
j∈N xj < X , it

implies that orderings of N along which the fraction xj

φj
is

nondecreasing are feasible. This recovers Lemma 5 in [4]. We
note in passing that there exist other feasible orderings where
xj

φj
is not monotone.

Lemma 2. Let (xj)j∈M be a feasible subset for a resource
X > 0 and k ∈M . Then, M \ {k} is feasible if

xk
φk

= max
j∈M

xj
φj

.

Proof. By the maximality of k and the feasibility of M ,

max
j∈M\{k}

xj
φj
≤ xk
φk
≤
X −

∑
j∈M xj∑

j 6∈M φj
.

It follows from Lemma 1 that

xk
φk
≤
X −

∑
j∈M\{k} xj

φk +
∑
j 6∈M φj

.

Thus M \ {k} is feasible.

Let (yj)j∈N be the max-min fair allocation of a resource
X resulting from requests (xj)j∈N . Denote by ȳi := xi − yi
the unmet demand of player i. In terms of the fair share from
Eq. (5), the unmet demand is given by ȳi = [xi−φif ]+. Here,
we have used the notation [x]+ = max{x, 0}. The waste-
free property of the allocation is equivalent to

∑
j∈N ȳj =[∑

j∈N xj −X
]
+
. The unmet demand satisfies the following

useful inequalities.

Lemma 3. Let (ȳj)j∈N be the unmet demands in the max-
min fair allocation of a resource X resulting from requests
(xj)j∈N , and let (ȳ′j)j∈N be defined accordingly from X ′

and (x′j)j∈N . Then∑
j∈N
|ȳj − ȳ′j | ≤

∑
j∈N
|xj − x′j |+ |X −X ′| . (9)

Moreover, we have the monotonicity property

xj ≤ x′j for all j ∈ N
X ≥ X ′

}
=⇒ ȳj ≤ ȳ′j for all j ∈ N .

Proof. We start with the second claim. Fix i ∈ N . By
definition, ȳi = [xi − fi]+, and correspondingly for ȳ′i. It
is apparent from Eq. (7) that fi is nondecreasing in X and
nonincreasing in the variables xj for j 6= i. This proves
monotonicity.

For Eq. (9), let (xj)j∈N and (x′j)j∈N be as in the state-
ment of the lemma. Denote by (z̄j)j∈N the unmet demand
resulting from the requests min({xj , x′j})j∈N for the re-
source max{X,X ′}, and by (w̄j)j∈N be the unmet demand
resulting from requests max({xj , x′j})j∈N for the resource
min{X,X ′}. By monotonicity,

z̄j ≤ ȳj ≤ w̄j for all j ∈ N ,

and likewise for ȳ′j . Therefore∑
j∈N
|ȳj − ȳ′j | ≤

∑
j∈N

(w̄j − z̄j)

=
[∑
j∈N

max{xj , x′j} −min{X,X ′}
]
+

−
[∑
j∈N

min{xj , x′j} −max{X,X ′}
]
+

≤
∑
j∈N
|xj − x′j |+ |X −X ′| ,

where the second step used the waste-free property.

The lemma implies that the max-min fair allocation for a
fixed value of X , viewed as a mapping (xj)j∈N 7→ (ȳj)j∈N ,
contracts the `1-distance and preserves the natural order.

IV. PERFORMANCE BOUNDS

Next we apply the results of Sec. III to the allocation
of service at a GPS scheduler. Henceforth, xj expresses
the fraction of the service process C allocated to flow j.
The following theorem says that the aggregate cumulative
departures from a feasible subset (xj)j∈M are at least as large
as if each flow j ∈ M were allocated a dedicated link with
service process xjC. Note that no assumption is made on busy
periods.

Theorem 2 (Departures). Let (Aj(t))j∈N be arrivals from a
set of flows to a GPS scheduler with service process C(t). Fix
M ⊂ N , and let (xj)j∈M be a feasible subset of requests for
a resource X = 1. Then for all t ≥ 0,∑

j∈M
Dj(t) ≥

∑
j∈M

inf
s≤t

{
Aj(s) + xjC(s, t)

}
. (10)

Proof. We proceed by induction on the number of elements
of M . When M = ∅, there is nothing to show.

For the inductive step, let M ⊂ N be a non-empty feasible
subset, and suppose the claim has already been established for
its proper feasible subsets. Choose k ∈ M to maximize the



ratio xj

φj
. By Lemma 2, M \ {k} is feasible. The inductive

hypothesis implies that, for all t ≥ 0,∑
j∈M\{k}

Dj(t) ≥
∑

j∈M\{k}

inf
r≤t

{
Aj(r) + xjC(r, t)

}
. (11)

Fix t > 0 and let s be the start of the busy period for flow k
that contains t. If Dk(s, t) ≥ xkC(s, t), then

Dk(t) ≥ Ak(s) + xkC(s, t) ,

since Dk(s) = Ak(s). Eq. (10) follows by adding Eq. (11).
Otherwise, since flow k is backlogged on (s, t),

Dj(s, t)

φj
≤ Dk(s, t)

φk
<
xk
φk
C(s, t)

for all j ∈ N by Eq. (2). Therefore∑
j 6∈M

Dj(s, t) <
(∑
j 6∈M

φj

)xk
φk
C(s, t)

≤
(

1−
∑
j∈M

xj

)
C(s, t) ,

where the second inequality is by the feasibility of (xj)j∈M .
Since the scheduler is workconserving, it follows that∑

j∈M
Dj(s, t) >

∑
j∈M

xjC(s, t) ,

and therefore∑
j∈M

Dj(t) >
∑
j∈M

(
Dj(s) + xjC(s, t)

)
.

Clearly, Dk(s) = Ak(s) by the choice of s. For the flows
j 6= k, we use Eq. (11) at time s to obtain∑
j∈M\{k}

(
Dj(s) + xjC(s, t)

)
≥
∑

j∈M\{k}

inf
r≤s

{
Aj(r) + xjC(r, t)

}
.

Eq. (10) follows once we add the term for j = k and extend the
range of the infima to r ≤ t. This completes the induction.

In the case where M = {i}, Theorem 2 yields

Di(t) ≥ inf
s≤t

{
Ai(s) +

φi∑
j∈N φj

C(s, t)
}
.

More generally, the theorem implies the following key esti-
mates.

Corollary 1 (Backlog). Define

B∗j (t) := sup
r≤t
{Aj(r, t)− xjC(r, t)}

for j ∈M . Under the assumptions of Theorem 2,∑
j∈M

Bj(t) ≤
∑
j∈M

B∗j (t) , t ≥ 0 . (12)

Proof. Write Bj(t) = Aj(t)−Dj(t) and apply Eq. (10).

For later use, we note that if Aj(t) . σj + ρjt and C(t) &
R(t− L) with ρj ≤ xjR, then

B∗j (t) ≤ σj + ρjL , t ≥ 0 . (13)

Corollary 1 implies Theorem 4 in [4] as follows. The as-
sumption in [4] is that the arrivals comply to token-bucket
envelopes, Aj . σj + ρjt, that the link offers a constant-rate
service C & Rt, and that the stability condition

∑
j∈N ρj < R

holds. If we choose xj =
ρj
R , then σj − σtj equals B∗j (t) −

Bj(t), where σtj is defined in [4] as the sum of the filling
level of the token bucket and the backlog at time t. Further,
in [4] the set M is assumed to be a downset for a feasible
ordering of N . Under these assumptions, Eq. (12) reduces to
the central conclusion in [4] that

∑
j∈M σtj ≤

∑
j∈M σj .

Corollary 2 (Output burstiness). Under the assumptions of
Theorem 2,∑

j∈M
Dj(s, t) ≤

∑
j∈M

(
B∗j (t) + xjC(s, t)

)
, 0 ≤ s ≤ t .

Proof. By Theorem 2,∑
j∈M

Dj(s, t) ≤
∑
j∈M

(
Aj(t)−Dj(s)

)
≤
∑
j∈M

sup
r≤s

{
Aj(r, t)− xjC(r, s)

}
≤
∑
j∈M

(
B∗j (t) + xjC(s, t)

)
.

In the last step, we have extended the range of the supremum
to r ≤ t and applied the definition of B∗j (t).

V. THE LEFTOVER SERVICE CURVE

Consider the definition of the leftover service curve Si in
Eq. (3). It follows from Lemma 1 that

min
{
Ei(t),Si(t)

}
= min

{
Ei(t), φiS(t)

}
,

where

S(t) := max
M⊂N

C(t)−
∑
j∈M Ej(t)∑

j 6∈M φj
. (14)

Note the structural similarities of Eq. (3) to Eq. (7), and of
Eq. (14) to Eq. (5). In the special case where the envelopes Ej
are affine, S agrees with the universal service curve in Eq. (1).
The maximum in Eq. (14) is attained by

M∗ := {j ∈ N | Ej(t) ≤ Sj(t)} , (15)

see Eq. (6).

Lemma 4. Let N , C, i, and Ej be as in Theorem 1. Given
τ > 0, define M∗ by Eq. (15) with t = τ and Ei = +∞. Then

xj :=
Ėj(τ−)

Ċ(τ−)
, j ∈M∗

defines a feasible subset for the resource X = 1.

Here, we used the notation f(x−) = supy<x f(y).

Proof. By Eqs. (14) and (15), the subset of requests x′j :=
Ej(τ)
C(τ) , j ∈M∗ is feasible for X = 1. Since Ej(τ) ≥ τ Ėj(τ−)

by concavity and C(τ) ≤ τ Ċ(τ−) by convexity, we have x′j ≥
xj for all j ∈M∗. Thus, (xj)j∈M∗ is a feasible subset.



We next consider the special case of token-bucket envelopes
and latency-rate service curves. (The general proof follows
immediately afterwards.)

Lemma 5. Under the hypotheses of Theorem 1, suppose
additionally that the service curve has the form C(t) =
R(t − L), and the envelopes are given by Ej(t) = σj + ρjt
for j ∈ N \ {i}. Then Eq. (3) defines a strict service curve
for flow i.

Proof. Suppose that flow i is backlogged on some interval
(s, t). We need to show that Di(s, t) ≥ Si(t− s).

Set τ = t− s. Let M∗ be as in Eq. (15) with τ in place of
t and Ei = +∞, and set xj =

ρj
R for j ∈M∗. By Lemma 4,

the subset of requests (xj)j∈M∗ is feasible for X = 1. By
Corollary 2,∑

j∈M∗
Dj(s, t) ≤

∑
j∈M∗

{
B∗j (t) + xjC(s, t)

}
.

Since the scheduler is workconserving, it follows that∑
j 6∈M∗

Dj(s, t) ≥
(
1−

∑
j∈M∗

xj

)
C(s, t)−

∑
j∈M∗

B∗j (t)

≥
(
R−

∑
j∈M∗

ρj

)
(t−s−L)−

∑
j∈M∗

{σj + ρjL}

= C(t− s)−
∑
j∈M∗

Ej(t− s) .

In the first line, the coefficient of C(s, t) is nonnegative by
the feasibility of (xj)j∈M∗ . In the second line, we have used
that C(t) & R(t − L) and applied Eq. (13). In the last line,
we have canceled the terms ρjL and inserted the envelopes
and service curves. By Eq. (2),

Di(s, t) ≥
φi∑

j 6∈M∗ φj

∑
j 6∈M∗

Dj(s, t)

≥ φi∑
j 6∈M∗ φj

(
C(t− s)−

∑
j∈M∗

Ej(t− s)
)

= Si(t− s) .

The final step used the maximality of M∗ in Eq. (3).

We are ready to tackle the main result.

Proof of Theorem 1. Given 0 ≤ s < t, set τ = t− s, and fix
i ∈ N . For j ∈ N \{i}, consider the tangent line to the graph
of Ej at τ , defined by E ′j(u) = σj + ρju with

ρj := Ėj(τ−) , σj := Ej(τ)− ρjτ ≥ 0 .

Since Ej ≤ E ′j by concavity, the arrival process Aj complies to
the token-bucket envelope E ′j . Also consider the tangent line
to C at τ , defined by C′(u) = R(u− L) with

R := Ċ(τ−) , L := τ − C(τ)R ≥ 0 .

Since C ≥ C′ by convexity, the service process C complies to
the latency-rate service curve C′. By Lemma 5,

S ′i := max
M⊆N\{i}

φi∑
j 6∈M φj

(
C′ −

∑
j∈M
E ′j
)

is a strict service curve for flow i. In particular, if flow i is
backlogged on (s, t) then

Di(s, t) ≥ S ′i(t− s) = Si(t− s) ,

where the equality is by the choice of τ = t−s. We conclude
that Si is a strict service curve. By Lemma 6 below, there
are scenarios where the departures saturate the service curve.
Therefore Si is best possible.

Lemma 6 (The greedy/lazy scenario). In the setup of Theo-
rem 1, let the service process be C(t) = C(t), and the arrival
processes Aj(t) = Ej(t) for j ∈ N and t ≥ 0. Then

Dj(t) = min
{
Ej(t),Sj(t)

}
, j ∈ N . (16)

Proof. Let t > 0 be given. Since the scheduler is workcon-
serving, the aggregate departures satisfy∑

j∈N
Dj(t) = inf

0≤s≤t

{∑
j∈N

Aj(s) + C(s, t)
}
.

Inserting the assumptions on the arrival and service processes,
we obtain∑

j∈N
Dj(t) = inf

0≤s≤t

{∑
j∈N
Ej(s) + C(t)− C(s)

}
= min

{∑
j∈N
Ej(t), C(t)

}
=
∑
j∈N

min
{
Ej(t),Sj(t)

}
. (17)

The second step follows since the minimum is attained at s =
0 or s = t by concavity. In the last step, we have used that
yj = min{Ej(t),Sj(t)} is a max-min fair allocation of the
resource X = C(t), and therefore waste-free.

On the other hand, since Sj is a service curve for flow j,

Dj(t) ≥ inf
0≤s≤t

{
Ej(s) + Sj(t)− Sj(s)

}
= min

{
Ej(t),Sj(t)

}
.

Since this holds for every j ∈ N , by Eq. (17) it holds with
equality.

Lemma 6 demonstrates that the departures from a GPS
scheduler in the greedy scenario necessarily satisfy Eq. (16).
For completeness of the argument, we show that these depar-
tures actually conform to Definition 1. The workconserving
property follows from the waste-free property of the max-min
fair allocation. It remains to verify Eq. (2) on an arbitrary
interval where flow i is backlogged.

Eq. (16) yields Bj(t) =
[
Ej(t) − Sj(t)]+. By concavity,

the ratio Bj(t)
t is nonincreasing in t. Therefore, if flow i is

backlogged at time t, then it is backlogged for all 0 < s ≤ t.
By Eq. (4), Di(t)

φi
≥ Dj(t)

φj
, with equality if flow j is

backlogged as well. If flow j is backlogged at time s, then
Di(s)
φi

=
Dj(s)
φj

, and Eq. (2) follows. Otherwise, flow j is
not backlogged at time s, and Dj(s) = Ej(s). The difference
Di(s,t)
φi

− Dj(s,t)
φj

= Si(t)−Si(s)
φi

− Ej(t)−Ej(s)φj
is concave in s,

and nonnegative at s = 0, t. Therefore it is nonnegative for
every 0 ≤ s ≤ t, proving Eq. (2) also in this case.



VI. THE BACKLOG PROCESS

We briefly address the question how to describe the de-
partures from a GPS scheduler with a general nondecreasing
service process C(t) and nondecreasing arrival processes
Aj(t), j ∈ N . We will argue that the workconserving property
together with Eq. (2) completely determines the backlog
process, and hence the departures.

Consider once more the relation between the GPS scheduler
and max-min fairness, as evidenced by Eq. (2) and Eq. (4).
The departures Dj(s, t) over a time interval [s, t) define an
allocation of the resource X = C(s, t) among a set of flows
j ∈ N , each of which requests a share xj = Bj(s)+Aj(s, t).
The backlog Bj(t) plays the role of the unmet demand.

On any interval where the arrival processes Aj(t) are
concave and C(t) is convex, the departures are given by the
max-min fair allocation

Dj(s, t) = min
{
Bj(s) +Aj(s, t), φjf

}
, j ∈ N ,

where f is defined by Eq. (5) with xj = Bj(s) +Aj(s, t) and
X = C(s, t). This follows by applying Lemma 6 to the time-
shifted processes A′j(τ) = Bj(s) +Aj(s, s+ τ) and C ′(τ) =
C(s, s+ τ), and then setting τ = t− s. The backlog satisfies
the difference equation

Bj(t) =
[
Bj(s) +Aj(s, t)− φjf

]
+
, j ∈ N . (18)

However, Eq. (18) cannot hold for general arrival and
service processes on arbitrary intervals. Flows that are back-
logged at time t but are idle at an earlier time s < t receive
less service than indicated by Eq. (18). The underlying reason
is that Eq. (2) provides no explicit service guarantees for such
flows.

Since Eq. (18) is valid when s is so close to t that the set
of backlogged flows remains constant from s to t, taking the
limit s→ t yields the differential equation

Ḃi(t) = Ȧi(t)−
φi∑

j 6∈M(t) φj

(
Ċ(t)−

∑
j∈M(t)

Ȧj(t)
)
, (19)

so long as Bi(t) > 0. Here, M(t) = {j ∈ N | Bj(t) = 0}
is the set of flows that are not backlogged at time t. The
differential equation holds at every time t where the arrival
and service processes are differentiable, except at instants
where M(t) changes. (If the arrival and service processes are
not absolutely continuous, the differential equation should be
supplemented by equations that account for their jumps and
singular continuous components.)

Eq. (19) determines the backlog process on intervals where
M(t) is constant. These intervals in turn depend on the
departures, rendering the differential equation nonlinear. Stan-
dard theorems that guarantee the existence and uniqueness
of solutions for nonlinear differential equations do not apply,
because the right hand side of Eq. (19) does not have the
requisite continuity properties.

We construct the backlog process as follows. Given arrival
and service processes Aj(t) and C(t), we approximate them
with piecewise linear nondecreasing functions. Specifically,

we consider the class of functions that are linear on inter-
vals (t`, t`+1], where the breakpoints t` form an increasing
sequence with t0 = 0 and lim t` = +∞. Jumps are permitted
at each t`. Since linear functions are simultaneously convex
and concave, Lemma 6 implies that the backlog process for
the approximating scenario satisfies Eq. (18) on each interval
(t`, t`+1]. Then Bj(t) and Dj(t) lie again in the piecewise
linear class, with at most |N | additional breakpoints appearing
between t` and t`+1 at instants where some flow ceases to be
backlogged. By Lemma 3, all errors can be bounded explicitly
in terms of the original discretization error. Consequently, the
backlog process does not depend on the precise approximation
scheme that was used in its construction.

Thanks to Lemma 3, the backlog evolves by an order-
preserving family of contractions. One implication is that the
backlog process at a GPS scheduler with random stationary
arrival and service processes that is started with empty queues
is stochastically increasing. As t → ∞, the flows separate
into two groups, one consisting of underloaded flows whose
backlog process approaches a steady state, and the other of
overloaded flows whose backlog becomes unbounded.

VII. CONCLUSIONS

We have addressed a longstanding open problem in the
theory of fair queueing algorithms, and extended the strict
service curve formulation for GPS schedulers by Parekh and
Gallager to concave arrival envelopes and links with time-
variable capacity. We show that the service curves hold under
any load condition and are not limited to stable systems. With
this paper, the leftover service curve formulation for GPS
has a comparable degree of generality as existing leftover
formulations of other classical scheduling algorithms, such as
Static Priority, FIFO, and Earliest-Deadline-First.
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