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Abstract—The objective of a wireless multiaccess communi-
cation system is to distribute limited wireless channel resources
efficiently and fairly among its users. Solutions for multiaccess
communications have been approached with very different per-
spectives of the same problem, among them information-theoretic
approaches at the physical layer, random access at the media
access layer, and packet scheduling at the link or network layer.
Different system models with sometimes incongruent assumptions
make it difficult to compare or reconcile multiaccess solutions
emerging from different areas. In this paper we address these
difficulties by presenting system-theoretic characterizations of the
available service in multiaccess networks for all three approaches.
Using these characterizations we derive performance bounds of
multiaccess systems that see bursty traffic. We take advantage of
a recently proposed (min,×) network calculus, which enables the
analysis of networks with time-variable traffic (in bits per second)
in terms of the fading channels parameters, i.e., signal-to-noise
ratio (in dB). For each of the multiaccess approaches considered,
we are able to compute probabilistic performance bounds for
multi-hop wireless channels. The numerical results shed light on
fundamental tradeoffs offered by each of these approaches.

I. INTRODUCTION

Multiaccess networks are networks where multiple users
attempt to access the same channel and compete for channel
resources, such as transmission power, bandwidth, codes, etc..
Allocating resources efficiently and fairly is the main design
criterion of a multiaccess communication system. In a vision-
ary paper from 1984, Gallager [7] identified three research
areas: collision resolution, multiaccess information theory, and
spread spectrum, that addressed the same multiaccess problem
using different models and approaches. Research in these areas
was pursued by distinct communities, proceeding in virtual
isolation from each other. The purpose was to contrast and
compare multiaccess approaches and to provide a unification
of the areas, for the sake of improved multiaccess solutions.

Efforts on cross-layer designs [17] for wireless networks,
that exploit physical layer information to improve higher layer
mechanisms, helped to reduce barriers between disciplines in
wireless communications. However, the lack of methods that
analyze different multiaccess models has hampered progress
towards a unified view of multiaccess communications.

We present an approach that enables the analysis of different
multiaccess communication schemes using a single method-
ology. Our objective is to devise a model that can express
inherent tradeoffs offered by various multiaccess solutions,
and, thereby, enable a qualitative comparison of their main
similarities and differences. We adopt a network layer view
of multiaccess systems where the multiaccess network offers
a randomly varying service to incoming bursty traffic flows.
For the analysis, we follow a system–theoretic stochastic

network calculus approach [11]. We address three approaches
to channel access: network information theory, random access,
and dynamic scheduling. Whereas Gallager in [7] did not
include the third approach, dynamic scheduling has since
become a major alternative for allocating channel resources of
a multiaccess channel. At the same time, we view spread spec-
trum as being subsumed as an information-theoretic method.

The information-theoretic approach [5, Ch.15] [9] to mul-
tiaccess is concerned with coding schemes that reliably com-
municate data from a set of transmitters to a single receiver
concurrently with no assumptions regarding coordination of
transmissions. Ahlswede [1] and Liao [13] presented a coding-
theorem for such channels. The capacity region for multiaccess
fading channel was investigated by Gallager [8]. Information-
theoretic models consider noise and interference between
users, however, they generally ignore traffic burstiness. As
noted in [7], while ignoring burstiness can be appropriate in
point–to–point channels, it is less so in multiaccess channels,
where generally only few users are busy at any given time.

Random access is a media access layer approach to mul-
tiaccess that is widely used in wireless local-area networks.
Above the physical layer, only one user can transmit at a
time. In the most basic random access scheme, packets are
transmitted without any coordination between users. When
a collision occurs, the packets are assumed lost and each
packet is retransmitted after a randomly selected back off
time. Models of random access networks account for traffic
burstiness and interference, but generally ignore the underlying
communication process, e.g., noise and fading. Recently, there
have been efforts to formulate the random access communica-
tion problem in terms of an information–theoretic approach,
e.g., [15], [16]. In [15], a new channel coding approach
that considers bursty traffic properties and packet collision
detection was proposed for random access communication. In
[16] an information–theoretic formulation of random access is
presented and the set of achievable rates is characterized.

The dynamic packet scheduling approach operates at the
link or network layer. A scheduler, that is fully aware of all
users’ channel states, determines which packet(s) from which
user(s) will be transmitted next. The communication channel
is viewed as a bit pipe with randomly varying service rates.
Scheduling approaches in wireless networks [10] capitalize
on a large body of literature addressing various aspects of
scheduling, e.g., service differentiation, optimization, stability.

In this paper, we present a model for a performance analysis
of all the aforementioned multiaccess methods. To our knowl-
edge, this is the first common model and analysis that can
encompass all of these approaches. Our analysis is based on a
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Fig. 1. Multi–hop multiaccess network model.

recently presented stochastic network calculus, referred to as
(min,×) network calculus, which was developed to evaluate
the end–to–end performance of multi–hop wireless networks
in terms of the underlying point–to–point fading channel
distribution [2]. We derive service characterizations of mul-
tiaccess fading channels in terms of stochastic service curves.
We then use these service curves to compute probabilistic
performance bounds of a traffic flow passing through a cascade
of multiaccess channels, as shown in Fig. 1. We view the
channel capacity as a time varying function of the underlying
instantaneous signal-to-noise ratio (SNR). Our work is related
to [4] and [14], which also explore links between information
theory and communication networks using network calculus.
We note that a joint analysis of different multiaccess methods
using network calculus does not exist.

We view the channel capacity as a time varying function
of the instantaneous signal-to-noise ratio (SNR). Specifically,
with the SNR at the receiver at time epoch u given by γu,
the instantaneous channel capacity in bits per second per Hz
is given by1 C(γu) = log g(γu), where g(γu) characterizes
the properties of the fading channel. A performance analysis
of such system would normally proceed by describing the
cumulative service (in bits) in a discrete-time interval [τ, t) as
S(τ, t) =

∑t−1
u=τ log g(γu). However, working with logarithms

of random processes is cumbersome and requires approxima-
tions or secondary models, e.g., On-Off or Finite State Markov
Channels [19]. Instead, (min,×) network calculus works with
the simpler service description S(τ, t) =

∏t−1
u=τ g(γu). For

the analysis, arrivals, measured in bits, are transformed to
be compatible with the service description. Let the bivari-
ate process A(τ, t) describe arrivals in a time interval. The
(min,×)-network calculus uses the transformed arrival pro-
cess A(τ, t) = eA(τ,t) =

∏t−1
u=τ g(γau), with the interpretation

that an arrival at time u is a workload that consumes γau
channel resources. Given arrival and service descriptions in
the transform domain, referred to as “SNR domain,” one can
compute performance bounds that can be readily transferred
back to the usual “bit domain” by taking a logarithm.

The ability to transfer network descriptions between differ-
ent domains facilitates the analysis of networks where traffic
and service descriptions are expressed in different layers of the
network stack. This property provides the flexibility to tackle
an analysis of multi-hop multiaccess communication network.

The presented analysis makes several assumptions and sim-

1We use the natural logarithm in our computations of channel capacity.
Therefore, the channel capacity is in fact 1.44C(γu) bits per second per Hz.

plifications. For instance, we ignore the control overhead for
the multiaccess schemes. Throughout, we use channel capacity
limits as time-varying functions, which implies assumptions
on the length of the time epoch. We assume that channels
in a multi-hop network are independent. We also assume
a fixed number of interfering users. As a consequence, we
can consider the burstiness of the analyzed flow, but not the
burstiness of the interfering flows, thereby ignoring statistical
multiplexing gain. Despite these limitations, the analysis and
the results are still able to exhibit commonalities and differ-
ences of approaches to multiaccess communications, and, may
contribute to reconciling and interpreting these approaches.

In Sec. II we give a description of (min,×) network
calculus. In Sec. III we provide service characterizations for
multiaccess models. We provide numerical results for the
multi–hop network in Sec. IV, and conclude in Sec. V.

II. (min,×) NETWORK CALCULUS

The (min,×) network calculus [2] was designed to en-
able the computation of end–to–end performance bounds of
multi–hop wireless networks, where the underlying channels
are point–to–point fading channels. The main idea of the
(min,×) network calculus is to work directly with the fading
channel distribution rather than the channel capacity. The
calculus takes advantage of the fact that the channel capacity,
and hence the offered service, is related to the instantaneous
SNR of the underlying fading channel through the logarithmic
function via the Shannon capacity limit, C(γ) = W log(1+γ),
where W is the channel bandwidth and γ is the instantaneous
SNR at the receiver. Henceforth, we will work with the
normalized capacity C(γ)/W . We assume block fading where
γ remains unchanged during a time slot.

1) Network Model: An N–hop wireless network is mod-
elled by a system of N tandem queues with infinite buffer
capacities. We model the traffic which enters the first queue
and traverses the entire network as a ‘through’ flow. We are
interested in the end–to–end performance experienced by the
through flow. We use the bivariate random processes A(τ, t)
and D(τ, t) to denote the cumulative arrivals and departures,
respectively, measured in bits of the through flow during time
interval [τ, t). A(τ, t) and D(τ, t) are real-valued, non-negative
processes that are increasing in t with A(t, t) = D(t, t) = 0
for all t and D(0, t) ≤ A(0, t). Then the backlog in the entire
network at time t > 0 is B(t) = A(0, t)−D(0, t) , and the end-
to-end delay is W (t) = inf{u ≥ 0 : A(0, t) ≤ D(0, t+ u)} .

The analysis uses a fluid–flow traffic model and a discrete
time domain with equally sized time slots. We further assume
that the system starts with empty queues at t = 0. The SNR
service2 offered by the fading channel n to flow i, with an
instantaneous SNR γi,u during time slot u, is a time–varying
random process which is given by

Sn,i(τ, t) =

t−1∏
u=τ

g(γi,u) . (1)

2We refer to random processes residing in the SNR domain as ‘SNR
processes’, and use calligraphic letters to denote them, e.g., A and S.
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For two SNR processes X (τ, t) and Y(τ, t), define the
(min,×) convolution X ⊗ Y and deconvolution X � Y by

X ⊗ Y(τ, t)
4
= inf

τ≤u≤t

{
X (τ, u) · Y(u, t)

}
.

X � Y(τ, t)
4
= sup

u≤τ

{X (u, t)

Y(u, τ)

}
.

Given SNR service processes Sn for hop n, the equivalent
N–hop SNR service process, denoted by Snet, is given by

Snet(τ, t) = S1 ⊗ S2 ⊗ · · · ⊗ SN (τ, t) . (2)

The analysis proceeds as follows. First, the network traf-
fic processes is transferred to the SNR domain using the
exponential function, i.e., A = eA and D = eD. Next,
the equivalent SNR network service process Snet is obtained
with Eq. (2). Then, bounds for the SNR processes for the
end–to–end backlog (B) and delay (W) are computed using
(min,×) network calculus, where B(t) = A(0, t)/D(0, t), and
W = W , since time is maintained in the transfer of domains.

The service offered by a network element n is characterized
by the dynamic SNR server Sn which is defined by the
following input–output inequality D(0, t) ≥ A⊗ Sn(0, t).

2) Performance Bounds: Let Snet(τ, t) be the network SNR
service processes. We define for s > 0 the function

Mnet(s, τ, t) =

min(τ,t)∑
u=0

MA(1+s, u, t)MSnet(1−s, u, τ), (3)

where MZ(s) = E[Zs−1], for any complex valued s, is
the Mellin transform of the random variable Z [6]. End–to–
end performance bounds can be concisely expressed by the
following theorem [2]

Theorem 1. For any ε > 0, under the assumptions above, the
following are probabilistic performance bounds for a cascade
of wireless fading channels.
• OUTPUT BURSTINESS: Pr

(
D(τ, t) > dεnet

)
≤ ε, where

dεnet(τ, t) = inf
s>0

{1

s

(
logMnet(s, τ, t)− log ε

)}
;

• BACKLOG: Pr
(
B(t) > bεnet

)
≤ ε, where

bεnet = inf
s>0

{1

s

(
logMnet(s, t, t)− log ε

)}
;

• DELAY: Pr
(
W (t) > wεnet

)
≤ ε, where

inf
s>0

{
Mnet(s, t+ wε, t)

}
≤ ε .

III. MULTIACCESS WIRELESS NETWORKS

The analysis in [2] considers point–to–point fading channel
model which is not suitable for multiaccess networks analysis
where interfering traffic from other users affects the amount
of service received by the through flow. The interference is
handled differently in each of the multiaccess approaches
described in Section I. We account for the interference by de-
riving service characterizations for each multiaccess approach.

We assume L homogeneous users transmitting to node n.
Each node is associated with a shared fading channel. The

arrivals from all interfering users at each hop are independent
and identically distributed and their channels have i.i.d. gains.

Due to the bursty nature of traffic, the number of active
users (i.e., backlogged) transmitting to node n at any given
time is a subset of the total user population. This number is
a random process that we denote by {Mn(u)}∞u=0, Mn(u) ∈
{1, 2, . . . , L}, that is i.i.d. in all time slots u ∈ {0, 1, . . . , t}.
Given Mn(u), a stochastic performance bound for an arbitrary
random process X at a node n with Mn(u) − 1 interferers
during time slot u, can be obtained by conditioning, that is,

Pr(X(t)>x) =

L∑
mn(0)=1

· · ·
L∑

mn(t−1)=1

Pr(X(t)> x|Mn = mn)

· Pr(Mn = mn) , (4)

where the vector Mn = (Mn(0), . . . ,Mn(t − 1))T and the
sample path mn are drawn from the distribution of Mn.

Marginalizing in this way is possible but tedious, and will
not lead to closed-form results. Instead, we will make the
simplifying assumption that a constant number of mn users
are active in each time slot. For any given distribution of Mn,
computing Eq. (4) numerically gives the proper bounds.

Next, we derive SNR service characterizations for models
of the three multiaccess approaches discussed earlier. The
information–theoretic service characterization assumes con-
current transmissions by all users and describes the sum
capacity region. Successive decoding can be used to achieve
the capacity limit. In the scheduling approach we assume
centralized control where one user is selected to transmit at
a time. Random access allows users to access the channel
whenever they have data to transmit. If a collision occurs, the
affected users back off for random times and then retransmit.

A. Information-Theoretic Model

The information-theoretic capacity region for an L–user,
flat–fading Gaussian multiaccess fading channel under average
power constraint was characterized by Tse and Hanly [18] as

C(h,p) =
{
r :
∑
i∈Q

ri≤W log
(
1+

∑
i∈Q |hi|2pi
N0W

)
,

∀Q ⊆ {1, . . . , L}
}
,

for bandwidth W , where r,p ∈ RL are the rate and power
allocation vectors for the L users in the network, |hi|2 is the
channel gain for user i and N0 is the noise spectral density.

When the number of active users of node n at time slot u
is mn(u), the SNR service process for node n in terms of the
normalized sum capacity Cn(γu)/W is given by SITn (τ, t) =∏t−1
u=τ g(γu) =

∏t−1
u=τ

(
1 +

∑mn(u)
i=1 γi,u

)
, where γu ∈ Rm,

γi,u = |hi|2pi/N0W is the instantaneous SNR of user i and
g : Rm → R. When the power at node n is equally allocated
to the mn(u) users, i.e., pi = pj ,∀i, j, and with i.i.d channel
gains for all users, the γi,u,∀i are i.i.d. In this case, an SNR
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server for the through flow j at node n is characterized by3

SITn,j(τ, t)=

t−1∏
u=τ

gj(γu)=

t−1∏
u=τ

(
1+

1

mn(u)

mn(u)∑
i=1

γi,u

)
,

where gj(γu) has the distribution

Pr(gj(γu) ≤ x) = Pr
(mn(u)∑

i=1

|hi|2≤
mn(u)(x−1)

γ̄

)
.

Assuming Rayleigh fading, the above is then the distribution
of a sum of mn(u) i.i.d. exponential random variables. Using
the assumption mn(u) = mn, we determine that gj(γ) has
the Gamma distribution with probability density fgj(γ)(x) =
ymn−1e−y/Γ(mn), where, y = mn(x− 1)/γ̄ and x ≥ 1. The
Mellin transform is then given by the integral

Mgj(γ)(s) =
1

Γ(mn)

∫ ∞
0

xs−1ymn−1e−ydx .

The above integral can be evaluated numerically. For mn = 2,
it has the explicit form

Mgj(γ)(s)=
1

Γ(2)
e

2
γ̄

( γ̄
2

)s (
Γ
(
s+ 1,

2

γ̄

)
− 2

γ̄
Γ
(
s,

2

γ̄

))
.

For i.i.d. fading channels, we use the product property of the
Mellin transform to get MSITn,j (s, τ, t) =

(
Mgj(γ)(s)

)t−τ
.

B. Schedulers for Multiaccess Networks

Consider a centralized scheduler that allocates the wireless
channel to a single user at any time slot. With mn(u) active
users at node n, define vn(u) = (vn,1(u), . . . , vn,mn(u)(u)) as
the scheduler decision at time u, where vn,i(u) = 1 if user i
is scheduled at time slot u with

∑mn(u)
i=1 vn,i(u) = 1. Let

γvu =
∏mn(u)
i=1 γ

vn,i(u)
i,u be the instantaneous SNR of channel n

at time u under schedule vn(u). A dynamic SNR server for
this multiaccess channel is then given by the service process
Sn(τ, t) =

∏t−1
u=τ g(γvu ) , where, g(γk) = 1 + γk.

1) Opportunistic scheduler: The opportunistic scheduler
maximizes channel throughput by scheduling the backlogged
user with the best estimated SNR at every time slot [12]. For
every n, it selects the schedule vn,i(u) = 1{γi,u>γj,u,∀j 6=i}, for
all u ≥ 0. Defining γmax

u = max{γi,u : i = 1, . . . ,mn(u)},
an opportunistic scheduler is characterized by γvu = γmax

u for
all u ≥ 0 and its dynamic SNR service for any n is given by

SOSn (τ, t) =

t−1∏
u=τ

g(γmax
u ) =

t−1∏
u=τ

(1 + γmax
u ) .

Let mn(u) = mn,∀u. Using results from order statistics,
we obtain the distribution of the mth

n order statistics of γi,u,
i.e., Fγmax

u
(x), assuming that channels have i.i.d. fading, as

Fg(γmax
u )(x) = Fmnγi,u(x− 1) =

(
Pr(γi,u ≤ x− 1)

)mn
. (5)

3This power allocation scheme does not utilize user diversity, but service
characterizations for other schemes are also possible.

Assuming a fading channel with i.i.d. channel gain |hi|2 and
average SNR γ̄, we have γi,u

d
= γi = γ̄|hi|2 for all i, where

“ d
= ” expresses equality in distribution, and

Fγi,u(x− 1) = Pr(|hi|2 ≤
x− 1

γ̄
)
4
=F|hi|2(

x− 1

γ̄
) , (6)

for x ≥ 1. Substituting Eq. (6) in Eq. (5) yields Fg(γmax
u ).

Assuming that the mn users have i.i.d. channels, they have
access to the channel with probability 1

mn
. Then under an

opportunistic scheduling regime, SOSn,i is a dynamic SNR
server for user i, where

SOSn,i (τ, t) =

t−1∏
u=τ

[g(γmax
u )]1/mn

4
=

t−1∏
u=τ

gi(γ
max
u ) ,

where gi(γmax
u ) has the distribution

Fgi(γmax
u )(x) =

(
F|hi|2(

xmn − 1

γ̄
)
)mn

, x ≥ 1 .

In the above equation, we used the definition gi(γ
max
u ) =

[g(γmax
u )]1/mn and results from order statistics then substi-

tuted γi,u = 1 + γ̄|hi|2. For Rayleigh fading, the Mellin
transform of gi(γmax

u ) is given by

Mgi(γmax
u )(s)=

mn

γ̄

∫ ∞
1

y
s−1
mn

(
1− e−

y−1
γ̄

)mn−1

e−
y−1
γ̄ dy

=

mn−1∑
k=0

(
mn−1

k

)
(−1)kmnγ̄

s−1
mn e

k+1
γ̄

(k + 1)
s+m−1
mn

Γ
(s+mn−1

mn
,
k+1

γ̄

)
, (7)

for s > 1, where y = xmn . The second line is obtained by
applying the Binomial theorem (1 − z)n =

∑n
k=0(−z)k

(
n
k

)
for |z| < 1, choosing z = e−

y−1
γ̄ and evaluating the resulting

integral. Using the assumption of i.i.d. channels, we get
MSOSn,i (s, τ, t) =

(
Mgi(γmax

u )(s)
)t−τ

.

C. Random Access Model
We investigate a service characterization for random access

channels that considers the effects of noise and fading as well
as users’ interference. Recently, Ciucu [4] proposed a network
calculus analysis for a slotted–Aloha multiaccess network.

We decompose the problem of analyzing random access
networks into two parts. The first deals with the interference
aspect, whereas the second deals with noise and fading. For
the first part we follow [4] by defining a virtual interference
function and we make a similar assumption regarding the
saturation of the interfering users. For the second part, we use
the SNR service characterization from Eq. (1). We maintain
the assumption that the receiver cannot decode a message
when a collision occurs and we assume mn active users at
node n at any given time. We denote by the random variable
Xi(u) ∈ {0, 1} the transmission state of user i at time slot u.

Let Vn(u) be the conditional virtual interference process
for flow i during time slot u. Here, Vn(u) represents the
interference generated by the other mn− 1 active transmitters
within the range of node n in time slot u. Then

Vn(u) = 1−Xj(u) ·
mn−1∏
i=1,i6=j

(1−Xi(u)) ,



5

where Xi(u), i 6= j are i.i.d. Bernoulli random variables with
parameter p and Xj(u) is an independent Bernoulli random
variable with parameter p∗. Then Vn(u) is also Bernoulli with
parameter 1− q, where q = p∗(1− p)mn−1 is the probability
of successful transmission from user j to node n. Vn(u) is
‘virtual’ since it is assumed that user j is always transmitting.

Assume that all the Xi(u), and hence, Vn(u), are stationary.
The interference generated by the random access protocol is
captured by the virtual interference process Vn(u) at every
time slot u. User i transmits successfully at the channel
capacity rate only when all other users are silent. Therefore,
the SNR service offered to user i is characterized by

SRAn,i (τ, t) =

∏t−1
u=τ g(γu)∏t−1

u=τ [g(γu)]Vn(u)
=

t−1∏
u=τ

[g(γu)]1−Vn(u) .

The capacity experienced by user i degenerates when
Vn(u) = 1. On the other hand, when Vn(u) = 0, user i
receives the full capacity. Since Xi(u) are stationary, we have
Vn(u)

d
=Vn. For i.i.d. fading channels, we also have γu

d
= γ.

Define G
4
= [g(γ)]1−Vn , where g(γ) = 1+γ, and γ > 0. Then,

the distribution of [g(γ)]1−Vn for any x ≥ 1 is given by

FG(x) = Pr([g(γ)]1−Vn ≤ x) = Pr(g(γ) ≤ x) · q + 1− q ,
Assuming Rayleigh fading and g(γ) = 1 + γ̄|hi|2, we obtain

FG(x) =
(
1− e−

x−1
γ̄
)
q + 1− q = 1− qe−

x−1
γ̄

with the Mellin transform MG(s) = qe
1
γ̄ γ̄s−1Γ(s, γ̄−1) .

Using the i.i.d. assumptions on γ and Xi, and the product
property of the Mellin transform, we obtain

MSRAn,i (s, τ, t) =
[
p(1− p)mn−1e

1
γ̄ γ̄s−1Γ(s, γ̄−1)

]t−τ
.

D. Performance Bounds for Multiaccess Channels
We use the SNR service characterizations from Sections

III-A to III-C with mn = m to obtain performance bounds
for multi–hop multiaccess networks. These service processes
characterize the amount of service offered to the through flow.

We consider a (σ(s), ρ(s)) bounded through flow [3], where
1
s logMA(s+1, τ, t) ≤ ρ(s)·(t−τ)+σ(s) , for s > 1, travers-
ing a cascade of N multiaccess channels with i.i.d. Rayleigh
fading. This arrival model includes Markov-modulated arrivals
and exponentially bounded burstiness (EBB) traffic.

Using server concatenation from Eq. (2), a network dynamic
SNR server for the opportunistic scheduler is given by [2]

MSOSi,net
(s, τ, t)≤

(
N−1+t−τ

t− τ

)(
Mgi(γmax

u )(s)
)t−τ

,

where, Mgi(γmax
u )(s) is given by Eq. (7). Substituting this in

Eq. (3), we get

Mnet(s, τ, t) ≤ es(ρ(s)(t−τ)+σ(s))
∞∑

u=[τ−t]+

(
N−1+t−τ

t− τ

)

·

[
m−1∑
k=0

(−1)k
(
m−1

k

)
mγ̄

−s
m esρ(s)+

k+1
γ̄

(k + 1)1− s
m

Γ
(m−s

m
,
k+1

γ̄

)
︸ ︷︷ ︸

4
=U(s,m)

]u
,

where [y]+ = max(0, y). When U(s,m) < 1, the sum con-
verges to Mnet(s, τ, t) ≤ es(ρ(s)(t−τ)+σ(s))/(1− U(s,m))N

for τ ≤ t, where we used the combinatorial identity
∞∑
u=0

(
N − 1 + u

u

)
xu =

1

(1− x)N
, (8)

for any 0 < x < 1. Note that U(s,m) < 1 can be interpreted
as a stability condition for the network. Applying Theorem 1,
we get the following probabilistic end–to–end backlog bound

bεnet = inf
s>0

{
σ(s)− 1

s

(
N log(1− U(s,m)) + log ε

)}
.

For the delay bound, we compute for w ≥ 0

Mnet(s, t+w, t)≤es(−ρ(s)w+σ(s))
∞∑
u=w

(
N−1+u

u

)
[U(s,m)]u

≤ es(−ρ(s)w+σ(s))

(1− U(s,m))N
·min

{
1, [U(s,m)]wwN−1

}
. (9)

We get the first term in the min by extending the summation
down to u = 0, and the second term uses the inequality(

N − 1 + u

u

)
≤ wN−1

(
N − 1 + u− w

u− w

)
for u ≥ w. Then Eq. (9) is obtained by applying Eq. (8) to
both cases. Then Eq. (9) can be evaluated numerically.

Probabilistic performance bounds for the other two ap-
proaches differ in the form of function U(s,m). For the
information–theoretic model and m = 2, we compute

U IT (s, 2)=
esρ(s)e

2
γ̄ ( γ̄2 )1−s

Γ(2)

(
Γ
(
2−s, 2

γ̄

)
− 2

γ̄
Γ
(
1−s, 2

γ̄

))
.

For the random access model, we obtain

URA(s,m)=esρ(s)p∗(1−p)m−1e
1
γ̄ γ̄−sΓ(1−s, 1

γ̄
) . (10)

Inserting each of these two functions in the performance
bounds from Theorem 1 gives bounds for the other models.

IV. NUMERICAL RESULTS

We computed numerical results for a cascade of N multi-
access Rayleigh fading channels with m = 2 active users at
every hop and a transmission bandwidth of W = 20 kHz. The
arrivals are (σ(s), ρ(s)) bounded with deterministic bursts and
rates, with σ(s) = 50 kb and ρ(s) = 30 kbps. The probabilistic
bounds are determined with violation probability ε = 10−4.

Fig. 2 shows the end–to–end backlog bound of multi–hop
multiaccess channels as a function of the average channel SNR
for different number of hops under the three different service
models derived in the previous section. We use the same model
parameters for all three graphs. Furthermore, for Fig. 2(c) we
set p∗ = 1 and p = 0.2. The selection of p∗ = 1 maximizes
the capacity received by the through flow at the expense of the
other flows and will result in the most optimistic bounds. It is
worth noting that when γ̄ increases the effect of p diminishes
since γ̄−s becomes dominant in Eq. (10).
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(a) Information-theoretic channel model.
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(b) Opportunistic scheduler model.
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(c) Random access model with p = 0.2, p∗ = 1.

Fig. 2. End-to-end backlog bound (bεnet) vs. average channel SNR (γ̄) for multihop multiaccess Rayleigh fading channels using m = 2, and with ε = 10−4,
W = 20 kHz, (σ(s), ρ(s)) bounded traffic with σ(s) = 50 kb and ρ(s) = 30 kbps, and for N = 1, 10, 20, 30.

The backlog bounds in Figs. 2(a), 2(b) and 2(c) exhibit
similar trends, but also show notable differences. For suffi-
ciently high average SNR (γ̄ > 20 dB) we observe that the
backlog remains low for all the three models for every N .
The opportunistic scheduler outperforms the other two models
which is a result of the user diversity gain. We also notice
that random access performs very close to the opportunistic
scheduler at high γ̄. This is expected since random access is
known to perform well at a low utilization. The performance of
the information–theoretic model with equal power allocation
is lower than that for the opportunistic scheduler and the effect
of N on the performance is more visible. This is mainly due
to the naive power allocation policy.

When γ̄ is decreased the channel becomes saturated and the
backlog increases sharply resulting in network instability. We
observe that the blow–up point for the information–theoretic
model is around 4 dB, for the random access model around 6
dB and the opportunistic scheduler outperform the other two at
just under 3 dB. On the other hand, the opportunistic scheduler
has the highest complexity among the three and generates
the most channel state feedback overhead. The information–
theoretic model assumes channel coding and incurs coding
overhead. Random access is the simplest scheme, and is there-
fore an attractive approach for networks with low utilization.
It is worth noting that the provided comparison is qualitative
since we are comparing backlog bounds, rather than exact
backlog, for the three multiaccess schemes. Nevertheless, this
comparison is reasonable since all three bounds were obtained
using same methodology and under the same assumptions
which suggest that the three bounds have comparable tight-
ness.

V. CONCLUSION

In this work, we investigated a system–theoretic network
calculus approach for multi–hop multiaccess wireless networks
analysis. We considered three distinct approaches to multiac-
cess communication in the literature: information–theoretic,
random access and dynamic scheduling. We provided service
characterizations for the three approaches. The service char-
acterizations enable us to conduct a qualitative comparison
using end–to–end performance bounds. The numerical results
exposed an inherent trade–off between performance and com-
plexity at low SNR. For higher SNR and low utilization,

it appears that a simple random access is sufficient. Our
numerical results suggest that a hybrid multiaccess design that
incorporates a combination of different multiaccess approaches
may have merit.
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