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Abstract—We consider private commons for secondary sharing
of licensed spectrum bands with no access coordination praled
by the primary license holder. In such environments, hetere
geneity in demand patterns of the secondary users can lead to
constant changes in the interference levels, and thus can e
source of volatility to the utilities of the users. In this paper,
we consider secondary users to be service providers that prie
downlink services. We formulate the spectrum sharing probém
as a non-cooperative iterated game of power control where séce
providers change their power levels to fix their long-term aerage
rates at utility-maximizing values. First, we show that in ayy
iterated 2 x 2 game, the structure of the single-stage game dictates
the degree of control that a service provider can exert on the
long-term outcome of the game. Then we show that if service
providers use binary actions either to access or not to acceghe
channel at any round of the game, then the long-term rate cané
fixed regardless of the strategy of the opponent. We identifthese
rates and show that they can be achieved using mixed Markovia
strategies which will be also identified in the paper.

Keywords—Radio spectrum sharing,
determinant strategies.

iterated games, zero-

I. INTRODUCTION

licensed shared accessodel of the EU [26]. Suggested
models entail that spectrum provisioning may not necdgsari
require license holders to coordinate spectrum access @mon
secondary users. For example, under the private commons
model, secondary users are granted spectrum access by using
peer-to-peer communications without relying on the lieens
holder’s infrastructure. In fact, license holders may netre
need to have deployed equipment in order to be eligible for
this model. However, license holders can still authorizeubke

of certain communication devices or can dictate using $igeci
technical parameters [8].

This paper presents a framework for designing strategies fo
secondary sharing of licensed spectrum bands. The underlyi
communication system involves a number of service progider
that share an interference channel to provide downlinkisesv
without access coordination. A distinctive feature of @har
licensed channels, versus sharing unlicensed ones, isttlitgt
to a service provider for achieving some rate on the channel
is discounted by the cost of utilizing the channel. This cost
is paid to the primary license holder on usage basis in the
form of monetary compensation. Since the marginal utditie
of the service providers decrease by increasing their rates

Advances in mobile broadband access technologies in recefghsmitting at the maximum allowed power level can be
years have resulted in an exponential surge in demand fgub-optimal from a utility maximization point of view. In
wireless data services [10]. As the demand is expected tHliS respect, operating at a utility-maximizing rate frohe t

grow, the wireless industry is trying to develop techniqtes
improve utilization of available radio spectrum bands.sTias
led to the advent of cognitive radio technologies whichwallo

network users to adapt their system parameters to the dgna

environment and optimize spectrum utilization without egec

standpoint of any of the service providers is governed by
the interference in the channel which depends on the demand
patterns of other service providers. Specifically, at tinvegn

nfhe demand is high, a service provider transmits at a relgtiv

higher power level that causes more interference, and visa

game theory has emerged as a useful tool for modeling ani@iterference. Demand patterns are generally unknown, tend t
analyzing user behavior in non-cooperative spectrum sbari Key problem is to design strategies for power control thi he

environments where centralization and traditional speatr

service providers achieve their optimal rates and cope with

sharing techniques are no longer valid concepts. See [28] fdluctuations in the interference.

a survey on games for cognitive radio networks.

In this paper, secondary sharing of licensed spectrum is

Non-cooperative spectrum sharing can be studied for scdormulated as an iterative game of power control. Namely,
narios that involve secondary provisioning of licensedcspe at €ach round of the game service providers choose their
trum where primary license holders lease the surplus of theff@nsmission power levels and consequently achieve some
spectral capacities to some secondary users. Such scenarfPWnlink rates that depend also on the interference froraroth
of spectrum sharing have been made possible by recent re§ervice providers. We show that there exist strategiesaltmat
ulatory models that are emerging under different proposalgérvice providers to fix their rates in the long term, regessll

including the FCC'sprivate commonganodel [13] and the
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of the strategies of their opponents. The key insight is that
in iterated games with same action space and same payoff
profiles, players with longer memories have no advantage ove
players with shorter ones. Therefore, players can, in each
round, condition their moves on the outcome of the game
in the previous round. This implies that iterated games lend
themselves to Markovian analysis where a player’s strategy



is defined in terms of the state transition probabilitieshaf t Such strategies, which are referred to zyo-determinant
resulted Markov chain. strategies are realized if we observe that progression of the
We use this insight in the power control game. First, wegame can be formulated as a one-step Markov process. The
show that in any two-player game with boolean action spacegpproach of [25], from which the earlier results of [9] can be
referred to a® x 2 iterated game, the structure of the payoff obtained as a special case, more readily admits generatizat
matrix of any of the players in the single-stage game distateto asymmetric games with different payoff structures treat c
whether or not a player can control its long-term payoff @& th involve more than two players.
game. We also show that this property can be realized in the The major contribution of our paper can be summarized as
power control game by transforming the action space of thdollows:
service providers into a binary space; either to accesstiono 1) We present an extension of the approach in [25] and
access the channel in each round of the game. The approach identify structures of2 x 2 games that allow a player

provides the players with full control on a range of rateg tha to control its own payoff or that of the opponent, thus
will be clearly characterized in the paper. In essence, yepla implying a broader application that is not restricted to
can achieve any value in the valid range by iterating itsoasti the Prisoners’ Dilemma game. We identify (a) if a game
using mixed (probabilistic) Markovian strategies. Theuitibn has the property to allow a player to control its own long-
behind this approach is to allow players to maintain a certai term payoff or the payoff of its opponents, (b) the range
rate, in the long term, by using reactive strategies such tha of values that the outcome of the game can be fixed
whenever the average rate exceeds the targeted value, it can at, and (c) the strategies to be applied to achieve any
be lowered by not participating in the channel in some future feasible outcome. We do not assume symmetric payoffs

rounds. The paper identifies these strategies and shows that of the players, and thus no assumption of symmetric
any fixed outcome of the game can be achieved using multiple control on the outcome of the game. We identify which

strategies that differ by their convergence rates. games are eligible for zero-determinant strategies and
Game theory for sharing wireless resources is a widely stud- the extent of control that a player can exert on the
ied topic in communication networks [24]. Proposed striateg outcome of the game.
game models for sharing interference channels have indlude 2) We identify the feasible set of payoffs that a player can
pricing mechanisms [5], [15], [23], [27], medium access-con guarantee from the game and identify mixed Markovian
trol [17], [18], and transmission power control on both the strategies (zero-determinant strategies) for each pessib
uplink (end-users to base-stations) and the downlink (base outcome of the game. Furthermore, we show that the
stations to end-users) [3], [4], [11]. A common assumption i notion of payoff control is not restricted to two-player
these models is that game structure and rationality of ptaye games, but can be extended to games with multiple

are common knowledge in the game, i.e., players hold beliefs players.
about each others’ strategic choices [6]. Such assumpdiens 3) We formulate secondary sharing of wireless spectrum as

not limited to single-stage games but also extend to itdrate an iterated game of power control. We use an economic
games where players interact in multiple rounds. model for downlink data transmission to argue that, in

Iterated games are studied to induce cooperation in self or- interference channels with no access coordination, play-
ganizing wireless ad-hoc networks. Most of the studies luse t ers can fix their long-term rates at utility-maximizing
iterated Prisoners’ Dilemma game to model packet forwayrdin values by taking binary actions (e.g., either to transmit
between nodes [14], [16], [19]. The model is motivated by at maximum power or not to transmit). We identify
many experimental studies which show that Tit-For-Tat can b strategies for iterating these actions and study their
an efficient strategy in this regard [7]. An important featof convergence properties.

iterated games is the fact that an action taken by a playewyata A salient feature of our work is that it devises power control
round of the game has an impact on the future actions of thstrategieswithout assuming common knowledge of equilib-
other players. This in turn leads to the concept of punistimerrium strategies. While assuming such knowledge is widely
for deviating from equilibrium strategies. Iterated gana@s  adopted in classical game-theoretical formulations foeless
also applied to model sharing of spectrum bands, partigular resource allocation, it may not be realistic since, in pcagt
in [12], where multiple systems coexist and interfere witlsle  spectrum access may be driven by unknown demand patterns.
other. In essence, in [12], spectrum sharing is modeled as dn scenarios without central coordination, e.g., in theeca
iterated power control game to devise self-enforcing poweprivate spectrum commons, zero-determinant strategies ma
control rules that lead to fair and efficient Nash equilibria  be more realistic since they help players control the ougcom
In this work, we follow a different approach and seekof the game regardless of the behavior of their opponents.
power control strategies that allow service providers tareh Lastly, even though our work is motivated by the problem of
spectrum and maintain average rates regardless of the powsistributed sharing of licensed spectrum, we believe that o
control strategies of their opponents. Our work is motigdlate results on the theory of zero-determinant strategies mag ha
by recent results in the theory of iterated Prisoners’ Ditean relevance beyond wireless applications.
games. In fact, Press and Dyson have shown in [25] that such The rest of the paper is organized as follows: In Section Il,
games admit strategies, which in some cases allow playerge address zero-determinant strategiefoe iterated games
to control each others’ long-term payoffs, and in other saseand present our results for games of general payoff strestur
allow them to set a linear relationship between the payoffsWe also extend our results to include games with more than



PlayerY _ _ In this respect, consider playéf and let
Player X 2 =1 np =2 bect P
ni =1 (X11,Y11) | (X12,Y12) pX=Pr(ni(t+1)=1|n(t)=k), VkeQ,
ny =2 (X2,1,Y21) | (X2,2,Y22)

denote the probability that playe¥ takes actionl in round
t + 1 if in the previous round, playeX took actionk; and
playerY took actionks. For playerY, similarly let

Fig. 1. One round payoff matrix of the iterated two-playepimction game.

two players. In Section I, we analyze secondary spectrum @ =Pr(ny(t+1)=1|n(t) =k), VkeQ.

sharing as an iterated game of power control and devise

strategies for the proposedx 2 game. A numerical study to The set of actions of a player is referred to as the strategy
analyze convergence and power consumption of these stratef that player, i.e.{p*,Vk € Q} is a strategy of playeX

gies is provided in Section IV. Finally, the paper conclutes and {¢*,vk € Q} is a strategy of playe®’. The state

Section V. transition matrix of the Markov chain can be described as
follows assuming that the rows and the columns are in the
Il. ZERO-DETERMINANT STRATEGIES FORITERATED same order as listed in (1):
GAMES M —
In this section, we develop new results on iterated gamegp'qtt pht(1 —¢h) (1 —p"Heht (1 —p"H (1 —¢Y)
where the action space and the payoff matrix do not changep'?¢*>* p"2(1—¢>') (1-p"?)¢>" (1 -p"?)(1-¢>")
over the course of the game. Our analysis is based on theo*'q'* p>'(1—¢"?) (1-p>")g"*> (1-p>")(1—¢"?)
approach of [25], which shows that there exist strategies fo\p*?¢>? p**(1 —¢**) (1 —p**)¢*?* (1 —p*?)(1 - ¢*?)

indefinitely iterated x 2 games that are referred to as “zero- - L
determinant” strategies, and which allow the players taroon L€t mi,; be the probability that playek™ takes action and
their long-term payoffs or the payoffs of their opponentseT Playery takeTs actionj. The Markov chain has a stationary
type of control that a player can exert hinges on the strecturdistributionz™ = (71 1,71 2,721, 72,2) that satisfies

of the game. In this section, we identify these structuras an TN — T

any feasible set of payoffs that can be controlled. We also 4 -7

identify the strategies that lead to this control. 7 is unique if and only if the chain has a unique closed

_For this purpose, considerax 2 iterated game with the o mmuynication class. In this case, the long-term payoff for
single round payoff matrix given in Figure 1. In each round OfplayerX is given by

the game, playerX andY have binary actions, respectively

ny,ne € {1,2}, leading to payoffs, respectively,,, Y;, where ux = w X, (2)
n = (n1,n9). A salient feature of iterated games is that players

with longer memories of the history of the game have noand for playerY is given by

advantage over those with shorter ones, i.e., a strategy of a

player that shares the same history used by the opponent does uy =Y, ©)
not gain more from using longer history of the game. This here
is due to the iterative nature of the game where actions and
payoffs are indefinitely fixed (see the appendix of [25]), and Xi1 Yii
thus, strategies can be designed by assuming that the player X — Xi2 | Y2
have memories of only a single move. Tl X and Y = Y:

y g 2,1 2.1

Xo2 Yoo

A. Zero Determinant Strategies farx 2 Games are the payoff schedules of playéf and playerY’, respec-

We describe the state of the game in any round by the actiori#vely. Let M = M — I so that we obtain
of the players in that round. Specifically, I@tdenote the set

of all possible statesj.e., 7'M = 0. (4)
Q= {(131)7(132)7(231)7(232)}7 (1) By Cramer’s rUIe’
and letn(t) denote the state of the game in roung 0. In adj(M)M = det(M)I = 0, (5)

each round, players choose their actions with probalslttiat -

depend on the state of the game in the previous round and thugere adj(M) is the adjugate matrix, i.e., the transposed
the procesgn(t) : t = 0,1,...} can be modeled as a Markov matrix of signed minors. Note that the second equality holds
chain. becausé is singular. It follows from (4) and (5) that each row

of the matrixadj(M) is proportional to the unique stationary

In the application to spectrum sharing which will be addeesiater in the gjstribytion 7. In this regard, consider the fourth row of
paper, play actionl will correspond to accessing the channel with maximum . _~ d . h h | f th
power, while play actior2 will correspond to accessing the channel with lower adj(M), and notice that the_elements of the row are not

power or not accessing the channel at all. changed if the first column d¥ is added to the second and




third columns. Thus, it can be shown that, for an arbitrarywhereb is chosen such that, #,,;, = 1 and k.. = 2, then

vectorf,
. ux ux
0<b< ) )
—1+phlght —14p"t —1+4% f = (Xl,max —ux ux — Xz,min>
ey plh2g2t 14 pt2 gL i _
71 = det 21412 Pl I EE A and if ki, = 2 and k. = 1, then
p22g22 p2? 2,2

(6)

A key observation _of _[25] is that the second and the third
columns of the matrix in (6) are purely dependent on the  Proof: We need to obtain andb that satisfymx = aX+
actions of playerX and playerY’, respectively. In specific, b and rendep!, p2, p*!, andp?? as probabilities. First note
that, by (7),a = —% and thus formulae (9-12) follow. Next,

q= fa
max< ux ux )§b<0.

)
Xl,min —Uux ux — X2,max

1,1 _ 1,1 | . .
—1+ P, 1 "2'1‘1 we obtain the range of valid values of the non-zero variable
My = -1 42'{’ ' and ry = 47, |. by dividing the search domain into two intervals;> 0 and
p, —lran b< 0.
p2,2 q2,2

Without loss of generality, consider the game from the standcase 1(b > 0):
point of playerX. If myx = f, the determinant in (6) isequal — .,

to 0, and thus iff — aX + b, Equation (6) is Consider (9) and (10) and notice that, for any value of

b > 0 and a given value ofi x, the condition

aux +b=0, (7 Xy i > tx

where ux is defined in (2), and: and b are non-zero real g necessary and sufficient fat-! and p' to be less than

numbers. or equal tol. Similarly, for p>! andp*? to be greater than

Player X can thus fix the value ofix regardless of the o equal to0, we obtain the following condition from (11)
strategy of playerY. To achieve this, the values of and  gpq (12):

b should be chosen such that:!, p'2 p>!, and p?? are
probabilities which in turn depends on the structure of the
game through the equalitth y = aX + b. Therefore,ux cannot be fixed at values outside the interval
In the following theorem, we state our first result that define [ X ;,,.x, X1,min]. TO show that.x can be fixed at any value in
the structures o x 2 games where playeX can controh x this interval, we need to show that there exists 0 such that

XQ,max S ux.

and defines the strategies that lead to such control. ph! andp'? are greater than or equal oand p>' and p??
Theorem 1. For & = 1,2, Iet Xy, min aNd X5 ymax, reSpectively, are Iess_ than or equal tb In this regard, from (9) and (10),
g : : . we obtain
denote the minimum and maximum value of foin the payoff
. . . g _1
matrix of a2 x 2 iterated game. Specifically, 0<b < — ¥
Ximin = min(Xp1, Xi2), e
Xk,max = max(Xk_rl,Xk_rg). 0<b < X,
— u}*{

Player X can control its long-term payoffy regardless of the ) . _
action of playerY” if and only if there eXiskmax, kmin € {1, 2} Note that, sinceX; 1, X 2 > ux, the tightest upper bound is

where ﬁ In the same way, from (11) and (12) we obtain
kaax,max S ka;n.,min- (8) b
0<b < !
If so, any value of.x from the interval Xy, .. max, Xk min) < = _ Xen
can be achieved by using the following mixed/probabilistic 1“X
strategies: 0<b
= 1 B X2,2 )
X ux
LI _ 2Lt
p = 1+ ( ux ) b, ©) and sinceXs 1, Xo 2 < ux, we havelxﬁ as the tightest
P2 o= 14 (1- X2 b, (10)  upper bound. Therefore,x can be. fixed at any value in the
Ux interval [ X2 max, X1,min] Dy choosingb from the following
X feasible range
pro= (-2 an ’
ux

—1 1
X 0 < b < min , )
p2,2 <1 _ 2-,2> b7 (12) - <1 _ X1, max 1 _ X2 min )

ux ux ux



Case 2(b < 0): For the same example, assume that the ratig /X, » =

We can follow the same steps as in the previous casd:d @nd assume that,; = X5, = 0. If b = 1, this yields

Namely, forp'! and p2 to be less than or equal to, it e deterministic strategy'! =1, p"? =0, p*! = 1, and
is required that p>? = 1. This strategy is quite intuitive since it tracks the

payoff of player X such that, regardless of the strategy of
playerY’, whenever the payoff in any round is; o, playerX
and for p?! and p*>2 to be greater than or equal fy it is plays actior2 in the next round and gairtspayoff, so that the
required that average of the two rounds is maintained at the targeted value
Xo min > Ux. X1,1. In the next round, the player plays actiérto gain at
’ leastX; ;, and so on. The strategy is one of several strategies
Combining the previous conditions yields the new condition that can be obtained by changing the value of the variaple
X <X and which will be discussed in more details in Section IV.
Lmax = <32,min- Two important observations are obtained from Theorem 1.

Furthermore, fop! andp!2 to be greater than or equal o First, the players can design their strategies without afetlp-

Xl,max < ux,

we obtain the condition ing assumption of knowledge of each other’s payoffs. Allttha
B a player needs to know at any round is the opponent’s action
————<b<O. in the previous round. This leads us to the second obsenvatio
Xi,min — . . . . .
I—= which highlights a more general perspective of this theorem

o ) - - In essence, if the structure of the opponent’s payoff matrix
In a similar fashion, fop=" andp™- to be less than or equal gatisfies the hypotheses of Theorem 1, then a player carotontr

to 1, we obtain the long-term payoff of the opponent. For example, player
———— <b<0. can control the payoff of playe¥ if the payoff matrix of
1 — e playerY satisfies conditions (8) wittk; ; replaced byY; ;.

Thereforeh can be chosen from the following feasible range:sug? g;otlh(;f iig(raa?e%pgrlizgtnsefs?ylgireEqarzab\?vr:g’?gngd}/ﬂ g>ames
1 1 Y22 > Y5 1. In this game, the row player can set the payoff
max <b<0. of the column player to any value in the intervaj 1, Y5 o).
< ) Strategies for opponents controlling each other’s payo#ise
previously studied in [9] and presented for a subset of games
r’g/here players have symmetric payoffs as in the case of the

X1, min ’ X9 me
1 _ 1,min 1 _ 2, max
ux ux

[ |
Theorem 1 provides a framework for understanding payo
control in 2 x 2 iterated games. It states that the structure o
the payoff matrix reveals the possibility of players cotling

their long-term payoffs. In fact, only if the maximum payoff  B. Iterated Games with Multiple Players

one row is less than or equal to the minimum in the other row, Th it tedin th . i be extend
then row playerX can set the long-term payoff,x, to any e results presented in the previous section can be extende

value between the minimum and the maximum. For example if0_include games of more than two players. Lt > 2
X171 =1,X10=0.75 andXs; = X2 = 0.5, then playetx den(_)te the number of players in the game and assume they
can setuy to any value in the intervdb.5,0.75). are indexed., 2,..., N. Let the binary vecton(t) = (n;(?) :

The results in the theorem can be directly applied to} ~ 1h""’]_v) describe thfe sta”te'of the %ame in & given round
playerY by considering the columns of the payoff matrix of t, wheren,(t) € {1,2} for all ¢ so that at any given,

- : n(t) € {1,2}" =: Q. The procesgn(t) : t = 0,1,...} can
the player instead of the rows. In particular, let be described as a multi-dimensional Markov chain. In each

risoners’ Dilemma game.

Yimin = min(Y x, Yo 1)  and Yi max = max(Y7 g, Yax), round of the game, players take actions with probabilitiet t
) ] depend on the state of the game in the previous round.

then playen” can control its long-term payoft,y, if and only Let p¥ denote the probability that playérplays actionl

if there existSkyax, kmin € {1,2}, Wherekmax # kmin @nd  jn a certain round if the game was in staten the previous

Ykmax,max < Ykmin,min- rOUnd, and let

A simple example to verify strategies (9—12) in the theorem (k.

: o H pi = (pi ke Q)

is to chooserx = Xy, .. min, Meaning that playeX setsux

at the maximum value possible. If we assume thiat,, min =  denote the complete strategy profile of playerThe state

X1,1, then regardless of the value bf this always yields a transition matrix of theN-player game can be presented as
strategy withp!'! = 1, i.e., playerX plays actionl whenever a2~ x 2N matrix. Similar to the game witt = 2 players,
both players played this action in the previous round. Ong wawe can apply Cramer’s rule tv = M — I. First, note that

to understand this result is to consider a strategy of player for 1,k e Q, the entry in thek®™ row and1™ column of M is
playing actionl in each round of the game. Play&rwill then for all roundst > 0

play actionl in each round as there will be no opportunity to
make up for losses that may result in from not playing that Pr(n(t+1)=k | n(t)=1) = H P H (1 —plj),
action in any of the previous rounds. ickKk  jerk '



whereCk is the set of players playing actidnin statek, and  following strategies:
£k is the set of players playing actiahin statek.

Consider adding all columng; C © of M that correspond . 1+(1 - U;’*,“)bi’
to states where player and at least one other player play Pi = '
action1, to the column where only playémplays actionl. An
entry of the resulting columim; at rowk is then given as

if player i plays actionl
in statek,
(1— Yy, otherwise,

Us

whereb; is chosen such that, #,,;, = 1 and k.« = 2, then

14 if @ diagonal element oM 0 < by < min ( wi u; ) |

is added to this entry,

)
kF otherwise i,1,max — Wi U; — Ui,Q,nlin
p; )

and if ki, = 2 and k. = 1, then
max ( i Ui ) <b; <0.

)
Ui,l,min —U; U; — Ui,2,n1ax

where

r=Y [ ATla-+h

keC; jekk\i leLk
/ \ IIl. A N ON-COOPERATIVE GAME FOR SHARING

An important observation is that = 1 since each productin LICENSED SPECTRUM
I" has _elements that are either the probability or its comptf&me In this section, we apply our results to devise strategies fo
of a fixed set of events. Therefore, the sum of all possibleharing licensed spectrum bands. We consider a general mode
permutations of these products evaluate to 1. In a similaghat involves N' service providers indexed = 1,2,..., N
reasoning that led to (6), multiplying the stationary distion  gharing a channel of bandwidtii. We assume that the channel
of the gamer with an arbitrary|(2|-size vectorf leads to the ig primarily licensed to an entity that we refer to as therige

following structure (also displaying): holder. We consider a cold leasing model where the license
1k A holder does not deploy any_equipment, and thus, offer_ing _the
I channel to the service providers without access coordinati
@ This model is one of several models that have been suggested
wTf = det : : ; for spectrum private commons where the ultimate ownership
Pk oo fial-1 of spectrum is preserved by the license holder (See for
k example [8]).
D; it

We model the underlying communication system as an
where the column corresponding to all players taking actiorinterference channel where at times when the channel is less
2 is replaced withf. In this regard, notice that a column that congested, the service providers create less interferemce
corresponds to the state where only playptays actionl has  each other, and thus can achieve better throughput rates. We
elements that depend solely on the actions of that player. focus on the downlink and assume that the service providers

We follow the developments that led to Theorem 1 and lehave fixed pools of end-users co-located within a certain
U n denote the payoff of player if the state of the game at geographical area. See Figure 2 for a description of thisatod
the previous round was. We also letU; denote a vector of Let S; denote the set of end-users of service providerhe
all possible outputs. Lei; denote a generic value of the long- license holder regulates channel access by imposing a limit
term payoff of playeri. Thus, takingm; = f = ¢;U; + b;,  0on the maximum transmission power of each service provider.
where a;, and b; are non-zero real numbers, leads to zero-t also allocates the underlying code space for transmissio
determinant strategies for playés payoff control. This results to individual end-users. Power and code allocations are nor
is formulated in the following proposition: mally negotiated with the license holder and provided tigtou
“secondary provider” contracts.

We follow a simple model of common-channel interference
under CDMA, where transmission of a service provider to
a given end-user appears as noise to all other end-users,
including those belonging to other service providers. Whil
Uikmax = max(Uin:n; = k), interference cancellation techniques can be still applieey
are precluded in this model due to practical limitationshsas
decoder complexities and delay constraints. Similar apsum
tions have been widely used in the literature of interfeeenc
channels, see for example [12].

The service providers use power control to maintain a gertai
throughput by controlling their transmission power leveis
the downlinks. Namely, an increase in the transmission powe
on one of the downlinks causes interference on the other
If so, any value of u; from the interval Ilinks and thus a degradation in the Signal to Interference
(Ui kepn e maxs Xi kmin,min] C&N be achieved by using the and Noise Ratio (SINR) at the receiving sides of those links.

Proposition 1. In the game withV > 2 players, for k=1, 2,
let

Uikmin = min(Ujpn:n; =k),

where the first quantity is the minimum payoff of playemhen
playing actionk, and the second quantity is the maximum.

Playeri can control its long-term payofi;, regardless of
the actions of the other players in the game if and only ifeher
existSkmax, kmin € {1,2} where

Ui7kmax7max S Ui7kmin7min :



service provider i service provider j service providers, is discounted by some cost paid in tha for
® @ of a fee to the license holder. See for example [1], [21], [22]
studies that involve economic models and pricing techrsque
for secondary spectrum utilization. Here, we consider @iy
scheme where the license holder charges the service prsvide
on usage basis per unit data transmitted on the downlinks. Le
¢; denote the price charged to service provideer unit data
transmitted on the channel. Thus, the optimal aggregate rat

h;, A Ry of the service provider is a solution of the optimization
/h problem B B
. i1 ; R max U;(R;) — ¢;R;, (15)
R;
end-user 1 end-user 2 which has a unique solution &f; is concave.

. _ _ From the standpoint of service providér achieving R}
Fig. 2. A channel access model where a number of service g@msishare requires the service provider to transmit at a certain power

a channel and provide downlink services to groups of endsuspatially T ; ; ;
located in over-lapping coverage areas. Each end-useivescservice for level taklng into consideration the interference Creamdmer

its designated service provider, but also gets interferénom other service ~ Service providers. In the light of lack of central coordinat
providers. some service providers may unpredictably change theisiran
mission power levels to adapt their rates according to their
demand, thus causing variations in the interference to titer o
In this regard, letA; . denote the maximum transmission service providers. Sharing an interference channel wi#rsus
power allocated to service providerA power control scheme that transmit at varying power levels is modeled as a non-
of a service provider specifies the transmission power alcooperative iterated game, where it can be assumed that the
located to each end-user on the downlink. Let the vectothannel is offered to the service providers in rounds. Irheac
Ai = (A1, Ai2, .- Aijs,) denote the power control scheme round, the service providers choose their transmissionepow
of service provider. If all service providers transmit at their |evels, which can vary from round to round according to their
maximum power levels, the SINR of end-udee S; is given  anticipated demand levels.

by We refer to this game as the iterated power control game. In
B b Ni g each round of the game, the service providers make decisions
Yik(Ai) = — on engagement and power transmission, followed by detailed

OF A+ e (Nisma = Aige) + 22 i 1 N gma decisions on how the power should be divided among their
whereh;  is the path gain between the base station of servicend-users according to a power control strategy. Eachcgervi
provideri and end-usek,? ando? is the noise power at end- Provider aims at achieving a long-term average r&fe to
userk [20]. The achievable throughput rate at the downlink ofmaximize (15) regardless of the strategy of the opponents.

userk € S, is obtained using Shannon’s formula as The theory of zero-determinant strategies presented in Sec
tion 1l helps provide guidelines for power control in such
rik(Ai) = Wlogy (1 +7ik(Xi)), (13)  environments that involve uncoordinated spectrum acdess.

the sequel, we present the iterated power control game éor th
case of two service providers, where the service providgrs fi
their power allocation schemes;, but take binary decisions
Ri(\) = Z ik (i), (14) in each round on whether or not to engage their usehe
s identify the range of values oR; that can be obtained and
characterize strategies for achieving these values.

and the aggregate rate on the downlink of service provider
is thus given by

We measure utilities of service providers from sharing
the channel by the quality of service they provide on the
downlinks. One important measure is the average delay oA. Iterated Power Control Game with Two Service Providers
packet delivery, which can be reduced by improving the rateand Binary Action Space
on the downlink. LetR; be the long-term average downlink
rate of service providet. We denote the utility of the service
provider by the functiorif;(.) which is strictly increasing in game is shown in Figure 3. For ease of exposition, we will
R L . assume that in each round of the game, the service providers
A distinctive feature of secondary utilization of licensed cpgose either to transmit at a certain power level or at zero
spectrum bands is that the utility of secondary users, i.eyqyer. That is, the service providers can choose between two
7 - ————— - actions: either to access or not to access the channel. We
n fact, h; ;. is path attenuation since it is less thanIn practice, path . . . .
attenuations may be obtained by use of pilot signals, or noaye explicity ~ assume that if one service provider accesses the channel, it

discovered if power control is performed by adaptive dithgr(which is
suitable for time-varying fading or shadowing conditiorisaavireless channel SExtensions to more than two service providers follow diyedrom
to a mobile end-user). Proposition 1.

Consider an iterated power control game with two service
providers labeled and2. The payoff matrix of the single shot




ider 1 provider 2 Access No Access Obtaining \(alues oy, Ro, 61, 02, which identify the range
proviaer of possible fixed outcomes of the game and the associated
Access (0171,02R) | (11,0) access strategies, hinges on the underlying power altocati
No Access (0, R2) (0,0) scheme\,;, applied by the service providers on the downlinks.

Fig. 3. Payoff matrix of the power control game. Service jers 1 and 2 In the following, we derive Iumped parameters for computing

achieve rates®; and Rs, respectively, if they access the channel solely. If these values for the max-min power allocation scheme that

both providers access the channel simultaneously, thevidero: achieves  maximizes the minimum rate on the downlinks. Specifically,

OiFt;. for service provider, the max-min scheme requires solving
the following optimization problem:

achieves downlink rateR, if it is service providerl and max min ;5 (A;)

rate R, if it is service provider2, where R; and R, are i RES:

described by (14). If both service providers access thergian subject to Z ik = Nimax,
then potentially both achieve lower ratésk;, i = 1,2 with kes,

0; < 1. Clearly, the service provider that does not access G : : .
?hz cFlz;mel in an))// given round %chieves no rate where it is implied that the service providers transmit a th

Note that the power control game does not need to be limitef@xImum allowed powen; yax. A solution Qf this problem

to binary actiong) and A, (OF A; i > 0 and A, . fesults in equal rates; on all the downlinks of service
7,/nax 7,min 7,max H .
A; min). In fact, binary actions using intermediate values carPr(_)r\c/)'dgcr)Zr'n ute .. consider the case where onlv service
still apply as long as condition (6) in Theorem 1 is satisfied. ' _comp " . y :
Though the framework of zero-determinant strategies requi provideri accesses the channel. In this case, the rate achieved
a binary action space for the player, it allows for a Iargerat any of the downlinks; € 5; is given by
action space of the other player. This can be verified from the B Pk Ni ks
state transition matrix of the game by noticing that, onlthié ri=Wlogy {1+ — he (N Y ’
. O + z,k( 7,max 1.k>

player has two actions, a column that purely depends on the 7
actions of the player can be obtained by adding a subset of ttd thusi; = |S;|r;. Equal rates can be maintained on all the
columns in the matrix. We refer to Appendix A for a detailed downlinks by choosing\; ,, and\;; for all k,1 € S; such that
discussion. _ o Rk Nk hitAig

The payoff matrix of the power control game in Figure 3 o2 T hun (A, “ur) =2 e )
has a structure identified by Theorem 1. It allows the service “k © "hk\imax = ik ¢ TR max T A
providers to exert control on their own rates. Specificddy, which can be equivalently written as
1 denoteaccessand 2 denoteno accessin any round, from By b Ak B A
the perspective of service providerthe game can be in one 5 ;L j\ = — ;L ;\ =K, VkIleS,.
of four possible states given by the set Of T ik imax O + N1, max

Q; = {(151)7(152)7(2’1)7(2’2)}v Thus,

where the first element of a tuple refers to an action by servic

provider: and the second element refers to an action by th&inceA; ... = > res, Aik equal rates can be maintained if

other service provider. Let;(t) € {1,2} denote an action by power is distributed among end-users such that
service provider in roundt¢ of the game. Also len(t) =

(TLl,TLQ) and let K = Ai,max

ai AL '
P =Pr(ni(t+1) =1|n(t) = k), Vk e Q,. Yokes, Tog T 1SilAimax
) , , 0; can be computed in a similar fashion by considering
Therefore, following the results in Theorem 1, servicepoih service providersand;j simultaneously transmitting on
provider: can fix its long-term rateR;, at any value in the  the channel and taking into consideration the interferéneg
interval (0, 6;1%;] by accessing the channel in each round ofcreate to each other. In this case,iletlenote the rate on each

0.2
Aig = K ( kg Ai,max) . VkeS;.
Pk

the game according to the following strategy: downlink of service providet. Thus,; R; = |S;|7;, where for
PP = 14 (1—6,Ri/Ri)bi, e alkes,
72 = 14 (1-Ri/Ri)bi, (17) ri =
Pl = b (18)  Wlog <1 + ik Nik )
p;,Q _ b'7 (19) 2 Uﬁ + hi,k(Ai,maX - )\i,k) + hj,kAj,max '
. ‘ b The power distribution on the downlinks can be obtained by
whereb; is chosen such that equalizing all rates. Thus, it can be shown that

. - 2 hs
0 < b; < min i_g . Ak = K (25 4 Agmax + 225N max ), VR €S,
: ’ h@k i hi,k '



where 07

A —R| =05, strategy (1,0, 1, 1)
K o 7,max

0.6 —R =0.25, strategy (2/3, 0, 1/3, 1/3)

2 . . :
Zkes M + |Si|Ai max —— R =0.1, strategy (5/9, 0, 1/9, 1/9)
i ik )

B. Comparison to Best Response Analysis for Power Co

In this section, we discuss important differences betwkel
approach of zero-determinant strategies used in this fapt
power control and typical power control algorithms basec
best response analysis where a player takes into consate 01 _—
strategies of the opponent(s). For example, in [3], the st . ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
devise an iterated strategic game for power control whech 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
player responds to the actions of its opponents to maxilinze _ _
its own utility, i.e., rationally responds to the currenatst Fig 4. ~Rate convergence under zero-determinants sestégr the2 x 2
of th_e game. The game 'ea!‘?'s -tO “S_tatIC” (not depgndlng C"EroviderQ (colugrlnn player) bses a2random strateglay With2 probability afess
previous actions) Nash equilibrium in pure strategies @er =1/ in each round.
continuous action spadeDifferently, using an action space
that is necessarily discrete, zero-determinant strategjim at
fixing the outcome of the game without relying on strategic
behavior of the opponent, and thus, no static Nash equitibri A. Convergence of the Zero-Determinant Strategies
is reached.

Specifically, in [3], each player attempts ationally maxi- First, consider the deterministic strategy,0,1,1) which
mize a net utility function consisting of rate (throughpuipus corresponds té; = 1 and which allows the service provider
a power-based cost. Alternate frameworks use throughpyl schieve a long-term average ralie = 0.5. Assume the
ba_sed costs so that maximizing net utility is equwa_lent tostrategy is played against service providewhich accesses
trying to achieve a target throughput. In the next sectio®, Whe channel in each round with probability equal 162.
show how the framework of zero-determinant strategies CaRigure 4 shows the average rate of service proviteat
protect a player against faulty or irrational players. Tisisn giferent rounds of the game as it converges, in the long term
fact beyond the scope of best response strategic games. {4 the value0.5. Convergence paths are also provided for the

Furthermore, as reported in [3], excessive demand by rat'os'trategie5(2/3, 0,1/3,1/3) and(5/9,0,1/9, 1/9) which lead,

nal players can lead to one player opting out of the game UsiNgspectively, toR; = 0.25 and Ry = 0.1.
zero power. Alternatively, joint excessive demand can lead o 9
deadlock. In the zero-determinant framework, if the maximu A common factor of these strategies is that* = 0,

power allocations are not well calibrated, the player wgkn Which means that if the service provider ends up using the

be able to achieve its desired/optimal rates, and, in ang, caschannel alone in any round, it will not access the channel in
will need a mixed strategy (e.g., to switch between maximu he next round. Strategies with this property can be obthine

and minimum power) over the discrete action space. y sett.ing b1 at the highest possib]e value. Thesg rectifyi_ng
strategies guarantee that there will be no long time periods

V. N S of deviation from i; which explains why all the previous
_ S UME_R'CAL TU_DY strategies converge relatively quickly 1§ .

In th_|s section, we provide numerical examples_of Z€ro- Figure 5 shows convergence paths of different strategas th
determinant strategies for tRe< 2 game described in Figure 3. achieve B, = 0.5 including the strategy(1,0,1,1). As in
The structure of these strategies Is given _by formulae (le.)fhe previous example, strategies are play’ed’ a7gainst aceervi
(19). W'f[tu(gjt LOS; Oi glegeratljltg, &vee cTsOld5erHa Symme;;mcproviderwith probability of channel access equal f@. Note
game wi o o fio. ¢ anl T e Oe5re,Feac that asp!:2 increases, strategies take longer time to converge.
SEIVICE provider can fixy; to values in the rang@, 0.5]. From This is due to the fact that if the service provider accedses t
the standpoint of service pr?‘{'d?‘z'-e;lth‘g 2r0w player, the - opannelin one round, then a%? increases, it is more likely
%er?]—detetrhmln?nt ;strategm@ aptTpthptT) for a given yaar it will access the channel in the next round, and thus, it

1 have the structure is more likely to deviate more fronk;. In the meantime, an

Average rate

0.5 1 increase inp!? is accompanied with a decrease;jif! and
(1 + (1= R_l)bl’ 14+ (1 - R_l)bl’ b1, bl) , (20) ;22 py formula (20). This leads to long periods of channel
access that are followed by long periods of no channel access
where 7 and thus, the strategy tends to converge relatively slowly.
1
0<b < 1R, (21) A less obvious conclusion is obtained for games of more

than two service providers. For example, consider the game

“Unlike a mixed strategy, that is a probability distributioner a players ~ With three SerVice_prOVide_nsja k. Assume that in any round
action space, a pure strategy is a single element of thaespac of the game, service providérachieves one of the following




—Strategy (1,0, 1, 1)
—Strategy (1, 1/2, 1/2, 1/2)
—— Strategy (1, 2/3, 1/3, 1/3)

— Strategy (1, 9/10, 1/10, 1/10)

o
o

0.45(V T

Average rate
o
(%))
(&
L

o
3

0'40 0‘,5 i 1‘,5 ‘2 2‘.5 é 35
Round x 10
Fig. 5. Convergence paths of different zero-determinarategjies that can

be applied by service provider (row player) in the power control game.

Strategies with highep!:2 are slower to converge, since b2 increases, it
becomes more likely for the service provider to access th@mé#l in the next
round if it already accessed the channel in the previousdolihis leads to
longer periods of deviation fronf;, and thus, longer conversion times.

rates:
R;, if player i accesses the channel alone,
o R if player i accesses the channel
L™ with one other provider,
asR;, if all service providers access the channel,
0, otherwise,

where0 < ap < ay < 1. Let z;, x5,z denote, respectively,
the actions of playet, j, k in any round, wherez;, x;, z;, €
{1, 2} and such that implies access ang2limplies no access.
Let p;"*"** denote the probability that service provider
accesses the channel if the state of the game(was:;, z)
in the previous round.

Following Proposition 1, a zero-determinant strategyveslo

service provideri to fix R, at any value in the interval
(0, a2 R;]. The structure of the strategy is given by

11,1 axR;
LIy @2y,
i ( &)
1,1,2 1,2,1 a1 R;
P = Ot =1 4+ 1 - —— b’ia
K2 3 ( RZ )
R;
1,2,2 i
T = 1+ 1 —_ bia
Z -
21,1 212 221 222
i = p; =T =7 =0,

where

0<mgmm-;&TJ.
R, — R;

10

—— Strategy (1, 3/4, 3/4, 0, 1/2, 1/2, 112, 1/2)
—— Strategy (1, 56, 5/6, 1/3, 1/3, 1/3, 1/3, 1/3)
~Strategy (1, 19/20, 19/20, 4/5, 1/10, 1/10, 1/10, 1/10)

0.45-

o
IS
T
I

Average rate
o
w
15

o
w

0.25 b

0.2 I I I I I
0 0.5 1 15 2 25 3

Round x 10°

Fig. 6. Convergence paths for multiple zero-determinardtesies in the
power control game with three service providers. Stragegiat are more
likely to rectify, if exceeding the targeted rate, are thategies that converge
relatively quicker.

four elements correspond to""', pl"? pl*!, and p, 2,

respectively. Note that, sinde; is fixed at the maximum value,
thenp)"! =1 for all the strategies. The pattern observed in
Figure 5 applies to Figure 6 where strategies that converge

quickly are the strategies that have lower'?, p">', and
p3’2’2, i.e., these are the strategies that are less likely to acces

the channel if they achieved more than the targeted tatg,
in the previous round.

B. Zero-Determinant Strategies and Power Consumption

Next, we investigate the impact of the zero-determinant
strategies on the average power consumption of the service
providers. In the considered power control game, the servic
providers take binary decisions in each round whether or not
to access the channel. If the channel is to be accessedseservi
provider 7 transmits at the maximum allowed power level
A max- Therefore, average power consumption over the course
of the game of a service provider can be obtained using the
stationary distribution of the state of the game|n particular,
consider the2 x 2 power control game and consider service
provider1, i.e., the row player. The average consumed power
is given by

Al,avg = Al,max(ﬂ—l,l + 7T1,2)-

Here, 71,1 is the proportion of rounds where both service
providers transmit andr; o is the proportion where only
service providen transmits.

Consider the game in Figure 3 and assume that Ry =
1.0 and 6, = 6, = 0.5. Assume that both service providers
use zero-determinant strategies to achidve = 0.5 and
Ry = 0.25. The impact of the different strategies on average
power consumption is shown in Figure 7. The horizontal axis

Figure 6 shows convergence paths of different strategiedisplays possible strategies of service providewith each

whenR; = 1.0,a; = 1/2, anday = 1/3. All the strategies
aim to fix R; at the maximum possible valué,/3, where

strategy denoted by a different value of the variahlelefined
in (21). All the values o, are taken from the feasible range

service providersj and k access the channel at each round[0.1,1], and a common factor of all these strategies is that

with probability 1/2 and 3/4, respectively. A strategy is

pt! = 1. We show the proportion of rounds in which service

displayed in the figure by an eight-element tuple where tisé fir provider 1 accesses the channek;( + 7 2), where each
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——q = (9/10, 7/10, 1/10, 1/10)
——q=(6/7, 417, 1/7, 1)
——q = (3/4, 1/4,1/4,1/4)
——q=(5/7,117, 2/7, 2I7)
—q=(2/3,0, 1/3, 113)

o
N
N

o
3

o
1)
©

o
o
>

o
=3
by

Proportion of rounds with channel access (1'[1 Lt
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b1 (Strategy of service provider 1)

Fig. 7. Proportion of rounds in which service providefrow player) accesses
the channel displayed for different strategies of servioeviger 2. Playing
against strategies that are more likely to skip the chanrtenathe other
service provider accesses the channel leads to power saving

curve corresponds to a different strategy of service penid
The strategies of service providerare denoted by the vector
q = (¢"',¢>1, ¢"2,¢*?), where, following the convention in
Section Il,¢™Y is the probability that service providerwill
access the channel if service provideplayed actionz and
service provideR played actiony in the previous round.

The figure shows that power consumption of servicey

providerl is unimodal in the value df;, but can be increasing

or decreasing according to the strategy of the opponent. The
figure also shows that there exists a trend in power savirais th[2]

the service provider can achieve from playing against ifie

opponent strategies. Namely, playing against strategias t [3]
have relatively lowg'! leads to more power savings. The

intuition behind this observation is that, whet! is low,
service provider2 is more likely to skip the channel in the

current round if both service providers accessed the chhanne

11

populations of co-located end-users. The problem of agdgeeg
downlink power control is formulated as a non-cooperative
iterated game. In this regard, we considered a set of Maalkovi
strategies known as “zero-determinant” strategies thakewe
primarily developed for the iterated Prisoners’ Dilemmanga
and which were shown to allow players to exert control on
each other’s score. We extended these strategies fo? argy
game and identified (a) if a game has the property to allow
a player to control its own outcome or the outcome of its
opponents, (b) the range of values that the outcome can be
fixed at, and (c) the strategies to be applied to achieve any
feasible outcome. We showed that the spectrum sharing game
admits an appealing structure that allows service prositier
employ power control strategies to set their own aggregate
rates regardless of the strategies of other service prmride
We provided numerical experiments to study the convergence
behavior of these strategies and their impact on power con-
sumption.
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VI. APPENDIXA: MULTIPLE ACTIONS PER PLAYER

12

states is given by
Q={(1,1),(1,2),(1,3),(2.1),(2,2),2,3)}.  (22)
For playerX, let
pr=Pr(ni(t+1)=i|n(t)=k), YkeQ, ic{1,2}
and for playerY’, let
gf =Pr(na(t+1)=3 | n(t)=k), VkeQ, je{1,2,3}.

Assume that the rows and the columns are enumerated in the
same order listed in (22), the state transition matrix of the
Markov chain is given by

1,1 1,1 1,1 1,1 1,1 1,1 1,1y 1,1
Py 4 Py 4o Py 4s (1-py)g;

1,2 12 1212 1212 1,2\ 1,2
Prodts Pl Py o UG
P P prUas” (1—py7)ay
2121 21321 2131 2,10 31
P, P, PG, o (TP
P qy P14 pyay (1—-p77)gy
2323 2333 23053 2,30 33
1 ¢ Py 4s Py 43 (1—-p7 )Q3

Note that, for allk € €, we have}> ¢ = 1, and
thus, adding the first three columns gives a vector that purel
depends on the actions of play®r Furthermore, the elements
of the vector are sufficient to define a strategy for player
that can be obtained using the approach in Section II.

To answer the second question, consider the game from the
standpoint of playely”. It can be noticed that, while adding
certain columns can lead to vectors that purely depend on
actions of playery’, the elements of any resulting vector are
not sufficient to define a strategy for the player. For example
adding the third and last columns of the Matiid will give
the vector

which renders the rest of the action plays of the player
undefined if we follow the approach of Section II. In summary,
zero-determinant strategies can be applied against glalyat

are not necessarily limited to a binary action space, howeve

Here we explore whether zero-determinant strategies ifi) cathe strategies can be applied only using a binary actionespac
be applied against players with multiple actions (more than

two), or (ii) can be applied using more than two actions. To
answer these questions, consider a modified version of the

game in Figure 1, where one player (say pla¥grcan choose
from two actions, and the other player (play€y can choose
from multiple actions. It can be shown that play€rcan use

zero-determinant strategies as long as the minimum payoff o
one row of its payoff matrix is no less than the maximum of
the other row (condition (8) in Theorem 1). This result can
be directly deduced from the structure of the state tramsiti

matrix of the new game. Namely, assume that playehas a

binary action space; € {1,2} and playerY” has an extended
space of three actions, € {1,2,3}. The set of all possible
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