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Abstract—Recent studies showing that the output of traffic
flows at packet switches has similar characteristics as the cor-
responding input enables a decomposition analysis of a network
where nodes can be studied in isolation, thus simplifying an end-
to-end analysis of networks. However, network decomposition
results available today are mostly many-sources asymptotics. In
this paper we explore the viability of network decomposition
in a non-asymptotic regime with a finite number of flows. For
traffic with Exponentially Bounded Burstiness (EBB) we derive
statistical bounds for the output traffic at a FIFO buffer and
compare them with bounds on the input. Evaluating the accuracy
of the output bounds with exact results available for special cases
and by numerical illustrations we find that conditions for network
decomposition appear favorable even if the number of flows is
relatively small.

I. INTRODUCTION

A fundamental problem encountered in analyzing network
performance is that factors such as finite node capacity or
scheduling distort the pattern of arriving traffic. As a direct
consequence, product-form formulas which exactly express the
performance of queueing networks are generally restricted to
BCMP [1] and Kelly [16] networks.

For more general networks, recent works [11], [26] have
shown that it is possible to analyze a network node by
disregarding the distortion effects experienced by the node’s
arrivals at previously traversed nodes. In this way networks can
be decomposed [11] and a node can be analyzed in isolation
of the others.

The common idea behind network decomposition is that
the output of traffic flows has similar characteristics as the
input. For general scheduling algorithms the decoupling of
effective bandwidths of flows was proven in large-buffer [25]
and many-sources [26] asymptotic regimes. Under the many-
sources asymptotic regime it was shown that a downstream
queue behaves similarly as if the upstream queue capable of
serving many flows was removed [11]. Using simulations it
was observed in [14] that, unlike more complex scheduling
mechanisms such as round-robin (RR) or weighted-RR, FIFO
is adequate for networks with CBR service and that traffic
reshaping is not necessary. In [2] was conjectured that flows
in FIFO networks do not become burstier when replaced
by Poisson input processes, i.e., the flows are said to be
better-than-Poisson. The burstiness of flows was shown to be
preserved across multiple nodes with FIFO scheduling in a
many-sources asymptotic regime, even if the flows are not
statistically independent [28].

In this paper we address the question whether network
decomposition holds in non-asymptotic regimes. Concretely

we derive bounds in terms of statistical envelopes on the output
at FIFO nodes with finite number of flows. We consider both
Exponentially Bounded Burstiness (EBB) arrivals [27] with
and without independent increments. Numerical evaluations
of the obtained bounds show that the output envelopes closely
match the input envelopes even for relatively small number of
flows, thus indicating that network decomposition may be a
viable analysis approach in finite regimes.

We show for the many-sources asymptotic regime that the
derived output envelopes converge exponentially fast to the
arrival envelopes, if a peak rate on the arrivals exists. This
type of fast convergence was also shown to hold in the context
of the decomposition results from [11]. Otherwise, we show
for arrivals described with a compound Poisson process with
infinite peak rate that the output envelopes is bounded by the
input envelope shifted by a small offset averaging the size of
two packets.

The traffic description from this paper with envelope func-
tions is common to the framework of the network calculus [4],
[5]. Envelope functions provide bounds limiting the amount
of traffic entering or leaving a network node. Envelopes can
be either deterministic (strict and never violated) [10], or
have some statistical structure allowing for small violation
probabilities [21], [27]. Statistical envelopes capture the multi-
plexing gain characteristic to aggregates of many independent
arrivals [3], and are available for many traffic types, e.g.,
deterministically regulated, Markov-modulated processes, or
fractional Brownian motion [23]. For many priority-based
scheduling algorithms, such as Static Priority (SP) or Earliest
Deadline First (EDF), per-flow statistical envelopes can be
constructed at the output of nodes [23].

So far, the study of envelopes in the context of FIFO
scheduling has been mainly carried out in the context of the
deterministic network calculus. For instance, it was shown that
per-flow (deterministic) output envelopes at a FIFO node are
tighter than those obtained when the flow receives the lowest
priority at a node with SP scheduling [4], [10]. Per-flow output
envelopes for FIFO scheduling were further improved in [7].
End-to-end delay bounds for aggregate FIFO scheduling were
derived in networks with general topologies [6], [15], [29],
and networks with restricted topologies (e.g. acyclic or sink-
tree) [12], [22].

In a probabilistic framework, we show that FIFO output
envelopes can be much tighter than SP output envelopes,
especially at high utilizations, thus extending similar results
available in the deterministic network calculus. Moreover,
the FIFO output envelope constructions can be iterated for



a probabilistic end-to-end network analysis using a statistical
network service curve approach [5], [9], [13]. Consider for
instance a through flow traversing H nodes in a feed-forward
FIFO network. By iteratively constructing statistical output
envelopes from input envelopes, an envelope description of the
cross traffic at each of the H nodes can be eventually obtained.
From these descriptions, a lower bound on the service received
by the through flow at each node can be expressed using
service curves which can be further convolved. The resulting
network service curve describes the service received by the
through flow across the entire network, such that end-to-
end backlog and delay bounds for the through flow become
available by applying single-node results. As recently shown,
the advantage of using network service curves in the end-to-
end analysis is that they can yield much tighter end-to-end
performance bounds those those derived by adding per-node
bounds [9], [13].

The rest of this paper is organized as follows. In Section II
we describe the model for a network node and provide a review
of some FIFO results in the context of deterministic envelopes.
In Section III we derive backlog bounds and construct output
envelopes for SP and FIFO scheduling for flows with EBB
arrivals and independent increments, and apply these results to
M/M/1 and M/D/1 queues. In Section IV we consider general
EBB arrivals. In Section V we present numerical results
where we consider M/M/1 and M/D/1 queueing scenarios that
compare our FIFO bounds with exact results, and then consider
Markov-modulated On-Off flows for which we illustrate the
convergence of output envelopes to input envelopes. We also
test network decomposition in a scenario with two nodes. We
conclude the paper in Section VI.

II. SYSTEM MODEL AND REVIEW OF DETERMINISTIC
ANALYSIS

We consider a network node with capacity Nc as in Fig-
ure 1, where N is a scale parameter representing the number
of flows. The node is traversed by N flows of which n are said
to be through and N − n are cross flows. The fraction of the
through flows is denoted by φ = n

N . We use a continuous time
model. All arrivals and departures at the node are modelled by
non-decreasing, left-continuous processes. The arrivals of the
flows are denoted by Ai(t), i = 1, . . . , N , and the arrivals of
all through flows are denoted by A(t). For each process Ai(t)
we assume that Ai(0) = 0 and the departure process Di(t)
satisfies Di(t) ≤ Ai(t) for all t ≥ 0. We write for convenience
Ai(s, t) = Ai(t) − Ai(s). The node serves the arrivals in a
fluid-flow manner and stores the backlog in an infinite sized
buffer. The backlog process of the through arrivals is denoted
by B(t) = A(t)−D(t).

We are interested in the through arrivals A(t) which are
described in the paper using statistical envelopes. A statistical
envelope is a function G(t) such that for all 0 ≤ s ≤ t and
σ ≥ 0 [9]

Pr
(
A(s, t) > G(t− s) + σ

)
≤ ε(σ) , (1)

Fig. 1. A network node with normalized capacity Nc traversed by n through
and N − n cross flows. The fraction of through flows is φ = n

N
.

where ε(σ) is an error functions specifying the probabilities
that the arrivals violate the envelope. For the arrivals A(t)
we will derive backlog bounds and construct statistical output
envelopes for the departures D(t) for both SP and FIFO. While
this paper is mainly concerned with FIFO, the results derived
for SP serve as worst-case benchmarks, assuming that the
through flows receive the lowest priorities.

For simplicity we only consider the case of homogeneous
flows. If the flows are heterogeneous then the subsequent anal-
ysis can be carried out similarly at the expense of increasing
notation.

We review a scenario where the arrivals of flows are
bounded by deterministic envelopes which are statistical en-
velopes with zero error functions. Then, in the remaining part
of the paper, we will consider the general case of arrivals
bounded by statistical envelopes.

Suppose that each flow Ai(t), i = 1, . . . , N , is bounded by
a leaky-bucket deterministic envelope ρt + σ, where ρ is the
arrival rate and σ is the burst (amount of arrivals in a very
short interval of time), i.e., [10]

Ai(s, t) ≤ ρ(t− s) + σ ,

for all 0 ≤ s ≤ t.
To compare the output (deterministic) envelopes of the

departures D(t) for SP and FIFO scheduling we consider two
asymptotic regimes: (a) a small fraction of through flows (i.e.
φ → 0), and (b) a high utilization u = ρ

c (i.e. u → 1).
If the through flows are given the lowest priority at a SP

scheduler, then the worst-case burst in D(t) occurs when the
maximum backlog of A(t) is reached and served instanta-
neously. This happens at the end of the maximum time period
during which the node exclusively serves the N − n cross
flows, i.e., after a duration t∗ satisfying

N(1− φ)ρt∗ + N(1− φ)σ = Nct∗ ,

which yields t∗ = (1−φ)σ
c−(1−φ)ρ . The envelope for D(t) is then

GSP (t) = nρt +
nσ

1− u(1− φ)
.

Keeping n fixed and letting φ → 0, i.e., N →∞, the envelope
becomes

GSP (t) = n

(
ρt +

σ

1− u

)
. (2)



Subject to the condition
nσ

1− u
≤ c

this output envelope is tight in the sense that there exists an
arrival pattern which yields a burst in the departures of the
order predicted by the output envelope.

In turn, if the flows are served in a FIFO manner then the en-
velope of D(t) can be constructed by applying Theorem 6.2.2
from [4], i.e.,

GFIFO(t) = n
(
ρt + (1 + u) σ

)
,

after letting φ → 0. According to Theorem 6.2.2 in [4] this
output envelope is also tight.

For the second asymptotic regime, i.e., by letting the utiliza-
tion u → 1, the burst predicted by GSP (t) converges to Nσ
(the same burst predicted by the output envelope constructed
with Proposition 1.3.4 and Theorem 1.4.3 from [4]). On the
other hand, with FIFO scheduling, the burst predicted by
GFIFO(t) converges to 2nσ. This shows that the difference
between the (tight) bursts predicted for SP and FIFO can be
substantial, especially at high utilizations.

Finally we emphasize that even with FIFO scheduling, the
(deterministic) output envelope gains a non-negligible burst
nuσ in addition to the burst nσ of the arrival envelope. The
rest of the paper will provide evidence that in a statistical
framework the output envelopes converge to the input enve-
lope, i.e., only negligible bursts are gained at the output of
FIFO nodes.

III. OUTPUT BOUNDS: THE CASE OF INDEPENDENT
INCREMENTS ARRIVALS

In this section we consider the case when all the flows in
Figure 1 have statistically independent increments. Compound
Poisson processes or arrivals at GI/GI/1 queues with finite
moment generating functions are examples of arrival processes
covered in this section. In the next section we will relax the
independent increments assumption.

We assume that for each flow Ai(t) the moment generating
function satisfies for all t ≥ 0 and θ > 0

sup
s≥0

E
[
eθAi(s,s+t)

]
= eθr(θ)t , (3)

where r(θ) depends on θ but not on t. Here r(θ) is a
special case of an effective bandwidth [18] which holds for
many Markov-modulated processes but excludes self-similar
processes where r(θ) also depends on t. Using Chernoff bound
Eq. (3) implies a statistical envelope characterization of the
arrivals for all 0 ≤ s ≤ t and σ ≥ 0

Pr
(
Ai(s, t) > r(θ)(t− s) + σ

)
≤ e−θσ . (4)

This is a special case of EBB statistical envelopes which have
error functions in a more general form, i.e., ε(σ) = Me−θσ ,
where M > 0 is a parameter [27].

The next two theorems construct backlog and output bounds
for the through process A(t). We first present the theorem for
SP which will be then used to derive the FIFO bounds.

In the proof of the theorem we will use the notion of a
statistical service curve (referred in [5] as a dynamic F-server)
which is a random process S(s, t) describing probabilistic
lower bounds on the service received by A(t), in the sense
that for all t ≥ 0

D(t) ≥ A ∗ S(t) .

The inequality is assumed to hold almost surely, and ‘∗’ is
the (min, +) convolution operator, defined as A ∗ S(t) =
inf0≤s≤t {A(s) + S(s, t)}.

Theorem 1: (SP: INDEPENDENT INCREMENTS) Consider
the node from Figure 1, where the flows of A(t) receive
the lowest priority at a SP scheduler. Each flow Ai(t), i =
1, . . . , N , has an effective bandwidth r(θ) satisfying Eq. (3)
for all θ > 0. All flows are independent and have independent
increments. Let θ be the maximum positive value satisfying
c ≥ r(θ). Then we have the following probabilistic bounds on
the through traffic:

1) BACKLOG BOUND: For all t, σ ≥ 0

Pr
(
B(t) > σ

)
≤ e−θσ . (5)

2) OUTPUT ENVELOPE: For all 0 ≤ s ≤ t and σ ≥ 0

Pr
(
D(s, t) > nr(θ)(t− s) + σ

)
≤ e−θσ . (6)

Since the backlog bound is invariant to N the same bound
holds for the entire backlog process at the node, here denoted
by BN (t). The proof idea is to apply a maximal inequality
to a suitable constructed supermartingale. More exactly, we
adapt the proof for the derivation of backlog bounds in GI/GI/1
queues from [19] to a network calculus setting, in a similar
manner as in [8].

PROOF. Let J be the set of cross flows, and let the entire
arrival process at the node AN (t) = A(t) +

∑
j∈J Aj(t).

Following [13], the process

S(s, t) = Nc(t− s)−
∑

j∈J

Aj(s, t)

is a statistical (leftover) service curve for A(t) such that for
all t ≥ 0

D(t) ≥ A ∗ S(t) .

Then the backlog process B(t) satisfies

B(t) = A(t)−D(t)
≤ A(t)−A ∗ S(t)
≤ sup

0≤s≤t
{AN (s, t)−Nc(t− s)} .

Let us now construct the process

Z(s) = AN (t− s, t)−Ncs ,

for 0 ≤ s ≤ t, and let θ > 0 as in the theorem. Defining a
filtration of σ-algebras

Fs = σ {AN (t− s, t)}



it follows from the independent increments property of the
arrivals that for all s, u ≥ 0

E
[
eθZ(s+u) ‖ Fs

]
= eθZ(s)eθNu(r(θ)−c)

≤ eθZ(s) ,

thus showing that eθZ(s) is a supermartingale. Consequently
we can write for all t, σ ≥ 0

Pr (B(t) > σ)

≤ Pr

(
sup

0≤s≤t
{AN (s, t)−Nc(t− s)} > σ

)

≤ Pr

(
sup

0≤s≤t
eθZ(s) > eθσ

)

≤ E
[
eθZ(0)

]
e−θσ

= e−θσ .

In the penultimate equation we applied Doob’s inequality to
the supermartingale eθZ(s). This completes the proof for the
backlog. The proof for the output envelope is similar and is
omitted here. ¤

Theorem 2: (FIFO: INDEPENDENT INCREMENTS) Con-
sider the scenario from Theorem 1, but assume now FIFO
scheduling for all flows. For θ1, θ2 > 0 satisfying c ≥ r(θ2)
and θ2c > θ1φr(θ1), let us denote

K(θ1, θ2) =
ceθ2

θ2c− θ1φr(θ1)
.

Then we have the following probabilistic bounds on the
through traffic:

1) BACKLOG BOUND: For all t, σ ≥ 0

P
(
B(t) > σ

)
≤ inf

θ1,θ2
K(θ1, θ2)e−θ1σ . (7)

2) OUTPUT ENVELOPE: For all 0 ≤ s ≤ t, σ ≥ 0, and
θ < θ1

P
(
D(s, t) > nr(θ)(t− s) + σ

)

≤
(
1 + K(θ1, θ2) θ

θ1−θ

)
e−θσ . (8)

PROOF. Let t, σ ≥ 0, and let us denote by BN (t) the
entire backlog process at the node. Critical to the proof is
the following property of FIFO:

B(t) > σ =⇒
{ ∃s ≤ t : A(s, t) > σ

and BN (s) ≥ Nc(t− s)

}
. (9)

Here s denotes the arrival time of the earliest data unit, call
it x, in B(t). To have that B(t) > σ, it is necessary to
have at least σ arrivals in A(s, t), i.e., the first clause in the
righthand side of Eq. (9). Also, to have that x belongs to B(t),
it is necessary to have the entire backlog BN (s) exceed the
maximal amount of data that can be be processed in the time
interval (s, t], i.e., the second clause in the righthand side of
Eq. (9).

Define a time discretization parameter τ0 > 0. For 0 ≤ s ≤
t, denote by j = b t−s

τ0
c the integer part of t−s

τ0
. Fix θ1, θ2 > 0

satisfying the condition from the theorem. Then we can write
for the backlog process B(t)

Pr (B(t) > σ)

≤ Pr


⋃

s≤t

{
A(s, t) > σ, BN (s) ≥ Nc(t− s)

}



≤ Pr


⋃

j≥0

{ A (t− (j + 1)τ0, t) > σ,
BN (t− jτ0) ≥ Ncjτ0

}



≤
∑

j≥1

eθ1(φNr(θ1)jτ0−σ)e−θ2Nc(j−1)τ0

≤ eθ2Ncτ0

N (θ2c− θ1φr(θ1)) τ0
e−θ1σ . (10)

In the second line we applied Eq. (9). In the third line we ap-
plied the monotonicity of A(t) and that the total backlog pro-
cess is stochastically increasing. In the fourth line we used the
backlog bound from Eq. (5) in Theorem 1, which corresponds
to the total backlog process as well. Finally we bounded the
sum using the inequality

∑
j≥1 e−aj ≤ ∫∞

0
e−axdx, for all

a > 0. The proof on the backlog is complete after optimizing
τ0 = 1

θ2Nc , and minimizing over θ1 and θ2.
For the output envelope, let us fix s ≤ t and θ < θ1. We

can write for the output process

Pr (D(s, t) > nr(θ)(t− s) + σ)
≤ Pr (A(s, t) + B(s) > nr(θ)(t− s) + σ)

≤ E
[
eθB(s)

]
e−θσ . (11)

In the last line we used the independent increments property
and the Chernoff bound. With the backlog bound from Eq. (7),
we can bound the moment generating function of B(s) by

E
[
eθB(s)

]
= 1 +

∫ ∞

1

Pr

(
B(s) >

1
θ

log x

)
dx

≤ 1 + K(θ1, θ2)
θ

θ − θ1

∫ ∞

1

dx
θ−θ1

θ

= 1 + K(θ1, θ2)
θ

θ1 − θ
,

thus completing the proof. ¤

The next two subsections apply Theorem 2 to M/M/1 and
M/D/1 queueing systems. The goal is to analyze the tightness
of the FIFO output bounds from a stochastic ordering point
of view and compare the bounds with exact results. For two
random variables X, Y we say that X is stochastically smaller
than Y , and denote this relationship by

X ≤st Y ,

if Pr (X > σ) ≤ Pr (Y > σ) for all σ [24].



A. Example 1: The M/M/1 queue

Consider that packets of each flow in Figure 1 arrive as a
Poisson process with rate λ0 and with exponentially distributed
sizes with mean 1

µ . The total arrival rate is denoted by λ =
Nλ0. Assume that the N arrival processes are statistically
independent, and that the queue is stable, i.e., the utilization
factor u = λ0

µc < 1. For all θ < µ, the effective bandwidth of
a flow is

r(θ) =
λ0

µ− θ
.

First we consider the asymptotic regime φ → 0. For fixed
θ1 satisfying the conditions from Theorem 2 we have that
K(θ1, θ2) → e. Therefore, letting θ1 → µ we get from Eq. (7)
that the FIFO backlog B(t) satisfies

B(t) ≤st Y +
1
µ

,

where Y is exponentially distributed with mean 1/µ. From the
convexity of the exponential function we have E

[
eθB(t)

] ≤
E

[
eθ(Y + 1

µ )
]
. Using this in Eq. (11) yields for all s, t

D(s, t) ≤st A(s, t) + Y +
1
µ

. (12)

This indicates that as φ → 0, the output D(s, t) gains a burst
of roughly two packet sizes relative to the arrivals A(s, t).

In turn, since all the flows are independent and have the
same service rate, the queue is quasi-reversible such that the
departure process D(t) is Poisson [17]. Note however that this
exact result holds in steady state, whereas the stochastic bound
from Eq. (12) holds for all values of s, t.

Now we consider a non-asymptotic regime where φ can take
any value. To derive the FIFO output envelope for any φ we
first optimize θ2 = µ(1 − u) in Theorem 2. This yields the
output envelope for all 0 ≤ s ≤ t and σ ≥ 0

Pr
(
D(s, t) > φuµNc

µ−θ (t− s) + σ
)

≤
(

1 + e 1−u

1−u−φu
θ1

µ−θ1

θ
θ1−θ

)
e−θσ , (13)

where 0 < θ < θ1 < µ 1−u
1−u+φu .

In the steady-state, the quasi-reversibility of the queue yields
the output envelope for large values of s, t and all σ ≥ 0

Pr

(
D(s, t) >

φuµNc

µ− θ
(t− s) + σ

)
≤ e−θσ . (14)

This bound is clearly tighter than the bound from Eq. (13).
Numerical comparisons between them will be shown in Sec-
tion V.

B. Example 2: The M/D/1 queue

We consider a similar system as before with the exception
that all packet sizes are equal to 1

µ . For all positive θ the
effective bandwidth of a flow is now given by

r(θ) =
λ0

µ

(
e

θ
µ − 1

)
.

The arrival envelope of A(t) is then given by

Pr

(
D(s, t) >

φuµNc

θ

(
e

θ
µ − 1

)
(t− s) + σ

)
≤ e−θσ .

(15)
The output envelope of A(t) is given as in Eq. (15), but

with the violation probability from Eq. (8). The conditions on
θ1 and θ2 are in this case

θ2

µ
> max

{
u

(
e

θ2
µ − 1

)
, φu

(
e

θ1
µ − 1

)}
.

IV. OUTPUT BOUNDS: GENERAL CASE

In this section we extend the bounds for SP and FIFO
scheduling to arrival processes without independent incre-
ments. We maintain the requirement of finite and time-
invariant effective bandwidths for the flows. The class of
arrival processes covered in this section extends to some
Markov-modulated processes (e.g. Markov-modulated On-Off)
and regulated processes.

As in the previous section, we first derive SP results and
then use these results for FIFO scheduling.

Theorem 3: (SP) Consider the scenario from Theorem 1,
without the requirement of independent increments for the
flows. Let us denote

K(θ) =
ce

c− r(θ)
.

whenever c > r(θ). Then we have the following probabilistic
bounds on the through traffic:

1) BACKLOG BOUND: For all t, σ ≥ 0

Pr
(
B(t) > σ

)
≤ inf

θ
K(θ)e−θσ . (16)

2) OUTPUT ENVELOPE: For all 0 ≤ s ≤ t and σ ≥ 0

Pr
(
D(s, t) > nr(θ)(t− s) + σ

)
≤ K(θ)e−θσ . (17)

The theorem extends results from [13] to a continuous time
setting. Since the backlog bound from Eq. (16) is invariant to
N , the same bound holds for the entire backlog process BN (t)
at the node. Both bounds from the theorem are weaker than
the corresponding bounds from Theorem 1, especially at high
utilizations. The reason is that K(θ) > 1 in Theorem 3. Note
also that K(θ) rapidly increases with the utilization.

PROOF. We recall that in the proof of Theorem 1 we proved
for the backlog process B(t)

B(t) ≤ sup
0≤s≤t

{AN (s, t)−Nc(t− s)} ,

where AN (t) is the total arrival process at the switch. For
0 ≤ s ≤ t and a discretization parameter τ0, let us denote
j = b t−s

τ0
c the integer part of t−s

τ0
. Using the monotonicity of



the arrival processes, we can write for all σ ≥ 0

Pr (B(t) > σ)

≤ Pr

(
sup

0≤s≤t
{AN (s, t)−Nc(t− s)} > σ

)

≤ Pr

(
sup
j≥1

{AN (t− jτ0, t)−Nc(j − 1)τ0} > σ

)

≤
∑

j≥1

eθNr(θ)jτ0e−θNcjτ0eθNcτ0e−θσ

≤ eθNcτ0

θN (c− r(θ)) τ0
e−θσ .

In the last line we bounded the sum using the integral inequal-
ity from the proof of Theorem 1. The proof for the backlog
is complete after optimizing τ0 = 1

θNc and minimizing over
θ. The proof for the output envelope is similar and is omitted
here. ¤

For FIFO scheduling we need to make two statistical
independence assumptions between the through process A(t)
and past backlogs:

(A1) A(s, t) is statistically independent of the entire
backlog process BN (s) at time s, for all s ≤ t.

(A2) A(s, t) is statistically independent of A’s backlog
process B(s) at time s, for all s ≤ t.

These are technical assumptions which will be used in the
proof of the theorem. Note that both assumptions hold when
the n through flows have statistically independent increments
(the cross flows do not need to have independent increments
as well). For large number of flows N and a small number
n of through flows, both assumptions are justified since the
two backlogs are mainly determined by a large fraction of
cross flows which are independent of A(t). On the other
hand, a large fraction of through flows at the node can create
correlations between the arrivals A(s, t) and the two backlogs
at time s. For example, large values of B(s) can imply a large
number of arrivals A(s, s + u) for u relatively small.

We point out that other independence assumptions have
been made in the literature to avoid technical complications
due to statistical dependencies. For instance, randomization
effects are invoked in M/M/1 (dense) queueing networks to
justify the assumption that each packet has its size inde-
pendently regenerated at each traversed node [20]. With this
assumption, inter-departure times and packet sizes are not
correlated in M/M/1 packet queueing networks, and product-
form formulas become available.

Theorem 4: (FIFO) Consider the scenario from Theorem 2,
without the requirement of independent increments for the
flows. For all θ1, θ2 > 0 satisfying c > r(θ2) and θ2c >
θ1φr(θ1), let us denote

K(θ1, θ2) =
(ce)2θ2

(c− r(θ2))(θ2c− θ1φr(θ1))
.

Then we have the following probabilistic bounds on the
through traffic:

1) BACKLOG BOUND: For all t, σ ≥ 0

P
(
B(t) > σ

)
≤ inf

θ1,θ2
K(θ1, θ2)e−θ1σ . (18)

2) OUTPUT ENVELOPE: For all 0 ≤ s ≤ t, σ ≥ 0, and
θ < θ1

P
(
D(s, t) > nr(θ)(t− s) + σ

)

≤
(
1 + K(θ1, θ2) θ

θ1−θ

)
e−θσ . (19)

The two bounds in the theorem are weaker than the bounds
from Theorem 2. The reason is that without accounting for in-
dependent increments, the term K(θ1, θ2) in the theorem gains
a factor ce

c−r(θ2)
> 1 relative to K(θ1, θ2) from Theorem 2.

PROOF. The proof is analogous to the proof of Theorem 2.
The difference is that in the fourth line of Eq. (10) we now
use the bound on the entire backlog process BN (t) from
Theorem 3 instead of the bound from Theorem 1. ¤

For the rest of the section we discuss the convergence of
the FIFO backlog and output envelopes from Theorem 4 by
fixing the number of through flows n and letting N →∞.

Assuming that each flow Ai(t) is bounded by some finite
peak rate P , i.e.,

sup
s≤t

{
sup {σ : Pr (Ai(s, t) > σ) > 0}

t− s

}
≤ P < ∞ ,

we will next show that the backlog process B(t) from Theo-
rem 4 satisfies for all σ ≥ 0

P
(
B(t) > σ

)
≤ Ke−Nθσ , (20)

for some constants K, θ > 0. This indicates that B(t)
converges to zero exponentially fast in the number of flows
N , and, consequently, that the output D(t) converges to the
input A(t).

Since r(θ) → 0 as θ → 0 [18] we can choose θ2 sufficiently
small such that c > r(θ2) in Theorem 4. We next select θ1 =
N
2n

θ2c
P such that θ2c− θ1φr(θ1) > θ2c

P since r(θ1) < P . The
conditions of Theorem 4 are then met. It then follows that
Eq. (18) implies Eq. (20) with the constants

θ = θ1, K =
2ec2

c− r(θ2)
.

For the same values of θ1 and θ2, the prefactor of the
exponential in the output envelope bound from Eq. (19)
converges to 1 as N →∞. Therefore the output envelope from
Eq. (19) converges exponentially fast to the input envelope of
A(t) obtained from Eq. (4) by properly scaling the rate r(θ)
with the number n of through flows

Pr
(
A(s, t) > nr(θ)(t− s) + σ

)
≤ e−θσ .

We point out that the critical condition used to prove the
convergence of the backlog and output envelope is that the
flows have a finite peak rate. This condition appears also in
[11] in order to prove decomposition results. Arrivals modelled
with Markov-modulated On-Off process (see Subsection V-B)
satisfy this condition, whereas the compound Poisson process
from Subsection III-A does not.
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Fig. 2. Statistical envelopes for a fraction of flows (φ = 0.5 and φ = 0.9) at a queue as a function of time (Nc = 100 Mbps, utilization factor u = 0.75,
average packet size 1

µ
= 400 Bytes, violation probability 10−6)

V. NUMERICAL EXAMPLES

This section presents numerical examples that illustrate
the accuracy of the output envelopes derived in this paper.
Subsection V-A presents the cases of M/M/1 and M/D/1
queues which permit a comparison of FIFO output envelopes
with envelopes obtained from exact results. Subsection V-B
considers a single-node scenario with Markov-Modulated On-
Off arrival processes where we show the convergence of the
output envelopes to the arrival envelopes. Finally, Subsec-
tion V-C illustrates the viability of network decomposition in
a two-node network scenario with Markov-modulated On-Off
arrivals.

All numerical examples are shown by measuring time in
milliseconds, nodes capacity Nc = 100Mbps, and letting the
violation probability be 10−6.

A. M/M/1 and M/D/1 Queues

Assume that the node from Figure 1 is modelled either with
an M/M/1 or M/D/1 queue as in Subsections III-A and III-B.
For the numerical setting we let the mean packet size and
utilization factor 1

µ = 400 Bytes and u = 75%, respectively.
Figure 2(a) shows statistical arrival and output envelopes

for two fractions φ = 0.5 or φ = 0.95 of flows at the
M/M/1 queue. The output envelope is given in Eq. (13),
and the arrival envelope is given in Eq. (14); the latter is
also an output envelope by using quasi-reversibility. The two
envelopes closely match at all time scales, even if the envelope
from Eq. (14) is constructed from an exact result which holds
in the steady-state. For M/D/1, Figure 2(b) shows an even
closer match between the two envelopes which may indicate
that M/D/1 queues yield less bursty traffic at the output than
M/M/1 queues.

B. Markov-Modulated On-Off Processes

We assume that all flows at the node are statistically inde-
pendent Markov-modulated On-Off processes. Such a process
is illustrated in Figure 4, and can be defined as follows. There
is a two-state homogenous and continuous-time Markov chain
X(t) with the generator matrix

Q =
( −µ µ

λ −λ

)
.

The states of X(t) are denoted ‘On’ and ‘Off’, and µ and λ
represent the transition rates from the ‘On’ state to the ‘Off’
state, and vice-versa, respectively.

Fig. 4. A Markov-modulated On-Off traffic model

We say that A(t) is a Markov-modulated On-Off process
with modulated process X(t) if the arrival rate of the process
is either P or zero, depending whether X(t) is in the ‘On’
and ‘Off’ states, respectively. In the steady-state, the average
time in the ‘On’ state is 1

µ and the average time in the ‘Off’
state is 1

λ . The value T = 1
µ + 1

λ is the average time for a
Markov process to change state twice.

The effective bandwidth of a single Markov-modulated On-
Off process satisfies for all θ > 0 [18]

r(θ) ≤ 1
2θ

(
Pθ − µ− λ +

√
(Pθ − µ + λ)2 + 4λµ

)
.

(21)
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Fig. 3. Statistical arrival and output envelopes for n = 1, 10 Markov Modulated On-Off flows as a function of time (Nc = 100 Mbps, per-flow average
rate R = 0.15 Mbps and peak rate P = 1.5 Mbps, T = 10 ms, violation probability 10−6)

We consider the following numerical settings. The peak rate
of a flow is P = 1.5 Mbps and the average rate is R =
0.15 Mbps, such that the maximum number of flows is N =
667. We let T = 10 ms such that µ and λ can be computed
from P , r, and T .

In Figure 3 we show two sets of three statistical envelopes
for the aggregate A(t), depending on the number of through
flows n. The first envelope is the arrival envelope from Eq. (4),
where r(θ) is scaled by n. The second is the FIFO output
envelope of A(t) from Eq. (19). The third is the output
envelope of A(t) from Eq. (17), when its flows receive the
lowest priorities at a SP scheduler. The parameters θ, θ1, θ2

in the equations are optimized numerically, according to the
conditions from Theorems 3 and 4.

In Figure 3(a) we consider a moderate utilization factor
u = 0.75, such that there are N = 500 flows at the node.
In Figure 3(b) we consider a high utilization factor u = 0.95,
implying that N = 633. We consider n = 1 (i.e. φ = 0.2% in
(a) and φ = 0.1% in (b)) and n = 10 (i.e. φ = 2% in (a) and
φ = 1% in (b)).

Both figures illustrate that the FIFO output envelopes con-
verge to the arrival envelopes as the number n of through flows
decreases, or as the ratio φ = n

N decreases, agreeing with the
convergence result from the end of Section IV. Moreover, we
note that the SP output envelopes can be very pessimistic,
especially at high utilizations.

C. The case for decomposition

We test the viability of network decomposition in the
network scenario with two nodes from Figure 5. The network
is traversed by n through flows and each node is also traversed
by N−c cross flows. We assume that all flows are independent
Markov-modulated On-Off processes with the same numerical
values as in Subsection V-B.

We compare the total backlog at the second node with
the total backlog at the second node obtained in a simplified
scenario where the first node is removed. The simplified bound
is thus obtained by assuming that the arrivals of A2(t) are
exactly those of A1(t), and the expression for this bound is
given in Eq. (16).

Fig. 5. A network with two nodes and cross traffic

A bound on the entire backlog process B2
N (t) at the second

node can be derived by first constructing a bound on the
moment generating function of A2(t) in a similar manner as
the output envelope construction from Theorem 4. We obtain
for θ > 0

sup
s≥0

E
[
eθA2(s,s+t)

]
≤

(
1 + K(θ1, θ2)

θ

θ1 − θ

)
eθnr(θ)t ,

where K(θ1, θ2) and the conditions on θ1, θ2 are given in
Theorem 4. Then we can slightly modify the proof of Theo-
rem 3 to account for the prefactor of the exponential above,
and obtain for all σ ≥ 0

Pr
(
B2

N (t) > σ
)
≤ inf

θ1,θ2,θ
K(θ)

(
1 + K(θ1, θ2)

θ

θ1 − θ

)
e−θσ ,

(22)
where K(θ) is given in Theorem 3. The constraints on θ1, θ2, θ
are as in Theorems 3 and 4.

In Figure 6 we plot the backlog bounds from Eq. (22) and
Eq. (16), the latter corresponding to the simplified scenario,
as a function of the utilization factor u. The bound from
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Eq. (22) is shown for two different values of the number
of through flows (i.e. n = 1 and n = 10). Note that the
bound in the simplified scenario is invariant to n. The plots
illustrate that by decreasing n, or equivalently φ, the backlog
bounds at the second node from Eq. (22) tend to closely match
the backlog bounds derived in the simplified scenario, thus
justifying network decomposition.

VI. CONCLUSIONS

In this paper we have investigated the viability of network
decomposition in networks with FIFO scheduling and a finite
number of flows. We described traffic with statistical EBB
envelopes and provided envelope construction at the output
of FIFO nodes. We showed that the derived output envelopes
converge exponentially fast to the input envelopes. Our nu-
merical results illustrate that the convergence becomes visible
for relatively small number of flows. The statistical output
envelopes derived for FIFO were shown to be much tighter
than those obtained for SP, thus extending a similar result from
the deterministic network calculus. The explicit expressions
for statistical output envelopes can be applied to a probabilistic
end-to-end network analysis of feed-forward networks with
FIFO scheduling.
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