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Zero-Determinant Strategies: A Game-Theoretic
Approach for Sharing Licensed Spectrum Bands

Ashraf Al Daoud, George Kesidis, and Jörg Liebeherr

Abstract—We consider private commons for secondary sharing
of licensed spectrum bands with no access coordination provided
by the primary license holder. In such environments, hetero-
geneity in demand patterns of the secondary users can lead to
constant changes in the interference levels, and thus can bea
source of volatility to the utilities of the users. In this paper,
we consider secondary users to be service providers that provide
downlink services. We formulate the spectrum sharing problem
as a non-cooperative iterated game of power control where service
providers change their power levels to fix their long-term average
rates at utility-maximizing values. First, we show that in any
iterated 2×2 game, the structure of the single-stage game dictates
the degree of control that a service provider can exert on the
long-term outcome of the game. Then we show that if service
providers use binary actions either to access or not to access the
channel at any round of the game, then the long-term rate can be
fixed regardless of the strategy of the opponent. We identifythese
rates and show that they can be achieved using mixed Markovian
strategies which will be also identified in the paper.

Keywords—Radio spectrum sharing, iterated games, zero-
determinant strategies.

I. I NTRODUCTION

Advances in mobile broadband access technologies in recent
years have resulted in an exponential surge in demand for
wireless data services [10]. As the demand is expected to
grow, the wireless industry is trying to develop techniquesto
improve utilization of available radio spectrum bands. This has
led to the advent of cognitive radio technologies which allow
network users to adapt their system parameters to the dynamic
environment and optimize spectrum utilization without neces-
sarily cooperating to pursue such goals. Under this paradigm,
game theory has emerged as a useful tool for modeling and
analyzing user behavior in non-cooperative spectrum sharing
environments where centralization and traditional spectrum
sharing techniques are no longer valid concepts. See [28] for
a survey on games for cognitive radio networks.

Non-cooperative spectrum sharing can be studied for sce-
narios that involve secondary provisioning of licensed spec-
trum where primary license holders lease the surplus of their
spectral capacities to some secondary users. Such scenarios
of spectrum sharing have been made possible by recent reg-
ulatory models that are emerging under different proposals
including the FCC’sprivate commonsmodel [13] and the
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licensed shared accessmodel of the EU [26]. Suggested
models entail that spectrum provisioning may not necessarily
require license holders to coordinate spectrum access among
secondary users. For example, under the private commons
model, secondary users are granted spectrum access by using
peer-to-peer communications without relying on the license
holder’s infrastructure. In fact, license holders may not even
need to have deployed equipment in order to be eligible for
this model. However, license holders can still authorize the use
of certain communication devices or can dictate using specific
technical parameters [8].

This paper presents a framework for designing strategies for
secondary sharing of licensed spectrum bands. The underlying
communication system involves a number of service providers
that share an interference channel to provide downlink services
without access coordination. A distinctive feature of sharing
licensed channels, versus sharing unlicensed ones, is thatutility
to a service provider for achieving some rate on the channel
is discounted by the cost of utilizing the channel. This cost
is paid to the primary license holder on usage basis in the
form of monetary compensation. Since the marginal utilities
of the service providers decrease by increasing their rates,
transmitting at the maximum allowed power level can be
sub-optimal from a utility maximization point of view. In
this respect, operating at a utility-maximizing rate from the
standpoint of any of the service providers is governed by
the interference in the channel which depends on the demand
patterns of other service providers. Specifically, at timeswhen
the demand is high, a service provider transmits at a relatively
higher power level that causes more interference, and visa
versa when the demand is low, thus leading to variations in the
interference. Demand patterns are generally unknown, and the
key problem is to design strategies for power control that help
service providers achieve their optimal rates and cope with
fluctuations in the interference.

In this paper, secondary sharing of licensed spectrum is
formulated as an iterative game of power control. Namely,
at each round of the game service providers choose their
transmission power levels and consequently achieve some
downlink rates that depend also on the interference from other
service providers. We show that there exist strategies thatallow
service providers to fix their rates in the long term, regardless
of the strategies of their opponents. The key insight is that
in iterated games with same action space and same payoff
profiles, players with longer memories have no advantage over
players with shorter ones. Therefore, players can, in each
round, condition their moves on the outcome of the game
in the previous round. This implies that iterated games lend
themselves to Markovian analysis where a player’s strategy
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is defined in terms of the state transition probabilities of the
resulted Markov chain.

We use this insight in the power control game. First, we
show that in any two-player game with boolean action space,
referred to as2 × 2 iterated game, the structure of the payoff
matrix of any of the players in the single-stage game dictates
whether or not a player can control its long-term payoff of the
game. We also show that this property can be realized in the
power control game by transforming the action space of the
service providers into a binary space; either to access or not to
access the channel in each round of the game. The approach
provides the players with full control on a range of rates that
will be clearly characterized in the paper. In essence, a player
can achieve any value in the valid range by iterating its actions
using mixed (probabilistic) Markovian strategies. The intuition
behind this approach is to allow players to maintain a certain
rate, in the long term, by using reactive strategies such that,
whenever the average rate exceeds the targeted value, it can
be lowered by not participating in the channel in some future
rounds. The paper identifies these strategies and shows that
any fixed outcome of the game can be achieved using multiple
strategies that differ by their convergence rates.

Game theory for sharing wireless resources is a widely stud-
ied topic in communication networks [24]. Proposed strategic-
game models for sharing interference channels have included
pricing mechanisms [5], [15], [23], [27], medium access con-
trol [17], [18], and transmission power control on both the
uplink (end-users to base-stations) and the downlink (base-
stations to end-users) [3], [4], [11]. A common assumption in
these models is that game structure and rationality of players
are common knowledge in the game, i.e., players hold beliefs
about each others’ strategic choices [6]. Such assumptionsare
not limited to single-stage games but also extend to iterated
games where players interact in multiple rounds.

Iterated games are studied to induce cooperation in self or-
ganizing wireless ad-hoc networks. Most of the studies use the
iterated Prisoners’ Dilemma game to model packet forwarding
between nodes [14], [16], [19]. The model is motivated by
many experimental studies which show that Tit-For-Tat can be
an efficient strategy in this regard [7]. An important feature of
iterated games is the fact that an action taken by a player at any
round of the game has an impact on the future actions of the
other players. This in turn leads to the concept of punishment
for deviating from equilibrium strategies. Iterated gamesare
also applied to model sharing of spectrum bands, particularly
in [12], where multiple systems coexist and interfere with each
other. In essence, in [12], spectrum sharing is modeled as an
iterated power control game to devise self-enforcing power
control rules that lead to fair and efficient Nash equilibria.

In this work, we follow a different approach and seek
power control strategies that allow service providers to share
spectrum and maintain average rates regardless of the power
control strategies of their opponents. Our work is motivated
by recent results in the theory of iterated Prisoners’ Dilemma
games. In fact, Press and Dyson have shown in [25] that such
games admit strategies, which in some cases allow players
to control each others’ long-term payoffs, and in other cases
allow them to set a linear relationship between the payoffs.

Such strategies, which are referred to aszero-determinant
strategies, are realized if we observe that progression of the
game can be formulated as a one-step Markov process. The
approach of [25], from which the earlier results of [9] can be
obtained as a special case, more readily admits generalization
to asymmetric games with different payoff structures that can
involve more than two players.

The major contribution of our paper can be summarized as
follows:

1) We present an extension of the approach in [25] and
identify structures of2 × 2 games that allow a player
to control its own payoff or that of the opponent, thus
implying a broader application that is not restricted to
the Prisoners’ Dilemma game. We identify (a) if a game
has the property to allow a player to control its own long-
term payoff or the payoff of its opponents, (b) the range
of values that the outcome of the game can be fixed
at, and (c) the strategies to be applied to achieve any
feasible outcome. We do not assume symmetric payoffs
of the players, and thus no assumption of symmetric
control on the outcome of the game. We identify which
games are eligible for zero-determinant strategies and
the extent of control that a player can exert on the
outcome of the game.

2) We identify the feasible set of payoffs that a player can
guarantee from the game and identify mixed Markovian
strategies (zero-determinant strategies) for each possible
outcome of the game. Furthermore, we show that the
notion of payoff control is not restricted to two-player
games, but can be extended to games with multiple
players.

3) We formulate secondary sharing of wireless spectrum as
an iterated game of power control. We use an economic
model for downlink data transmission to argue that, in
interference channels with no access coordination, play-
ers can fix their long-term rates at utility-maximizing
values by taking binary actions (e.g., either to transmit
at maximum power or not to transmit). We identify
strategies for iterating these actions and study their
convergence properties.

A salient feature of our work is that it devises power control
strategieswithout assuming common knowledge of equilib-
rium strategies. While assuming such knowledge is widely
adopted in classical game-theoretical formulations for wireless
resource allocation, it may not be realistic since, in practice,
spectrum access may be driven by unknown demand patterns.
In scenarios without central coordination, e.g., in the case of
private spectrum commons, zero-determinant strategies may
be more realistic since they help players control the outcome
of the game regardless of the behavior of their opponents.
Lastly, even though our work is motivated by the problem of
distributed sharing of licensed spectrum, we believe that our
results on the theory of zero-determinant strategies may have
relevance beyond wireless applications.

The rest of the paper is organized as follows: In Section II,
we address zero-determinant strategies for2×2 iterated games
and present our results for games of general payoff structures.
We also extend our results to include games with more than
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PlayerY

n2 = 1 n2 = 2

n1 = 1 (X1,1, Y1,1) (X1,2, Y1,2)
n1 = 2 (X2,1, Y2,1) (X2,2, Y2,2)

Fig. 1. One round payoff matrix of the iterated two-player two-action game.

two players. In Section III, we analyze secondary spectrum
sharing as an iterated game of power control and devise
strategies for the proposed2 × 2 game. A numerical study to
analyze convergence and power consumption of these strate-
gies is provided in Section IV. Finally, the paper concludesin
Section V.

II. Z ERO-DETERMINANT STRATEGIES FORITERATED
GAMES

In this section, we develop new results on iterated games
where the action space and the payoff matrix do not change
over the course of the game. Our analysis is based on the
approach of [25], which shows that there exist strategies for
indefinitely iterated2× 2 games that are referred to as “zero-
determinant” strategies, and which allow the players to control
their long-term payoffs or the payoffs of their opponents. The
type of control that a player can exert hinges on the structure
of the game. In this section, we identify these structures and
any feasible set of payoffs that can be controlled. We also
identify the strategies that lead to this control.

For this purpose, consider a2 × 2 iterated game with the
single round payoff matrix given in Figure 1. In each round of
the game, playersX andY have binary actions, respectively
n1, n2 ∈ {1, 2}, leading to payoffs, respectivelyXn, Yn where
n = (n1, n2). A salient feature of iterated games is that players
with longer memories of the history of the game have no
advantage over those with shorter ones, i.e., a strategy of a
player that shares the same history used by the opponent does
not gain more from using longer history of the game. This
is due to the iterative nature of the game where actions and
payoffs are indefinitely fixed (see the appendix of [25]), and
thus, strategies can be designed by assuming that the players
have memories of only a single move.

A. Zero Determinant Strategies for2× 2 Games

We describe the state of the game in any round by the actions
of the players in that round. Specifically, letΩ denote the set
of all possible states,1 i.e.,

Ω = {(1, 1), (1, 2), (2, 1), (2, 2)}, (1)

and letn(t) denote the state of the game in roundt ≥ 0. In
each round, players choose their actions with probabilities that
depend on the state of the game in the previous round and thus
the process{n(t) : t = 0, 1, . . .} can be modeled as a Markov
chain.

1In the application to spectrum sharing which will be addressed later in the
paper, play action1 will correspond to accessing the channel with maximum
power, while play action2 will correspond to accessing the channel with lower
power or not accessing the channel at all.

In this respect, consider playerX and let

pk = Pr (n1(t+ 1) = 1 | n(t) = k) , ∀k ∈ Ω,

denote the probability that playerX takes action1 in round
t + 1 if in the previous round, playerX took actionk1 and
playerY took actionk2. For playerY , similarly let

qk = Pr(n2(t+ 1) = 1 | n(t) = k), ∀k ∈ Ω.

The set of actions of a player is referred to as the strategy
of that player, i.e.,{pk, ∀k ∈ Ω} is a strategy of playerX
and {qk, ∀k ∈ Ω} is a strategy of playerY . The state
transition matrix of the Markov chain can be described as
follows assuming that the rows and the columns are in the
same order as listed in (1):

M =








p
1,1

q
1,1

p
1,1(1− q

1,1) (1− p
1,1)q1,1 (1− p

1,1)(1− q
1,1)

p
1,2

q
2,1

p
1,2(1− q

2,1) (1− p
1,2)q2,1 (1− p

1,2)(1− q
2,1)

p
2,1

q
1,2

p
2,1(1− q

1,2) (1− p
2,1)q1,2 (1− p

2,1)(1− q
1,2)

p
2,2

q
2,2

p
2,2(1− q

2,2) (1− p
2,2)q2,2 (1− p

2,2)(1− q
2,2)









.

Let πi,j be the probability that playerX takes actioni and
player Y takes actionj. The Markov chain has a stationary
distributionπT = (π1,1, π1,2, π2,1, π2,2) that satisfies

π
TM = π

T.

π is unique if and only if the chain has a unique closed
communication class. In this case, the long-term payoff for
playerX is given by

uX = π
TX, (2)

and for playerY is given by

uY = π
TY, (3)

where

X =







X1,1

X1,2

X2,1

X2,2






and Y =







Y1,1

Y1,2

Y2,1

Y2,2







are the payoff schedules of playerX and playerY , respec-
tively. Let M̃ = M− I so that we obtain

π
TM̃ = 0. (4)

By Cramer’s rule,

adj(M̃)M̃ = det(M̃)I = 0, (5)

where adj(M̃) is the adjugate matrix, i.e., the transposed
matrix of signed minors. Note that the second equality holds
becausẽM is singular. It follows from (4) and (5) that each row
of the matrixadj(M̃) is proportional to the unique stationary
distribution π. In this regard, consider the fourth row of
adj(M̃), and notice that the elements of the row are not
changed if the first column of̃M is added to the second and



4

third columns. Thus, it can be shown that, for an arbitrary
vector f ,

π
Tf = det







−1 + p1,1q1,1 −1 + p1,1 −1 + q1,1 f1
p1,2q2,1 −1 + p1,2 q2,1 f2
p2,1q1,2 p2,1 −1 + q1,2 f3
p2,2q2,2 p2,2 q2,2 f4






.

(6)
A key observation of [25] is that the second and the third

columns of the matrix in (6) are purely dependent on the
actions of playerX and playerY , respectively. In specific,

m̃X =







−1 + p1,1

−1 + p1,2

p2,1

p2,2






and m̃Y =







−1 + q1,1

q2,1

−1 + q1,2

q2,2






.

Without loss of generality, consider the game from the stand-
point of playerX . If m̃X = f , the determinant in (6) is equal
to 0, and thus iff = aX+ b, Equation (6) is

auX + b = 0, (7)

where uX is defined in (2), anda and b are non-zero real
numbers.

PlayerX can thus fix the value ofuX regardless of the
strategy of playerY . To achieve this, the values ofa and
b should be chosen such thatp1,1, p1.2, p2,1, and p2,2 are
probabilities which in turn depends on the structure of the
game through the equalitỹmX = aX+ b.

In the following theorem, we state our first result that defines
the structures of2× 2 games where playerX can controluX

and defines the strategies that lead to such control.

Theorem 1. For k = 1, 2, letXk,min andXk,max, respectively,
denote the minimum and maximum value of rowk in the payoff
matrix of a2× 2 iterated game. Specifically,

Xk,min = min(Xk,1, Xk,2),

Xk,max = max(Xk,1, Xk,2).

PlayerX can control its long-term payoffuX regardless of the
action of playerY if and only if there existkmax, kmin ∈ {1, 2}
where

Xkmax,max ≤ Xkmin,min. (8)

If so, any value ofuX from the interval[Xkmax,max, Xkmin,min]
can be achieved by using the following mixed/probabilistic
strategies:

p1,1 = 1 +

(

1−
X1,1

uX

)

b, (9)

p1,2 = 1 +

(

1−
X1,2

uX

)

b, (10)

p2,1 =

(

1−
X2,1

uX

)

b, (11)

p2,2 =

(

1−
X2,2

uX

)

b, (12)

whereb is chosen such that, ifkmin = 1 and kmax = 2, then

0 < b ≤ min

(

uX

X1,max − uX

,
uX

uX −X2,min

)

,

and if kmin = 2 and kmax = 1, then

max

(

uX

X1,min − uX

,
uX

uX −X2,max

)

≤ b < 0.

Proof: We need to obtaina andb that satisfym̃X = aX+
b and renderp1,1, p1,2, p2,1, andp2,2 as probabilities. First note
that, by (7),a = − b

uX
and thus formulae (9–12) follow. Next,

we obtain the range of valid values of the non-zero variableb
by dividing the search domain into two intervals;b > 0 and
b < 0.

Case 1(b > 0):

Consider (9) and (10) and notice that, for any value of
b > 0 and a given value ofuX , the condition

X1,min ≥ uX

is necessary and sufficient forp1,1 and p1,2 to be less than
or equal to1. Similarly, for p2,1 and p2,2 to be greater than
or equal to0, we obtain the following condition from (11)
and (12):

X2,max ≤ uX .

Therefore,uX cannot be fixed at values outside the interval
[X2,max, X1,min]. To show thatuX can be fixed at any value in
this interval, we need to show that there existsb > 0 such that
p1,1 andp1,2 are greater than or equal to0 andp2,1 andp2,2

are less than or equal to1. In this regard, from (9) and (10),
we obtain

0 < b ≤
−1

1−
X1,1

uX

,

0 < b ≤
−1

1−
X1,2

uX

.

Note that, sinceX1,1, X1,2 > uX , the tightest upper bound is
−1

1−
X1,max

uX

. In the same way, from (11) and (12) we obtain

0 < b ≤
1

1−
X2,1

uX

,

0 < b ≤
1

1−
X2,2

uX

,

and sinceX2,1, X2,2 < uX , we have 1

1−
X2,min

uX

as the tightest

upper bound. Therefore,uX can be fixed at any value in the
interval [X2,max, X1,min] by choosingb from the following
feasible range

0 < b ≤ min

(

−1

1−
X1,max

uX

,
1

1−
X2,min

uX

)

.
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Case 2(b < 0):

We can follow the same steps as in the previous case.
Namely, for p1,1 and p1,2 to be less than or equal to1, it
is required that

X1,max ≤ uX ,

and for p2,1 and p2,2 to be greater than or equal to0, it is
required that

X2,min ≥ uX .

Combining the previous conditions yields the new condition

X1,max ≤ X2,min.

Furthermore, forp1,1 andp1,2 to be greater than or equal to0,
we obtain the condition

−1

1−
X1,min

uX

≤ b < 0.

In a similar fashion, forp2,1 andp2,2 to be less than or equal
to 1, we obtain

1

1−
X2,max

uX

≤ b < 0.

Therefore,b can be chosen from the following feasible range:

max

(

−1

1−
X1,min

uX

,
1

1−
X2,max

uX

)

≤ b < 0.

Theorem 1 provides a framework for understanding payoff
control in 2 × 2 iterated games. It states that the structure of
the payoff matrix reveals the possibility of players controlling
their long-term payoffs. In fact, only if the maximum payoffin
one row is less than or equal to the minimum in the other row,
then row playerX can set the long-term payoff,uX , to any
value between the minimum and the maximum. For example if
X1,1 = 1, X1,2 = 0.75, andX2,1 = X2,2 = 0.5, then playerX
can setuX to any value in the interval[0.5, 0.75].

The results in the theorem can be directly applied to
playerY by considering the columns of the payoff matrix of
the player instead of the rows. In particular, let

Yk,min = min(Y1,k, Y2,k) and Yk,max = max(Y1,k, Y2,k),

then playerY can control its long-term payoff,uY , if and only
if there existskmax, kmin ∈ {1, 2}, wherekmax 6= kmin and
Ykmax,max ≤ Ykmin,min.

A simple example to verify strategies (9–12) in the theorem
is to chooseuX = Xkmin,min, meaning that playerX setsuX

at the maximum value possible. If we assume thatXkmin,min =
X1,1, then regardless of the value ofb, this always yields a
strategy withp1,1 = 1, i.e., playerX plays action1 whenever
both players played this action in the previous round. One way
to understand this result is to consider a strategy of playerY
playing action1 in each round of the game. PlayerX will then
play action1 in each round as there will be no opportunity to
make up for losses that may result in from not playing that
action in any of the previous rounds.

For the same example, assume that the ratioX1,1/X1,2 =
0.5 and assume thatX2,1 = X2,2 = 0. If b = 1, this yields
the deterministic strategyp1,1 = 1, p1,2 = 0, p2,1 = 1, and
p2,2 = 1. This strategy is quite intuitive since it tracks the
payoff of playerX such that, regardless of the strategy of
playerY , whenever the payoff in any round isX1,2, playerX
plays action2 in the next round and gains0 payoff, so that the
average of the two rounds is maintained at the targeted value
X1,1. In the next round, the player plays action1 to gain at
leastX1,1, and so on. The strategy is one of several strategies
that can be obtained by changing the value of the variableb,
and which will be discussed in more details in Section IV.

Two important observations are obtained from Theorem 1.
First, the players can design their strategies without an underly-
ing assumption of knowledge of each other’s payoffs. All that
a player needs to know at any round is the opponent’s action
in the previous round. This leads us to the second observation,
which highlights a more general perspective of this theorem.
In essence, if the structure of the opponent’s payoff matrix
satisfies the hypotheses of Theorem 1, then a player can control
the long-term payoff of the opponent. For example, playerX
can control the payoff of playerY if the payoff matrix of
playerY satisfies conditions (8) withXi,j replaced byYi,j .

Control of the opponent’s payoff can be realized in games
such as the iterated Prisoners’ Dilemma whereY1,2 > Y1,1 >
Y2,2 > Y2,1. In this game, the row player can set the payoff
of the column player to any value in the interval[Y1,1, Y2,2].
Strategies for opponents controlling each other’s payoffswere
previously studied in [9] and presented for a subset of games
where players have symmetric payoffs as in the case of the
Prisoners’ Dilemma game.

B. Iterated Games with Multiple Players

The results presented in the previous section can be extended
to include games of more than two players. LetN ≥ 2
denote the number of players in the game and assume they
are indexed1, 2, . . . , N . Let the binary vectorn(t) = (ni(t) :
i = 1, . . . , N) describe the state of the game in a given round
t, whereni(t) ∈ {1, 2} for all i, t so that at any givent,
n(t) ∈ {1, 2}N =: Ω. The process{n(t) : t = 0, 1, . . .} can
be described as a multi-dimensional Markov chain. In each
round of the game, players take actions with probabilities that
depend on the state of the game in the previous round.

Let pki denote the probability that playeri plays action1
in a certain round if the game was in statek in the previous
round, and let

pi = (pki : k ∈ Ω)

denote the complete strategy profile of playeri. The state
transition matrix of theN -player game can be presented as
a 2N × 2N matrix. Similar to the game withN = 2 players,
we can apply Cramer’s rule tõM = M − I. First, note that
for l,k ∈ Ω, the entry in thekth row andlth column ofM is
for all roundst ≥ 0

Pr (n(t+ 1) = k | n(t) = l) =
∏

i∈Kk

pli
∏

j∈Lk

(1− plj),
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whereKk is the set of players playing action1 in statek, and
Lk is the set of players playing action2 in statek.

Consider adding all columnsCi ⊂ Ω of M̃ that correspond
to states where playeri and at least one other player play
action1, to the column where only playeri plays action1. An
entry of the resulting columñmi at rowk is then given as







−1 + pki Γ
if a diagonal element of̃M
is added to this entry,

pki Γ otherwise,

where

Γ =
∑

k∈Ci

∏

j∈Kk\i

pkj
∏

l∈Lk

(1− pkl ).

An important observation is thatΓ = 1 since each product in
Γ has elements that are either the probability or its complement
of a fixed set of events. Therefore, the sum of all possible
permutations of these products evaluate to 1. In a similar
reasoning that led to (6), multiplying the stationary distribution
of the gameπ with an arbitrary|Ω|-size vectorf leads to the
following structure (also displaying̃mi):

π
Tf = det















. . . −1 + pki . . . f1

. . . −1 + pki . . . f2
. . .

...
. . .

...
. . . pki . . . f|Ω|−1

. . . pki . . . f|Ω|















,

where the column corresponding to all players taking action
2 is replaced withf . In this regard, notice that a column that
corresponds to the state where only playeri plays action1 has
elements that depend solely on the actions of that player.

We follow the developments that led to Theorem 1 and let
Ui,n denote the payoff of playeri if the state of the game at
the previous round wasn. We also letUi denote a vector of
all possible outputs. Letui denote a generic value of the long-
term payoff of playeri. Thus, takingm̃i = f = aiUi + bi,
where ai and bi are non-zero real numbers, leads to zero-
determinant strategies for playeri’s payoff control. This results
is formulated in the following proposition:

Proposition 1. In the game withN ≥ 2 players, for k=1, 2,
let

Ui,k,min = min(Ui,n : ni = k),

Ui,k,max = max(Ui,n : ni = k),

where the first quantity is the minimum payoff of playeri when
playing actionk, and the second quantity is the maximum.

Player i can control its long-term payoff,ui, regardless of
the actions of the other players in the game if and only if there
existskmax, kmin ∈ {1, 2} where

Ui,kmax,max ≤ Ui,kmin,min.

If so, any value of ui from the interval
[Ui,kmax,max, Xi,kmin,min] can be achieved by using the

following strategies:

pki =







1 + (1−
Ui,k

ui
)bi,

if player i plays action1
in statek,

(1−
Ui,k

ui
)bi, otherwise,

wherebi is chosen such that, ifkmin = 1 and kmax = 2, then

0 < bi ≤ min

(

ui

Ui,1,max − ui

,
ui

ui − Ui,2,min

)

,

and if kmin = 2 and kmax = 1, then

max

(

ui

Ui,1,min − ui

,
ui

ui − Ui,2,max

)

≤ bi < 0.

III. A N ON-COOPERATIVE GAME FOR SHARING
L ICENSEDSPECTRUM

In this section, we apply our results to devise strategies for
sharing licensed spectrum bands. We consider a general model
that involvesN service providers indexedi = 1, 2, . . . , N
sharing a channel of bandwidthW . We assume that the channel
is primarily licensed to an entity that we refer to as the license
holder. We consider a cold leasing model where the license
holder does not deploy any equipment, and thus, offering the
channel to the service providers without access coordination.
This model is one of several models that have been suggested
for spectrum private commons where the ultimate ownership
of spectrum is preserved by the license holder (See for
example [8]).

We model the underlying communication system as an
interference channel where at times when the channel is less
congested, the service providers create less interferenceto
each other, and thus can achieve better throughput rates. We
focus on the downlink and assume that the service providers
have fixed pools of end-users co-located within a certain
geographical area. See Figure 2 for a description of this model.
Let Si denote the set of end-users of service provideri. The
license holder regulates channel access by imposing a limit
on the maximum transmission power of each service provider.
It also allocates the underlying code space for transmission
to individual end-users. Power and code allocations are nor-
mally negotiated with the license holder and provided through
“secondary provider” contracts.

We follow a simple model of common-channel interference
under CDMA, where transmission of a service provider to
a given end-user appears as noise to all other end-users,
including those belonging to other service providers. While
interference cancellation techniques can be still applied, they
are precluded in this model due to practical limitations such as
decoder complexities and delay constraints. Similar assump-
tions have been widely used in the literature of interference
channels, see for example [12].

The service providers use power control to maintain a certain
throughput by controlling their transmission power levelson
the downlinks. Namely, an increase in the transmission power
on one of the downlinks causes interference on the other
links and thus a degradation in the Signal to Interference
and Noise Ratio (SINR) at the receiving sides of those links.
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service provider i service provider j

hi,1

hj,1 hi,2

hj,2

end-user 1 end-user 2

Fig. 2. A channel access model where a number of service providers share
a channel and provide downlink services to groups of end-users spatially
located in over-lapping coverage areas. Each end-user receives service for
its designated service provider, but also gets interference from other service
providers.

In this regard, letΛi,max denote the maximum transmission
power allocated to service provideri. A power control scheme
of a service provider specifies the transmission power al-
located to each end-user on the downlink. Let the vector
λi = (λi,1, λi,2, . . . λi,|Si|) denote the power control scheme
of service provideri. If all service providers transmit at their
maximum power levels, the SINR of end-userk ∈ Si is given
by

γi,k(λi) =
hi,kλi,k

σ2
k + hi,k(Λi,max − λi,k) +

∑

j 6=i hj,kΛj,max

,

wherehi,k is the path gain between the base station of service
provideri and end-userk,2 andσ2

k is the noise power at end-
userk [20]. The achievable throughput rate at the downlink of
userk ∈ Si is obtained using Shannon’s formula as

ri,k(λi) = W log2(1 + γi,k(λi)), (13)

and the aggregate rate on the downlink of service provideri
is thus given by

Ri(λi) =
∑

k∈Si

ri,k(λi). (14)

We measure utilities of service providers from sharing
the channel by the quality of service they provide on the
downlinks. One important measure is the average delay of
packet delivery, which can be reduced by improving the rate
on the downlink. LetR̄i be the long-term average downlink
rate of service provideri. We denote the utility of the service
provider by the functionUi(.) which is strictly increasing in
R̄i.

A distinctive feature of secondary utilization of licensed
spectrum bands is that the utility of secondary users, i.e.,

2In fact, hi,k is path attenuation since it is less than1. In practice, path
attenuations may be obtained by use of pilot signals, or may not be explicitly
discovered if power control is performed by adaptive dithering (which is
suitable for time-varying fading or shadowing conditions of a wireless channel
to a mobile end-user).

service providers, is discounted by some cost paid in the form
of a fee to the license holder. See for example [1], [21], [22]for
studies that involve economic models and pricing techniques
for secondary spectrum utilization. Here, we consider a pricing
scheme where the license holder charges the service providers
on usage basis per unit data transmitted on the downlinks. Let
ci denote the price charged to service provideri per unit data
transmitted on the channel. Thus, the optimal aggregate rate
R̄∗

i of the service provider is a solution of the optimization
problem

max
R̄i

Ui(R̄i)− ciR̄i, (15)

which has a unique solution ifUi is concave.
From the standpoint of service provideri, achievingR̄∗

i

requires the service provider to transmit at a certain power
level taking into consideration the interference created by other
service providers. In the light of lack of central coordination,
some service providers may unpredictably change their trans-
mission power levels to adapt their rates according to their
demand, thus causing variations in the interference to the other
service providers. Sharing an interference channel with users
that transmit at varying power levels is modeled as a non-
cooperative iterated game, where it can be assumed that the
channel is offered to the service providers in rounds. In each
round, the service providers choose their transmission power
levels, which can vary from round to round according to their
anticipated demand levels.

We refer to this game as the iterated power control game. In
each round of the game, the service providers make decisions
on engagement and power transmission, followed by detailed
decisions on how the power should be divided among their
end-users according to a power control strategy. Each service
provider aims at achieving a long-term average rateR̄∗

i to
maximize (15) regardless of the strategy of the opponents.
The theory of zero-determinant strategies presented in Sec-
tion II helps provide guidelines for power control in such
environments that involve uncoordinated spectrum access.In
the sequel, we present the iterated power control game for the
case of two service providers, where the service providers fix
their power allocation schemesλi, but take binary decisions
in each round on whether or not to engage their users.3 We
identify the range of values of̄R∗

i that can be obtained and
characterize strategies for achieving these values.

A. Iterated Power Control Game with Two Service Providers
and Binary Action Space

Consider an iterated power control game with two service
providers labeled1 and2. The payoff matrix of the single shot
game is shown in Figure 3. For ease of exposition, we will
assume that in each round of the game, the service providers
choose either to transmit at a certain power level or at zero
power. That is, the service providers can choose between two
actions: either to access or not to access the channel. We
assume that if one service provider accesses the channel, it

3Extensions to more than two service providers follow directly from
Proposition 1.
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`
`
`
`
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`
`

provider 1
provider 2

Access No Access

Access (θ1R1, θ2R2) (R1, 0)
No Access (0, R2) (0, 0)

Fig. 3. Payoff matrix of the power control game. Service providers1 and2
achieve ratesR1 andR2, respectively, if they access the channel solely. If
both providers access the channel simultaneously, then provider i achieves
θiRi.

achieves downlink rateR1 if it is service provider1 and
rate R2 if it is service provider2, where R1 and R2 are
described by (14). If both service providers access the channel,
then potentially both achieve lower ratesθiRi, i = 1, 2 with
0 < θi < 1. Clearly, the service provider that does not access
the channel in any given round achieves no rate.

Note that the power control game does not need to be limited
to binary actions0 andΛi,max (or Λi,min ≥ 0 andΛi,max >
Λi,min). In fact, binary actions using intermediate values can
still apply as long as condition (6) in Theorem 1 is satisfied.
Though the framework of zero-determinant strategies requires
a binary action space for the player, it allows for a larger
action space of the other player. This can be verified from the
state transition matrix of the game by noticing that, only ifthe
player has two actions, a column that purely depends on the
actions of the player can be obtained by adding a subset of the
columns in the matrix. We refer to Appendix A for a detailed
discussion.

The payoff matrix of the power control game in Figure 3
has a structure identified by Theorem 1. It allows the service
providers to exert control on their own rates. Specifically,let
1 denoteaccessand 2 denoteno access. In any round, from
the perspective of service provideri, the game can be in one
of four possible states given by the set

Ωi = {(1, 1), (1, 2), (2, 1), (2, 2)},

where the first element of a tuple refers to an action by service
provider i and the second element refers to an action by the
other service provider. Letni(t) ∈ {1, 2} denote an action by
service provideri in round t of the game. Also letn(t) =
(n1, n2) and let

pki = Pr (ni(t+ 1) = 1|n(t) = k) , ∀k ∈ Ωi.

Therefore, following the results in Theorem 1, service
provider i can fix its long-term rate,̄Ri, at any value in the
interval (0, θiRi] by accessing the channel in each round of
the game according to the following strategy:

p1,1i = 1 + (1− θiRi/R̄i)bi, (16)

p1,2i = 1 + (1−Ri/R̄i)bi, (17)

p2,1i = bi, (18)

p2,2i = bi, (19)

wherebi is chosen such that

0 < bi ≤ min

(

R̄i

Ri − R̄i

, 1

)

.

Obtaining values ofR1, R2, θ1, θ2, which identify the range
of possible fixed outcomes of the game and the associated
access strategies, hinges on the underlying power allocation
scheme,λi, applied by the service providers on the downlinks.
In the following, we derive lumped parameters for computing
these values for the max-min power allocation scheme that
maximizes the minimum rate on the downlinks. Specifically,
for service provideri, the max-min scheme requires solving
the following optimization problem:

max
λi

min
k∈Si

γi,k(λi)

subject to
∑

k∈Si

λi,k = Λi,max,

where it is implied that the service providers transmit at the
maximum allowed powerΛi,max. A solution of this problem
results in equal ratesri on all the downlinks of service
provideri.

To computeRi, consider the case where only service
provideri accesses the channel. In this case, the rate achieved
at any of the downlinksk ∈ Si is given by

ri = W log2

(

1 +
hi,kλi,k

σ2
k + hi,k(Λi,max − λi,k)

)

,

and thusRi = |Si|ri. Equal rates can be maintained on all the
downlinks by choosingλi,k andλi,l for all k, l ∈ Si such that

hi,kλi,k

σ2
k + hi,k(Λi,max − λi,k)

=
hi,lλi,l

σ2
l + hi,l(Λi,max − λi,l)

,

which can be equivalently written as

hi,kλi,k

σ2
k + hi,kΛi,max

=
hi,lλi,l

σ2
l + hi,lΛi,max

=: K, ∀k, l ∈ Si.

Thus,

λi,k = K

(

σ2
k

hi,k

+ Λi,max

)

, ∀k ∈ Si.

SinceΛi,max =
∑

k∈Si
λi,k, equal rates can be maintained if

power is distributed among end-users such that

K =
Λi,max

∑

k∈Si

σ2

k

hi,k
+ |Si|Λi,max

.

θi can be computed in a similar fashion by considering
both service providersi andj simultaneously transmitting on
the channel and taking into consideration the interferencethey
create to each other. In this case, letr̃i denote the rate on each
downlink of service provideri. Thus,θiRi = |Si|r̃i, where for
all k ∈ Si,

r̃i =

W log2

(

1 +
hi,kλi,k

σ2
k + hi,k(Λi,max − λi,k) + hj,kΛj,max

)

.

The power distribution on the downlinks can be obtained by
equalizing all rates. Thus, it can be shown that

λi,k = K̃

(

σ2
k

hi,k

+ Λi,max +
hj,k

hi,k

Λj,max

)

, ∀k ∈ Si,
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where

K̃ =
Λi,max

∑

k∈Si

σ2

k
+hj,kΛj,max

hi,k
+ |Si|Λi,max

.

B. Comparison to Best Response Analysis for Power Control

In this section, we discuss important differences between the
approach of zero-determinant strategies used in this paperfor
power control and typical power control algorithms based on
best response analysis where a player takes into consideration
strategies of the opponent(s). For example, in [3], the authors
devise an iterated strategic game for power control where each
player responds to the actions of its opponents to maximize
its own utility, i.e., rationally responds to the current state
of the game. The game leads to “static” (not depending on
previous actions) Nash equilibrium in pure strategies overa
continuous action space.4 Differently, using an action space
that is necessarily discrete, zero-determinant strategies aim at
fixing the outcome of the game without relying on strategic
behavior of the opponent, and thus, no static Nash equilibrium
is reached.

Specifically, in [3], each player attempts torationally maxi-
mize a net utility function consisting of rate (throughput)minus
a power-based cost. Alternate frameworks use throughput
based costs so that maximizing net utility is equivalent to
trying to achieve a target throughput. In the next section, we
show how the framework of zero-determinant strategies can
protect a player against faulty or irrational players. Thisis in
fact beyond the scope of best response strategic games.

Furthermore, as reported in [3], excessive demand by ratio-
nal players can lead to one player opting out of the game using
zero power. Alternatively, joint excessive demand can leadto
deadlock. In the zero-determinant framework, if the maximum
power allocations are not well calibrated, the player will not
be able to achieve its desired/optimal rates, and, in any case,
will need a mixed strategy (e.g., to switch between maximum
and minimum power) over the discrete action space.

IV. N UMERICAL STUDY

In this section, we provide numerical examples of zero-
determinant strategies for the2×2 game described in Figure 3.
The structure of these strategies is given by formulae (16)–
(19). Without loss of generality, we consider a symmetric
game withR1 = R2 = 1.0 and θ1 = θ2 = 0.5. Here, each
service provider can fix̄Ri to values in the range(0, 0.5]. From
the standpoint of service provider1, i.e., the row player, the
zero-determinant strategies(p1,1, p1,2, p2,1, p2,2) for a given
R̄1 have the structure

(

1 + (1−
0.5

R̄1

)b1, 1 + (1 −
1

R̄1

)b1, b1, b1

)

, (20)

where

0 < b1 ≤
R̄1

1− R̄1

. (21)

4Unlike a mixed strategy, that is a probability distributionover a player’s
action space, a pure strategy is a single element of that space.
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1
 = 0.25, strategy (2/3, 0, 1/3, 1/3)
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1
 = 0.1, strategy (5/9, 0, 1/9, 1/9)

Fig. 4. Rate convergence under zero-determinants strategies for the2 × 2

power control game withR1 = R2 = 1.0 and θ1 = θ2 = 0.5. Service
provider2 (column player) uses a random strategy with probability of access
= 1/2 in each round.

A. Convergence of the Zero-Determinant Strategies

First, consider the deterministic strategy(1, 0, 1, 1) which
corresponds tob1 = 1 and which allows the service provider
to achieve a long-term average ratēR1 = 0.5. Assume the
strategy is played against service provider2 which accesses
the channel in each round with probability equal to1/2.
Figure 4 shows the average rate of service provider1 at
different rounds of the game as it converges, in the long term,
to the value0.5. Convergence paths are also provided for the
strategies(2/3, 0, 1/3, 1/3) and(5/9, 0, 1/9, 1/9) which lead,
respectively, toR̄1 = 0.25 and R̄1 = 0.1.

A common factor of these strategies is thatp1,2 = 0,
which means that if the service provider ends up using the
channel alone in any round, it will not access the channel in
the next round. Strategies with this property can be obtained
by settingb1 at the highest possible value. These rectifying
strategies guarantee that there will be no long time periods
of deviation from R̄1 which explains why all the previous
strategies converge relatively quickly tōR1.

Figure 5 shows convergence paths of different strategies that
achieveR̄1 = 0.5 including the strategy(1, 0, 1, 1). As in
the previous example, strategies are played against a service
provider with probability of channel access equal to1/2. Note
that asp1,2 increases, strategies take longer time to converge.
This is due to the fact that if the service provider accesses the
channel in one round, then asp1,2 increases, it is more likely
that it will access the channel in the next round, and thus, it
is more likely to deviate more from̄R1. In the meantime, an
increase inp1,2 is accompanied with a decrease inp2,1 and
p2,2 by formula (20). This leads to long periods of channel
access that are followed by long periods of no channel access
and thus, the strategy tends to converge relatively slowly.

A less obvious conclusion is obtained for games of more
than two service providers. For example, consider the game
with three service providersi, j, k. Assume that in any round
of the game, service provideri achieves one of the following
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Fig. 5. Convergence paths of different zero-determinant strategies that can
be applied by service provider1 (row player) in the power control game.
Strategies with higherp1,2 are slower to converge, since asp1,2 increases, it
becomes more likely for the service provider to access the channel in the next
round if it already accessed the channel in the previous round. This leads to
longer periods of deviation from̄Ri, and thus, longer conversion times.

rates:






































Ri, if player i accesses the channel alone,

α1Ri,
if player i accesses the channel
with one other provider,

α2Ri, if all service providers access the channel,

0, otherwise,

where0 < α2 < α1 < 1. Let xi, xj , xk denote, respectively,
the actions of playeri, j, k in any round, wherexi, xj , xk ∈
{1, 2} and such that1 implies access and2 implies no access.
Let p

xi,xj ,xk

i denote the probability that service provideri
accesses the channel if the state of the game was(xi, xj , xk)
in the previous round.

Following Proposition 1, a zero-determinant strategy allows
service provideri to fix R̄i at any value in the interval
(0, α2Ri]. The structure of the strategy is given by

p1,1,1i = 1 + (1−
α2Ri

R̄i

)bi,

p1,1,2i = p1,2,1i = 1 + (1−
α1Ri

R̄i

)bi,

p1,2,2i = 1 + (1−
Ri

R̄i

)bi,

p2,1,1i = p2,1,2i = p2,2,1i = p2,2,2i = bi,

where

0 < bi ≤ min

(

R̄i

Ri − R̄i

, 1

)

.

Figure 6 shows convergence paths of different strategies
whenRi = 1.0, α1 = 1/2, andα2 = 1/3. All the strategies
aim to fix R̄i at the maximum possible value,1/3, where
service providersj and k access the channel at each round
with probability 1/2 and 3/4, respectively. A strategy is
displayed in the figure by an eight-element tuple where the first
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Strategy (1, 19/20, 19/20, 4/5, 1/10, 1/10, 1/10, 1/10)

Fig. 6. Convergence paths for multiple zero-determinant strategies in the
power control game with three service providers. Strategies that are more
likely to rectify, if exceeding the targeted rate, are the strategies that converge
relatively quicker.

four elements correspond top1,1,1i , p1,1,2i , p1,2,1i , and p1,2,2i ,
respectively. Note that, sincēRi is fixed at the maximum value,
thenp1,1,11 = 1 for all the strategies. The pattern observed in
Figure 5 applies to Figure 6 where strategies that converge
quickly are the strategies that have lowerp1,1,2i , p1,2,1i , and
p1,2,2i , i.e., these are the strategies that are less likely to access
the channel if they achieved more than the targeted rate,1/3,
in the previous round.

B. Zero-Determinant Strategies and Power Consumption

Next, we investigate the impact of the zero-determinant
strategies on the average power consumption of the service
providers. In the considered power control game, the service
providers take binary decisions in each round whether or not
to access the channel. If the channel is to be accessed, service
provider i transmits at the maximum allowed power level
Λi,max. Therefore, average power consumption over the course
of the game of a service provider can be obtained using the
stationary distribution of the state of the game,π. In particular,
consider the2 × 2 power control game and consider service
provider1, i.e., the row player. The average consumed power
is given by

Λ1,avg = Λ1,max(π1,1 + π1,2).

Here, π1,1 is the proportion of rounds where both service
providers transmit andπ1,2 is the proportion where only
service provider1 transmits.

Consider the game in Figure 3 and assume thatR1 = R2 =
1.0 and θ1 = θ2 = 0.5. Assume that both service providers
use zero-determinant strategies to achieveR̄1 = 0.5 and
R̄2 = 0.25. The impact of the different strategies on average
power consumption is shown in Figure 7. The horizontal axis
displays possible strategies of service provider1 with each
strategy denoted by a different value of the variableb1 defined
in (21). All the values ofb1 are taken from the feasible range
[0.1, 1], and a common factor of all these strategies is that
p1,1 = 1. We show the proportion of rounds in which service
provider 1 accesses the channel, (π1,1 + π1,2), where each
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Fig. 7. Proportion of rounds in which service provider1 (row player) accesses
the channel displayed for different strategies of service provider 2. Playing
against strategies that are more likely to skip the channel when the other
service provider accesses the channel leads to power savings.

curve corresponds to a different strategy of service provider 2.
The strategies of service provider2 are denoted by the vector
q = (q1,1, q2,1, q1,2, q2,2), where, following the convention in
Section II,qx,y is the probability that service provider2 will
access the channel if service provider1 played actionx and
service provider2 played actiony in the previous round.

The figure shows that power consumption of service
provider1 is unimodal in the value ofb1, but can be increasing
or decreasing according to the strategy of the opponent. The
figure also shows that there exists a trend in power savings that
the service provider can achieve from playing against different
opponent strategies. Namely, playing against strategies that
have relatively lowq1,1 leads to more power savings. The
intuition behind this observation is that, whenq1,1 is low,
service provider2 is more likely to skip the channel in the
current round if both service providers accessed the channel
in the current round. Now sincep1,1 = 1, service provider1
will have the whole channel with probability1 in the current
round, i.e., transmitting with no interference and thus achieving
higher rate.

This argument is supported by the behavior ofp1,2 vs.
q1,2 and p2,1 vs. q2,1. Notice that by increasingb1, p1,2

decreases andp2,1 increases, and thus, if playing against a
strategy with relatively highq1,2 (meaning low q2,1) such
as q = (2/3, 0, 1/3, 1/3), the gap between the previous
values is going to increase. This means that, if in any round
only one service providers accesses the channel, it is more
likely for the other service provider to access the channel
in the next round, and visa versa, leading to more power
savings. On the other hand, the gap decreases if compared
to a strategy with relatively lowq1,2 and high q2,1 such
as q = (9/10, 7/10, 1/10, 1/10). In such a case, power
consumption is going to increase.

V. CONCLUSION

We considered private commons as a model for secondary
sharing of licensed spectrum bands. The system involves
multiple wireless service providers sharing an interference
channel in uncoordinated fashion and servicing their own

populations of co-located end-users. The problem of aggregate
downlink power control is formulated as a non-cooperative
iterated game. In this regard, we considered a set of Markovian
strategies known as “zero-determinant” strategies that were
primarily developed for the iterated Prisoners’ Dilemma game
and which were shown to allow players to exert control on
each other’s score. We extended these strategies for any2× 2
game and identified (a) if a game has the property to allow
a player to control its own outcome or the outcome of its
opponents, (b) the range of values that the outcome can be
fixed at, and (c) the strategies to be applied to achieve any
feasible outcome. We showed that the spectrum sharing game
admits an appealing structure that allows service providers to
employ power control strategies to set their own aggregate
rates regardless of the strategies of other service providers.
We provided numerical experiments to study the convergence
behavior of these strategies and their impact on power con-
sumption.

ACKNOWLEDGMENT

This work was funded by NSERC Strategic Project grant
and NSF CNS grant 1116626.

REFERENCES

[1] A. Al Daoud, M. Alanyali, and D. Starobinski. Pricing Strategies for
Spectrum Lease in Secondary Markets.IEEE/ACM Transactions on
Networking, Vol. 18, No. 2, pp. 462–475, April 2010.

[2] T. Alpcan, H. Boche, M. L. Honig, and H. V. Poor. Mechanisms and
Games for Dynamic Spectrum Allocation,Cambridge Press, 2013.

[3] T. Alpcan, T. Basar, R. Srikant, and E. Altman. CDMA Uplink power
control as a noncooperative game.in Proc. IEEE Conference on Decision
and Control, pp. 197–202, 2001.

[4] E. Altman, K. Avrachenkov, G. Miller, and B. Prabhu. Discrete power
control: Cooperative and non-cooperative optimization.in Proc. IEEE
INFOCOM, pp. 37–45, 2007.

[5] A. Attar, M. R. Nakhai, A. H. Aghvami. Cognitive Radio game for
secondary spectrum access problem.IEEE Transactions on Wireless
Communications, Vol. 8, No. 4, pp. 2121–2131, April 2009.

[6] R. Aumann and A. Brandenburger. Epistemic Conditions for Nash
Equilibrium. Econometrica, Vol. 63, No. 5, pp. 1161-1180, September
1995.

[7] R. Axelrod.The evolution of cooperation. Basic Books, New York, 1984.

[8] M. M. Buddhikot. Understanding dynamic specrum access:Models,
taxonomy and challenges.in Proc. of IEEE Symposium on New Frontiers
in Dynamic Spectrum Access Networks (DySPAN), pp. 649–663, 2007.

[9] M. C. Boerlijst, M. A. Nowak, and K. Sigmund. Equal pay forall
prisoners.The American mathematical monthly,Vol. 104, No. 4, pp. 303–
305, April 1997.

[10] Cisco Visual Networking Index. Global mobile data traffic forecast
update, 2011 - 2016, http://tinyurl.com/VNI2012, May 2012.

[11] S. T. Chung, S. Kim, J. Lee, and J. M. Cioffi. A game-theoretic
approach to power allocation in frequency-selective Gaussian interference
channels.in Proc. of IEEE International Symposium on Information
Thoery, pp. 136–136, 2003.

[12] R. Etkin, A. Parekh and D. Tse. Spectrum sharing for unlicensed bands.
IEEE Journal on Selected Areas in Communications, Vol. 25, No. 3,
pp. 517–528, April 2007.

[13] Federal Communications Commission. Promoting efficient use of spec-
trum through elimination of Barriers to the development of secondary
markets. Second Report and Order on Reconsideration and Second
Further Further Notice of Proposed Rule Making, 2004.



12

[14] M. Felegyhazi, J. P. Hubaux, and L. Buttyan. Nash equilibria of packet
forwarding strategies in wireless ad hoc networks.IEEE Transactions on
Mobile Computing, Vol. 5, No. 5, pp. 463–476, May 2006.

[15] J. Huang, R. A. Berry, and M. L. Honig. Distributed interference
compensation for wireless networks.IEEE Journal on Selected Areas
of Communications, Vol. 24, No. 5, pp. 1074–1084, May 2006.

[16] J. J. Jaramillo and R. Srikant. DARWIN: distributed andadaptive
reputation mechanism for wireless ad-hoc networks.in Proc. of ACM
International Conference on Mobile Computing and Networking (Mobi-
com), 2007.

[17] Y. Jin and G. Kesidis. Distributed Contention Window Control for
Selfish Users in IEEE 802.11 Wireless LANs.IEEE Journal on Selected
Areas in Communications,. Vol. 25, No. 6, pp. 1113–1123, August 2007.

[18] Y. Jin and G. Kesidis. A channel-aware MAC protocol in an
ALOHA network with selfish users.IEEE Journal on Selected Areas
in Communications- Special Issue on Game Theory in WirelessCommu-
nications, Vol. 30, No. 1, pp. 128–137, January 2012.

[19] Y. A. Korilis, A. A. Lazar, A. Orda. Architecting noncooperative
networks.IEEE Journal on Selected Areas in Communications, Vol. 13,
No.7, pp.1241-1251, September 1995.

[20] A. F. Molisch, Wireless Communications,Wiley, 2010.

[21] P. K. Muthuswamy, K. Kar, A. Gupta, S. Sarkar, and G. Kasbekar.
Portfolio Optimization in Secondary Spectrum Markets. InProc. WiOpt,
pp. 249–256, 2011.

[22] H. Mutlu, M. Alanyali, and D. Starobinski. Spot Pricingof Secondary
Spectrum Access in Wireless Cellular Networks.IEEE/ACM Transac-
tions on Networking, Vol. 17, No. 6, pp. 1794–1804, December 2009.

[23] D. Niyato and E. Hossain. Competitive pricing for spectrum sharing in
cognitive radio networks: dynamic game, inefficiency of Nash equilib-
rium, and collusion.IEEE Journal on Selected Areas in Communications,
Vol. 26, No. 17, pp. 192-202, January 2008.

[24] M. J. Osborne and A. Rubinstein.A Course in Game Theory. MIT Press
Books, 1999.

[25] W. H. Press and F. J. Dyson. Iterated Prisoner’s Dilemmacontains
strategies that dominate any evolutionary opponent.Proceedings of the
National Academy of SciencesVol. 109, No. 26, pp. 10409–10413, June
2012.

[26] Radio Spectrum Policy Group.Report on collective use of spectrum
and other sharing approaches. 2011.

[27] C. U. Saraydar, N. B. Mandayam and D. Goodman. Efficient power
control via pricing in wireless data networks.IEEE Transactions on
Communications, Vol. 50, No. 2, pp. 291–303, February 2002.

[28] B. Wang, Y. Wu, K. J. Ray Liu. Game theory for cognitive radio
networks: An overview.Computer Networks, Vol. 54, No. 14, pp. 2537–
2561, October 2010.

VI. A PPENDIX A: M ULTIPLE ACTIONS PER PLAYER

Here we explore whether zero-determinant strategies (i) can
be applied against players with multiple actions (more than
two), or (ii) can be applied using more than two actions. To
answer these questions, consider a modified version of the
game in Figure 1, where one player (say playerX) can choose
from two actions, and the other player (playerY ) can choose
from multiple actions. It can be shown that playerX can use
zero-determinant strategies as long as the minimum payoff of
one row of its payoff matrix is no less than the maximum of
the other row (condition (8) in Theorem 1). This result can
be directly deduced from the structure of the state transition
matrix of the new game. Namely, assume that playerX has a
binary action spacen1 ∈ {1, 2} and playerY has an extended
space of three actionsn2 ∈ {1, 2, 3}. The set of all possible

states is given by

Ω = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}. (22)

For playerX , let

pki = Pr (n1(t+ 1) = i | n(t) = k) , ∀k ∈ Ω, i ∈ {1, 2}

and for playerY , let

qkj = Pr (n2(t+ 1) = j | n(t) = k) , ∀k ∈ Ω, j ∈ {1, 2, 3}.

Assume that the rows and the columns are enumerated in the
same order listed in (22), the state transition matrix of the
Markov chain is given by

M =
















p
1,1
1

q
1,1
1

p
1,1
1

q
1,1
2

p
1,1
1

q
1,1
3

. . . (1− p
1,1
1

)q1,1
3

p
1,2
1

q
1,2
1

p
1,2
1

q
1,2
2

p
1,2
1

q
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3

. . . (1− p
1,2
1

)q1,2
3

p
1,3
1

q
1,3
1

p
1,3
1

q
1,3
2

p
1,3
1

q
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3

. . . (1− p
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1

)q1,3
3
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1
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2,1
1
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2,1
1
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2
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2,1
1

q
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3
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1
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3
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1
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2,2
1
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2,2
2
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2,2
1
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3

. . . (1− p
2,2
1

)q2,2
3
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2,3
1

q
2,3
1

p
2,3
1

q
2,3
2

p
2,3
1

q
2,3
3

. . . (1− p
2,3
1

)q2,3
3

















.

Note that, for allk ∈ Ω, we have
∑3

i=1
qki = 1 , and

thus, adding the first three columns gives a vector that purely
depends on the actions of playerX . Furthermore, the elements
of the vector are sufficient to define a strategy for playerX
that can be obtained using the approach in Section II.

To answer the second question, consider the game from the
standpoint of playerY . It can be noticed that, while adding
certain columns can lead to vectors that purely depend on
actions of playerY , the elements of any resulting vector are
not sufficient to define a strategy for the player. For example,
adding the third and last columns of the MatrixM will give
the vector

















q1,13

q1,23

q1,33

q2,13

q2,23

q2,33

















,

which renders the rest of the action plays of the player
undefined if we follow the approach of Section II. In summary,
zero-determinant strategies can be applied against players that
are not necessarily limited to a binary action space, however,
the strategies can be applied only using a binary action space.
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