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Abstract

This paper establishes a link between two principal tools for the analysis of network traffic, namely,
effective bandwidth and network calculus. It is shown that a general formulation of effective bandwidth
can be expressed within the framework of a probabilistic version of the network calculus, where both
arrivals and service are specified in terms of probabilistic bounds. By formulating well-known effec-
tive bandwidth expressions in terms of probabilistic envelope functions, the developed network calculus
can be applied to a wide range of traffic types, including traffic that has self-similar characteristics. As
applications, probabilistic lower bounds are presented on the service given by three different schedul-
ing algorithms: Static Priority (SP), Earliest Deadline First (EDF), and Generalized Processor Sharing
(GPS). Numerical examples show the impact of specific traffic models and scheduling algorithms on the
multiplexing gain in a network.

Key Words: Network calculus, effective bandwidth, Quality-of-Service, statistical multiplexing.

1 Introduction

To exploit statistical multiplexing gain of traffic sources in a network, service provisioning requires a frame-
work for the stochastic analysis of network traffic and commonly-used scheduling algorithms. Probably
the most influential framework for service provisioning is theeffective bandwidth(see [30, 33] and refer-
ences therein), which describes the minimum bandwidth required to provide an expected service for a given
amount of traffic. The effective bandwidth of a flow determines a bandwidth somewhere between the av-
erage and peak rate of the flow. Effective bandwidth expressions have been derived for many traffic types
including those with self-similarity [30].

An alternative method to determine resource requirements of traffic flows in a packet network is the
network calculus, which takes an envelope approach to describe arrivals and services in a network. Starting
with Cruz’s seminal work [19] the deterministic network calculus has evolved to an elegant framework for
worst-case analysis, which can be used to derive upper bounds for delay and backlog for a wide variety
of link scheduling algorithms (e.g., [19, 40, 37]). A strength of the deterministic network calculus is that
it can be used to determine delay and backlog over multiple network nodes. Since the worst-case view of
the deterministic network calculus does not reap the benefits of statistical multiplexing and generally results
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in an overestimation of the actual resource requirements of traffic, researchers have seeked to extend the
network calculus to a probabilistic setting, e.g., [2, 7, 11, 13, 35, 41, 45, 49, 51, 53]. Probabilistic extensions
of the network calculus are commonly referred to asstatistical network calculus.

The contribution of this paper is the complete integration of the effective bandwidth theory into the
statistical network calculus. As a result of this paper, it is feasible to analyze link scheduling algorithms that
are not easily tractable with an effective bandwidth approach, for network traffic types that could previously
not be analyzed in a network calculus context. The connections between network calculus and effective
bandwidth were first investigated by Chang [13] (see Subsection 3.1). This paper continues to explore this
relationship, and exploits recent advances in the statistical network calculus to analyze effective bandwidth
in a multi-node network.

In the statistical network calculus, arrivals to a network node are described in terms of probabilistic upper
bounds (effective envelopes[7]) and the service at a node is described in terms of probabilistic lower bounds
(effective service curves[11]). The effective service curves in this paper can express the service available
to one flow in terms of the capacity unused by other flows. We do this for a wide range of scheduling
algorithms. By relating the concepts of effective envelopes and effective bandwidth, we obtain explicit
bounds on delay and backlog for all traffic source characterizations for which an effective bandwidth (in the
sense of [13, 30]) has been determined. As a result, much of the literature on the effective bandwidth theory
can now be applied in a network calculus context. This, enables the analysis of network models, such as
FBM traffic at nodes with a deadline-based scheduling algorithm, which have not been analyzed before.

The network calculus in this paper provides bounds on backlog, delay, and burstiness, from very general
description of arrival and service. Specific arrival and service models are inserted at a late stage in the
analysis. The advantage of this approach is that it permits us to study the impact of varying scheduling
algorithms and arrival models on the multiplexing gain in a network in a single framework. While an
analysis that is tailored to specific arrival and service models can sometimes lead tighter bounds, such a
direct analysis generally only applies to a single node and is not easily extended to a multi-node setting.
Recent developments showed that, in some cases, a network calculus analysis can sometimes reproduce
bounds obtained with a direct statistical analysis [18].

Extending the deterministic network calculus to a probabilistic setting has shown to be challenging, in
particular with respect to a multi-node analysis. In this paper we discuss some of the difficulties. We argue
that the availability of a maximum relevant time scale, that is, a bound on the maximum time period at which
events are correlated, makes a statistical calculus analysis tractable. There are numerous scenarios where
such time scales can be provided. For example, sometimes it is feasible to providea priori bounds on the
busy period at nodes, limits on the maximum buffer lengths at links, and a maximum lifetime of traffic. The
analysis in this paper exploits the availability of such time scale bounds, and discusses conditions under
which time scale bounds can be derived. Finding a multi-node calculus that dispenses with these time scale
bounds remains an open question.

The remaining sections are structured as follows. In Section 2, we present the statistical network calculus
that is used to accommodate effective bandwidth expressions. In Section 3, we explore the relationship
between effective bandwidth and effective envelopes. This enables us to construct effective envelopes for
all traffic models for which effective bandwidth results are available. Specifically, we consider regulated
arrivals, a memoryless On-Off traffic model, and a Fractional Brownian Motion traffic model. In Section 4,
we derive probabilistic lower bounds on the service offered by the scheduling algorithms SP, EDF, and GPS,
in terms of effective service curves. In Section 5, we apply the network calculus in a set of examples, and

2

Page 2 of 39IEEE/ACM Transactions on Networking

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Node
1

Node
2

Node
H...

S1 S2 SH

Anet=A1 D1=A2 D2 AH DH=Dnet

Figure 1:Traffic of a flow through a set ofH nodes. The arrivals and departures from the network are given by random processes
Anet andDnet. The arrivals and departures from theh-th node are described byAh andDh, with A1 = Anet, Ah = Dh−1 for
h = 2, . . . , H , andDnet = DH .

compare the multiplexing gain achievable with the traffic models and scheduling algorithms used in this
paper. We present brief conclusions in Section 6.

2 A Network Calculus with Time Scale Bounds

In this section we derive a network calculus that exploits the availability of time scale bounds. Before
motivating the need for such bounds, we first introduce necessary notation, and review results from the
deterministic and statistical network calculus. The main contribution of this section are the probabilistic
bounds for output burstiness, backlog, delay and network service derived in Subsection 2.5 and time scale
estimates for general service and arrival scenarios.

2.1 Notation and Definitions

We consider a discrete time model, where time slots are numbered0, 1, 2, . . .. Arrivals to a network node
and departures from a network node are denoted by nonnegative, nondecreasing functionsA(t) andD(t),
respectively, withD(t) ≤ A(t). The backlog at timet is given byB(t) = A(t) − D(t), and the delay at
time t is given byW (t) = inf{d ≥ 0 | A(t− d) ≤ D(t)}. If A(t) andD(t) are represented as curves,B(t)
andW (t), respectively, are the vertical and horizontal differences between the curves.

We use subscripts to distinguish arrivals and departures from different flows or different classes of flows,
e.g.,Ai(t) denotes the arrivals from flowi, andAC(t) =

∑
i∈C Ai(t) denotes the arrivals from a collectionC

of flows. We use the same convention for the departures, the backlog, and the delay. When we are referring
to a network with multiple nodes, we use superscripts to distinguish between different nodes, i.e., we use
Ah

i (t) to denote the arrivals to theh-th node on the route of flowi, andAnet
i (t) = A1

i (t) to denote the
arrivals of flowi to the first node on its route. In Figure 1 we show the route of a flow that passes through
H nodes, whereAnet = A1 andDnet = DH denote the arrivals and departures from the network, and
whereAh = Dh−1 for h = 2, . . . ,H. To simplify notation, we drop subscripts and superscripts whenever
possible. We assume that the network is started at time 0 and that all network queues are empty at this time,
i.e.,Ai(0) = Di(0) = 0 for all i. Under this assumption, the backlogB(t) increases stochastically witht, in
the sense thatPr(B(t + 1) > b) ≥ Pr(B(t) > b) for all t and allb ≥ 0, and converges to the steady-state
backlog distribution ast → ∞ (see Lemma 9.1.4 of [Chang00] Thus a stochastic bound onB(t) that does
not depend ont provides a bound on the steady-state distribution ofB(t). The corresponding statements
hold for the delay distributionW (t), and the distribution ofD(t) − D(t − τ) for any given value ofτ .

The min-plus algebra formulation of the network calculus [1, 8, 15], defines, for given functionsf and
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g, the convolution operator∗ and deconvolution operator� by

f ∗ g(t) = inf
τ∈[0,t]

{f(t − τ) + g(τ)} ,

f � g(t) = sup
τ≥0

{f(t + τ) − g(τ)} .

These operators are used to express service guarantees and performance guarantees.

2.2 Overview of Deterministic Network Calculus

In the deterministic network calculus in [1, 8, 15], service guarantees to a flow at a node are expressed in
terms ofservice curves. A (minimum) service curve for a flow is a functionS which specifies a lower bound
on the service given to the flow such that, for allt ≥ 0,

D(t) ≥ A ∗ S(t) . (1)

When the arrivals are bounded by anarrival envelopeA∗, such thatA(t+τ)−A(t) ≤ A∗(τ) for all t, τ ≥ 0,
the guarantee given by the service curve in Eqn. (1) implies worst-case bounds for output burstiness, backlog
and delay. According to [1, 8, 15], an envelope for the departures from a node offering a service curveS is
given byA∗ � S, the backlog is bounded byA∗ � S(0), and the delay at the node,W (t), is bounded byd,
if d satisfiessupτ≥0{A∗(τ − d) − S(τ)} ≤ 0.

If service curves are available at each node on the path of a flow through a network, these single-node
bounds can be easily extended to end-to-end bounds. Suppose a flow is assigned a service curveSh on the
h-th node on its route (h = 1, . . . ,H). Then the service given by the network as a whole can be expressed
in terms of a network service curveSnet as

Snet = S1 ∗ S2 ∗ . . . ∗ SH . (2)

With a network service curve, bounds for the output burstiness, backlog and delay for the entire network
follow directly from the single-node results.

End-to-end delay bounds obtained with the network calculus are generally lower than the sum of the
delay bounds at each node. For example, when the service curve at each node is given as a constant rate
function, Sh(τ) = Cτ for all h = 1, 2, . . . ,H, we obtainSnet = S1 ∗ S2 ∗ . . . ∗ SH = Cτ . Here, the
end-to-end backlog and delay bounds are identical to the bounds at the first node.

At this time, the deterministic calculus has been extensively explored. Its results have led to the devel-
opment of new scheduling algorithms [20, 40] and have been used to specify new network services [6, 10].
We refer to [9] for a comprehensive discussion of available results. A drawback of the deterministic network
calculus is that the consideration of worst-case scenarios ignores the effects of statistical multiplexing, and,
therefore, generally leads to an overestimation of the actual resource requirements of multiplexed traffic
sources.

2.3 Overview of Statistical Network Calculus

The statistical network calculus extends the deterministic calculus to a probabilistic setting with the goal to
exploit statistical multiplexing gain. Here, traffic arrivals and departures in the interval[0, t] are viewed as
random processes that satisfy certain assumptions, and the arrival and departure functionsA(t) andD(t)
represent sample paths. In this paper, we make the following assumptions on arrivals:
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1. Stationary Bounds: For anyτ > 0, the arrivalsAnet
i from any flowi to the network satisfy

lim
x→∞ sup

t≥0
Pr

{
Anet

i (t + τ) − Anet
i (t) > x

}
= 0 .

2. Independence: The arrivalsAnet
i andAnet

j from different flowsi �= j are stochastically independent.

The assumptions are made only at the network entrance when traffic is arriving to the first node on its route.
No such assumptions are made after traffic has entered the network. The stationary bounds are needed so
that we can make statements that do not depend on specific instances of time, and that extend to the steady-
state. Assuming independence of traffic sources at the network entrance allows us to exploit statistical
multiplexing gain.

The literature contains a number of different approaches to devise a statistical network calculus. One
group of studies investigates network traffic that, in addition to the assumptions above, satisfies certain a
priori assumptions on the arrival functions, such as exponentially bounded burstiness [51], linear envelope
processes [13], stochastically bounded burstiness [45], general burstiness characterization [3], or stochastic
domination by a given random variable [35]. Other studies assume that arrivals of individual flows at the
network ingress are regulated by (deterministic) arrival envelopesA∗i . Then, by exploiting the independence
assumption of flows, they use either the Central Limit Theorem [7, 31, 32], or large deviations tools such as
the Chernoff Bound [7, 24] and the Hoeffding Bound [49, 48].

With such arrival assumptions, probabilistic backlog and delay bounds for a single node have been
derived for FIFO schedulers with a fixed service rate. Some studies [13, 45, 51] also derive probabilistic
bounds for the output of a node, which can then be iterated to yield end-to-end bounds. However, end-to-
end bounds obtained in this fashion degrade rapidly with the number of nodes. Other studies consider more
complex scheduling algorithms [7, 41, 48] for a single node. There are a few results available for end-to-end
statistical guarantees, generally for special arrival or service models [42, 43, 44].

A different set of studies attempts to express a statistical network calculus using the min-plus algebra
formulation with convolution and deconvolution operators [2, 11]. The challenge in this approach is to
construct a probabilistic network service curve that can be expressed as the convolution of per-node service
curves, analogous to Eqn. (2). In [11] it was shown that a network service curve in the statistical network
calculus can be constructed if the service curve satisfies additional properties. In [2], a probabilistic network
service curve is derived under the assumption that each node drops traffic that locally violates a given delay
guarantee. The results in [11] and [2] do not make any assumptions on arrivals and hold for all sample paths
of the arrivals. The current state of the statistical network calculus has shown that expressions for backlog,
delay, and output bounds at a single node carry over from the deterministic network calculus to a statistical
framework. However, a network service curve requires to make significant additional assumptions. At
present, finding suitable assumptions that permit a formulation of a network service curve as in Eqn. (2),
without restricting the applicability of the framework, is an open research problem.

We next describe the probabilistic framework used in this paper. We follow the framework for a statis-
tical calculus presented in [7] and [11]. For traffic arrivals, we use a probabilistic measure calledeffective
envelopes[7]. An effective envelope for an arrival processA is defined as a non-negative functionGε such
that for allt andτ

Pr
{
A(t + τ) − A(t) ≤ Gε(τ)

}
> 1 − ε . (3)
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Simply put, an effective envelope provides a stationary bound for an arrival process. Effective envelopes can
be obtained for individual flows, as well as for multiplexed arrivals (see Section 3 below). To characterize
the available service to a flow or a collection of flows we useeffective service curves[11] which can be seen
as a probabilistic measure of the available service. Given an arrival processA, an effective service curve is
a non-negative functionSε that satisfies for allt ≥ 0,

Pr
{
D(t) ≥ A ∗ Sε(t)

}
≥ 1 − ε . (4)

By letting ε → 0 in Eqs. (3) and (4), we recover the arrival envelopes and service curves of the deterministic
calculus with probability one.

2.4 What Makes Statistical Network Calculus Hard?

To illustrate that the statistical network calculus is not a straightforward extension of the deterministic net-
work calculus, we want to mention two technical difficulties encountered when extending the calculus to a
probabilistic setting. The first appears when estimating the tail distribution for the backlog or the envelope
of the output traffic at a node. In the case of the backlog, the expression takes the form

Pr
{
B(t) > y

}
= Pr

{
sup
τ≥0

{A(t − τ, t) − S(τ)} > y
}

, (5)

where we have usedA(t − τ, t) to denoteA(t) − A(t − τ). The difficulty relates to the evaluation of the
right hand side of the equation. Note that in Eqn. (5), the arrivals are random but service is deterministic; a
probabilistic view of service causes no additional complications here. In [7] and [16], the above expression
is approximated by

Pr
{

sup
τ≥0

{A(t − τ, t) − S(τ)} > y
}
≈ sup

τ≥0
Pr

{
A(t − τ, t) − S(τ) > y

}
, (6)

by using an argument from extreme-value theory [12]. The approximation can be justified in some situations,
for instance when traffic is described by a Gaussian process. However, in general the right hand side of
Eqn. (5) is only a lower bound for the left hand side. In [3], the right hand side of Eqn. (5) is controlled by
assuming the existence of a probabilistic bound for the entire arrival sample path. Another way to deal with
Eqn. (5) is to use Boole’s inequality, which yields

Pr
{

sup
τ≥0

{A(t − τ, t) − S(τ) > y}
}
≤

∞∑
τ=0

Pr
{

A(t − τ, t) − S(τ) > y
}

. (7)

where the sum is replaced by an integral in a continuous time domain. This can yield a useful bound if one
has available a tail estimate on the distribution ofA(t − τ, t) − S(τ), or if there exists a maximum relevant
time scale, sayTmax, such thatPr{A(t − τ, t) − S(τ) > y} = 0 for τ > Tmax so that the sum contains
only finitely many terms.

The second difficulty arises in the derivation of a probabilistic version of a network service curve. This
issue was pointed out in [11] for a network as shown in Figure 1, withH = 2 nodes, and is repeated here.
An effective service curveS2,ε in the sense of Eqn. (4) at the second node guarantees that, for any given
time t, the departures from this node are with high probability bounded below by

D2(t) ≥ A2 ∗ S2,ε(t) = inf
τ∈[0,t]

{
A2(t − τ) + S2,ε(τ)

}
. (8)
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Suppose that the infimum in Eqn. (8) is assumed at some valueτ̂ ≤ t. Since the departures from the first
node are random, even if the arrivals to the first node satisfy the deterministic boundA∗, τ̂ is a random
variable. An effective service curveS1,ε at the first node guarantees that for any arbitrary but fixed timex,
the arrivalsA2(x) = D1(x) to the second node are with high probability bounded below by

D1(x) ≥ A1 ∗ S1,ε(x) . (9)

Sinceτ̂ is a random variable, we cannot simply evaluate Eqn. (9) forx = t − τ̂ and use the resulting bound
in Eqn. (8). Furthermore, there is, a priori, no time-independent bound on the distribution ofτ̂ . This is
different in the deterministic calculus, where deterministic service curves make guarantees that hold for all
values ofx. This problem can also be resolved if a time scale boundTmax is available, which limits the
range over which the infimum is taken as follows:

A2 ∗ S2,ε(t) = inf
τ∈[0,Tmax]

{
A2(t − τ) + S2,ε(τ)

}
.

2.5 Network Calculus for Probabilistically Bounded Arrivals and Service

As we pointed out in the previous subsection, the difficulties of the statistical network calculus can be dealt
with by assuming appropriate time scale limits. A key assumption made in this paper is that the node offers
a service curveSεs which satisfies the additional requirement that there exists a time scaleT such that for
all t ≥ 0,

Pr
{

D(t) ≥ inf
τ≤T

{A(t − τ) + Sε(τ)}
}
≥ 1 − ε . (10)

ThusT bounds the range of the convolution in Eqn. (4). This assumption solves both problems discussed in
the previous subsection. In general, the value ofT depends on the arrival process as well as on the service
curve. In a workconserving scheduler, such a bound can be established in terms of a probabilistic bound of
the busy period, or from a priori backlog or delay bounds. This will be addressed in Subsection 2.6.

The following theorem establishes statistical bounds for delay and backlog in terms of min-plus algebra
operations on effective envelopes and effective service curves. Note that we distinguish two violation prob-
abilities: εg is the probability that arrivals violate the effective envelope, andεs is the probability that the
service violates the effective service curve or the condition in Eqn. (10).

Theorem 1 Assume thatGεg is an effective envelope for the arrivalsA to a node, and thatSεs is an effective
service curve satisfying Eqn. (10) with someT < ∞. Defineε to be

ε = εs + Tεg . (11)

Then the following hold:

1. Output Traffic Envelope: The functionGεg � Sεs is an effective envelope for the output traffic from
the node.

2. Backlog Bound: Gεg �Sεs(0) is a probabilistic bound on the backlog, in the sense that, for allt ≥ 0,

Pr
{
B(t) ≤ Gεg � Sεs(0)

}
≥ 1 − ε.

3. Delay Bound: If d ≥ 0 satisfiessupτ≤T

{
Gεg(τ − d) − Sεs(τ)

}
≤ 0, thend is a probabilistic delay

bound, in the sense that, for allt ≥ 0, Pr
{
W (t) ≤ d

}
≥ 1 − ε.
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By settingεs = εg = 0, we recover the corresponding statements of the deterministic network calculus
from Subsection 2.3 as presented in [1, 8, 14]. Similarly, when onlyεg = 0, the time scale boundT
disappears from Eqn. (11) and one can takeT → ∞. Thus, the statistical calculus from [11], which deals
with deterministic arrivals (whereεg = 0) and effective service curvesSεs , is also recovered by the above
theorem.

Proof. First, we prove thatGεg � Sεs is an effective envelope for the output traffic. Fixt, τ ≥ 0.

Pr
{
D(t + τ) − D(t) ≤ Gεg � Sεs(τ)

}
≥ Pr

{
D(t + τ) − D(t) ≤ sup

x≤T
{Gεg (τ + x) − Sεs(x)}

}
(12)

≥ Pr

{
∃x ≤ T :

(
A(t + τ) − A(t − x) ≤ Gεg (τ + x)
and D(t) ≥ A(t − x) + Sεs(x)

)}
(13)

≥ Pr

{ ∀x1 ≤ T : A(t + τ) − A(t − x1) ≤ Gεg (τ + x1)
and ∃x2 ≤ T : D(t) ≥ A(t − x2) + Sεs(x2)

}
(14)

≥ 1 −
(
εs + Tεg

)
. (15)

In Eqn. (12), we have expanded the deconvolution operator and reduced the range of the supremum, i.e.,
by assuming that the supremum is achieved for a valuex ≤ T . In Eqn. (13), we replacedD(t + τ) by
A(t + τ). Further, by adding the condition thatD(t) ≥ A(t− x) +Sεs(x) we were able to replaceD(t) by
A(t− x) + Sεs(x). The inequality holds since adding the condition and the replacements restrict the event.
In Eqn. (14) we further restricted the event, by demanding that the first condition in Eqn. (13) holds for all
values ofx. To obtain Eqn. (15), we applied the assumption in Eqn. (10), and used the definition ofGεg .
We added the violation probabilities of the two events using Boole’s inequality. The factorT in front of εg
appears since we added the violation probabilities over all values ofx1.

The proof of the backlog bound proceeds along the same lines. We estimate

Pr
{
B(t) ≤ Gεg � Sεs(0)

}
= Pr

{
A(t) ≤ D(t) + Gεg � Sεs(0)

}
(16)

≥ Pr

{
∃x ≤ T :

(
A(t) ≤ A(t − x) + Sεs(x) + Gεg � Sεs(0)
andD(t) ≥ A(t − x) + Sεs(x)

)}
(17)

≥ Pr

{ ∀x1 ≤ T : A(t) − A(t − x1) ≤ Gεg (x1)
and ∃x2 ≤ T : D(t) ≥ A(t − x2) + Sεs(x2)

}
(18)

≥ 1 −
(
εs + Tεg

)
. (19)

In Eqn. (16), we have used the definition of the backlogB(t). The arguments made in Eqs. (17)–(19) are
analogous to those used in Eqs. (13)–(15).

Finally, we prove the delay bound. Ifd satisfiessupτ≤T {Gεg(τ − d) − Sεs(τ)} ≤ 0, then

Pr
{
W (t) ≤ d

}
= Pr

{
A(t − d) ≤ D(t)

}
(20)

≥ Pr

{
∃x ≤ T :

(
A(t − d) ≤ A(t − x) + Sεs(x)
andD(t) ≥ A(t − x) + Sεs(x)

)}
(21)

≥ Pr

{ ∀x1 ≤ T : A(t − d) − A(t − x1) ≤ Gεg ([x1 − d]+)
and∃x2 ≤ T : D(t) ≥ A(t − x2) + Sεs(x2)

}
(22)

≥ 1 −
(
εs + Tεg

)
. (23)

In Eqn. (20), we have used the definition of the delayW (t), and in Eqn. (21), we have used the assumption
on d. The remaining steps apply the same arguments as the proofs of the output bound and the backlog
bound. �
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Next we derive an expression for a probabilistic version of a network service curve, which expresses the
service given by the network as a whole as a convolution of the service at each node. Consider the path of a
flow through a network, as illustrated in Figure 1. At each node, the arrivals are allotted an effective service
curve, whereSh,εs denotes the effective service curve at nodeh. Similar to Eqn. (10), we assume that each
node satisfies

Pr
{
Dh(t) ≥ inf

τ≤T h
{Ah(t − τ) + Sh,εs(τ)}

}
≥ 1 − εs (24)

for some numbersT1, . . . TH < ∞. For notational convenience, we assume that the violation probabilities
εs are identical at each node. This assumption is easily relaxed.

Theorem 2 Effective Network Service Curve. Assume that the service offered at each nodeh = 1, . . . ,H
on the path of a flow through a network is given by a service curveSh,εs satisfying Eqn. (24). Then an
effective network service curveSnet,ε for the flow is given by

Snet,ε = S1,εs ∗ S2,εs ∗ . . . ∗ SH,εs , (25)

with violation probability bounded above by

ε = εs

H∑
h=1

(
1 + (h − 1)T h

)
. (26)

The convolution expression in Eqn. (25) has the same form as the corresponding expression in a determin-
istic setting seen in Eqn. (2), and the deterministic statement is recovered with probability one by letting
ε → 0. On the other hand, the violation probabilityε in Eqn. (26) increases at each hop byεsT

h. Clearly, it
is important to control the time scale boundTh.
Proof. We start the proof with a deterministic argument for a sample path. Fixt ≥ 0, and suppose that, for
a particular sample path, we have{

∀τ ≤ ∑H
k=h+1 T k : Dh(t − τ) ≥ infxh≤T h{Ah(t − τ − xh) + Sh,εs(xh)} , if h < H,

DH(t) ≥ infxH≤T H{AH(t − xH) + SH,εs(xH)} , if h = H .
(27)

Since the arrivals at each node are given by the departures from the previous node, that is,Ah = Dh−1 for
h = 2, . . . ,H, we see by repeatedly inserting the first line of Eqn. (27) into the second line of Eqn. (27) that

DH(t) ≥ inf
xh≤T h, h=1,...,H

{
Ah(t − (xh + . . . + xH)) +

H∑
k=h

Sk,εs(xk)
}

. (28)

Settingh = 1 in Eqn. (28), and using the definitions ofAnet, Dnet, andSnet,ε, we obtain

Dnet(t) ≥ inf
xh≤T h, h=1,...H

{
Anet(t − (x1 + · · · + xH)) + Snet,ε(x1 + · · · + xH)

}
. (29)

Thus, we have shown that Eqn. (27) implies

Dnet(t) ≥ Anet ∗ Snet,ε(t). (30)
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We conclude proof of the theorem by

Pr
{

Dnet(t) ≥ Anet ∗ Snet,ε(t)
}

≥ Pr
{

Eqn. (27) holds
}

(31)

≥ 1 − εs ·
H∑

h=1

(
1 +

H∑
k=h+1

T k
)

. (32)

In Eqn. (31) we have used that Eqn. (27) implies Eqn. (30). In Eqn. (32), we have applied Eqn. (24) and
added the violation probabilities of Eqn. (27) over all possible values ofh = 1, . . . ,H. Exchanging the
order of summation completes the proof. �

2.6 Busy Period Analysis

We now turn to the time scaleT which is required in order to apply Theorems 1 and 2. At any given node,
we need to boundT from information on the capacity of the node, the properties of the scheduler, and the
incoming traffic.

Consider for a moment the corresponding problem in the deterministic calculus. Suppose a node offers
a service curveS to a flow, and that the arrivals from the flow are deterministically bounded by an arrival
envelopeA∗. If the long-term arrival rate is strictly smaller than the long-term service rate guaranteed byS,
then

T = sup{τ ≥ 0 | A∗(τ) > S(τ)} < ∞ . (33)

A short computation shows that

A ∗ S(t) = inf
τ≤T

{A(t − τ, t) + S(τ)} ,

which, together with the definition ofS in Eqn. (1) yields the deterministic statement corresponding to
Eqn. (10) withε = 0. The above argument applies to any node along the path of a flow through a network,
since the long-term rate of arrivals from the flow to later nodes cannot exceed the long-term rate of arrivals
from the flow to the ingress node.

In the statistical setting, we restrict the discussion to workconserving schedulers. Note that for any
workconserving scheduler, the time scaleT is bounded by the length of the busy period of the scheduler
at time t. To see this, letAC(t), DC(t), andBC(t) denote the aggregate arrivals, the departures, and the
backlog of a setC of flows arriving at the scheduler. By definition, the busy period for a given timet ≥ 0 is
the maximal time interval containingt during which the backlog from the flows inC remains positive. The
beginning of the busy period oft is the last idle time beforet, given by

t = max{τ ≤ t : BC(τ) = 0} . (34)

Our assumption that the queues are empty at timet = 0 guarantees that0 ≤ t ≤ t. Since a workconserving
scheduler that operates at a constant rateC satisfies

DC(t) ≥ AC(t) + C(t − t)

by definition, to obtain the desired time scale bound in Eqn. (10) it suffices to prove that

Pr
{
t − t ≤ T

} ≥ 1 − ε . (35)
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The following lemma establishes such a busy period bound for a scheduler that operates at a constant
rateC. We will show in Section 4 that the service available to asingle flow at many different types of
workconserving schedulers can be similarly described by a service curve satisfying Eqn. (10).

Lemma 1 Assume that the aggregate arrivalsAC to a workconserving scheduler with a constant rateC

satisfy
∞∑

τ=1

sup
t≥0

Pr {AC(t + τ) − AC(t) > Cτ} < ∞ . (36)

For a givenε ∈ (0, 1) chooseT large enough so that

∞∑
τ=T+1

sup
t≥0

Pr {AC(t + τ) − AC(t) > Cτ} ≤ ε . (37)

ThenT is a probabilistic bound on the busy period that satisfies Eqn. (35).

Proof. Fix t > 0, and assume thatt < t. SinceBC(τ) > 0 for t < τ ≤ t, we have by definition of the
workconserving scheduler thatDC(t) − DC(t) ≥ C(t − t). SinceDC(t) < AC(t), andDC(t) = AC(t) by
definition oft, this impliesAC(t) − AC(t) > C(t − t) . It follows that

Pr
{
t − t > T

} ≤ Pr
{∃τ > T : AC(t) − AC(t − τ) > Cτ

}
(38)

≤
∞∑

τ=T+1

Pr
{
AC(t) − AC(t − τ) > Cτ

}
(39)

≤ ε , (40)

where we have used Boole’s inequality in the second line and the choice ofT in the third line. �

The lemma is easily extended from constant-rate workconserving systems to output links that offer a
(deterministic)strict service curve, which is a nonnegative functionS(τ) such that for everyt2 ≥ t1 ≥ 0
and every sample path,DC(t2) − DC(t1) ≥ S(t2 − t1) wheneverBC(t) > 0 for t ∈ [t1, t2]. This includes,
in particular,latency-rate service curves[46] with S = K(t − L) for a rateK and a latencyL.

The assumption in Eqn. (36) amounts to two requirements. First, the average rate of the incoming
traffic should lie strictly below the rateC of the scheduler. This is a standard stability condition; if it
is violated, stability of the backlog process is not guaranteed. Secondly, the probability that the arrivals
exceed this average rate by a large amount should satisfy a suitable tail estimate. Such tail estimates hold
for many commonly used traffic descriptions, including the models in [13, 45, 51]. This includes some
long-range dependent processes but can fail for heavy-tailed arrival models. Some examples are discussed
in Section 3.2.

Inserting Lemma 1 into Theorem 1 immediately provides bounds on output, delay, and backlog for a
single node in terms of the arrivals and the available service at that node. Using Lemma 1 in Theorem 2 for
the construction of a statistical network service curve is less straightforward. The difficulty is that Theorem 2
requires bounds on the time scalesTh at each nodeh = 1, . . . ,H on the path of a flow. In principle, such
arrival bounds can be obtained by iterating the input-output relation of Theorem 1. However, this approach
leads to bounds on the violation probabilities that grow exponentially in the number of nodes.
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In the numerical examples, we use the instead the following strategy. We assume that any packet whose
delay at a node exceeds a certain delay thresholdd∗ is dropped. For the arrivals to the network, we construct
a functionGnet,ε

C for the arrivals to the network satisfying

Pr
(
Anet

C (t + τ) − Anet
C (t) > Gnet,ε

C (τ)
) ≤ 2ε

π(1 + τ2)
. (41)

This definition is analogous to the definition of the effective envelope in Eqn. (3), withε replaced by
(2ε)/(π(1 + τ2)).

At the first node on the path of the flow, we set

T 1 = sup{τ ≥ 0 | Gnet,ε
C (τ) > Cτ} , (42)

in analogy with Eqn. (33). This choice ofT1 satisfies Eqn. (37), because

∞∑
τ=T 1+1

sup
t≥0

Pr {AC(t + τ) − AC(t) > Cτ}

≤
∞∑

τ=T 1+1

sup
t≥0

Pr
{

AC(t + τ) − AC(t) > Gnet,ε
C (τ)

}
(43)

≤ 2ε
π

∞∑
τ=0

(1 + τ2)−1 (44)

≤ ε . (45)

By Lemma 1, this provides the desired time scale bound at the ingress node.
The arrivals to theh-th downstream node are bounded in terms of the arrivals to the ingress node by

Ah
C(t) − Ah

C(t − τ) ≤ Anet
C (t) − Anet

C (t − τ − (h−1)d∗) ,

whered∗ is the delay threshold for dropping a packet. It follows that

∞∑
τ=0

Pr
{
Ah

C(t) − Ah
C(t − τ) > Gnet,ε

C (τ + (h−1)d∗)
} ≤ ε . (46)

Invoking Lemma 1 as above, we obtain the time scale bound

T h = sup{τ ≥ 0 | Gnet,ε
C (τ + (h − 1)d∗) > Cτ} . (47)

Finally, we use Theorems 1 and 2 to verify thatd∗ is large enough so that the loss rate due to this dropping
policy is a small fraction of the traffic rate. Even though these choices are clearly very conservative, leading
to rather loose bounds onTh, the numerical results on backlog and delay are satisfactory.

The above assumption on an a priori delay thresholdd∗ is analogous to an assumption in [3] that all
traffic exceeding a certain delay bound is dropped. Bounds forTh can also be obtained from a priori bounds
on the backlog, e.g., as done in [49]. Such bounds on the backlog naturally result from finite buffer sizes in
a network. Alternatively, a priori bounds on delay, backlog, and the length of busy periods can be obtained
from the deterministic calculus. Generally, it suffices to derive loose bounds onTh, because the violation
probabilities provided in Eqn. (11) and Eqn. (26) depend only linearly on the values ofTh, while effective
envelopesGε, the boundGnet,ε

, and consequently the time scale boundT , typically deteriorate very slowly
asε → 0.
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3 Effective Envelopes and Effective Bandwidth

In this section, we reconcile two methods for probabilistic traffic characterization, effective envelopes and
effective bandwidth, and explore the relationship between them. The effective bandwidth, which has been
extensively studied, is motivated by the rate functions that appear in the theory of large deviations. Effective
bandwidth expressions have been derived for numerous source traffic models with applications in computer
networks. We refer to [15, 30, 33] for a detailed discussion. By providing a link between effective bandwidth
and effective envelopes, the results in this section make effective bandwidth results applicable to the network
calculus.

In this paper we use the general definition from [30], which defines theeffective bandwidthof an arrival
processA as

α(s, τ) = sup
t≥0

{
1
sτ

log E[es(A(t+τ)−A(t)))
}

, s, τ ∈ (0,∞) . (48)

The parameterτ is called the time parameter and indicates the length of a time interval. The parameters

is called the space parameter and contains information about the distribution of the arrivals. Generally, the
effective bandwidth of a traffic flow varies between the mean and peak rates of the traffic and provides a
link between the traffic characteristics of a flow and the resources in terms of bandwidth and buffer size
necessary to support a required level of service. Nears = 0, the effective bandwidth is dominated by the
mean rate of the traffic, while nears = ∞, it is primarily influenced by the peak rate of the traffic. Thus, the
space parameters can be seen as relating to a violation probabilityε (see Lemma 2).

3.1 Overview of Effective Bandwidth

The notion of effective bandwidth emerged in the early 1990s in [26, 27, 28, 29] as a method to characterize
and exploit the statistical multiplexing gain of traffic flows and, thereby, increase the utilization of network
resources. The effective bandwidth of a traffic flow can be related to the minimum bandwidth needed to
satisfy service guarantees for that flow. Then, one can verify that a link with capacityC is able to provide
the required service toN traffic flows by testing if

∑N
i=1 αi < C, whereαi is the effective bandwidth of

thei-th flow for suitable choices ofs andτ .
Early work on effective bandwidth focused on Markov modulated fluid flow and on-off traffic mod-

els [26, 27, 29]. By relating the effective bandwidth concept to the theory of large deviations in [13, 21, 50],
the effective bandwidth theory could be extended to a wide range of network traffic models including gen-
eral Markovian and self-similar traffic models [21, 22]. The theory has also been generalized from FIFO
scheduling algorithm to non-FIFO scheduling algorithms such as Static Priority (SP) [4, 5, 23, 34] and Gen-
eralized Processor Sharing (GPS ) [47, 52], and has become an elegant and powerful framework with many
applications.

A crucial result in the effective bandwidth theory concerns the large buffer asymptotics for links with
FIFO scheduling. The result states that

∑N
i=1 αi(s) < C if and only if Pr

(
B > x

) ∼ e−sx asx → ∞,
whereαi(s) = limτ→∞ αi(s, τ) andB is the steady-state backlog of the traffic. In other words, as long
as the effective bandwidth of a set of flows is below the capacity of the link, the probability of a packet
loss due to a buffer overflow decays exponentially fast as a function of the buffer size. This frequently
cited result, however, is an asymptotic approximation for large buffer sizes and may either overestimate
or underestimate the actual backlog behavior by several orders of magnitude, especially if arriving traffic
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is bursty [17]. Furthermore, in the asymptotic regime, the bandwidth requirements given by the effective
bandwidth are additive, and, hence, do not reflect the gains due to statistical multiplexing [17].

The asymptotic bounds from the effective bandwidth literature are not directly applicable in a network
calculus context. Instead, when we insert effective bandwidth expressions in the network calculus we need
to work explicitly with finite buffer sizes. Such non-asymptotic bounds have been presented by Chang
[13, 15] for a class of linear envelope processes with parameters

(
σ(s), ρ(s)

)
, characterized by

1
s

log
(
esA(t,t+τ)

) ≤ σ(s) + ρ(s)τ . (49)

If ρ(s) < C for these processes, Chang [13] bounds the tail probability of the backlog behavior byPr
(
B >

x
) ≤ β(s)e−sx, where the constantβ(s) is explicitly given asβ(s) = esτ(s)

(
1 − es(ρ(s)−C)

)−1
. Chang

relates these and other results on envelope processes to draw analogies to the deterministic network calculus
[19]. Chang [13] also shows that the output at a link with FIFO scheduling is again a linear envelope
processes. In principle, this property can be iteratively applied to obtain delay and backlog bounds for a
network with multiple nodes. In practice, however, the bounds obtained with such an iterative procedure
deteriorate quickly (exponentially) in the number of nodes. (Closely related results, without referring to
effective bandwidth, are obtained by Yaron and Sidi for the class of exponentially bounded burstiness [51]).

The motivation for our work is to further develop the relationship between effective bandwidth and the
network calculus. Our results, all expressed as explicit (non-asymptotic) bounds, extend the relationships
established by Chang in several directions. First, we do not restrict ourselves to a specific class of arrival
models, but consider all arrival models for which effective bandwidth expressions are available. For exam-
ple, we consider FBM traffic which has been used to model self-similar characteristics of network traffic,
but which cannot be characterized by a linear envelope process. Second, using the network calculus from
Section 2, our results can be related to a (effective) network service curve which yields end-to-end backlog
and delay bounds over multiple nodes. Lastly, we will (in Section 4) consider a number of commonly used
scheduling algorithms, which are more complex than FIFO scheduling used predominantly in the effective
bandwidth literature.

3.2 Relating Effective Bandwidth and Effective Envelopes

The choice of the term ‘effective envelope’ as introduced in [7] suggests a connection to the notion of
effective bandwidth, but without making that connection explicit. The following lemma establishes a for-
mal relationship between the two concepts, and thus, links the effective bandwidth theory to the statistical
network calculus.

Lemma 2 Given an arrival processA with effective bandwidthα(s, τ), an effective envelope is given by

Gε(τ) = inf
s>0

{
τα(s, τ) − log ε

s

}
. (50)

Conversely, if, for eachε ∈ (0, 1), the functionGε is an effective envelope for the arrival process, then its
effective bandwidth is bounded by

α(s, τ) ≤ 1
sτ

log
(∫ 1

0
esGε(τ)dε

)
. (51)
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We emphasize that the effective envelope is a more general concept than effective bandwidth, in the sense
that each effective bandwidth expression can be immediately expressed in terms of an effective envelope,
whereas there may not be an effective bandwidth corresponding to a given effective envelope. As another
way to see the generality of the effective envelope, even when the effective bandwidthα(s, τ) is infinite for
some values ofs andτ , and the corresponding construction in Lemma 2 is not applicable, it may be feasible
to specify an effective envelopeGε(τ) according to Eqn. (3), which is finite for all values ofε andτ .

Proof. To prove the first statement, fixt, τ ≥ 0. By the Chernoff bound [39],1 we have for anyx and any
s ≥ 0

Pr
{

A(t + τ) − A(t) ≥ x
}

≤ e−sxE
[
es(A(t+τ)−A(t))

]
(52)

≤ es(−x+τα(s,τ)) . (53)

Setting the right hand side equal toε and solving forx, we see that, for any choice ofs > 0, the function

xε,s(τ) = τα(s, τ) − log ε

s
(54)

is an effective envelope forA, with violation probability bounded byε. (The superscripts are added to show
the dependence ofx on ε ands.) Minimizing overs proves the claim.

For the second statement, fixt, τ ≥ 0, and let

F t,τ (x) = Pr
{
A(t + τ) − A(t) ≤ x

}
(55)

be the distribution function ofA(t+τ)−A(t). For anys > 0, we can write the moment-generating function
of A(t + τ) − A(t) in the form

E
[
es(A(t+τ)−A(t))

]
=

∫ ∞

0
esxdF t,τ (x) . (56)

By using a suitable approximation, we may assume without loss of generality thatFt,τ is continuous and
strictly increasing forx ≥ 0. Let Gt,τ be the inverse function of1 − Ft,τ . Since

Pr
{
A(t + τ) − A(t) > Gt,τ (ε)

}
= ε , (57)

we must haveGt,τ (ε) ≥ Gε(τ) by the definition of the effective envelope. Performing the change of
variables1 − F t,τ (x) = ε, i.e.,x = Gt,τ (ε) in the integral, we obtain

E

[
es

(
A(t+τ)−A(t)

)]
=

∫ 1

0
esGt,τ (ε)dε ≤

∫ 1

0
esGε(τ)dε . (58)

It follows that

α(s, τ) ≤ 1
sτ

∫ 1

0
esGε(τ)dε , (59)

as claimed. �

With this lemma we can construct an effective envelope for a traffic class if its effective bandwidth is
known. Since many effective bandwidth formulas have been provided in the literature (e.g., [15, 30]),
Lemma 2 provides a useful tool to apply the presented network calculus to a wide range of traffic models.
We next use the lemma to obtain effective envelopes for regulated arrivals, memoryless on-off traffic, and
FBM.

1For a random variableX, the Chernoff bound is given byPr
{

X ≥ x
}

< e−sxE
[
esX

]
.
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3.3 Regulated Arrivals

We refer to arrivals that are bounded by an arrival envelopeA∗ (see Subsection 2.3) as regulated arrivals. The
regulated arrival model is a suitable description when the amount of traffic that enters the network is limited
at the network ingress, e.g., by a leaky bucket. More formally, letA∗ be a nondecreasing, nonnegative,
subadditive function. We say that an arrival processA is regulated byA∗ if

∀t, τ ≥ 0 : A(t + τ) − A(t) ≤ A∗(τ) (60)

holds for every sample path. The peak rate and the average rate of regulated traffic, denoted byP andρ, are
defined as

P = A∗(1) , ρ = lim
t→∞

A∗(t)
t

. (61)

Consider a collectionC of flows, whereA∗
i , Pi andρi are the arrival envelope, the peak rate, and the

average rate of flowi. Clearly, the aggregate of the flowsAC is bounded byA∗
C =

∑
i∈C A∗

i , with peak and
average rates ofPC =

∑
i∈C Pi andρC =

∑
i∈C ρi. We assume that each flowi ∈ C satisfies the stationary

bound
E

[
Ai(t + τ) − Ai(t)

] ≤ ρiτ , (62)

and that the arrivals from different flows are independent. The effective bandwidth for such a collection of
flowsAC satisfies [30]

αC(s, t) ≤ 1
st

∑
i∈C

log
(

1 +
ρit

A∗
i (t)

(esA∗
i (t) − 1)

)
. (63)

By Lemma 2, the corresponding effective envelope is given by

Gε
C(t) = inf

s>0

{∑
i∈C

1
s

log
(
1 +

ρit

A∗
i (t)

(
esA∗

i (t) − 1
)) − log ε

s

}
. (64)

This effective envelope satisfies
ρCt ≤ Gε

C(t) ≤ A∗
C(t) (65)

for all t ≥ 0.

3.4 Memoryless On-Off traffic

On-Off traffic models are frequently used to model the behavior of (unregulated) compressed voice sources.
We consider a variant of On-Off traffic with independent increments. As illustrated in Figure 2, we describe
an On-Off traffic source as a two-state memoryless process. In the ‘On’ state, traffic is produced at the
peak rateP , and in the ‘Off’ state, no traffic is produced, with an overall average traffic rateρ < P . For a
collectionC of independent flows with peak ratesPi and average ratesρi (i ∈ C), the effective bandwidth
for the aggregate traffic of the flows inC is given by [15]

αC(s, t) =
1
s

∑
i∈C

log
(

1 +
ρi

Pi

(
ePis − 1

))
. (66)

Lemma 2 gives the corresponding effective envelope as

Gε
C(t) = inf

s>0

{ t

s

∑
i∈C

log
(
1 +

ρi

Pi

(
ePis − 1

)) − log ε

s

}
. (67)
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on off 1- ρ/Pρ/P

1- ρ/P

ρ/P

Figure 2: On-Off Transition Model.

3.5 Fractional Brownian Motion (FBM) traffic

As pointed out in [38], the self-similarity properties of measured traffic data can sometimes be modeled by
processes of the form

A(t) = ρt + βZt , (68)

whereZt is a normalized fractional Brownian motion with Hurst parameterH > 1
2 , ρ > 0 is the mean

traffic rate, andβ2 is the variance ofA(1). By definition,{Zt}t∈R is a Gaussian process with stationary
increments which is characterized by its starting pointZ0 = 0, expected valuesE[Zt] = 0, and variances
E[Z2

t ] = |t|2H for all t.
Following [38], we will refer to Eqn. (68) as theFractional Brownian Motion (FBM)traffic model. Note

that the sum of the arrivals from a collectionC of independent FBM sources with common Hurst parameter
is again of type FBM. where the mean traffic rate is given byρC =

∑
i∈C ρi, and the varianceβ2 is given by

β2
C =

∑
i∈C β2

i . FBM traffic is of interest because the statistical analysis of actual network traffic has shown
to be self-similar, that is, traffic exhibits long range dependence [25].

We remark that the FBM model is an idealization that fails to capture certain basic properties of actual
traffic. Most notably, even though the average rate is positive, increments can be negative, and there is pos-
itive probability that a sample path fails to be nondecreasing, or even nonnegative. Furthermore, fractional
Brownian traffic is defined for continuous time, while we consider here discrete-time arrival processes. We
note that the estimates below hold for all (discrete-time) arrival processes that have nonnegative increments,
and whose moment generating function is bounded by the moment generating function of fractional Brow-
nian traffic.

The effective bandwidth for fractional Brownian traffic has been derived as [30]

αC(s, t) = ρC +
1
2
β2
Cst

2H−1 . (69)

By Lemma 2, this results in an effective envelope of

Gε
C(t) = ρCt +

√
−2 log ε βCtH . (70)

4 Effective Service Curves for Scheduling Algorithms

We next present probabilistic lower bounds on the service guaranteed to a class of flows in terms of effective
service curves. We derive effective service curves at a node for a set of well-known scheduling algorithms.

From here on, we assume that each flow belongs to one ofQ classes. We denote the arrivals from all
flows in classq by Aq, and the arrivals to the collectionC of all flows in all classesq = 1, . . . , Q by AC .
We make similar conventions for departures and backlogs. We useGεg

q to denote an effective envelope for
the arrivals from classq. We consider a workconserving link with rateC, and three scheduling algorithms:
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Static Priorities (SP), Earliest Deadline First (EDF), and Generalized Processor Sharing (GPS). We begin
with a brief description of the three schedulers.

1. In an SP scheduler, every class is assigned a priority index, where a lower priority index indicates a
higher priority. An SP scheduler selects for transmission the earliest arrival from the highest priority
class with a nonzero backlog.

2. In an EDF scheduler, every classq is associated with a delay indexdq. A class-q packet arriving at
t is assigned the deadlinet + dq, and the EDF scheduler always selects the packet with the smallest
deadline for service. Note that, in a probabilistic context, actual delays may violate the delay index,
and deadlines can become negative.

3. In a GPS scheduler, every classq is assigned a weight indexφq and is guaranteed to receive at least
a share φq∑

p φp
of the available capacity. If any class uses less than its share, the extra bandwidth is

proportionally shared by all other classes.

For these schedulers, we now present effective service curves for each traffic classq. The effective
service curves consider the ‘leftover’ bandwidth which is not used by other traffic classesp �= q. A similar
construction was used in thestatistical service envelopesfrom [41]. A major difference between statistical
service envelopes and our effective service curves is that the latter are non-random functions. This makes
the analysis of effective service curves more tractable. In [36] such leftover service curves where used to
derive lower bounds on the service for an individual flow when the scheduling algorithms are not known
([9], Chp. 1.4 and Chp. 6.2).

Lemma 3 Consider the arrivals fromQ classes to a workconserving scheduler with capacityC. For each
classq = 1, . . . , Q, let Gεg

q be an effective envelope for the arrivalsAq from flows in classq. Let T be a
busy period bound for the aggregateAC that satisfies Eqn. (35) with someεb < 1. Assume the scheduling
algorithm employed is either SP, EDF, or GPS. In the case of GPS, assume additionally that the functions
Gεp

p are concave. Define functionsSεs
q as follows:2

1. SP: Sεs
q (t) =

[
Ct −

∑
p<q

Gεg
p (t)

]
+

, εs = εb + (q − 1)Tεg . (71)

2. EDF: Sεs
q (t) =

[
Ct −

∑
p �=q

Gεg
p (t − [dp − dq]+)

]
+

, εs = εb + (Q − 1)Tεg . (72)

3. GPS: Sεs
q (t) = λq

(
Ct +

∑
p �=q

[
λpCt − Gεg

p (t)
]
+

)
, εs = εb + (Q − 1)Tεg , (73)

whereλp = φp/
∑

φr is the guaranteed share of classp.

Then, in each caseSεs
q is an effective service curve for classq, satisfying

Pr
{

Dq(t) ≥ inf
τ≤T

{Aq(t − τ) + Sεs
q (τ)}

}
≥ 1 − εs . (74)

2We use the notation[x]+ = max(x, 0) to denote the positive part ofx.
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By setting all violation probabilitiesεb, εg = 0 in Lemma 3, we can recover a deterministic (worst-case)
statement on the lower bound of the service seen by a service class. The assumption that the scheduler is
workconserving is used to establish that the service curvesSεs

q is nonnegative. The lemma easily extends to
schedulers offering astrict deterministic service curveS, which need not be constant-rate (see the remark
after Lemma 1). In that case, the termCt should be replaced byS(t) in the conclusions in Eqs. (71)–(73).
Given a service curveS satisfying only Eqn. (1), the leftover service curve for classq in the case of an
SP scheduler is given byS(t) − ∑

p<q Gεg
p (t), which is likely to be negative for small values oft. The

corresponding formulas hold for EDF and GPS schedulers.
The formulas in Eqs. (71)–(73) do not fully characterize the service available to classq for the three

schedulers. Rather, they represent lower bounds on the leftover capacity that is left by other classes. Among
the three scheduling algorithms, Eqn. (71) describes the performance of an SP scheduler rather closely.
Eqn. (73) for the GPS scheduler is not the best possible description, but improves on the minimal guaranteed
rateλqC. On the other hand, Eqn. (72) does not entirely reflect the properties of the EDF scheduler. For
example, in the limit wheredp ≈ dq for all classesp �= q, Eqn. (72) approaches the service guarantees of an
SP scheduler for the lowest priority class, while the actual EDF scheduler approaches FIFO.

Proof. We show that Eqn. (74) holds separately for each of the scheduling algorithms.
1. SP scheduling: Denote the arrivals from flows of priority at leastq by A≤q, and the arrivals from flows
of priority higher thanq by A<q, and correspondingly for departures and backlogs. Fixt ≥ 0, and let

t≤q = max
{
x ≤ t : B≤q(x) = 0

}
(75)

be the beginning of the busy period containingt from the perspective of classq. If the class-q backlog
Bq(t) = 0, there is nothing to show. IfBq(t) > 0, then we have by the properties of the SP scheduler that

Dq(t) = Dq(t≤q) +
(
D≤q(t) − D≤q(t≤q)

) − (
D<q(t) − D<q(t≤q)

)
(76)

≥ Aq(t≤q) +
[
C(t − t≤q) −

(
A<q(t) − A<q(t≤q)

)]
+

. (77)

In Eqn. (77), we have used thatDp(t≤q) = Ap(t≤q) for all p ≤ q, thatD(t)−D(t≤q) ≥ C(t− t≤q) by the
properties of the workconserving scheduler, and thatDp(t) ≤ Ap(t) for all p. It follows that

Pr
{
Dq(t) ≥ inf

τ≤T

(
Aq(t − τ) + Sεs

q (τ)
)}

≥ Pr
{

t − t≤q ≤ T andDq(t) ≥ Aq(t≤q) +
[
C(t − t≤q) −

∑
p<q

Gεg
p (t − t≤q)

]
+

}
(78)

≥ Pr
{

t − t≤q ≤ T andA<q(t) − A<q(t≤q) ≤
∑
p<q

Gεg
p (t − t≤q)

}
(79)

≥ Pr
{

t − t ≤ T and∀p < q, ∀τ ≤ T : Ap(t) − Ap(t − τ) ≤ Gεg
p (τ)

}
(80)

≥ 1 −
(
εb + (q − 1)Tεg

)
, (81)

wheret is the beginning of the busy period of the scheduler. In Eqn. (78), we have setτ = t − t≤q and
inserted the definition ofSεs

q , and in Eqn. (79), we have used Eqn. (77). In Eqn. (80), we have restricted the
event and used thatt ≤ t≤q, and in the last line, we have applied the definitions ofT andGεg

p . This proves
the claim for SP.

2. EDF scheduling: Fix t ≥ 0, and lett be the beginning of the busy period containing timet. If Bq(t) > 0,
then according to the EDF scheduling algorithm, class-p packets which arrive aftert + dq − dp will not be
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served by timet. Since the system is workconserving, this implies

Dq(t) = Dq(t) +
(
DC(t) − DC(t)

) − ∑
p �=q

(
Dp(t) − Dp(t)

)
(82)

≥ Aq(t) +
[
C(t − t) −

∑
p �=q

(
Ap(t − (dp − dq)+) − Ap(t)

)]
+

. (83)

We argue as in Eqs. (78)-(81) that

Pr
{

Dq(t) ≥ inf
τ≤T

(
Aq(t − τ) + Sεs

q (τ)
)}

≥ Pr
{

t − t ≤ T and∀p �= q, ∀τ ≤ T : Ap(t) − Ap(t − τ) ≤ Gεg
p (τ)

}
(84)

≥ 1 −
(
εb + (Q − 1)Tεg

)
. (85)

3. GPS scheduling: For t ≥ 0, let
tp = max

{
x ≤ t : Bp(x) = 0

}
(86)

be the beginning of the busy period oft with respect to classp. Clearly,

Bp(t) = Ap(t) − Dp(t) ≤ Ap(t) − Ap(tp) − λpC(t − tp) (87)

by the properties of the GPS scheduler. Fort ≥ 0 andp �= q, let

tqp = max
{
x ≤ tq : Bp(x) = 0

}
, (88)

then Eqn. (87) witht replaced bytq andtp replaced bytpq implies that

Dp(t) − Dp(tq) ≤ Ap(t) − Ap(tq) + Bp(tq) (89)

≤ Ap(t) − Ap(tqp) − λpC(tq − tqp) . (90)

It follows that

Dq(t) − Dq(tq) ≥ λq

(
C(t − tq) +

∑
p �=q

[
λpC(t − tq) − Dp(t) + Dp(tq)

]
+

)
(91)

≥ λq

(
C(t − tq) +

∑
p �=q

[
λpC(t − tqp) − Ap(t) + Ap(tqp)

]
+

)
. (92)

Fix t ≥ 0, let t be the beginning of the busy period containing timet, and assume for the moment that

t − t ≤ T and∀p �= q,∀τ ≤ T : Ap(t) − Ap(t − τ) ≤ Gεg
p (τ) . (93)

Sincet ≤ tqp ≤ tq, it follows with by Eqn. (92) that

Dq(t) ≥ Dq(tq) + λq

(
C(t − tq) +

∑
p �=q

[
λpC(t − tqp) − Ap(t) + Ap(tqp)

]
+

)
(94)

≥ Aq(tq) + λq

(
C(t − tq) +

∑
p �=q

[
λpC(t − tqp) − Gεg

p (t − tpq)
]
+

)
. (95)
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Figure 3:Example 1: Per-flow effective envelopesGε
N(t)/N for Type-1 flows (withε = 10−9).

SinceGεg
p is concave, the function

[
λCt−Gεg

p (t)
]
+

is nondecreasing int. Replacingt− tpq with the smaller
valuet − tq in Eqn. (95) and using the definition ofSε

q yields

Dq(t) ≥ Aq(tq) + Sε
q (t − tq) . (96)

Finally, we estimate

Pr
{
Dq(t) ≥ inf

τ≤T

(
Aq(t − τ) + Sε

q (τ)
)}

≥ Pr
{
t − tq ≤ T and Eqn. (96) holds

}
(97)

≥ Pr
{

Eqn. (93) holds
}

(98)

≥ 1 −
(
εb + (Q − 1)Tεg

)
. (99)

This completes the proof. �

5 Numerical Examples

In this section, we present numerical examples to illustrate the multiplexing gain for the different traffic
models (Regulated, On-Off, Fractional Brownian Motion) and scheduling algorithms (SP, EDF, GPS) con-
sidered in this paper.

REGULATED TRAFFIC ON-OFF TRAFFIC FBM TRAFFIC

Type P ρ σ P ρ ρ β H

(Mbps) (Mbps) σ (bits) (Mbps) (Mbps) (Mbps) (Mbps)

1 1.5 0.15 95400 1.5 0.15 0.15 4.5 0.78

2 6.0 0.15 10345 6.0 0.15 0.15 0.94 0.78

Table 1:Source Traffic Parameters.

For each of the three traffic models, we consider two types of flows. The parameters are given in
Table 1. Since we are working in a discrete time domain, we need to select a time unit, which we set to
1 ms. For regulated traffic, we select a peak-rate constrained leaky bucket with arrival envelopeA∗(t) =
min (Pt , σ + ρt), with parameters as in [7]. The parameters of the other traffic sources are selected to
match the average rate (ρ = 0.15 Mbps). For FBM traffic, we set the Hurst parameter toH = 0.78 as
suggested in [38], and selectβ = 4.5.
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Figure 4:Example 1: Per-flow effective envelopesGε
N(t)/N for Type-2 flows (withε = 10−9).

5.1 Example 1: Comparison of Effective Envelopes

In the first example, we evaluate the effective envelopes for Regulated traffic, On-Off traffic, and FBM
traffic. We evaluate the effective envelope normalized by the number of flows asGε

N (t)/N , whereGε
N (t)

is the effective envelope forN homogeneous flows. Figures 3 and 4 show the per flow effective envelopes
with ε = 10−9 for Type-1 and Type-2 flows, respectively. For comparison, we also include the average rate
of the sources. For regulated traffic we also include the deterministic envelopesmin (Pt , σ + ρt), and for
On-Off traffic we include the peak rate.

We make the following observations. The effective envelopes capture a significant amount of statistical
multiplexing gain for each of the considered traffic types, the multiplexing gain increases sharply with the
number of flowsN . The effective envelope for FBM traffic is larger than for the other source models. This
is due to our selection of the parametersH andβ.

5.2 Example 2: Number of Admissible Flows

Next we consider three scheduling algorithms (SP, EDF, and GPS) and multiplex Type-1 and Type-2 flows
on a link with 100 Mbps capacity. The evaluation focuses on the service given to flows from Type 1. We
assume that Type-1 flows must satisfy a probabilistic delay bound of 100 ms. Given a certain number of
Type-2 flows on the 100 Mbps link, we determine the maximum number of Type-1 flows that can be added
to the link without violating their probabilistic delay bounds using the results from Lemma 3. Such an
admission control decision is greedy, in the sense that it entirely ignores the delay requirements of other flow
types. For example, using Lemma 3 for admission control of Type-1 flows ignores the delay requirements
of Type-2 flows.

The parameters of the scheduling algorithms are the priority indices for SP, the delay indices for EDF,
and the weights for GPS. For SP, Type-1 flows have a higher priority index, and, therefore, a lower priority,
than Type-2 flows. For EDF, the delay index of Type-1 flows isd1 = 100 ms and that of Type-2 flows is
d2 = 10 ms. For GPS, we set the weights toφ1 = 0.25 andφ2 = 0.75. As in the previous examples, we
consider three traffic models: regulated traffic, On-Off traffic, and FBM traffic. The source traffic parameters
are as shown in Table 1. For comparison, we also include the number of flows that can be accommodated
on the link with an average rate allocation and a peak rate allocation.

Figure 5 depicts the number of Type-1 flows that can be admitted without violating the probabilistic
delay bounds, as a function of the number of Type-2 flows already in the system. We observe that the choice
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Figure 7:Example 3: A network with four nodes and with cross traffic.
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of the traffic model has a significant impact on the number of admitted Type-1 flows. The number of Type-1
flows that can be admitted with FBM traffic is much smaller than with the other traffic models. We also
observe in the figure, that the selection of the scheduling algorithm has only a limited impact. Given a
traffic model, the number of admitted Type-1 flows is similar for all scheduling algorithms, with one notable
exception: for GPS, the minimum number of Type-1 flows admitted is independent of the number of Type-2
flows. This is due to the rate guarantee provided by GPS, which guarantee a minimum number of Type-1
flows: 114 flows for regulated traffic, 165 for On-Off traffic, and 12 for FBM traffic.

We emphasize again that the low multiplexing gain of FBM traffic is a result of our choice of parameters
H and β. To illustrate this point, we present results for FBM traffic with different parameters, shown
in Table 2. We consider three different sets of parameters. In Set 1, we use the same parameters as in
Example 1. For Set 2, we selectβ so that the variance of FBM traffic is matched with the variance of
regulated sources at a time scale corresponding to the delay bounds. This is100 ms for Type-1 traffic and
10 ms for Type-2 traffic. For Set 3, we match the variance of FBM traffic at a time scale of 1000 ms, which
is comparable to the longest busy period observed in these experiments. The results for the number of flows
that can be admitted, shown in Figure 5, illustrate the dependency of the results on the parameter selection.
For Set 3, FBM traffic exhibits a similar multiplexing gain as On-Off traffic.

SET 1 SET 2 SET 3

Type β β β

(Mbps) (Mbps) (Mbps)

1 4.5 1.04 0.40
2 0.94 0.65 .13

Table 2:Parameters for FBM traffic.

5.3 Example 3: Multiple Nodes with Cross Traffic.

In this example, we consider a network with four nodes, as shown in Figure 7. We assume that all links have
the same capacity ofC = 100 Mbps. There areN1 Type-1 flows that pass through all four nodes. At each
node, there is cross traffic fromN2 Type-2 flows. We assumeN1 = N2.

First, we demonstrate how our bounds of the busy period grow as the number of flows increases
and how the busy period varies at different nodes. We calculate the probabilistic busy period bounds at
each node for violation probabilitiesε = 10−3, 10−6, 10−9 using the approach outlined in Subsection 2.6
with the number of classesQ = 2. We use the formula for the effective envelope given in Eqn. (50),
with ε replaced byε/(π(1 + τ2)) to construct for each classq = 1, 2 a function Gnet,ε/2

q satisfying

Pr
{
Anet(t) − Anet(t − τ) > Gnet,ε/2

q (τ)
}

≤ ε/(π(1 + τ2)), as required in Eqn. (41). At theh-th node

on the route of the through flows, we setGh,ε/2
1 (τ) = Get,ε/2

1 (τ + (h−1)d∗), as given in Eqn. (47). For
regulated traffic, we choose the thresholdd∗ comparable to the worst-case delay bound experienced by the
Type-1 traffic at Node 1, as provided by the deterministic calculus. For On-Off and FBM traffic, we choose
d∗ comparable to the delay bound of Type-1 traffic at Node 1, as provided by Theorem 1 withε = 10−15. We
assume that any packet experiencing a delay exceedingd∗ per node is dropped before entering the next node.
Since all nodes are ingress nodes for the Type-2 flows, we can use the same boundGh,ε/2

2 (τ) = Gnet,ε/2
2 (τ)

for the Type-2 flows at each node, whereGε/2
is the function computed above. We then apply Lemma 1,
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Figure 8: Example 3: Probabilistic Busy Period Bounds forε = 10−3 (solid line), ε = 10−6 (dashed line), andε = 10−9

(dotted line). The x-axis corresponds toN1 + N2, the number of Type-1 and Type-2 flows, where we assumeN1 = N2. The thick
dotted-dashed line is a deterministic busy period bound for regulated traffic.
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Figure 9:Example 3: Probabilistic bounds for the total queueing delay experienced by Type-1 traffic when leaving Node 1 (solid
line), Node 2 (dashed line), Node 3 (dotted line), and Node 4 (dotted-dashed line) with violation probabilityε = 10−6. The x-axis
corresponds toN1 + N2, the number of Type-1 and Type-2 flows, where we assumeN1 = N2.
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with Gh,ε
C = Gh,ε/2

1 + G1,ε/2
2 to obtain bounds on the busy periodsTh at each node. Finally, we use Theo-

rems 1 and 2 to check that the loss rate due to the dropping threshold never exceeds a fraction of10−15 of
the traffic rate.

Figure 8 shows the probabilistic busy period bounds at each node for the three different traffic models,
where the number of flows is varied from 60 to 600. Note that 600 flows corresponds to a utilization of
90%. As a reference point, we also plot the exact value for the worst-case busy period of the regulated
traffic (plotted as thick dotted-dashed line). While regulated traffic permits to determine the worst-case
busy period, such deterministic bounds are not available for On-Off and FBM traffic. We observe that the
probabilistic busy period bounds for downstream nodes are larger than that for upstream nodes and that the
probabilistic busy period bounds for FBM traffic are significantly larger than those for Regulated or On-Off
traffic at each node.

Next, we exhibit the queueing delay experienced by Type-1 traffic in the network described in Figure 7.
For the SP scheduling algorithm, as in Example 2, Type-1 flows have a higher priority index, and, therefore,
a lower priority, than Type-2 flows. Figure 9 depicts the probabilistic bounds of the total queueing delay
experienced by Type-1 traffic when leaving Nodeh, h = 1, 2, 3, 4, with the violation probability10−6

in the network with SP scheduling. The total queueing delay experienced by Type-1 traffic when leaving
Nodeh includes the queueing delay experienced by Type-1 traffic at Nodeh, Nodeh − 1, and down to
Node 1. As expected, the probabilistic bounds for the total queueing delay experienced by Type-1 traffic
increase when the path traveled by Type-1 traffic increases. As a reference point, we also plot the worst
case queueing delay experienced by Regulated traffic. From Figure 9, for Regulated traffic, we observe that
the probabilistic bounds for the total queueing delay are dramatically smaller than the worst case queueing
delay. Note that the probabilistic bounds for FBM traffic are larger than those for Regulated or On-Off
traffic. For EDF and GPS scheduling algorithms, the end-to-end delay bounds experienced by Type-1 traffic
in the same network with the violation probability10−6 are similar to those in Figure 9 and omitted.

5.4 Example 4: Comparison to SBB calculus.

The next example compares network calculus results from this paper with thestochastic bounded burstiness
analysis developed in [45], referred to asSBB calculus. In the SBB calculus, arrival bounds take the form

Pr
{

A(t + τ) − A(t) ≥ ρτ + σ
}
≤ f(σ)

wheref(σ) is a function such that then-fold integration off , denoted by(
∫ ∞
σ du)nf(u), is finite. Arrival

models in this class include the FBM traffic model. In the network calculus, the effective envelope for SBB
arrivals of a flow are given byGε

i (t) = t + σ(ε), whereσ(ε) is obtained by solvingf(σ) = ε.
The analysis in [45] considers a single-node work-conserving system, and derives bounds on backlog

and output burstiness. The following example uses parameters from an example in ([45], Sec. IV.C). As
in [45], we consider a single-node system with service rateC, where all flows have a rateρ = 1 and a
burstiness bound offi(σ) = e−2.197σ + 10−4 · e−0.543σ . We modify the example from [45] in that we
consider a node with capacityC = 6 and with five flows, indexedi = 1, · · · , 5. For any work-conserving
service discipline, the backlog bound is computed with Theorem 3 in [45].

We first consider the aggregate backlog. In Table 3, we compare the aggregate backlog from all flows, as
obtained from Theorem 2 in [45] with those obtained with our Theorem 1 and Lemma 1 for various values
of the violation probabilityε. The table shows that the SBB calculus provides tighter backlog bounds for
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Table 3: Comparison of bounds for the aggregate backlog.

ε = 10−3 ε = 10−6 ε = 10−9

THIS PAPER SBB THIS PAPER SBB THIS PAPER SBB

30.2 20.5 100.4 66.8 168.5 130.4

the aggregate. The reason is that the derivation for the total backlog in the SBB calculus are done in a single
estimate, whereas the network calculus makes one estimate for the busy period and another estimate for the
backlog bound in Theorem 1.

The advantages of the network calculus approach become evident when we investigate the backlog of
individual flows. Here, we obtain an effective service curve for a flow using the leftover service curves from

Section 4. The resulting service curves are functions of the formSε
i (t) =

[
R · t − X(ε)

]
+

, whereR and

X(ε) are obtained from the SBB characteristics of the other flows. The backlog bound for a flow leaving
the system is given byb(ε) = Gε � Sε

i (0) following our Theorem 1.2. We analyze backlog bounds for all
scheduling algorithms considered in this paper. For the SP service discipline, we assign flowi a priority
index i. For GPS, we set the weight parameter equal at each node. For EDF, we set the flow-i delay index
equal toi.

Table 4: Backlog bounds for individual flows.

ε = 10−3 ε = 10−6 ε = 10−9

FLOW ID SP GPS EDF SP GPS EDF SP GPS EDF

1 3.72 6.06 8.19 12.97 20.06 50.2 27.21 33.7 91.1
2 5.09 6.06 12.19 18.24 20.06 54.2 34.91 33.7 95.1
3 7.07 6.06 15.19 25.09 20.06 57.2 45.75 33.7 98.1
4 10.37 6.06 17.19 36.38 20.06 59.2 63.84 33.7 100.1
5 18.19 6.06 18.19 60.2 20.06 60.2 101.1 33.7 101.1

Table 4 shows the results of the backlog analysis. A comparison of the per-flow backlog bounds in
Table 4 with the backlog bounds for the total traffic indicate that the per-flow bounds are much improved. In
particular, note that with SP scheduling the backlog bounds all flows, including that for the lowest priority
flow (Flow 5), are below the aggregate backlog bounds from Table 1. This demonstrates that the service
description in Lemma 3 captures properties of the particular scheduling algorithm.

Remarks: The SBB calculus in [45] does not offer delay bounds or multi-node results, and has not
been developed for non-FIFO scheduling algorithms. While it may be feasible to extend the SBB calculus
framework to consider per-flow bounds in various scheduling algorithms, and derive delay bounds, such
derivations will require a similar effort as the derivations in a min-plus algebra as done in this paper. It re-
mains open whether the statistical calculus can be strengthened to a degree that it yields backlog bounds that
are identical to those of the SBB calculus (from Table 1). For a subclass of so-calledexponentially bounded
burstiness(EBB) [51] the question has recently been answered in [18], which showed that a statistical net-
work calculus can faithfully reproduce single node results of the EBB calculus. For a multi-node setting, a
comparison of end-to-end performance bounds computed with the techniques from [51] to those obtained
with the statistical network calculus showed that delay bounds from [51] scale withO(

H3
)
, whereH is

the number of nodes, whereas the corresponding results in the statistical network calculus are bounded by
O (H log H).
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6 Conclusions

We have presented a statistical network calculus for determining delays and backlog where both arrivals and
service are described in terms of probabilistic bounds. We presented bounds on the queueing behavior in
terms of the min-plus algebra, and integrated the concept of effective bandwidth into the envelope-based
approach of the statistical network calculus. We derived backlog and delay bounds for several traffic models
(regulated, On-Off, FBM), and scheduling algorithms (SP, EDF, GPS). An important assumption for the
derived calculus is the existence of a time-scale bound at each node that decorrelates arrivals and departures.
For a single node, such a bound can often be obtained from an estimate on the busy period. For multiple
nodes, as seen in Example 3, we require additional assumptions, e.g., that traffic exceeding a maximum
delay be dropped. While such an assumption can often be justified, a goal of future work is to determine
when and how to dispense with such assumptions.
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To the Associate Editor:

Enclosed please find our revised paper and our responses to the reviewers. The editorial letter
requested that we address Comment 2 from Reviewer 1 and Comments 1 – 4 from Reviewer 3.
In addition, we have addressed all of the reviewers’ comments, and, whenever warranted, have
revised the paper to accommodate their suggestions.

In the following we discuss the comments of the reviewers in their order of appearance. Note
that, as a consequence of the extraordinary delay of almost 2 years of returning the reviews, re-
search on the network calculus that was done after the submission of this manuscript (sometimes
citing the unpublished manuscript) has appeared in print.

The paper has been extensively revised to address the issues raised by the reviewers. We em-
phasize that the paper did not require technical corrections. Specifically, the technical concern in
Comment 2 of Reviewer 1 assumes that a certain sufficient condition on the utilization that guar-
antees finite delay bounds is also necessary. However, the condition raised by the reviewer is not
a necessary condition.

Response to Reviewer 1

1) A Possible Lack of New Main Contributions

A main contribution of the paper is claimed to be the established
relation between the notion of effective bandwidth and a network
calculus. I am afraid that this may not be a sufficient finding
to make the paper a candidate for publication in IEEE ToN. The
paper appears to me incremental in the view of a large body of
the literature on probabilistic guarantees. What does the rela-
tion with effective bandwidth bring us? In one view, it would en-
able us to obtain probabilistic envelopes for bit arrival pro-
cesses by leveraging on effective bandwidth characterizations
that are known for some arrival processes. Some examples are giv-
en in Section 3.3-3.5 in the paper. However, some of these enve-
lope characterizations are either known or follow easily from
some related work. First, for regulated arrivals, we can use
Chernoff bound on the complementary distribution of bit arrivals
over a given time interval. The last is indeed maximized if we
replace the original process with another process whereas the
constituting arrival flows are Bernoulli with the probability
mass assigned to the end-points of the supports determined by the
arrival curve constraints; this would yield (60) in the paper.
Second, for the on-off Markov example, the same applies. The en-
velope for fractional Brownian motion may be new, but may also be
derived directly. For an arrival process, for which we know
bounds on its increments and a bound on means of the increments,
we can obtain an envelope function by using Hoeffding’s inequali-
ties. This was found in some related work. The arguments above
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may suggest that making a connection to effective bandwidth may
not yield us much.

We argue that establishing a connection between teletraffic theories, such as network calculus
and effective bandwidth, is significant. With the results of this paper much of the literature on the
effective bandwidth theory can be directly applied in the network calculus context. There are many
works that can now be replaced by simply applying effective bandwidth results.

With this paper, it is also feasible to analyze models that could not be analyzed before. As an
example, there are no results in the literature that have analyzed non-trivial scheduling algorithm
such as GPS or EDF with FBM traffic arrivals. Further, the calculus approach in the paper with
its separate arrival and service descriptions makes it possible to make a sensitivity analysis that
considers the impact of varying scheduling algorithms and arrival models and the multiplexing
gain. For example, our paper permits us to make statements that changing the scheduling algorithm
has a limited impact on the multiplexing gain.

The reviewer points out that for many specific systems a direct analysis is feasible. We strongly
agree and emphasize that for any given system a direct analysis may lead to tighter bounds. Without
arguing about the importance of having tight bounds, a direct analysis generally does not permit
a comparative sensitivity analysis of the impact of various scheduling disciplines (as pointed out
above). This is now discussed in the introduction.

We next respond in detail to the reviewer’s comments on Sections 3.3 – 3.5. The purpose of these
sections is to demonstrate with a few examples that envelope functions can be obtained easily with
Lemma 2 from known effective bandwidth expressions.

• Section 3.3: It is a misconception that Hoeffding’s inequalities can yield tighter bounds than
those obtained via the Chernoff bound from known effective bandwidth bounds. The bound
on the effective bandwidth of a collection of independent regulated flows in Section 3.3 is
in fact equivalent to Lemma 1 in [H63]. The subsequent application of our Lemma 2 in this
special case is equivalent to the Chernoff bound appearing in the proofs of the main theorems
in [H63]1. The famous Hoeffding’s inequality (see, e.g.,
http://en.wikipedia.org/wiki/Hoeffding’s inequality)
is the result of a further simplification and thus provides a bound that is less tight.

The reviewer mentions in passing related work where Hoeffding’s inequalities are used to
obtain performance bounds for independent regulated arrivals. He may be referring to [V03]
which applies Lemma 1 from [H63] and the Chernoff bound to obtain backlog bounds,
and [B00], where a different construction of the envelope in Section 3.3 is used to analyze
scheduling conditions for various schedulers. Since these are strictly single-node results and
apply only to multiplexed regulated traffic models, the present paper is not the right place
for an extensive numerical comparison.

• Section 3.4: The above discussion of Hoeffding’s inequality applies also to Section 3.4.
Moreover, the analysis of Section 3.4 is easily extended to the more general case of Markov-
Modulated On-Off processes by using known results on the effective bandwidth of such a
process [K96].

1See references at the end of this document.
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Comment 2: A Technical Problem for Network Case

The paper may give impression that the proposed probabilistic
network calculus applies well for a network of nodes. This may
not be quite true. I appreciate an honest remark made by the au-
thors along this line in Section 6. However, it appears to me
that there is still an additional difficulty to apply the calcu-
lus to the network case. This I point out now.

Consider a tandem of nodes, assumed to be FIFO, work-conserving,
with a service rate of c. Let the nodes be labeled 1 to h. Let
there be one bit arrival process that traverse the nodes 1 to h.
Assume the bit arrival process at the input to the node 1 is
leaky-bucket (rho,sigma) constrained. Now, recall Section 2.6,
page 11. It tells us to bound the bit arrival process to a node
over a given time interval with the bit arrival process to the
node 1 over an appropriately enlarged time interval. This gives
us an envelope for the arrival process to a node in the network.
Now, our node is FIFO and offers a service curve, so that we can
compute the worst-case delay through a node as a maximum horizon-
tal deviation between the arrival envelope and the service curve.
If the arrival envelope is with high probability (w.h.p), then
the delay bound is with a high probability. In a loose notation,
this gives us

d <= sigma/c + rho/c(h-1)d (w.h.p)

The result is that we have a bound on delay that holds only for
sufficiently small loads. The paper does not state to have a
problem with this and definitely does not address the issue. I
consider this to be a serious technical problem that would pre-
clude the proposed probabilistic calculus to apply for network
case. From the results of deterministic network calculus, we know
that for a network with aggregate scheduling, under some more
general assumptions than introduced insofar, we know a finite
worst-case bound on delay for rho/c < 1/(h-1). Under the same as-
sumptions, we do not know a bound for any rho/c<1.

There is no technical problem. The results in our paper are correct and consistent with determin-
istic and statistical delay bounds published in the literature. Presumably, the reviewer refers to a
result that appears in [Charny00]. Specifically, the cited delay bound and utilization threshold cited
above can be directly related to Theorem 1 in [Charny00], in the special case where no bound on
the peak rate is available and packetization effects are neglected. The theorem states that as long
as each flow visits at most h nodes in the network and the link utilization is less than 1/(h − 1), a
certain explicit delay bound holds. The theorem requires no further assumptions on arrival mod-
els, network topology, or routing. It is known to be sharp in the sense that for higher utilizations,
explicit delay bounds require additional information on the network topology and routing.
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However, the theorem does not say that finite delay bounds are generally impossible for ρ/c >
1/(h − 1). In fact, such a statement would be false regardless whether the analysis is probabilistic
or deterministic. Specifically, in any feedforward network topology, finite delay bounds are known
to exist for any value of the utilization ρ/c < 1. In other words, the utilization bound cited by the
reviewer is a sufficient condition for the above delay bound, but it is not necessary.

Even though the concern about correctness is not warranted, the reviewer raises an important,
but almost certainly very challenging problem for the stochastic network calculus: Is it possible to
devise a utilization bound in a stochastic setting that yields finite delays regardless of topology?
Can the result of [Charny00] be extended beyond the regime ρ/c < 1/(h− 1) by taking advantage
of statistical multiplexing? Can it be applied to arrival models that do not have finite worst-case
bounds? The current state-of-the-art of the stochastic network calculus does not provide a handle
to address these questions.

3) Miscellaneous Comments

- It would be nice to see some non-academic references to exem-
plify the use of the concept of the effective bandwidth in prac-
tice in order to better support the claimed importance.

As an example of non-academic references that use notions of the Effective Bandwidth, we offer
the following US patent filings:

• 6,922,564, Admitting data flows to a multiple access network, Filed: May 30, 2003 (Mo-
torola)

• 6,982,964, High performance ECL-to-ATM protocol network gateway, Filed: October 15,
2001

• 6,891,798, Estimating equivalent bandwidth capacity for a network transport device using
on-line measurements, Filed: Feb 2, 2000 (Cisco)

• 6,697,369 Admission control adjustment in data networks using maximum cell count, Filed:
Sep 28, 1999

In total, we found more than 70 US patents issued that relate to various forms of ”effective
bandwidth” in their abstracts. We will be happy to comply with the reviewers’ request and include
references to these or other patents. However, since it is uncommon to reference patent filings
in IEEE or ACM journals, we refer to the Associate Editor for a decision whether to add these
citations.

- Some care may be exercised with the assumption that 0 falls
into a queue idle period.

There are two equivalent ways for obtaining bounds for the steady-state backlog, delay, and
output burstiness:
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• Assume the system is in the steady state. Then the backlog B(t), the delay W (t), and the
output D(t, t + τ) over an interval of length τ are stationary. Hence it suffices to study
the distributions of B(0), W (0) and D(0, τ). By [Chang00], Lemma 9.1.4, the steady-state
backlog and delay stochastically dominate the backlog and delay observed in a system that
started with empty queues. This approach is used, for example, in [V03].

• Start with empty queues at t = 0, and prove bounds on B(t), W (t) and D(t, t + τ) that do
not depend on t. Since backlog and delay are stochastically increasing in t by ([Chang00],
Lemma 9.1.4), such stationary bounds are automatically valid also in the steady-state. This
is the approach used in our paper.

Choosing one or the other method is strictly a matter of technical convenience. We have added
an explaining paragraph in Section 2.1, directly after the assumption that all network queues are
empty at t = 0.

- The statement in Section 2.3, while referring to some related
work, "... have been derived for FIFO schedulers with a fixed
service rate" is incorrect. Some of the cited work do indeed as-
sume nodes to offer a service curve, with neither FIFO nor work-
conserving assumption.

The sentence has been corrected.

- I suggest making some of the assumptions of the paper transpar-
ent in the Introduction whereas some of the results are an-
nounced. In particular, the fact that the paper redefines min-
plus convolution and the fact that the paper assumes a packet
discard whenever delay exceeds a fixed value.

Presumably this refers to the appearance of the time scale T at the beginning of Section 2.5. The
paper does not redefine the min-plus convolution. Assumptions on T are stated explicitly every
time they are used (see Theorems 1 and 2). The paper has been revised in the introduction to state
assumptions at the beginning of the paper.

Please see the response to Reviewer 3 for a detailed discussion of the role of T , and the pertinent
revisions.

- I do not quite favour proposing a network calculus for service
curve nodes, and then making additional assumptions, such as FI-
FO, work-conserving, constant service rate. This is done at some
places in the paper in an ad-hoc manner. I would prefer more to
see an analysis that would carry on under the assumption of ser-
vice curve nodes. Other node abstractions may be too restrictive
in practice, such as for example assuming a strict service curve,
as assumed for some of the results.
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The paper is rigorous and there are no hidden or ad-hoc introduced assumptions. Lemma 1 and
Lemma 3 extend to nodes that provide a strict service curve SC(t), if Ct is replaced with SC(t)
throughout. If a node offers to an aggregate of flows a service curve SC(t) that is not strict, then
the conclusion of Lemma 3 is weakened to

Sεs
q (t) = SC(t) −

∑

p<q

Gεg
p (t)

in the case of a SP scheduler, and correspondingly for EDF and GPS. The busy period bound in
Lemma 1 remains a bound on the range of the convolution.

- There is no consideration of the packetization effects.

It is possible to account for packetization by convolving at each node with an appropriate (de-
terministic or stochastic) pure delay service curve, but this paper does not explicitly address pack-
etization.

- The proposal to bound the arrival process of bits as done in
the paper to deal with the network case was already proposed in
an early paper by Kurose [32], and used by others since then.
This is not appropriately referenced.

We insist that the discussion of related work is adequate. We provide full and generous credit to
related work, including the contributions of Kurose.

- One may perhaps relate the priority-multiplexing formulas found
in Lemma 3 with those of deterministic network calculus, e.g.
Theorem 2.4.1 in the reference [9] of the paper.

We have added a reference to the corresponding deterministic left over service curve.

Response to Reviewer 3

The reviewer refers in the comments to the implications of the definition of the service curve and
the relationship to the SBB framework. The main concern in the review is the role of the time scale
T in Eqn. (10), and its relation to the definition of the service curve in Eqn. (4).

Comment 1:

First, as a probabilistic extension of deterministic service
curve, a reader would expect to recover the deterministic service
curve from Eqn. (10). However, this can hardly be done because of
the additional requirement on the existence of the time scale T.
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We have revised the paper and now explain in Section 2.6 how to recover the deterministic
service curve as ε → 0. If a node offers a (deterministic) service curve to a flow (i.e., D(t) ≥
A ∗ S(t)), we argue that the desired time scale bound is provided by

T = sup{τ ≥ 0 | A∗(τ) > S(τ)}.

Indeed, A ∗ S(t) = infτ≤T A(t − τ) + S(τ), and thus Eqn. (1) implies that Eqn. (10) holds with
ε = 0. Furthermore, as ε → 0, the value of T becomes irrelevant in Theorem 1 and 2, so that these
also reduce to their classical deterministic counterparts as ε → 0.

The above value of T is finite under the stability condition that the service curve eventually
catches up on the arrival envelope. If the stability condition is violated, backlogs and delays need
not be bounded. Note that this argument uses only the definition of the service curve in Eqn. (1)
and does not require a work-conserving system or the concept of a busy period.

Comment 2:

Second, while not explicitly stated, Eqn. (10) makes additional
requirement on traffic. This is because, as stated in the paper,
the time scale is related to the maximum length of busy periods
of the considered server, and it is known that the length of a
busy period highly depends on the input traffic. Indeed, this is
also implied by Lemma 1, where, in order to determine the time
scale, the traffic needs to satisfy Eqn. (34). In other words, if
Lemma 1 is the only result that can be relied on to find the time
scale T, the paper does also (implicitly) have a priori assump-
tion on the traffic. The paper should clarify this, since other-
wise a reader might be misled that results in the paper had made
no assumption on the traffic arrival.

This comment has been thoroughly addressed in the revised paper, and several clarifications
have been added. In particular, a discussion has been added to the Introduction, and the entire
Section 2.6 has been rewritten.

The motivation for the time bounds, while mentioned, was not stressed in the original paper.
Note that in Section 2.4 (What makes Calculus hard?), we list issues that make the network calculus
difficult. At several places (below Eqn. (7) and Eqn. (9)) we mentioned that the difficulties can
be dealt with if appropriate time bounds are available. Now, in this paper, we explore a network
calculus that exploits such time scale bounds throughout. As pointed out in the review, time scale
bounds can be obtained from the properties of traffic. However, there are other ways to obtain
time scale bounds. For example, in the second half of Section 2.6 (after Eqn. (41) of the original
submission, we discuss (and later exploit) that a priori delay thresholds or dropping policies can
also result in time scale bounds. Based on the above comments, we have added a discussion in
the Introduction that states that this paper attempts to explore a network calculus with time scale
bounds.

Comment 3:

Third, Lemma 1 plays the critical role in deriving the maximum
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time scale throughout the paper. However, as stated above, Eqn.
(34) in it is indeed a requirement on the traffic. This require-
ment has also been used in the literature (e.g. SBB [S00]), with
which, similar bounds as in Theorem 1 have been derived. It
would be interesting to compare bounds in Theorem 1 and the cor-
responding ones in [S00]. (Although in [S00], the considered serv-
er is FIFO, the extension to other types of servers can also be
done by using, say, the approach in Lemma 3 of the paper or other
approaches in the literature.) The comparison could help con-
vince readers the rationale of introducing the requirement of the
time scale.

We have reformulated Lemma 1 to make the conditions on A explicit (the previous formulation
has moved to the second half of Section 2.6). As we explain after the proof of the lemma, the
assumption amounts to two conditions, the network stability condition that the average arrival rate
should lie below the capacity of the server (ρ < C), and an assumption on the tail of the arrival
distribution. The condition on the tail of the arrival distribution is more technical and can possibly
be relaxed by using different analytical techniques. We point out that this condition is satisfied by
many commonly used arrival models. It is less restrictive than the SBB condition used in [S00]
(which requires the tail of the arrival distribution to decay faster than any polynomial).

Following the reviewer’s suggestion, we have added a numerical experiment comparing our single-
node results (Lemma 3 + Lemma 1 + Theorem 1) with the main result in [S00], which is stated for
a single-server system with any work-conserving service discipline.

We concur with the reviewer that the approach of Lemma 3 could be used to extend the results in
[S00] to other types of servers. Such an extension might also be able to provide end-to-end delay
bounds. Similarly, it would be interesting to compare out multinode bounds (Lemma 3 + Lemma 1
+ Theorem 2 + Theorem 1) with the backlog bounds obtained by iterating the input-output relation
from Theorem 3 in [S00]. These in-depth comparisons lie beyond the scope of the current paper,
and we leave them for future work.

We note in passing that no delay bounds are stated in [S00]; the related work [Y93] suggests
to estimate per-flow delay bounds with the length of the busy period, which is comparable to our
time scale T .

Comment 4:

Fourth, since Lemma 1 used for obtaining the time scale is indeed
an additional requirement on traffic, it is hence required for
the authors to provide other results that not only can be used to
determine the time scale but also really decorrelate arrivals and
departures. Otherwise, using Eq. (10) as a general service model
for the probabilistic extension of network calculus is not con-
vincing. (As stated in the paper, there are special cases where
with additional requirements on the server and/or the tracc, the
time scale can be easily determined. The paper could be re-posi-
tioned for such cases, while not for general cases.)
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Response: This is addressed in the revised Introduction and Section 2.6. We stress that Eq. (10)
does not constitute a new service model; we identify the time scale T as a relevant quantity that
needs to be controlled. Ideally, the Statistical Network Calculus should be able to provide estimates
of T along with backlog and delay bounds at each node from effective envelopes at the ingress
nodes; else, bounds on T can be deduced from external assumptions such as a priori limits on
delay or buffer size. We now discuss the role of such external assumptions in the introduction as
well as in Section 2.6.
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