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Network-Layer Performance Analysis of Multi-Hop
Fading Channels

Hussein Al-Zubaidy, Jörg Liebeherr, Almut Burchard

Abstract—A fundamental problem for the delay and backlog
analysis across multi-hop paths in wireless networks is how to
account for the random properties of the wireless channel. Since
the usual statistical models for radio signals in a propagation
environment do not lend themselves easily to a description of
the available service rate, the performance analysis of wireless
networks has resorted to higher-layer abstractions, e.g., using
Markov chain models. In this work, we propose a network
calculus that can incorporate common statistical models of fading
channels and obtain statistical bounds on delay and backlog
across multiple nodes. We conduct the analysis in a transfer
domain, where the service process at a link is characterized by
the instantaneous signal-to-noise ratio at the receiver. We discover
that, in the transfer domain, the network model is governed by a
dioid algebra, which we refer to as the (min,×) algebra. Using
this algebra we derive the desired delay and backlog bounds.
Using arguments from large deviations theory, we show that the
bounds are asymptotically tight. An application of the analysis
is demonstrated for a multi-hop network of Rayleigh fading
channels with cross traffic at each hop.

I. INTRODUCTION

Network-layer performance analysis seeks to provide es-
timates on the delays experienced by traffic traversing the
elements of a network, as well as the corresponding buffer
requirements. For wireless networks, a question of interest is
how the stochastic properties of wireless channels impact delay
and backlog performance. Wireless channels are characterized
by rapid variations of the channel quality caused by the
mobility and location of communicating devices. This is due
to fading, which is the deviation in the attenuation experienced
by the transmitted signal when traversing a wireless channel.
The term fading channel is used to refer to a channel that
experiences such effects. In this paper we explore the network-
layer performance of a multi-hop network where each link is
represented by a fading channel.

We model the multi-hop wireless network by tandem queues
with randomly varying capacity servers, where each server
represents the random capacity of a fading channel. We assume
that the transmission rates over the fading channels are equal
to their information-theoretic capacity limit in bits per second,
C. The capacity limit is expressed as a function of the
instantaneous signal-to-noise ratio (SNR) at the receiver, γ, by
C(γ) = W log2(1 + γ), where W is the channel bandwidth
(in Hz). This model assumes the existence of a channel coding
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scheme that achieves the channel capacity with arbitrarily
small error probability. It does not take into consideration
the relationship between codeword length and available link
capacity, i.e., that transmission of long codewords requires
additional link capacity, whereas short codewords induce trans-
mission errors that trigger retransmissions. Numerous models
are available to describe the gain of fading channels depending
on the type of fading (slow or fast), and the environment (e.g.,
urban or rural). We express the capacity of a fading channel as
the natural logarithm of a function of γ by (see Chapter 14.2
in [30])

C(γ) = c log g(γ) , (1)

where c is a constant and g(γ) is used to characterize the
fading channel. We are interested in finding bounds on the
end-to-end delay and backlog for a cascade of fading channels,
with store-and-forward processing at each channel.

The analysis in this paper follows a system-theoretic
stochastic network calculus approach [18], which describes
the network properties using a (min,+) dioid algebra. Arrival
and departure processes at a network element are described by
bivariate stochastic processes A(τ, t) and D(τ, t), respectively,
denoting the cumulative arrivals and departures in the time in-
terval [τ, t). A network element is characterized by the service
process S(τ, t), denoting the available service in [τ, t). The
input-output relationship at the network element is described
by

D(0, t) ≥ A ∗ S(0, t) , (2)

where the (min,+) convolution operator ‘∗’ is defined as
f ∗ g(τ, t) = infτ≤u≤t{f(τ, u) + g(u, t)}. If network traffic
passes through a tandem of N network elements with service
processes S1, S2, . . . , SN , then the traffic will see a network
service process that is given by S1 ∗ S2 ∗ . . . ∗ SN .

The stochastic properties of fading channels present a chal-
lenge for a network-layer analysis since the service processes
corresponding to the channel capacity of common fading
channel models, such as Rician, Rayleigh, or Nakagami-m,
require to take a logarithm of their distributions. As discussed
in the next section, researchers frequently turn to higher-layer
abstractions in order to overcome the difficulty of working
directly with these distributions. Widely used abstractions are
the two-state Gilbert-Elliott model and its extension to a finite-
state Markov channel (FSMC) [31]. FSMC models simplify
the analysis to a degree that the network model becomes
tractable, at least at a single node. Extensions to multi-hop
settings encounter a rapidly growing state space. As of today, a
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general multihop analysis that is applicable to common fading
channel models remains an open problem.

In this paper, we pursue a novel approach to the analysis
of multi-hop wireless networks. We develop a calculus for
wireless networks that utilizes a service description in terms of
a physical-layer fading channel model and a traffic description
based on network-layer traffic models in order to provide end-
to-end performance bounds. We view the network-layer model
with arrival, departure and service processes as residing in a bit
domain, where traffic and service is measured in bits. We view
the fading channel models used in wireless communications
as residing in an alternate domain, which we call the SNR
domain, where channel properties are expressed in terms of
the distribution of the signal-to-noise ratio at the receiver. We
then derive a method to compute performance bounds from
these traffic and service characterizations.

A key observation in our work is that service elements in
the SNR domain obey the laws of a dioid algebra. We devise a
suitable dioid, the (min,×) algebra, where the minimum takes
the role of the standard addition, and the second operation
is the standard multiplication, and use it for analysis in the
SNR domain. In this domain, multi-hop descriptions of fading
channels become tractable. In particular, we find that a cascade
of fading channels can be expressed in terms of a convolution
in the new algebra of the constituting channels. The key to
our analysis is that we derive performance bounds entirely in
the SNR domain. Observing that the bit and SNR domains
are linked by the exponential function, we transfer arrival and
departure processes from the bit to the SNR domain. Then,
we derive backlog and delay bounds in the transfer domain
using the (min,×) algebra. The results are mapped back to the
original bit domain to finally give us the desired performance
bounds. Using results from large deviations theory, we show
that our bounds are asymptotically tight. Our derivations in
the SNR domain require the computation of products and
quotients of random variables. Here, we use the Mellin trans-
form to facilitate otherwise cumbersome calculations. Then,
the computational problem is reduced to finding the Mellin
transform for service and traffic processes. Although, the
mapping from (min,+) algebra to (min,×) algebra is one-
to-one, the (min,×) algebra is better suited for the analysis
of wireless networks performance.

The main contribution of this paper is the development of
an alternative approach for modeling the impact of channel
gain models on the network-layer performance of wireless
networks. For the purposes of this paper, the SNR domain
is used solely as a transfer domain that enables us to solve
an otherwise intractable mathematical problem. On the other
hand, the ability to relate quantities that appear in network-
layer models and concepts found in a physical-layer analysis
may prove useful in a broader context, e.g., for studying
cross-layer performance issues in wireless communications.
Moreover, the (min,×) algebra and the Mellin transform form
a tool set that can be applied more generally in wireless
communications for studying the channel gain of cascades of
fading channels.

We emphasize that this paper only considers simple network
scenarios and makes numerous convenient assumptions (which

are made explicit in Sec. III).
In addition to the channel capacity model, which ignores

the effects of finite code block lengths, we assume a time
slotted system where the signal-to-noise ratio in each time
slot is independent and identically distributed. This assumption
is justified when the sampling intervals for the channel state
are longer than the channel coherence time. We also assume
that fading remains constant during the length of the sampling
interval. A channel model that conforms to these assumptions
is block fading without memory [29]. Frequency hopping
(FH) is a system where such a channel model applies [19].
This results in an idealized analytic model of the wireless
channel. Refinements of the model that account for finite
codeword lengths, imperfect coding and decoding, and fading
channels with memory, all of which result in a discounted
service process, are left for future work. We emphasize that
the network calculus methodology can be applied to settings
without independence, i.e., channels with memory. This re-
quires additional model parameters to characterize the time
correlations. Relaxations of other assumptions, as well as
extensions of the presented model using a network calculus
methodology remain open research problems.

The remainder of the paper is organized as follows. In
Sec. II we discuss related work. We describe the system
model in Sec. III, where we also motivate the use of the
SNR domain. In Sec. IV we present the (min,×) algebra and
derive performance bounds. We also address the tightness of
these bounds. In Sec. V we apply the analysis to a cascade of
Rayleigh channels. In Sec. VI we present numerical examples.
Conclusions are provided in Sec. VII.

II. RELATED WORK

Approaches for network-layer performance analysis of wire-
less networks include queueing theory, effective bandwidth
and, more recently, network calculus. Since the service
processes corresponding to the channel capacity of Rician,
Rayleigh, or Nakagami-m fading channel models require to
take a logarithm of their distributions, researchers often turn
to higher-layer abstractions to model fading channels, which
lend themselves more easily to an analysis. Widely used
abstractions are the two-state Gilbert-Elliot channel model
and subsequent extensions to a finite-state Markov channel
(FSMC) [36]. Markov channel models are well suited to
express the time correlation of fading channel samples.

Queueing theoretic studies of fading channels generally
apply approximations to reduce the complexity of multi-hop
models. Le, Nguyen, and Hossain [22] pursue a decom-
position approximation to analyze the loss probability and
average delay of a multi-hop wireless network with slotted
transmissions for a batch Bernoulli arrival process, and with
independent cross traffic at each node. Another decomposition
approximation is presented by Le and Hossain [21], who
consider a multi-hop tandem network with a batch arrival
process and multi-rate transmissions, to develop a routing
scheme that can meet given delay and loss requirements.
The analysis obtains end-to-end loss rates and delays with
a decomposition analysis, and feeds the results as metrics to
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the routing algorithm. Bisnik and Abouzeid [4] model a multi-
hop wireless network as an open network of G/G/1 queueing
systems. Using diffusion approximation, they obtain closed-
form expressions for average end-to-end delays.

Effective bandwidth [20] analysis seeks to develop (asymp-
totic) bounds on performance metrics, e.g., an exponential de-
cay of the backlog. Wu and Negi [39] have adapted an effective
bandwidth approach to the analysis of fading channels. They
introduce the concept of effective capacity, which characterizes
a wireless channel by a log-moment generating function (log-
MGF) of the channel capacity. They obtain an asymptotic
approximation of the delay bound violation probability of a
Rayleigh fading channel. Due to the difficulty of comput-
ing the moment generating function (MGF) of the Rayleigh
distribution, they simplify the analysis by assuming non-
correlated distributions with low SNR and estimate channel
parameters from measurements. The work has been extended
to correlated Rayleigh and correlated Nakagami-m channels,
and to cascades of fading channels [37], [38], [40]. A closely
related concept is the effective channel capacity presented by
Li et al. [25], which describes the available channel capacity
by a first order Markov chain and computes the log-MGF of
the underlying Markov process. Using methods developed in
[24], they compute statistical delay bounds for Nakagami-m
fading channel. Hassan, Krunz, and Matta [16] use an effective
bandwidth analysis to study delay and loss performance at a
single wireless link, which is modeled by an FSMC. For fluid
On-Off traffic and FIFO buffering, they obtain a closed form
expression for the effective bandwidth required to guarantee
bounds on delay and packet loss.

There is a collection of recent works that apply stochastic
network calculus methods to wireless networks with fading
channels. The stochastic network calculus is closely related
to the effective bandwidth theory, in that it seeks to develop
bounds on performance metrics under assumptions also found
in the effective bandwidth literature [18]. Different from
the effective bandwidth literature, stochastic network calculus
methods seek to develop non-asymptotic bounds. An attractive
element of a network calculus analysis is that it is often
possible to extend a single node analysis to a tandem of nodes,
using the (min,+) convolution.

Fidler [13] presents a network calculus methodology for a
two-state FSMC model of a single-hop fading channel. He
applies the MGF network calculus from [6, Chapter 7], [12].
The MGF network calculus takes its name from the extensive
use of moment generating functions in the derivation of perfor-
mance bounds. Mahmood, Rizk, and Jiang [27] apply the MGF
network calculus to MIMO channels and derive delay bounds
for periodic traffic sources. Zheng et. al. [41] also use an MGF
network calculus to study the performance of two-hop relay
networks. A similar methodology is applied in [28] to compute
the throughput of a multi-user DS-CDMA system with delay
constraints and in [42] to study the performance of a wireless
finite-state Markov channel. In the MGF network calculus
based work above, models for a cascade of fading channels
become complex, so that multi-node results for networks with
more than two nodes have not been obtained.

The (min,×) network calculus developed in this paper uses

similar descriptions and assumptions for traffic and service as
the MGF network calculus. By performing computations in a
transfer domain, where fading channel models take a simpler
form, we are able to compute multi-node service descriptions
for an arbitrarily large number of nodes.

The MGF network calculus assumes that arrivals and ser-
vice at each node are independent. These assumptions can
be relaxed using statistical envelope descriptions for traffic
(effective envelopes) and service (statistical service curve)
[5], [18]. Jiang and Emstad [17] have applied an approach
with envelopes to a fading channel that is characterized by
two stochastic processes: an ideal service process and an
impairment process, where the impairment process captures
effects due to fading, noise, and cross traffic. Verticale and
Giacomazzi [35] have obtained a closed form expression for
the variance of a service curve that describes the available
service by a Markov chain. This is used for the analysis of
an FSMC model of a Rayleigh fading channel. For computing
the bounds for Markovian arrivals, they apply the bounded-
variance network calculus introduced in [14], which is an
extension of the central limit theorem methods by Choe and
Shroff [8] to multi-hop paths. Verticale [34] has applied
the same methodology to constant bit rate traffic. Ciucu,
Pan, and Hohlfeld [10] and Ciucu [9] present closed-form
expressions for the delay and throughput distributions for
multi-hop wireless networks. Here, the fading channel is
modeled by an abstraction that uses a link layer model of
the transmission channel. The channel is assumed to behave
like a slotted-ALOHA system in half-duplex mode. The model
of this channel is a two-state On-Off server, where a node can
transmit (i.e., is in the On state) only when all other nodes in
the interference range are not transmitting.

There is also a literature on physical-layer performance
metrics of fading channels in multi-hop wireless networks.
Hasna and Alouini [15] have presented a framework for
evaluating the end-to-end outage probability of a multi-hop
wireless relay network with independent, non-regenerative
relays, i.e., amplify-and-forward (AF), over Nakagami fading
channels. Similar bounds were found in [33] and [2] for
the average error probability and end-to-end SNR for AF
relay networks. These works study physical-layer performance
bounds of channel-assisted, amplify-and-forward relaying over
a multi-hop fading channels. They do not consider buffering
or traffic burstiness, and are not concerned with network-
layer performance metrics addressed in this paper. Delay
and backlog analysis and optimization of multihop wireless
networks remain open research problems [21].

III. NETWORK MODEL IN THE BIT AND SNR DOMAINS

We consider a wireless N -node tandem network as shown in
Fig. 1, where each node is modeled by a server with an infinite
buffer. We are interested in the performance experienced by
a (through) flow that traverses the entire network and may
encounter cross traffic at each node. One can think of the
cross traffic at a node as the aggregate of all traffic traversing
the node that does not belong to the through flow. The service
given to the through flow at a node is a random process, which
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Fig. 1. Tandem network model.

is determined by the instantaneous channel capacity as well as
the cross traffic at the node. We consider a fluid-flow traffic
model where the flow is infinitely divisible. We will work in a
discrete-time domain T = {ti : ti = i ·∆t, i ∈ Z}, where Z is
the set of integers and ∆t is the length of a time unit. Setting
∆t = 1 allows us to replace ti by i, which we interpret as
the index of a time slot. We assume that the system is started
with empty queues at time t = 0.

Different nodes and different traffic flows will be distin-
guished by subscripts. The cumulative arrivals to, service
offered by, and departures from a node are represented, respec-
tively, by random processes A, S and D that will be described
more precisely below. Throughout this work, we assume that
arrival and service processes satisfy stationary bounds.

A. Traffic and Service in the Bit Domain

Consider for the moment a single node. We write

A(τ, t) =

t−1∑
i=τ

ai , and D(τ, t) =

t−1∑
i=τ

di ,

for the cumulative arrivals and departures, respectively, at the
node in the time interval [τ, t), where ai denotes the arrivals
and di the departures in the i-th time slot. Due to causality,
we have D(0, t) ≤ A(0, t). The processes lie in the set F
of non-negative bivariate functions f(τ, t) that are increasing
in the second argument and vanish unless 0 ≤ τ < t. The
backlog at time t > 0 is given by

B(t) = A(0, t)−D(0, t) , (3)

and the delay at the node is given by

W (t) = inf {u ≥ 0 : A(0, t) ≤ D(0, t+ u)} . (4)

A node where backlog and delay increase with time and
become unbounded is said to be unstable. Conditions to ensure
that B and W are finite at all times are referred to as stability
conditions.

The service of the node in the time interval [τ, t) is
given by a random process S(τ, t), such that Eq. (2) holds
for every arrival process A and the corresponding departure
process D. This service description with bivariate functions is
referred to as dynamic server. Initially defined for non-random
service [7], dynamic servers have been extended to random
processes in [6], [12].

The model in Fig. 1 is a classical network-layer model,
where traffic is measured in bits and service is measured in bits
per second. We thus refer to this model of arrivals, departures
and service as residing in a bit domain.

The network calculus exploits that networks which satisfy
the input-output relation of Eq. (2) with equality can be viewed
as linear systems in a (min,+) dioid algebra [3], [23]. In

the (R ∪ {+∞},min,+) dioid, the minimum and addition
replace the standard addition and multiplication operations.
The network calculus is based on the fact that (F ,min, ∗) is
again a dioid [6]. Note that the min-plus convolution, which
is the second operation in the dioid, is not commutative in F .

B. Service Model for Fading Channel

We assume that the state of a wireless channel is sampled at
equal time intervals. Denoting by γi the instantaneous signal-
to-noise ratio observed at the receiver in the i-th sampling
epoch, γi is a nonnegative random variable that has the
probability distribution of the underlying fading model. We
assume that the random variables γi are independent and
identically distributed. This assumption is justified when the
sampling epoch is longer than the channel coherence time.
We also assume that fading remains constant for the duration
of one time unit. Both assumptions are consistent with a
block fading channel model. For channels that cannot be
described by block fading, when choosing ∆t to be longer
than the coherence time, the second assumption results in
a quantization error. To minimize the quantization error, ∆t
should be selected as the smallest value that still justifies the
independence assumption.

Using Eq. (1), the instantaneous service offered by the chan-
nel in the i-th slot is given by log g(γi) and the corresponding
service process is given by

S(τ, t) =

t−1∑
i=τ

log g(γi) , (5)

where, for notational simplicity, we have chosen units such
that the constant in Eq. (1) takes the value c = 1. Computed
bounds obtained with the normalization are scaled when c 6= 1.

The service description in Eq. (5) requires us to work
with the logarithm of fading distributions, which presents a
non-trivial technical difficulty via the usual network calculus
or queueing theory. On the other hand, observe that the
exponential S(τ, t) = eS(τ,t) is described more simply by

S(τ, t) =

t−1∏
i=τ

g(γi) . (6)

This motivates the development of a system model that allows
us to exploit the more tractable service representation in
Eq. (6). In this alternative model, arrivals, departures, and
service reside in a different domain, where we can work
directly with the distribution functions of the fading channel
gain and the corresponding SNR at the receiver.

C. Network Model in the SNR Domain

We now proceed by mapping the network model from Fig. 1
into a transfer domain, which we refer to as SNR domain. We
seek to derive performance bounds in the transfer domain, and
then map the results to the bit domain to obtain network-layer
bounds for backlog and delays. The relationship of the network
models in bit domain and SNR domain is illustrated in Fig. 2.
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In the previous subsection, we constructed the service
process for a wireless link in the SNR domain in Eq. (6) as

S(τ, t) = eS(τ,t) .

By analogy, we describe the arrivals and departures in the SNR
domain respectively by

A(τ, t)
4
= eA(τ,t) and D(τ, t)

4
= eD(τ,t) .

Throughout this paper, we use calligraphic letters to represent
processes that characterize traffic or service as a function of
the instantaneous SNR in the sense of Eq. (6). Due to the
monotonicity of the exponential function, D(0, t) and A(0, t)
are increasing in t, and satisfy the causality property D(0, t) ≤
A(0, t). The backlog process is then described by

B(t)
4
= eB(t) = A(0, t)/D(0, t) .

The transformation does not affect time. Therefore,

W(t)
4
=W (t) = inf{u ≥ 0 : A(0, t) ≤ D(0, t+ u)} . (7)

To interpret these processes in the transfer domain, let γa,i =
g−1(eai) be the instantaneous channel SNR required to trans-
mit ai in a single time slot, assuming transmission at the rate
of the capacity limit. The arrival process in the SNR domain
can then be expressed in terms of these variables as

A(τ, t) =
t−1∏
i=τ

g(γa,i) . (8)

Here, we are treating channel quality expressed in terms of
the instantaneous SNR as a commodity. An arrival in a time
unit represents a workload, where γa,i expresses the amount of
resources that will be consumed by the workload. The backlog
can similarly be expressed in terms of the instantaneous SNR

B(t) =

t+τB−1∏
i=t

g(γi) ,

with the interpretation that a node with backlog B(t) at time
t requires full use of the channel capacity for τB time units
to clear the backlog.

Most importantly, the concept of the dynamic server trans-
lates to the SNR domain. In a network system, the service
process in the bit domain satisfies Eq. (2) if and only if the
process in the SNR domain satisfies

D(0, t) ≥ inf
0≤u≤t

{A(0, u) · S(u, t)} . (9)

We refer to a network element that satisfies Eq. (9) for any
sample path as dynamic SNR server. In this general setting, we
do not require that S takes the form in Eq. (6), in particular,
S(τ, t) does not have to be equal to S(τ, u) · S(u, t).

Traffic aggregation in the SNR domain is expressed in terms
of a product. When M flows have arrivals at a node with
arrival processes denoted by Ak, k = 1, . . . ,K, then the total
arrival, Aagg, are given for any 0 ≤ τ ≤ t by Aagg(τ, t) =∑K
k=1Ak(τ, t) . Since Aagg is a sum of random processes it

expresses statistical multiplexing gain. If we let Ak and Aagg

denote the corresponding processes in the SNR domain, we
see that

Aagg(τ, t) =

K∏
k=1

Ak(τ, t) .

With the above definitions, the usual network description by
a (min,+) dioid algebra in the bit domain can be expressed
in the SNR domain by a dioid algebra on F where the second
operator is a multiplication. This enables the development of
the (min,×) network calculus in Sec. IV. We observe that
the exponential function defines a one-to-one correspondence
between arrival and departure processes in the bit and SNR
domains. The physical arrival, departure, service, and backlog
processes can be recovered from their counterparts in the SNR
domain by taking a logarithm (see Fig. 2).

IV. STOCHASTIC (min,×) NETWORK CALCULUS

This section contains our main contribution: the derivation
of statistical end-to-end performance bounds for a network
where service is expressed in terms of fading distributions
residing in the SNR domain. A key characteristic of the
approach is that it does not require secondary (network-layer)
models of fading distributions when expressed in the SNR
domain, that is, bounds are expressed in terms of the fading
parameters of the channel model.

By an SNR process we mean a bivariate process X (τ, t)
taking values in R+ that is increasing in the second argument,
with X (t, t) = 1 for all t. The space of SNR processes will be
denoted by F+. For any pair of SNR processes X (τ, t) and
Y(τ, t), set

X ⊗ Y(τ, t)
4
= inf

τ≤u≤t

{
X (τ, u) · Y(u, t)

}
, (10)

and

X � Y(τ, t)
4
= sup

u≤τ

{X (u, t)

Y(u, τ)

}
. (11)

We refer to ‘⊗’ and ‘�’ as the (min,×) convolution and
(min,×) deconvolution operators, respectively.

The arrival, departure, and service processes constructed
in the previous section are SNR processes. With the
(min,×) convolution, we can express the defining property
of a dynamic SNR server from Eq. (9) as

D(0, t) ≥ A⊗ S(0, t) (12)

for every pair of SNR arrival and departure processes A(τ, t)
and D(τ, t).
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We note that, in fact, for any system description in the bit
domain by the (R∪{+∞},min,+) and the (F ,min, ∗) dioid
algebras there exists a corresponding description in the SNR
domain using (R+∪{+∞},min,×) and (F+,min,⊗) dioids.

A. Wireless Node With Cross Traffic

Consider a scenario in Fig. 3 where a through flow arriving
to a fading channel shares the available bandwidth with other
flows. We will refer to the traffic from these other flows
as cross traffic. We use Ao(τ, t) and Ac(τ, t) to denote the
SNR arrival processes of the through flow and the cross
traffic, respectively, and let Do(τ, t) and Dc(τ, t) denote the
corresponding departure processes. In the SNR domain, cross
traffic can be viewed as reducing the channel capacity of the
through flow by generating interference.

The following lemma states that, in the SNR domain, the
service available to a through flow that experiences cross traffic
at a channel can be expressed by a dynamic SNR server.

Lemma 1. Consider a channel with a through flow and cross
traffic as shown in Fig. 3. Assume that the channel provides
a dynamic SNR server to the aggregate of through flow and
cross traffic, with service process S(τ, t), i.e,

Do(0, t) · Dc(0, t) ≥ (Ao · Ac)⊗ S(0, t) .

Then

So(τ, t) =
S(τ, t)

Ac(τ, t)
is a dynamic SNR server satisfying for all t ≥ 0 that

Do(0, t) ≥ Ao ⊗ So(0, t) . (13)

We refer to the process So(τ, t) as a “leftover server.” In
light of Lemma 1, it is reasonable to view the cross traffic as
interference in the SNR domain, that is, cross traffic reduces
the SNR of the through traffic.

Proof: For any sample path, and any t ≥ 0, we have

Do(0, t) · Dc(0, t) ≥ inf
0≤τ≤t

{(Ao(0, τ) · Ac(0, τ)) · S(τ, t)} .

Let τ∗ be the point where the infimum is assumed. Dividing
by Dc(τ, t), we obtain

Do(0, t) ≥
(A0 · Ac)⊗ S(0, t)

Dc(0, t)

≥ Ao(0, τ
∗) · Ac(0, τ∗) · S(τ∗, t)

Dc(0, t)
}

≥
{
Ao(0, τ∗) ·

S(τ∗, t)

Ac(τ∗, t)
}
,

A S1 S2

D1 = A2 D

Fig. 4. Tandem of dynamic SNR servers.

where we used that Dc(0, t) ≤ Ac(0, t) by causality. The
lemma follows from the definition of the (min,×) convolu-
tion.

Note that So(τ, t) need not be monotone in t and may take
values below one, i.e., it may not lie in F+. Monotonicity can
be restored by replacing So with a smaller increasing function.
So(τ, t) ≥ 1 can be ensured when the SNR service of the
cross traffic satisfies an upper bound on the departure process,
as given in the following corollary.

Corollary 1. Under the assumptions in Lemma 1, if the service
to the cross flows satisfies the upper bound Dc(0, t) ≤ Ac ⊗
S(0, t), then

Do(0, t) ≥ Ao ⊗max{1,So}(0, t) . (14)

Proof: To prove this claim, assume that Dc(0, t) ≤ Ac⊗
S(0, t). Then Dc(0, t) ≤ Ac(0, τ∗) · S(τ∗, t), and therefore

Do(0, t) ≥
Ao(0, τ∗) · Ac(0, τ∗) · S(τ∗, t)

Ac(0, τ∗) · S(τ∗, t)

= A0(τ∗, t) .

Combining this with Lemma 1, we obtain

D0(0, t) ≥ A0(0, τ∗) ·max{1,So(τ∗, t)} ,

proving the corollary.
Note that Lemma 1 and Corollary 1 permit descriptions of

channel models with memory in the form of time-correlated
cross-traffic. When a time-correlated cross traffic process, e.g.,
a Markov modulated arrival process, is used in the calculation
of the leftover service process, the resulting service process in
this case is time-correlated as well.

B. Server Concatenation and Performance Bounds

The existing network calculus in the bit domain allows
for the concatenation of tandem service elements using the
(min,+) convolution (see Sec. I). As an immediate conse-
quence, single node performance bounds are extended to a
multi-hop setting. We now establish the corresponding result in
the (min,×) network calculus. Specifically, the concatenation
of dynamic SNR servers is again a dynamic SNR server. We
will prove the result for a tandem network of two nodes, as
shown in Fig. 4.

Lemma 2. Let S1(τ, t) and S2(τ, t) be two dynamic SNR
servers in tandem as shown in Fig. 4. Then, the service offered
by the tandem of nodes is given by the dynamic SNR server
Snet(τ, t) with

Snet(τ, t) = S1 ⊗ S2(τ, t) .
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Proof: Using Eq. (9), the departure process D(0, t) can
be written as

D(0, t) ≥ inf
0≤u≤t

{A2(0, u) · S2(u, t)}

≥ inf
0≤u≤t

{
inf

0≤τ≤u
{A(0, τ) · S1(τ, u)} · S2(u, t)

}
= inf

0≤τ≤t

{
A(0, τ) · inf

τ≤u≤t
{S1(τ, u) · S2(u, t)}

}
= inf

0≤τ≤t

{
A(0, τ) · (S1 ⊗ S2)(τ, t)

}
.

The extension to networks with more than two nodes
follows by iteratively applying Lemma 2. Hence, the dynamic
network SNR server with N nodes in tandem is given by

Snet(τ, t) = S1 ⊗ S2 ⊗ · · · ⊗ SN (τ, t) . (15)

Performance bounds in the (min,×) network calculus are
computed with the (min,×) deconvolution operator. This is
analogous to the role of the (min,+) deconvolution in the
existing (min,+) network calculus. The bounds are expressed
in the following lemma.

Lemma 3. Given a system with SNR arrival process A(τ, t)
and dynamic SNR server S(τ, t).
• OUTPUT BURSTINESS. The SNR departure process is

bounded by D(τ, t) ≤ A� S(τ, t).
• BACKLOG BOUND. The SNR backlog process is bounded

by B(t) ≤ A� S(t, t).
• DELAY BOUND. The delay process is bounded by
W(t) ≤ inf

{
d ≥ 0 : A� S(t+ d, t) ≤ 1

}
.

Proof: For the output bound, we fix τ and t with 0 ≤
τ ≤ t and derive

D(τ, t) =
D(0, t)

D(0, τ)
≤ sup

0≤u≤τ

{ A(0, t)

A(0, u) · S(u, τ)

}
= sup

0≤u≤τ

{A(u, t)

S(u, τ)

}
,

where we used the inequality D(0, τ) ≥ A ⊗ S(0, τ) in the
second step.

For any fixed sample path, fix an arbitrary t ≥ 0. The bound
on the backlog is derived by

B(t) =
A(0, t)

D(0, t)
≤ sup

0≤u≤t

{ A(0, t)

A(0, u) · S(u, t)

}
= sup

0≤u≤t

{A(u, t)

S(u, t)

}
,

where we used D(0, t) ≥ A⊗ S(0, t) in the second step.
By definition of the delay in Eq. (7), a delay bound w

satisfies

W(t) = inf
{
w ≥ 0 :

A(0, t)

D(0, t+ w)
≤ 1
}

≤ inf
{
w ≥ 0 : sup

0≤u≤t

{ A(0, t)

A(0, u) · S(u, t+ w)

}
≤ 1
}

= inf
{
w ≥ 0 : sup

0≤u≤t

{ A(u, t)

S(u, t+ w)

}
≤ 1
}
. (16)

where we used the inequality D(0, t+w) ≥ A⊗S(0, t+w)
in the second line.

With an algebraic description for network performance
bounds in the SNR domain in hand, we now turn to the
problem of computing the bounds.

C. The Mellin Transform in the SNR domain

The concise expressions from the previous section for the
network service and performance bounds in the SNR domain
hide the difficulty of computing these expressions. In fact, all
expressions of the (min,×) network calculus contain products
or quotients of random variables. The Mellin transform [11]
facilitates such computations, particularly when the arrival and
service processes are independent.

The Mellin transform of a nonnegative random variable X
is defined by

MX(s) = E[Xs−1]. (17)

The Mellin transform of a product of two independent
random variables X and Y equals the product of their Mellin
transforms [11],

MX·Y (s) = E[(X · Y )s−1] =MX(s) · MY (s). (18)

Similarly, the Mellin transform of the quotient of independent
random variables is given by

MX/Y (s) = E[Xs−1]E[Y 1−s] =MX(s)·MY (2−s), (19)

where we used independence to factor the expectation.
We will evaluate the Mellin transform only for real valued

s, where it is always well-defined (though it may take the
value +∞). For every non-negative random variable X , it
holds that MX(1) = 1 and d

dsMX(1) = E[logX]. When
s > 1, the Mellin transform is order-preserving, i.e., for any
pair of random variables X,Y with Pr(X > Y ) = 0 we
have MX(s) ≤ MY (s) for all s. When s < 1, the order
is reversed. Hence bounds on the distribution of a random
variable X generally imply bounds on its Mellin transform.

A more subtle question is how to obtain bounds on the
distribution of a random variable from its Mellin transform.
Here, the complex inversion formula is not helpful. Instead,
we use the moment bound

Pr(X ≥ a) ≤ a−sMX(1 + s) (20)

for all a > 0 and s > 0. For bivariate random processes
X (τ, t), we write MX (s, τ, t)

4
=MX (τ,t)(s).

We work with the Mellin transform of (min,×) convolu-
tions and deconvolutions, which not only involves products
and quotients, but also requires to compute infimums and
supremums. The exact computation of the Mellin transform
for these operations is generally not feasible. We therefore
resort to bounds, as specified in the next lemma.

Lemma 4. Let X (τ, t) and Y(τ, t) be two independent non-
negative bivariate random processes. For s < 1, the Mellin
transform of the (min,×) convolution X ⊗Y(τ, t) is bounded
by

MX⊗Y(s, τ, t) ≤
t∑

u=τ

MX (s, τ, u) · MY(s, u, t) . (21)
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For s > 1, the Mellin transform of the (min,×) deconvolution
X � Y(τ, t) is bounded by

MX�Y(s, τ, t) ≤
τ∑
u=0

MX (s, u, t) · MY(2−s, u, τ) . (22)

Proof: Note that the function f(z) = zs−1 is increasing
for s > 1 and decreasing for s < 1. For s < 1, the convolution
is estimated by

MX⊗Y(s, τ, t) = E
[(

inf
τ≤u≤t

{X (τ, u) · Y(u, t)}
)s−1]

= E
[

sup
τ≤u≤t

{
(X (τ, u))s−1 · (Y(u, t))s−1

}]
≤

t∑
u=τ

E
[
(X (τ, u))s−1

]
· E
[
(Y(u, t))s−1

]
.

In the last step, we have used the non-negativity of X and Y
and the union bound to replace the supremum with a sum, and
their independence to evaluate the expectation of the products.
Eq. (21) follows by inserting the definition of the Mellin
transform. The deconvolution is similarly estimated for s > 1
by

MX�Y(s, τ, t) = E
[(

sup
u≤τ

{
X (u, t)/Y(u, τ)

})s−1
]

= E
[

sup
0≤u≤τ

{(
X (u, t)

)s−1 ·
(
Y(u, τ)

)1−s}]
≤

τ∑
u=0

E
[(
X (u, t)

)s−1 ·
(
Y(u, τ)

)1−s]
, (23)

and Eq. (22) follows from the independence assumption and
the definition of the Mellin transform.

As a remark, in the lemma we assumed that the arrival and
service processes are independent. This is a convenient and
often justifiable assumption, however, it limits the applicability
of the obtained results to wireless systems that exhibit unmit-
igated co-channel interference which introduces dependence
between service processes in a multi-hop setting. For the
analysis of processes that are dependent weaker bounds can be
obtained by applying the Hölder inequality. For example, if the
two processes X (τ, t) and Y(τ, t) in Eq. (23) are dependent,
then we can apply the Hölder inequality to the last step and
bound their (min,×) deconvolution by

MX�Y(s, τ, t) ≤
τ∑
u=0

(
E
[
(X (u, t))(s−1)p

])1/p

·
(
E
[
(Y(u, τ))(1−s)q

])1/q

=

τ∑
u=0

(
MX (1−p+sp, u, t)

)1/p

·
(
MY(1+q−sq, u, τ)

)1/q

for any p > 1 and 1/p + 1/q = 1. We used the positivity of
X and Y and applied the Hölder inequality in the first step
and the definition of the Mellin transform in the second step.
This bound can be optimized over the choice of p.

D. Performance Bounds for the Bit Domain

We next obtain network-level performance bounds for the
bit domain. This involves a transformation from the SNR
domain to the bit domain via the relationship in Fig. 2.

Theorem 1. Given a system where arrivals are described by
a bivariate process A(τ, t), and the available service is given
by a dynamic server S(τ, t). Let A(τ, t) and S(τ, t) be the
corresponding SNR processes. Fix ε > 0 and define, for s > 0,

M(s, τ, t)
4
=

min(τ,t)∑
u=0

MA(1 + s, u, t) · MS(1− s, u, τ) .

Then, we have the following probabilistic performance bounds.
• OUTPUT BURSTINESS: Pr

(
D(τ, t) > dε

)
≤ ε, where

dε(τ, t) = inf
s>0

{1

s

(
logM(s, τ, t)− log ε

)}
;

• BACKLOG: Pr
(
B(t) > bε

)
≤ ε, where

bε = inf
s>0

{1

s

(
logM(s, t, t)− log ε

)}
;

• DELAY: Pr
(
W (t) > wε

)
≤ ε, where wε is the smallest

number satisfying

inf
s>0

{
M(s, t+ wε, t)

}
≤ ε .

If stability of the system is not assured, the bounds in the
theorem may not be finite or grow over time. We address
stability conditions and the tightness of the bounds in the next
subsection.

Proof: Lemma 3 defines the three performance bounds
in terms of the (min,×) deconvolution of A and S. For the
bound on the distribution of the output burstiness, we start
from the inequality D(τ, t) ≤ A�S(τ, t). It follows from the
moment bound and Lemma 4 that, for any choice of d > 0
and all s > 0

Pr(D(τ, t) > d) = Pr(D(τ, t) > ed)

≤ Pr(A� S(τ, t) > ed)

≤ (ed)−sMA�S(1 + s, τ, t)

≤ e−sdM(s, τ, t) .

To obtain the claim, we set the right hand side equal to ε,
solve for d, and optimize over the value of s > 0 to obtain
dε(τ, t). The proof of the backlog bound proceeds in the same
way, starting from the inequality B(t) ≤ A�D(t, t), resulting
in

Pr(B(t) > b) ≤ e−sbM(s, t, t) . (24)

The delay bound is slightly more subtle. Fix t ≥ 0. Using
Lemma 3 and the moment bound with a = 1, we obtain that

Pr(W(t) > w) ≤ Pr(A� S(t+ w, t) > 1)

≤MA�S(1 + s, t+ w, t)

for every s > 0. By Lemma 4, the Mellin transform
MA�S(1 + s, t + w, t) satisfies a bound that agrees with
the function M(s, t + w, t), except that the upper limit in
the summation that defines M(s, t + w, t) would have to be
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replaced by τ = t+w. To obtain the sharper estimate from the
claim, we use instead Eq. (16) from the proof of Lemma 3.
The resulting bound is that

Z(t)
4
= sup

0≤u≤t

{ A(u, t)

S(u, t+ w)

}
satisfies

Pr(W(t) > w) ≤ Pr(Z(t) > 1)

≤MZ(t)(1 + s)

≤ M(s, t+ w, t) , (25)

where we have used that the supremum in the definition of
Z extends only up to u = t, and then repeated the proof of
Eq. (22). The claim follows by optimizing over s.

Corresponding bounds as in Theorem 1 can be obtained
using the (min,+) algebra and the network calculus with
moment-generating functions [12]. The significance of The-
orem 1 is that it permits the application of network calculus,
where traffic is characterized in the bit domain, and service
is naturally expressed in the SNR domain. This will become
evident in Sec. V, where the theorem gives us concise bounds
for delays and backlog in multi-hop networks with Rayleigh
fading channels.

E. Asymptotic Tightness of the Bounds

In this section, we show that the upper bounds in Theorem 1
have an exponential rate of decay, and that the rate of decay
cannot be improved without adding assumptions. We show the
derivations for the backlog. We require that arrival and service
processes are stationary. We assume that the average service
rate exceeds the average arrival rate, i.e.,

1

t
E[S(0, t)] >

1

t
E[A(0, t)] . (26)

We will see that this inequality, which, by stationarity, does
not depend on t, is the stability condition of the system.
It guarantees that the backlog process B(t) is stochastically
increasing in t, and converges in distribution to the steady-state
backlog process B∞ = limt→∞B(t) [26, Lemma 2].

We start with a corollary to Theorem 1 that provides an
exponential decay rate for the backlog bound. Define

Λ(s)
4
=

1

t
log (MA(1 + s, 0, t) · MS(1− s, 0, t)) . (27)

The function Λ is related to expressions for the effective
bandwidth [20] or effective service [39]. It is convex because
it is defined as a limit of convex functions. Since Λ(0) = 0
and

d

ds
Λ(0) = lim

t→∞

1

t
(E[A(0, t)]− E[S(0, t)]) < 0 ,

Λ(s) either changes sign exactly once from negative to posi-
tive, or Λ(s) < 0 for all s > 0. Let s∗ denote the point where
the switch occurs, with s∗ =∞ when Λ(s) remains negative.
If s∗ < ∞ and Λ is differentiable, we note for later use that
the convexity of Λ forces d

dsΛ(s∗) > 0.

Corollary 2. For each s with 0 < s < s∗ there is a constant
C(s) such that the backlog bound

Pr(B(t) > x) ≤ C(s)e−sx (28)

holds for all t ≥ 0.

The constant C(s) in the corollary depends on the arrival
and service processes, but not on t.

Proof: Consider the backlog bound in Eq. (24). We want
to show that

C(s) = sup
t≥0

M(s, t, t) <∞ .

The constant can be evaluated as

C(s) = sup
t≥0

t∑
u=0

MA(1 + s, u, t) · MS(1− s, u, t)

=
∞∑
u=0

MA(1 + s, 0, t) · MS(1− s, 0, t) .

We have used stationarity to replace the time interval [u, t)
with [0, t−u), changed the variable from u to t−u, and then
taken t→∞. For 0 < s < s∗, we have Λ(s) < 0. By Eq. (27)
there exists an ε > 0 and a time tε such that

1

t
log
(
MA(1+s, 0, t) · MS(1−s, 0, t)

)
≤ −ε

for all t ≥ tε. It follows that

MA(1+s, 0, t) · MS(1−s, 0, t) ≤ e−εt

for t ≥ tε. Therefore, the sum that determines C(s) converges
for all 0 < s < s∗.

Since C(s) does not depend on t, Eq. (28) holds also for
the steady-state backlog process B∞. Solving for s and then
taking the limit s→ s∗, we see that

lim
x→∞

1

x
logPr(B∞ ≥ x) ≤ −s∗ .

We now show that this bound on the decay rate is tight in
the sense that it cannot be improved without adding further
assumptions to Theorem 1. To this end, we consider the special
case of a dynamic server S(τ, t) that satisfies Eq. (9) with
equality, i.e., D(0, t) = A⊗S(0, t). An example of this is the
fading channel service model described in Section III.A.

We also need the following technical conditions. The func-
tion Λ(s) should be defined and differentiable on some interval
[0, smax), and its derivative should be unbounded from above.
Moreover, we assume that Λ(s) changes sign, so that s∗ <∞.
Under these assumptions, we will obtain an exponential lower
bound on B∞ for every s > s∗.

In a similar fashion as in [6, Chapter 9] for showing that
the effective bandwidth offers a lower bound on resource re-
quirements, we will apply large deviations theory, specifically,
the Gärtner-Ellis theorem. In the context of the SNR domain
and with our notation, the theorem as given in [32, Theorem
D.8] takes the following form:
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Lemma 5 (Gärtner-Ellis). Let {Xt}t≥1 be a sequence of
nonnegative random variables, and let MX (s, t) denote their
Mellin transform. Assume that

Λ(s) = lim
t→∞

1

t
logMX (1 + s, t) ,

exists for s ∈ [0, smax), and defines a differentiable function
whose derivative is unbounded from above. Then

lim
t→∞

1

t
logPr(Xt > eβt) = −I(β) ,

where the rate function I is given by the Legendre transform

I(β)
4
= sup

s
{βs− Λ(s)} . (29)

We will apply Lemma 5 to the process Xt =
A(0, t)/S(0, t). With our assumptions, Λ(s) from Eq. (27)
satisfies the conditions needed for the Gärtner-Ellis theorem.

Theorem 2. Under the assumptions stated before Lemma 5,

lim inf
x→∞

1

x
logPr(B∞ ≥ x) ≥ −s∗ , (30)

where s∗ is the unique positive solution of Λ(s) = 0.

The theorem implies that there exists for each s > s∗ a
constant C(s) such that

Pr(B∞ > x) ≥ C(s)e−sx

for all x > 0. Together with Corollary 2, it extends [6,
Theorem 9.1.1] to variable rate servers.

Proof: We may assume that s∗ <∞ (otherwise, there is
nothing to show). We start from the observation that D(0, t) ≥
A⊗ S(0, t) implies

B(t) = sup
0≤u≤t

{A(u, t)

S(u, t)

}
≥ A(0, t)

S(0, t)
.

It follows that

Pr(B∞ ≥ x) ≥ Pr(B(t) ≥ x)

≥ Pr
(
A(0, t)/S(0, t) ≥ ex

)
for every x ≥ 0 and all t ≥ 0. Let β > 0 be arbitrary. Setting
x = βt and taking t→∞, we have

lim inf
x→∞

1

x
logPr(B∞≥x)

≥ 1

β
lim
t→∞

1

t
logPr(A(0, t)/S(0, t) ≥ eβt)

= − 1

β
I(β) , (31)

where Lemma 5 is used in the last step. Finally, we choose
β∗ = d

dsΛ(s∗) > 0. For β = β∗, the supremum in Eq. (29) is
assumed at s = s∗. The proof is completed by inserting the
value I(β∗) = β∗s∗ into Eq. (31).

V. NETWORK PERFORMANCE OF RAYLEIGH CHANNELS

We now apply the techniques developed in the two previous
sections to a network of Rayleigh channels. Consider the dy-
namic SNR server description for a Rayleigh fading channel,
as constructed in Sec. III.B. We use Eq. (6), with the function
g(γ) given by

g(γ) = 1 + γ = 1 + γ̄|h|2, (32)

where γ̄ is the average SNR of the channel and |h| is the fading
gain. For Rayleigh fading, |h| is a Rayleigh random variable
with probability density f(x) = 2xe−x

2

. In a physical system,
γ̄ = P̄r/σ

2, where P̄r and σ2 are the received signal power
and the (additive white Gaussian) noise power at the receiver,
respectively. Then, |h|2 is exponentially distributed, and the
Mellin transform of g(γ) is given by

Mg(γ)(s) = e1/γ̄ γ̄s−1Γ(s, γ̄−1) , (33)

where Γ(s, y) =
∫∞
y
xs−1e−x dx is the upper incomplete

Gamma function. Using the assumption that the γi are inde-
pendent and identically distributed, we obtain for the Mellin
transform of the dynamic server

MS(s, τ, t) =
(
e1/γ̄ γ̄s−1Γ(s, γ̄−1)

)t−τ
. (34)

A. Arrival Model

For the arrival process, we use a characterization due to
Chang [6], referred to as (σ(s), ρ(s))-bounded arrivals, where
the moment-generating function of the cumulative arrival
process in the bit domain is bounded by

1

s
logE[esA(τ,t)] ≤ ρ(s) · (t− τ) + σ(s)

for some s > 0. In general, ρ(s) and σ(s) are nonnegative
increasing functions of s that may become infinite when s is
large. This characterization can be viewed as a probabilistic
extension of a traffic flow that is deterministically regulated
by a token bucket with rate ρ and burst size σ. It describes
a large traffic class that is well suited to express traffic
with burstiness, including bursty traffic with memory, such
as Markov modulated On-Off traffic [6].

This class of arrival processes can be equivalently charac-
terized in the SNR domain as a bound on the Mellin transform
of the SNR arrival process as follows

MA(s, τ, t) ≤ e(s−1)·(ρ(s−1)·(t−τ)+σ(s−1)) , (35)

for some s > 1. This traffic class is also referred to as
(σ(s), ρ(s))-bounded arrivals.

To describe a Markov-modulated arrival process character-
ized as (σ(s), ρ(s))-bounded arrivals, we begin with the log
MGF of Markov modulated arrival process, which is given by
[6]

lim
t→∞

1

st
logE

[
esA(t)

]
=

1

s
log sp(Φ(s)P) ,

where, Φ(s) = diag (φ1(s), . . . , φM (s)), φi(s) = E[esri ], ri
is the transmission rate when in state i, M is the cardinality
of the state space, P is the state transition matrix with pij
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the element in row i and column j, and sp(C) is the spectral
radius of matrix C, i.e., the largest eigenvalue of the matrix.

In the numerical examples, we will use a Markov modulated
On-Off process, which has two states (M = 2), where index 1
indicates the Off state (r1 = 0) and index 2 indicates the On
state (r2 = r), and where rate r is referred to as the peak rate.
The transition probabilities are p12 = α and p21 = β. Then
using (σ(s), ρ(s)) arrival description, we have σ(s) = 0 and
ρ(s) = 1

s logL(s, r, α, β), where,

L(s, r, α, β)
4
=

esr(1−β)+(1−α)+
√

(esr(1−β)−(1−α))2+4esr(1−α−β)

2
.

Since, for real-valued s, Mellin transform of an SNR process
is related to the MGF of its bit domain equivalent by

E
[
esX(u,t)

]
= E

[
(X (u, t))s

]
=MX (s+ 1, u, t) ,

we can compute the Mellin transform for SNR arrivals from
the MGF of the corresponding processes in bit domain. We
obtain

MA(s, τ, t) ≤ e(s−1)ρ(s−1)(t−τ) =
(
L(s− 1, r, α, β)

)t−τ
.

(36)

B. Network Service Description

Consider a cascade of fading channels, as in Fig. 1, which is
traversed by a through flow. Each fading channel is described
by a dynamic SNR server S satisfying Eq. (6), and the
cross traffic at each channel is Ac satisfying Eq. (35) with
parameters σc(s) and ρc(s). Assume that arrivals from through
flow and cross traffic, as well as the service processes at each
channel are independent. Then we can compute a bound for the
Mellin transform of the SNR service process for the through
flow in the entire cascade.

Lemma 6. Given a cascade of N fading channels with cross
traffic described above. Let So,net denote the dynamic SNR
server that describes the service of the through flow in the
cascade. The Mellin transform of So,net(τ, t) satisfies for s <
1 that

MSo,net
(s, τ, t) ≤ e(1−s)·Nσc(1−s)

(
N − 1 + t− τ

t− τ

)
·
(
Mg(γ)(s)e

(1−s)·ρc(1−s))t−τ . (37)

Proof: For a single channel (N = 1), we obtain with
Lemma 1 that for 0 ≤ τ ≤ t

MSo(s, τ, t) =MS/Ac
(s, τ, t)

=MS(s, τ, t) · MAc(2− s, τ, t)
≤ e(1−s)·σc(1−s) ·

(
Mg(γ)(s) · e(1−s)·ρc(1−s))t−τ ,

where we have used that 2−s > 1 for s < 1. When the service
of the through flow at the n-th channel is denoted by So,n, by
Lemma 2, the service of the cascade of channels is given by

the (min,×) convolution So,net(τ, t) = So,1⊗. . .⊗So,N (τ, t).
We use Lemma 4 to bound its Mellin transform by

MSnet(s, τ, t) ≤
∑

u1,...,uN−1

N∏
n=1

MSo,n(s, un−1, un) ,

where the sum runs over all sequences u0 ≤ u1 ≤ · · · ≤ uN
with u0 = τ and uN = t. Each product appearing in the
equation evaluates to the same term

N∏
n=1

MSo,n(s, un−1, un) = e(1−s)·Nσc(1−s)

·
N∏
n=1

(
Mg(γ)(s) · e(1−s)·(ρc(1−s))un−un−1

= e(1−s)·Nσc(1−s)(Mg(γ)(s) · e(1−s)·(ρc(1−s))t−τ .
Then we collect terms with the binomial identity

t∑
uN−1=τ

· · ·
u2∑

u1=τ

1 =

(
N − 1 + t− τ

t− τ

)
,

and the claim follows.

For a cascade of fading channels with no cross traffic, we
have σc(s) = ρc(s) = 0 and Eq. (37) reduces to

MSnet(s, τ, t) ≤
(
N − 1 + t− τ

t− τ

)
·
(
Mg(γ)(s)

)t−τ
.

C. Performance Bounds for Rayleigh Fading Channels

Now we consider the performance of (σ(s), ρ(s))-bounded
through traffic with parameters σo(s) and ρo(s) in a cascade
of Rayleigh fading channel with cross traffic, where cross
traffic at each channel is (σ(s), ρ(s))-bounded with parameters
σc(s) and ρc(s). The Mellin transform for the Rayleigh fading
channel is given by Eq. (33), and those for through and
cross traffic by Eq. (35). We compute end-to-end performance
bounds using Theorem 1. Using Lemma 6, we compute the
function M(s, τ, t) for 0 ≤ τ ≤ t as

Mo,net(s, τ, t) ≤ es·(ρo(s)(t−τ)+σo(s)+Nσc(s))

∞∑
u=[τ−t]+

(
N − 1 + u

u

)
·
(
Vo(s)

)u
, (38)

where [τ − t]+ is the maximum of τ − t and 0 and

Vo(s) = es·(ρo(s)+ρc(s))e1/γ̄ γ̄−sΓ(1− s, γ̄−1) .

The sum in Eq. (38) converges when Vo(s) < 1. This is
ensured for some value of s when the stability condition in
Eq. (26) is satisfied.

When t ≥ τ , e.g., when computing output burstiness or
backlog bounds, we have

Mo,net(s, τ, t) ≤
es·(ρo(s)(t−τ)+σo(s)+Nσc(s))

(1− Vo(s))N
,

where we applied the combinatorial identity from Lemma 7 in
the Appendix. Then, using Theorem 1, the output burstiness
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of the through flow at the network egress for a violation
probability ε is given by

dεo,net(τ, t) ≤ inf
s>0

{
σo(s) +Nσc(s) + ρo(s)(t− τ)

− 1

s

[
N log

(
1− Vo(s)

)
+ log ε

]}
(39)

and the end-to-end backlog of the through flow is bounded by

bεo,net(t) ≤ inf
s>0

{
σo(s) +Nσc(s)

− 1

s

[
N log

(
1− Vo(s)

)
+ log ε

]}
. (40)

For the delay bound, we estimate for w ≥ 0 that

Mnet(s, t+ w, t)

≤ es(−ρo(s)w+σo(s)+Nσc(s)) ·
∞∑
u=w

(
N − 1 + u

u

)
(Vo(s))

u

≤ inf
s>0

{
es(−ρo(s)w+σo(s)+Nσc(s))

(1− Vo(s))N

·min
{

1, (Vo(s))
w(w + 1)N−1

}}
. (41)

Here, the first term in the minimum is obtained by extending
the summation in Eq. (38) down to u = 0 and applying
Lemma 7. The second term results from Lemma 8 in the
Appendix.

The delay bound wε is determined according to Theorem 1
by setting the right hand side of Eq. (41) equal to ε, solving
for w, and minimizing over s. Because of the complexity of
the bound in Eq. (41), the last two steps must be performed
numerically. The performance bounds for networks without
cross traffic are obtained by inserting the values σc(s) = 0
and ρc(s) = 0 in the performance bounds expressions derived
above.

It is apparent that the complexity of computing end-to-
end bounds is no different than bounds for a single channel.
More importantly, we observe that the end-to-end bounds scale
linearly in the number of nodes N .

VI. NUMERICAL EXAMPLES

In this section, we present numerical results for a cascade
of N Rayleigh channels with a transmission bandwidth of
W = 20 kHz, using the expressions we derived in the
previous section. We consider two cases: a network with and
without cross traffic. For through traffic in both cases, we
use (σ(s), ρ(s))-bounded arrivals with default values σ(s) =
50 kb and ρ(s) = 30 kbps for all values of s, i.e., the rate
and burst size are deterministic and correspond to a traffic
flow that is shaped by a token bucket with a given rate and
burst size. By choosing a deterministic model for the through
traffic, the remaining sources of randomness are those of the
channel and the cross traffic. Thus, in examples without cross-
traffic, we can study how fading channel variability impacts
network performance. In examples with cross-traffic, we can

observe the relative impact of random cross traffic and channel
conditions on network performance.

For the cross traffic we use a Markov-modulated On-Off
traffic model, characterized as (σ(s), ρ(s))-bounded traffic,
where at each node we use identical parameters σc(s) and
ρc(s). This represents a scenario composed of a cascade of
N uniformly spaced wireless nodes in a static environment,
hence γ̄i = γ̄ for all i = 1, . . . , N , which experience Rayleigh
fading, i.e., severe fading with no line–of–sight component.

To evaluate the quality of the derived bounds we also
include a simulation of a tandem of queues with the parameters
above. Since simulations of large networks become computa-
tionally prohibitive, the comparison with simulations uses a
scenario with at most 10 nodes. The simulations use a fluid-
flow arrival and service model, in a time slotted system with
intervals of 1 ms. Simulations are run for 1010 time slots for
one node, and are increased to 1011 time slots for 10 nodes.

Recall that existing performance analyses of fading channels
generally rely on Markov channel or other secondary models
of the fading channels. Since these models involve additional
parameter selections, and the accuracy of the selections with
regard to actual channel conditions cannot be determined, we
do not attempt a comparison of our numerical results to those
of prior analyses.

A. Performance Bounds Without Cross Traffic

We eliminate cross traffic by setting σc(s) = ρc(s) = 0. For
a violation probability of ε = 10−4, in Fig. 5 we show the
end-to-end backlog for a cascade of N Rayleigh channels, as
a function of the average SNR of each channel. Even though
the backlog bounds increase only linearly in the number
of nodes, the per-node requirements – at least for the last
node of the cascade – must satisfy the end-to-end bounds,
since it cannot be assumed that backlog is equally distributed
across the nodes. When the SNR of the nodes is sufficiently
high, the backlog remains low even for a large number of
hops. We observe that the channel becomes saturated for
γ̄ = 5 dB. When the number of nodes is small, the backlog
increases sharply in the vicinity of γ̄ = 5 dB, but remains low
everywhere else.

In Fig. 6 we present, for an average SNR value of γ̄ = 10 dB
how the end-to-end backlog increases as a function of the ar-
rival rate ρ(s) for different network sizes. Here, the maximum
achievable rate that results in a finite backlog decreases as the
number of nodes is increased.

Suppose that buffer sizes are set to satisfy the end-to-
end backlog. Then for a fixed buffer size bmax, we can
use the probability Pr(Bnet(t) > bmax) as an estimate of
the probability of dropped traffic, which we refer to as loss
probability. In Fig. 7, we depict the loss probability as a
function of the average channel SNR for bmax = 400 kb, traffic
with a rate of ρ(s) = 20 and 30 kbps, and for N = 1, 10,
and 20 nodes. The figure shows the minimum SNR needed to
support a given loss probability is very sensitive to the number
of network nodes.

Now we evaluate the violation probability for given end-to-
end delay bounds, for a single node (N = 1) and a multi-hop
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Fig. 5. End-to-end backlog bound (bεnet) vs. average channel SNR (γ̄) for
multi-hop Rayleigh fading channels with ε = 10−4, (σ(s), ρ(s)) bounded
traffic with σ(s) = 50 kb and ρ(s) = 30 kbps, and W = 20 kHz.
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Fig. 6. End-to-end backlog bound (bεnet) vs. arrival rate (ρ(s)) for multi-hop
Rayleigh fading channels with ε = 10−4, (σ(s), ρ(s)) bounded traffic with
σ(s) = 50 kb and γ̄ = 10 dB, and W = 20 kHz.

network (N = 10) for different SNR values. As before, the
through traffic is deterministic, with σ(s) = 50 kb for the burst
and ρ(s) = 20 kbps for all s. For this example, we also include
simulation results. The simulated through traffic consists of a
Markov modulated On-Off flow with α = 0.7, β = 0.4, and
peak rate r = 20α+β

α kbps, which is subsequently shaped by
a token bucket with bucket size 50 kb and rate 20 kbps. This
creates a bursty traffic flow that saturates the rate of the token
bucket. We use the simulations to evaluate the accuracy of our
bounds for violation probabilities ranging from 100 to 10−8.
Fig. 8 illustrates that at sufficiently high SNR values, low
delays are achieved even when traffic traverses 10 links. When
the SNR is decreased, we observe how the delay performance
deteriorates in the multi-hop scenario. The graphs illustrate
the dependence of the exponential decay rate of the tail of
the delay distribution on the average SNR, i.e., the decay rate
increases with γ̄. A comparison of analytical and simulation
results shows that the computed upper bounds provided by
our analysis are reasonably close to the simulated system, and
reflect the same decay. The results also show that the computed
bound are closer to simulation results when the number of
nodes is small.

B. Performance Bounds With Cross Traffic

As a final example, we consider Rayleigh fading channels
with cross traffic and study the impact of cross traffic char-
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Fig. 7. Loss probability (ε(b)) vs. average channel SNR (γ̄) for multi-hop
Rayleigh fading channels for N = 1, 10 and 20 with buffer size 400 kb,
(σ(s), ρ(s)) bounded traffic with σ(s) = 50 kb and ρ(s) = 20 or 30 kbps,
and W = 20 kHz.
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Fig. 8. Delay bound violation probability (ε(w)), computed and simulated,
vs. end-to-end delays (wε

net) for multihop Rayleigh fading channels for N =
1, 10, γ̄ = 5, 10, 15 dB, (σ(s), ρ(s)) bounded traffic with σ(s) = 50 kb
and ρ(s) = 20 kbps, and W = 20 kHz.
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Fig. 9. End-to-end backlog bound (bεo,net) vs. average channel SNR
(γ̄) for multi-hop Rayleigh fading channels with Markov modulated On-
Off cross traffic. Parameters are ε = 10−4, N = 10, W = 20 kHz,
(σ(s), ρ(s)) bounded through traffic with σo(s) = 50 kb, ρo(s) = 30 kbps,
cross traffic has average rates r = 2, 10, 25 kbps and peak-to-average ratios
r/r = 1 (deterministic), 1.5, 2.
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acteristics on the channel quality experienced by the through
traffic. We fix the number of nodes to N = 10. The parameters
of the Raleigh channel are as used earlier. The through traffic
is again deterministic with the default parameters given at
the beginning of the section. The cross traffic is based on
a Markov modulated On-Off arrival process as characterized
in Subsec. V-A. Its average rate, denoted by r, is obtained
as r = α

α+β r. The parameters α and β are selected so that
the average cycle time of the Markov chain as well as the
peak-to-average traffic rate have given values. Specifically,
we set the cycle time 1

α + 1
β = 10 ms, and the peak-to-

average ratio to r/r = 1.5 and 2. The different peak-to-
average ratios indicate the burstiness of the cross traffic. We
also consider deterministic cross traffic as our baseline for
comparison, where r = r, that is, cross traffic is a constant bit
rate traffic source.

In Fig. 9 we show end-to-end backlog bounds bεo,net (ε =
10−4) for the through traffic as a function of the average
channel SNR γ̄. The graphs are grouped according to the
average cross traffic rate r. Obviously, the service offered to
the through traffic by the fading channel is reduced when r
is increased. We observe that for smaller values of r, varying
the burstiness of traffic has a less pronounced effect than for
large values of r. As expected, when the cross traffic has a
larger share of the total traffic, its traffic characteristics have
a bigger influence on the perceived channel quality of the
through traffic. However, the impact of varying the burstiness
is remarkable. For r = 10 and 25, the blow up of the
backlog occurs much earlier when the peak-to-average ratio of
traffic is increased. Nevertheless, according to Subsec. IV-E,
all curves with the same value of r have identical asymptotic
behavior. We note that with larger peak-to-average ratio values
(r/r > 2) for r = 10, the backlog bounds will surpass that of
r = 25 with no or moderate burstiness. This provides evidence
of the major role of burstiness of interfering flows on the
performance of wireless communication channels.

VII. CONCLUSION

We have developed an analysis of networks with multi-
hop fading channels that can incorporate fading channel dis-
tributions, without the need for secondary models, such as
FSMC. Since such models generally leave open the accuracy
of model parameters, they may raise concerns over the fidelity
of computed performance metrics with respect to the actual
channel. In this paper, we took a fresh point of view, where the
descriptions of the arrivals and the fading channels reside in
different domains, referred to as bit domain and SNR domain.
We found that by mapping arrival processes to the SNR
domain, an end-to-end analysis with fading channels becomes
tractable. An important discovery was that arrivals and service
in the SNR domain obey the laws of a (min,×) dioid algebra.
The analytical framework developed in this paper appears
suitable to study a broad class of fading channels and their
impact on the network-layer performance in wireless networks.
Even though we made numerous assumptions for the fading
channels, our (min,×) network calculus may be applicable to
networks where these assumptions are relaxed. Generalizing

our framework and obtaining a more profound understanding
of the dioid algebra and computational methods in the SNR
domain is the subject of future research.

APPENDIX

Lemma 7. Let N ≥ 1. For all x with |x| < 1,
∞∑
u=0

(
N − 1 + u

u

)
xu =

1

(1− x)N
. (42)

Proof: For N = 1, the sum reduces to the geometric
series. For N > 1, we expand the right hand side as

1

(1− x)N
=

( ∞∑
u=1

xu
)N

=

∞∑
u=0

( ∑
u1+...uN=u

1

)
xu .

The last sum in parentheses counts the number of N -tuples of
nonnegative integers that add up to u. Since its value equals
the binomial coefficient

(
N−1+u

u

)
, the claim is proved.

Lemma 8. For every w ≥ 0 and all x with 0 ≤ x < 1,
∞∑
u=w

(
N − 1 + u

u

)
xu ≤ xw(1 + w)N−1

(1− x)N
.

Proof: We write the binomial coefficient as a product,(
N − 1 + u

u

)
=

N−1∏
j=1

j + u

j
.

Since (j + u) ≤ (j + u − w)(1 + w) for all j ≥ 1 and all
u ≥ w, it follows that(

N − 1 + u

u

)
≤
(
N − 1 + u− w

u− w

)
(1 + w)N−1 .

This yields for the sum
∞∑
u=w

(
N − 1 + u

u

)
xu ≤

∞∑
u=w

(
N − 1 + u− w

u− w

)
xu(1 + w)N−1

=
1

(1− x)N
xw(1 + w)N−1 .

In the last step, we have changed variables to k = u−w and
used again Eq. (42).
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