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Abstract—We provide an analytical proof that the departure
rate of a CBR flow at an overloaded link with FIFO buffers is
proportional to the flow’s share of the total offered load at the
link. This property of FIFO scheduling was recently validated
in [1] in a series of traffic measurement experiments. An extension
of the analysis to a multi-node scenario shows that the output
rate of a flow in a network with many overloaded FIFO switches
approaches the pessimistic values given by blind multiplexing.

I. INTRODUCTION

THE dispersion of traffic passing through a packet switch
plays a central role in traffic measurement methods that

seek to infer information about the residual bandwidth on a
link or a network path. As an example, when two equally
sized packets are transmitted back to back to some remote
destination, the dispersion of these packets, i.e., the time gap
between their arrival at the destination, can be used to infer the
capacity of the lowest capacity link on the traversed network
path [2]. More recently, the dispersion of longer sequences of
probe packets, called packet trains, has been studied to obtain
estimates of the available bandwidth on a link or network path,
e.g., [3]. Frequently, such estimation methods employ constant
bit rate (CBR) packet trains, with fixed spacing between
subsequent packets, e.g., [4].

The point of departure for this note is a recent study on
available bandwidth estimation which measured the packet
dispersion of a CBR packet train at a First-in-First-Out (FIFO)
link with cross traffic [1]. FIFO is a work-conserving schedul-
ing algorithm where backlogged traffic is transmitted in the
order of arrival. At a FIFO link with capacity C that sees
arrivals from a CBR packet train with rate rp,in and from
CBR cross traffic with rate rc, the output rate of the packet
train, rp,out, was found to approximately satisfy

rp,out =
{
rp,in if rp,in ≤ C − rc

rp,in

rp,in+rc
C if rp,in > C − rc. (1)

Thus, the output rate of probe traffic at an overloaded FIFO
link is a fraction of the link capacity that is proportional
to its share of the total offered load. In [1], Eq. (1) was
validated using measurements of packet-level traffic in a
testbed network. While this property of FIFO links may appear
intuitive, a formal proof of Eq. (1) does not appear to exist in
the literature.
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The relevance of Eq. (1) becomes evident, when we study
its implications. For example, we can use the equation to show
that service curves appearing in the network calculus [5] are
unable to accurately characterize FIFO scheduling. Further,
when applied to a multi-node network, Eq. (1) implies that
the service of a flow in a FIFO network may asymptotically
degrade to that experienced by a low-priority flow.

Prior work on FIFO networks with CBR traffic is discussed
in [6], [7]. For more general traffic, research on networks with
FIFO scheduling has derived worst-case bounds on delays and
other metrics, but has generally not considered overloaded
links. For example, an analysis of FIFO scheduling for general
deterministically bounded traffic is given in [5]. End-to-end
delays for FIFO networks with leaky-bucket shaped traffic are
derived in [8].

The rest of the paper is organized as follows. In Section II
we present our system model. In Section III we formulate and
prove the output characterization of CBR traffic at a single
FIFO link. We extend the output characterization to multiple
links in Section IV and study its asymptotic behavior. In
Section V we present brief conclusions.

II. SYSTEM MODEL

We study the performance of (through) traffic that traverses
a sequence of N nodes as shown in Figure 1. At each node,
through traffic is statistically multiplexed with cross traffic at
a buffered link with a fixed-rate capacity C. Links are work-
conserving in the sense that they transmit at rate C whenever
there is traffic to be transmitted. We do not consider losses
due to buffer overflows, by assuming that buffers have infinite
size. For the purposes of this study, we consider a fluid flow
traffic model, where arrivals and departures are represented as
continuous functions. Through and cross traffic may consist
of a single traffic flow or an aggregate of flows.

The study applies the traffic representation of the network
calculus [5], where arrivals and departures are represented by
non-negative non-decreasing functions. We denote by A0,n(t)
and D0,n(t) the arrivals and departures, respectively, of the
through traffic at the n-th node in the time interval (0, t] with
t ≥ 0, with A0,n(0) = D0,n(0) = 0 and A0,n(t) ≥ D0,n(t)
for all t ≥ 0. Arrival and departures of cross traffic at the n-th
node are denoted by Ac,n(t) and Dc,n(t). The total arrival and
departure traffic at the n-th node are denoted by Atot,n(t) =
A0,n(t) + Ac,n(t) and Dtot,n(t) = D0,n(t) + Dc,n(t), re-
spectively. For the through traffic we have in addition that
D0,n(t) = A0,n+1(t) for n < N .

In the network calculus, the input-output relationship of traf-
fic at a node is characterized by non-negative non-decreasing
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Fig. 1. Network of nodes with through traffic and cross traffic.

functions, called service curves. A function S0,n that satisfies

D0,n(t) ≥ inf
s≥0
{S0,n(s) +A0,n(t− s)} , ∀t ≥ 0 , (2)

is a (lower) service curve of the through traffic at the n-th node
[5]. A service curve expresses service guarantees as a linear
combination in a min-plus algebra, i.e., an algebra where the
conventional addition is replaced by a point-wise minimization
and the conventional multiplication is replaced by an addition.

III. SINGLE-NODE OUTPUT CHARACTERIZATION

Theorem 1 states the correctness of the output characteri-
zation for CBR traffic at a FIFO link from Eq. (1) in terms
of our system model. Since we consider only a single node in
this section, we drop the subscript ‘n’ for arrival and departure
functions.

Theorem 1: Consider two CBR flows (or flow aggregates)
sharing a workconserving FIFO link with capacity C and
unlimited buffer size. Let A0(t) = r0t and Ac(t) = rct denote
the arrivals of the through traffic and the cross traffic with
r0, rc ≥ 0. Then, the departures D0 are characterized for all
t ≥ 0 by

D0(t) =
{
r0t if C ≥ r0 + rc

r0
r0+rc

Ct if C < r0 + rc. (3)

Proof: Fix t > 0 and define t− x̂ ≤ t as the beginning of
the busy period containing time t. In other words, t− x̂ is the
last time before or at time t when all arrivals have departed
the link, that is,

t− x̂ = sup{υ ≤ t | Atot(υ) = Dtot(υ)}. (4)

By the above definition, we have D0(t−x̂) = A0(t−x̂). Since
the link is work-conserving, it is transmitting in the interval
[t− x̂, t] with rate C, yielding

Cx̂ = Dtot(t)−Dtot(t− x̂). (5)

To derive the departure characterization, we now distinguish
two cases.
Case 1: C ≥ r0 + rc. We derive as follows:

Dtot(t) = Atot(t− x̂) + Cx̂

≥ Atot(t− x̂) + (r0 + rc)x̂
= Atot(t),

where we use Eqs. (4) and (5) in the first line, the assumption
C ≥ r0 + rc in the second line, and the fact that Atot(t) =
(r0 + rc)t in the third line. It follows that D0(t) = r0t.

Since no assumption on FIFO scheduling was made, the
characterization holds for any work-conserving scheduler in
an underload condition.

Case 2: C < r0 + rc. With Atot(s) = (r0 + rc)s and
Dtot(s) ≤ Cs for all s ≥ 0, Eq. (4) implies that at s = t− x̂
we have

(r0 + rc)(t− x̂) ≤ C(t− x̂) .

Since, at the same time, C < r0 + rc, we have that x̂ = t.
Now, let us denote by û the last arrival time of through

traffic that will depart the link by time t, that is

û = sup{υ ≤ t | A0(υ) = D0(t)} .

Since we have a FIFO link and CBR fluid-flow arrivals, we
also have that all cross traffic that arrives in [0, û] departs by
time t. Thus, Dc(t) = rcû and, therefore, Dtot(t) = Dc(t) +
D0(t) = (r0 + rc)û. Combining this with Eq. (5) yields (rc +
r0)û = Ct. Rearranging the equation and using that D0(t) =
A0(û) = r0û we obtain D0(t) = r0

r0+rc
Ct.

In the next section, we will compare the output character-
ization in a multi-node network with FIFO scheduling to the
output of low-priority traffic with work-conserving (static) pri-
ority scheduling. With priority scheduling, low-priority traffic
is transmitted only when there is no backlog from high-priority
traffic. Since low priority traffic at a priority scheduler yields
pessimistic bounds for the performance in terms of delay,
backlog, or throughput for many work-conserving scheduling
algorithm, this case is also called blind multiplexing [5]. We
present the output characterization of blind multiplexing as a
corollary to Theorem 1. (We point out that this characterization
is known to hold, even for very general traffic arrival models
[5])

Corollary 1: With the assumptions of Theorem 1, where
we replace FIFO with priority scheduling, with cross traffic
having high priority and through traffic having low priority,
the departures of the through traffic are given for all t ≥ 0 by

D0(t) =
{
r0t if C ≥ r0 + rc
[C − rc]+t if C < r0 + rc, (6)

where we use the notation [expr]+ = max{expr, 0}.
Proof: Fix t ≥ 0. For C ≥ r0 + rc, we can use the

corresponding proof in Theorem 1 since there is no assumption
on FIFO scheduling. If C < r0 +rc, it again holds that x̂ = t,
i.e., the busy period starts at time 0. Thus, we have Ct =
Dtot(t) = Dc(t) + D0(t). If C ≤ rc, then there is always
cross traffic in the buffer and no through flow will ever be
served, i.e., D0(t) = 0. For C > rc, any arrival from cross-
traffic will be served immediately without buffering, that is,
Ac(s) = Dc(s) for all s ≤ t, and the through flow departures
are determined by the unused capacity, i.e., D0(s) = Cs −
Dc(s) = (C − rc)s, which completes the proof.

In [9], it was suggested (without proof) that the conjecture
of Eq. (1) implies a service curve S0(t) = [C − rc]+t for FIFO
links with CBR traffic. The next corollary provides a proof
of this and further shows that the rate of this service curve
cannot be improved. This means that the service guarantees
of a service curve for a FIFO link are not stronger than
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the pessimistic guarantees of blind multiplexing. This weak
guarantee may appear at odds with the much stronger output
guarantee given by Theorem 1. However, it merely points
out a limitation in the network calculus, which is unable to
accurately characterize the service at a FIFO link in terms
of a min-plus linear combination as in Eq. (2). We note that
generalizations of the service curve concept may be more
suitable for capturing such non-linearities [10].

Corollary 2: At a FIFO link satisfying the assumptions of
Theorem 1, S0(t) = [C − rc]+t is a lower service curve of
the through traffic with maximal (long term) rate.

Proof: The service curve S0 must satisfy Eq. (2) for
any choice of A0(t) = r0t and the corresponding output D0

as given by Theorem 1. For C ≥ r0 + rc, this holds since
Theorem 1 gives D0(t) = r0t = infs≥0{S0(s) + r0(t − s)}.
For C < r0 + rc, Theorem 1 gives D0(t) = r0C

r0+rc
t, and

infs≥0{S0(s) + r0(t− s)} = [C − rc]+t; Eq. (2) then follows
since r0C

r0+rc
≥ [C − rc]+.

Now suppose the rate is not maximal. Consider S′(t) = [C −
rc +ε]+(t−δ), for some ε > 0 and some δ ≥ 0. S′ is a lower
bound for any service curve with a long term rate exceeding
[C − rc]+. We can compute infs≥0{S′(s) + r0(t − s)} =
min([C − rc]+ + ε, r0)(t − δ). When r0 + rc > C, Eq. (2)
thus states that

r0C

r0 + rc
t ≥ min{[C − rc]+ + ε, r0}(t− δ) , ∀t ≥ 0,

Dividing by t and letting t → ∞, we see that any choice of
r0 < [C − rc]+ + ε yields a contradiction.

IV. MULTI-NODE OUTPUT CHARACTERIZATION

We next show that, in a multi-node setting, the departure
traffic passing through a sequence of FIFO queues can degrade
to that observed with blind multiplexing. We assume a network
as shown in Fig. 1 with N nodes with fixed capacity C and
FIFO schedulers. Through traffic arrives to the first node as
CBR fluid-flow traffic with rate r0. At each node, we assume
CBR cross-traffic with the same rate rc. The following theorem
characterizes the through traffic that departs from the last node.

Theorem 2: Under the assumptions stated above, if the
number of nodes grows large (N → ∞), departures of the
through traffic from the last node, denoted by D0,∞, are
characterized for all t ≥ 0 by

D0,∞(t) =
{
r0t if C ≥ r0 + rc
[C − rc]+t if C < r0 + rc. (7)

Proof: If r0 + rc ≤ C, then by Theorem 1, the through
flow arrival and departures from the first node are equal and
D0,1(t) = A0,1(t) = r0t. Since the arrivals to the n-th nodes
are equal to the departures of the (n − 1)-th node, we get
D0,∞(t) = A0,1(t) = r0t.

Now we consider r0+rc > C. If rc = 0, then D0,n(t) = Ct
for all 1 ≤ n ≤ N , and Eq. (7) obviously holds. For rc > 0,
we will show by induction over the number of nodes n, that
the through traffic departures from the n-th node (1 ≤ n ≤ N )
satisfy D0,n(t) = r0,nt, with

r0,n =
r0,n−1C

r0,n−1 + rc
, (8)

where we set r0,0 = r0 to be the arrival rate at the first node.
Moreover, we will show that for all 1 ≤ n ≤ N , we have that

[C − rc]+ < r0,n < r0,n−1. (9)

For n = 1, the validity of Eq. (8) follows from Theorem 1.
With r0 > 0, r0 + rc > C, and A0,1(t) > D0,1(t), we also
obtain Eq. (9).

Now assume that the departure rate of the through traffic
from the k-th node is given by r0,k = r0,k−1C

r0,k−1+rc
and that

[C−rc]+ < r0,k < r0,k−1. Recall that D0,k(t) = A0,k+1(t) =
r0,kt. Thus, with the induction assumption C − rc < r0,k,
we obtain from Theorem 1 that the departure rate is given
by r0,k+1 = r0,kC

r0,k+rc
. Moreover, with rc > 0 we have that

r0,k+1 < r0,k, and since r0,k > 0 and r0,k + rc > C, by
assumption, we obtain [C − rc]+ < r0,k+1 < r0,k, which
completes the induction.

According to Eq. (9), the rate of through flow departures
strictly decreases in n. Since the departure rate is also lower
bounded by [C − rc]+, we obtain r0,∞ = [C − rc]+.

Likewise, an iterative application of Corollary 1 yields that
Theorem 2 also holds for blind multiplexing. Thus, the output
rate of a CBR traffic flow or flow aggregate that traverses
a long path of overloaded FIFO scheduler approaches the
pessimistic rate obtained with blind multiplexing.

V. CONCLUSION

We analytically proved a conjecture that the departure rate
of a CBR flow to a FIFO link is proportional to its share of the
total offered load. Studying the implications of this property,
we were able to gain new insights into FIFO scheduling. We
showed that it is not feasible to give an accurate charac-
terization of the service at a FIFO link in terms of service
curves. Further, for CBR traffic arrivals we showed that the
throughput under FIFO scheduling offers no improvement over
blind multiplexing, when the number of nodes grows large.
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