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Abstract—We show that a fluid-flow interpretation of Service
Curve Earliest Deadline First (SCED) scheduling simplifies
deadline derivations for this scheduler. By exploiting the recently
reported isomorphism between min-plus and max-plus network
calculus and expressing deadlines in a max-plus algebra, deadline
computations no longer require explicit pseudo-inverse compu-
tations. SCED deadlines are provided for latency-rate as well as
a class of piecewise linear service curves.

I. INTRODUCTION

Service Curve Earliest Deadline First (SCED) [5] offers
an alternative viewpoint on the design of packet scheduling
algorithms. The usual approach is to first design a scheduling
algorithm and then analyze its properties. SCED proceeds in
the reverse order in that it provides a mechanism to realize
a scheduling algorithm with given properties. The properties,
such as guarantees on rate or delays, are expressed in terms
of the concept of service curves of the network calculus [4].
Given a service curve, SCED computes deadlines for arriving
traffic and transmits traffic in the order of deadlines. As long as
no deadline is violated, the scheduler is guaranteed to satisfy
the service curve guarantees. The SCED framework in [5] is
completed by schedulability conditions that predict whether
given service curves can be met at a transmission link with
bounded (not necessarily fixed) capacity.

Since service curves are arbitrary non-negative increasing
functions, SCED has a great deal of flexibility for offering
different service guarantees to traffic flows. For example, it
does not share the well-known drawback of weighted fair
scheduling algorithms [6] when providing low delays to low-
bandwidth traffic. (To achieve low delays, fair schedulers must
increase the guaranteed rate of a flow).

Guarantees in SCED provide lower bounds on the service.
SCED+ [3] is an extension to guarantee bounds on the
delay jitter. Scheduling algorithms inspired by SCED, such
as Hierarchical Fair Service Curve (HFSC) [12] are widely
deployed in the network stack of current operating systems
[2], [9].

Even though SCED appears to be an ideal vehicle for inter-
preting scheduling algorithms in the context of the network
calculus, it has not played a major role in recent network
calculus research. A closer inspection of SCED provides clues
that may offer an explanation for the lack of interest. First, the
original formulation of SCED in [5] assumes that all packets
have the same size. The condition on equal packet sizes is
relaxed in [7, Sec. 2.3.2] by adding an additional ‘packetizer’
service element. The analysis in [5] also requires that a packet
can depart in the same time slot where it arrives. This amounts

to an assumption of ‘cut-through’ switching in a network,
whereas most networks perform ‘store-and-forward’ switch-
ing. Finally, since SCED operations are described within the
framework of the min-plus calculus, deadlines are expressed
in terms of a pseudo-inverse of a traffic function, which is not
very intuitive.

In this paper, we will show that the above issues can be
resolved when describing SCED in terms of the max-plus
network calculus. By adopting a fluid-flow interpretation of
SCED operations, we can exploit the recently established
duality between min-plus and max-plus network calculus [8]
for an analysis of SCED. Since max-plus expressions are
more convenient for computing timestamps, we use them for
deadline computations in SCED. For schedulability conditions,
we work with min-plus expressions, since the corresponding
max-plus conditions become unwieldy.

In Sec. II we briefly discuss network calculus concepts
used in this paper. In Sec. III we discuss SCED operations in
terms of max-plus algebra expressions. In Sec. IV we derive
schedulability conditions for the fluid-flow SCED scheduler.
In Sec. V we address the computation of SCED deadlines in
fluid-flow SCED. In Sec. VI we address deadline computations
in a packet-level system.

II. DUALITY OF MIN-PLUS AND MAX-PLUS NETWORK
CALCULUS

The continuous-time min-plus network calculus conducts
an analysis of network elements within a (Fo,∧,⊗) dioid
algebra, where Fo is the set of left-continuous, non-decreasing
functions F : R→ R+

o ∪ {+∞}, with F (t) = 0 if t ≤ 0,
the ∧-operation is a pointwise minimum, and ⊗ is the
min-plus convolution, which is defined as F ⊗ G(t) =
inf0≤s≤t {F (s) +G(t− s)} for two functions F,G ∈ Fo.
The cumulative amount of arrivals and departures at a network
element in the time interval [0, t) is given by A(t) and
D(t), respectively, with A,D ∈ Fo. The available service
at a network element is expressed in terms of a function
S ∈ Fo, referred to as minimum service curve, which satisfies
D(t) ≥ A ⊗ S(t) for all t. When arrivals are bounded by a
function E ∈ Fo, such that E(s) ≥ A(t+ s)−A(t) for all s
and t, we say that E is a traffic envelope for A.

Functions in the max-plus network calculus designate the
time of an arrival or departure event for a given number of
bits. We refer to these functions as space-domain functions.
The continuous-space version uses a (To,∨, ⊗ ) dioid, where
To is the set of right-continuous, non-decreasing functions
F : R→ R+

o ∪ {−∞} ∪ {+∞}, with F (ν) = −∞ if ν < 0



and F (ν) ≥ 0 if ν ≥ 0. The ∨-operation is a pointwise maxi-
mum, and ⊗ is the max-plus convolution, with F ⊗G(ν) =
sup0≤κ≤ν {F (κ) +G(ν − κ)} for two functions F,G ∈ Fo.
Arrivals and departures are described by functions TA ∈ To
and TD ∈ To. Here, TA(ν) is the arrival time of bit ν, where
bit values are allowed to be real numbers. A minimum service
curve is a function γS ∈ To such that TD(ν) ≤ TA⊗ γS(ν)
for all ν, and a traffic envelope λE ∈ To for an arrival time
function TA satisfies λE(µ) ≤ TA(ν + µ) − TA(ν) for all ν
and µ.

As shown in [8], there exists an isomorphism between
the min-plus and max-plus network calculus via the pseudo-
inverse functions

F ↓(y) = inf {x | F (x) ≥ y} = sup {x | F (x) < y} ,
F ↑(y) = sup {x | F (x) ≤ y} = inf {x | F (x) > y} ,

where F ↓ is referred to as lower pseudo-inverse and F ↑ as
upper pseudo-inverse. The pseudo-inverses have the following
properties:
• F ∈ Fo ⇒ F ↑ ∈ To.
• F ∈ To ⇒ F ↓ ∈ Fo
• F ↓ is left-continuous and F ↑ is right-continuous.
• F is left-continuous ⇒ F =

(
F ↑
) ↓

.
• F is right-continuous ⇒ F =

(
F ↓
) ↑

.
With the pseudo-inverses, we can map operations between the
min-plus and max-plus network calculus by
•
(
F ∧G

) ↑
(ν) = F ↑ ∨G ↑(ν).

•
(
F ⊗G

) ↑
(ν) = F ↑⊗G ↑(ν).

•
(
F +G

) ↑
(ν) = inf

0≤κ≤ν
max

{
F ↑(κ), G ↑(ν − κ)

}
.

For mapping in the other direction we have
•
(
F ∨G

) ↓
(t) = F ↓ ∧G ↓(t) .

•
(
F ⊗G

) ↓
(t) = F ↓ ⊗G ↓(t) .

•
(

inf
0≤s≤t

max
{
F (s), G(t− s)

}) ↓
= F ↓(t) +G ↓(t) .

With this, we can set A ≡ T ↓A and D ≡ T ↓D, as well as
TA ≡ A↑ and TD ≡ D↑. Service curves and traffic envelopes
are related as follows:
• D(t) ≥ A⊗ S(t) ,∀t⇒ TD(ν) ≤ TA⊗S↑(ν) ,∀ν.
• E(s) ≥ A(t+ s)−A(t) ,∀t, s⇒ E↑(µ) ≤ TA(ν + µ)−
TA(ν) ,∀ν, µ.

• TD(ν) ≤ TA⊗ γS(ν) ,∀ν ⇒ D(t) ≥ A⊗ γ↓S(t) ,∀t.
• λE(µ) ≤ TA(ν + µ) − TA(ν) ,∀ν, µ ⇒ λ↓E(s) ≥ A(t +
s)−A(t) ,∀t, s.

With our convention to use S and E for service curves and
traffic envelopes in the min-plus network calculus, and γS and
λE in the max-plus network calculus, we can set S ≡ γ↓S and
γS ≡ S↑, as well as E ≡ λ↓E and λE ≡ E↑.

As argued in [8], there is no isomorphism when the min-
plus network calculus is defined in discrete time (t ∈ Z) or the
max-plus calculus is defined in discrete space (ν ∈ Z). It also
does not exist for a packet-level characterization of traffic.
Hence, to exploit the above relationships within SCED, we
must resort to a fluid-flow description of traffic, where time
and space are expressed by non-negative real numbers.
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Fig. 1. SCED Deadlines.

III. FLUID-FLOW SCED

The objective of SCED is a scheduling mechanism that can
realize any given minimum service curve. The basic idea is to
assign arriving traffic a deadline equal to the latest departure
time permitted by the given service curve. As long as all traffic
departs before the expiration of the assigned deadlines, the
service curve is guaranteed to hold.

We first discuss the deadline assignment from the perspec-
tive of the max-plus algebra. We consider a fluid-flow version
of SCED, where each bit value ν ∈ R+

o is assigned a deadline
d`(ν). All traffic is transmitted in the order of deadlines. The
deadline assignment is illustrated in Fig. 1(a). Bit ν with arrival
time TA(ν) is assigned the deadline

d`(ν) = TA⊗ γS(ν) , (1)

where γS is a max-plus minimum service curve. This gives
the equivalency

TD(ν) ≤ d`(ν) ⇐⇒ TD(ν) ≤ TA⊗ γS(ν) . (2)

Hence, if all traffic departs by its deadline, γS is a minimum
service curve. Conversely, if γS is a minimum service curve,
then there is no deadline violation.

The deadline assignment is more intricate when we describe
it in terms of min-plus network calculus expressions. The
deadline assignment is sketched in Fig. 1(b) for a continuous
arrival function A. The deadline of an arrival just before time
t,1 denoted by d`(A(t)), is set to the time after t when A⊗S
has caught up to A(t). If the departures at time d`(A(t)),
given by D(d`(A(t))), are at least A ⊗ S(d`(A(t))), then
S satisfies the service curve requirement D(d`(A(t))) ≥
A ⊗ S(d`(A(t))). The computation of the deadline involves
the computation of an inverse. More precisely, since neither A
nor A ⊗ S are continuous or strictly increasing, the deadline
requires to take a pseudo-inverse. By choosing the upper
pseudo-inverse, we recover the deadline from (1), since

d`(ν) = TA⊗ γS(ν)
= A↑⊗S↑(ν)
= (A⊗ S)↑ (ν)
= sup

{
τ | A⊗ S(τ) ≤ ν

}
.

1Note that A(t) does not include arrivals that occur at time t.



Then, the deadline for A(t) is given by

d`(A(t)) = sup
{
τ | A⊗ S(τ) ≤ A(t)

}
.

Note that the computation of the pseudo-inverse for an arrival
time t requires to compute A⊗ S(τ) for values τ > t, which
appears to assume knowledge of future arrivals (after time t).
Fortunately, this is not the case, since for τ > t,

A⊗ S(τ) = inf
0≤s≤τ

{A(s) + S(τ − s)} ≤ A(t)

if and only if

inf
0≤s≤t

{A(s) + S(τ − s)} ≤ A(t) .

Despite the additional complexity of deadline computations in
a min-plus setting, all discussions of SCED in the literature
[1], [3], [5], [7], [10] have chosen a min-plus formulation.
Interestingly, the computations in these works use the lower
pseudo-inverse for the computation of deadlines.

IV. SCHEDULABILITY CONDITION OF FLUID-FLOW SCED

In this section we derive a schedulability condition that
determines whether a SCED scheduler at a link with variable
transmission rate can support a set of min-plus or max-plus
service curves for a set of flows. We will work within the
min-plus network calculus, since the max-plus version of the
schedulability condition is generally not useful for practical
computations (as shown below).

We consider a set N of flows. Let Aj and Dj denote the
time-domain arrival and departure functions of flow j ∈ N .
The functions TAj

= A↓j and TDj
= D↓j denote the space-

domain formulations of arrivals and departures. Arrivals of
flow j are constrained by a traffic envelope, which is denoted
by either Ej or λj = E↓j .

We consider a work-conserving link with a time-variable
transmission rate. We assume that the transmissions of the
link can be bounded by a strict service curve C ∈ Fo [7],
defined by the property that for any time interval (s, t] with
positive backlog,∑

j

(
Dj(t)−Dj(s)

)
≥ C(t− s) .

With a constant-rate link, we have C(t) = ct for some c > 0.
In the case of packet-level traffic, the transmission of a packet
is never interrupted, even if a packet arrives with a shorter
deadline than the packet in transmission. This is referred to
as non-preemptive scheduling. In contrast, with preemptive
scheduling, the link always transmits traffic with the earliest
deadline.

We are interested in deriving a condition that can determine
whether a SCED scheduler is able to guarantee service curves
Sj or γSj = S↑j for each flow j ∈ N . The deadline assignment
for each ν ≥ 0 is such that

d`j(ν) = TAj
⊗ γSj (ν) = (Aj ⊗ Sj)↑(ν) . (3)

A. Preliminary Results

We first present preliminary results that will aid in the
derivation of the schedulability condition. We define A<tj (τ)
as

A<tj (τ) = sup
{
ν | 0 ≤ TAj

(ν) < τ and d`j(ν) < t
}
,

which are the arrivals from flow j in the time interval [0, τ)
with a deadline less than t. We will use the shorthand
A<tj (s, t) = A<tj (t) − A<tj (s). Now, let t∗ be the last time
before t (t∗ ≤ t) when the link does not have any backlog from
traffic with a deadline before time t. Also, let `(t∗) ≥ 0 be
the untransmitted portion of the packet that is in transmission
at time t∗. This packet has a deadline greater than or equal
to t. We next relate the function A<tj to deadline violations in
SCED.

Lemma 1. If a non-preemptive SCED scheduler experiences
a deadline violation by time t, then∑

j∈N
A<tj (t∗, t) + `(t∗) > C(t− t∗) .

Proof. Let us first ignore that packet transmissions cannot
be preempted. If we have a deadline violation by time t,
the amount of traffic with a deadline before t exceeds the
transmission capacity of the link. Since there is no traffic at
the link at time t∗ with a deadline before t, we can ignore
all arrivals and transmissions before t∗. Then, the arrivals
from flow j in [t∗, t) with a deadline before t are given by
A<tj (t∗, t). The least available transmission capacity of the
link in [t∗, t) is given by C(t − t∗). Therefore, a deadline
violation by t implies that

∑
j∈N A

<t
j (t∗, t) > C(t − t∗).

Without packet preemption, the remaining part of the packet
in transmission at time t∗, `(t∗), is added to the workload that
must be transmitted before t, which yields the claim.

The next lemma provides an interesting property of the
function A<tj .

Lemma 2. For all t ≥ 0, we have A<tj (t) = Aj ⊗ Sj(t).
Proof. Setting t = τ in the definition of A<tj (τ), we get

A<tj (t) = sup
{
ν | TAj ⊗ γSj (ν) < t

}
,

since F ⊗G(ν) ≥ F (ν) for F,G ∈ To. Writing deadlines in
terms of the min-plus algebra, we obtain

A<tj (t) = sup
{
ν | (Aj ⊗ Sj)↑(ν) < t

}
=
(
(Aj ⊗ Sj)↑

)↓
(t)

= Aj ⊗ Sj(t) ,

where the second line uses the lower-pseudo inverse, and the
last line follows from F = (F ↑)↓ if F ∈ Fo.

B. Main Result

In this subsection we prove schedulability conditions for a
fluid-flow SCED scheduler.



Theorem 1. A non-preemptive SCED scheduler with a set N
of flows as discussed at the beginning of this section guaran-
tees the service curves {Sj}j∈N if for all t ≥ 0∑

j∈N
Ej ⊗ Sj(t) ≤ [C(t)− `max]

+
, (4)

where `max is the maximum packet size and [x]+ =
max{x, 0}.

Note that the condition requires that Sj(t) = 0 for t ≤
C↑(`max). This can be ensured by ‘appending’ a delay element
with service curve δC↑(`max) to a given service curve γ via
γ ⊗ δC↑(`max).

With preemptive scheduling we set `max = 0. We point out
that the schedulability condition of preemptive SCED when
expressed in the max-plus algebra [8, see Corollary 12.5] is

inf
ν1,...,νN

ν=ν1+...+νN

max
j=1,...,N

E↑j ⊗S↑j (νj) ≥
ν

C
, ∀ν ≥ 0 .

Clearly, this condition is not useful for practical schedulability
tests.

Proof. According to (2), the deadline assignment from (3)
does not result in a deadline violation if and only if γSj = S↓j
is a max-plus service curve for flow j (TDj ≤ TAj ⊗ γSj ). By
the duality properties, Sj is then a min-plus service curve. We
will show that a deadline violation implies that (4) does not
hold. Hence, if (4) holds, there cannot be a deadline violation.

Assume that there is a deadline violation before t, and let t∗

be as defined above. Each flow j ∈ N satisfies

A<tj (t∗) = Aj(t
∗) (5)

This a consequence from the fact that earlier arrivals of flow j
have an earlier deadline. Since there are arrivals after time t∗

with a deadline before t, the deadlines of all arrivals before t∗

must be less than t. We now derive for flow j ∈ N
A<tj (t∗, t) = Aj ⊗ Sj(t)−Aj(t∗)

= inf
0≤s≤t

{Aj(s) + Sj(t− s)} −Aj(t∗)

≤ inf
t∗≤s≤t

{Aj(s) + Sj(t− s)} −Aj(t∗)

= inf
0≤s≤t−t∗

{Aj(t∗ + s)−Aj(t∗) + Sj(t− t∗ − s)}

≤ inf
0≤s≤t−t∗

{Ej(s) + Sj(t− t∗ − s)}

= Ej ⊗ Sj(t− t∗) .
In the first step, we use Lemma 2 and (5). The second step
simply expands the convolution. The third step relaxes the
infimum by restricting its range, and the fourth step makes
a change of variable. The inequality in the fifth step follows
since E is an envelope, that is, Ej(s) ≥ Aj(t∗+ s)−Aj(t∗),
which yields the convolution in the last step.

By Lemma 1, since Ej ⊗ Sj(t) ≥ Aj ⊗ Sj(t) and `max ≥
`(t∗), a deadline violation before t implies that∑

j∈N
Ej ⊗ Sj(t) + `max > C(t) ,

which contradicts (4). Thus, we cannot have a deadline viola-
tion. Hence, the functions Sj are minimum service curves.

The following condition, which follows directly from The-
orem 1, is useful when no information is available on the
arrivals.

Corollary 1. Under the assumptions of Theorem 1, the SCED
scheduler guarantees service curves {Sj}j∈N if for all t ≥ 0∑

j∈N
Sj(t) ≤ [C(t)− `max]

+
,

Since the available transmission capacity of the link in a
time interval (s, t] may exceed C(t − s), the condition in
Theorem 1 is a sufficient condition. On the other hand, if the
link is a fixed-rate work-conserving link with exact service
curve C(t) = ct, such that

∑
j Dj(t) = (

∑
j Aj) ⊗ C(t) for

all t ≥ 0, and arrivals of flows may saturate their envelopes,
that is, Aj(t) = Ej(t), we can provide a necessary condition
for guaranteeing minimum service curves {Sj}j∈N , which are
close to (4).

Theorem 2. Consider a SCED scheduler that offers an exact
service curve C(t) = ct. Assume that the arrivals from each
flow j ∈ N can saturate its envelope Ej . If SCED ensures
each flow j ∈ N a minimum service curve Sj , then, for all
t ≥ 0, ∑

j∈N
Ej ⊗ Sj(t) ≤ ct . (6)

For preemptive scheduling, the condition in (6) is neces-
sary and sufficient. Since, for non-preemptive scheduling, the
condition in (4) is not always necessary (e.g., if there is only
one flow), reducing the difference between (4) and (6) requires
knowledge of the number of flows and the service curves of
each flow.

Proof. Suppose that (6) does not hold for some value of t. Let
the arrivals saturate their envelopes, that is Aj(τ) = Ej(τ) for
all 0 ≤ τ ≤ t for each j ∈ N . Since, by assumption, each of
the {Sj}j∈N is a minimum service curve, we have for each
j ∈ N that

Dj(t) ≥ Ej ⊗ Sj(t) .

Summing over all flows and using the violation of (6), we get∑
j∈N

Dj(t) ≥
∑
j∈N

Ej ⊗ Sj(t) > ct .

However, this is not possible since the aggregate departures
from all flows in the interval [0, t] cannot exceed ct.

V. COMPUTATIONS OF SCED DEADLINES

As we have seen, by avoiding the need to compute pseudo-
inverses, SCED deadlines in a max-plus setting are conceptu-
ally simpler and more intuitive than presented in the literature
on SCED [1], [3], [5], [7], [11].



Delay Guarantees: The max-plus service curve for guar-
anteeing a delay bound d for traffic is simply γS(ν) = d. This
leads to the deadline computation

d`(ν) = max
0≤κ≤ν

{TA(κ) + d} = TA(ν) + d .

That is, the deadline is the sum of the arrival time and the
delay bound. This deadline assignment corresponds to that of
Earliest-Deadline-First (EDF) scheduling.

Rate Guarantees: The computation of SCED deadlines for
a rate guarantee with service curve γS(ν) = ν

R requires a little
bookkeeping at the start of a busy period of a flow. Here, a
busy period of a flow is a maximal time interval where the
flow has a positive backlog B, with B(t) = A(t) − D(t).
The following computation assumes that all arrivals occur at
the start of or within a busy period, and that the number
of busy periods within any finite time interval is finite. This
assumption does not hold for general fluid-flow traffic arrivals.
In particular, if traffic arrives at a constant rate and is served
at the same rate, no backlog builds up, and, hence, there is no
busy period. On the other hand, in practical scenarios, where
arrivals occur in chunks of arbitrary size and the maximum
service rate has an upper bound, any arrival creates a backlog,
and, therefore, starts or falls into a busy period.

Consider the arrival time TA(ν) of a bit value ν. We suppose
the arrival occurs in a busy period that started at time t, that
is, t = sup{s ≤ t | A(t) = D(t)}. Let ν be the bit that
started the busy period, with arrival time TA(ν) = t, that
is, ν = inf{κ | TA(κ) ≥ t}. For the delay W , defined as
W (ν) = TD(ν)− TA(ν), we have

W (ν) = 0 , W (κ) > 0 , ∀κ ∈ (ν, ν] .

(In general, it is possible that W (κ) > 0 for all κ ∈ (ν, ν] [8,
§11.5]. However, since the service curve γS(κ) = κ

R does not
allow a delay at the start of a busy period, we get B(TA(ν)) =
W (ν) = 0. ) With TD(κ) ≤ TA⊗ γS(κ) for all κ, we therefore
have

TA(κ) < TA⊗ γS(κ) , ∀κ ∈ (ν, ν] . (7)

Under these assumptions, the interval over which TA⊗ γS(ν)
is computed can be reduced as stated in the following lemma.

Lemma 3. Given an arrival ν at time t to a network element
that offers the service curve γS(ν) = ν

R . If ν > ν, then

TA⊗ γS(ν) = sup
0≤κ≤ν

{TA(κ) +
ν − κ
R
} .

Proof. Since TA and γS are right-continuous, by [8,
Lemma 4.1(9)], there exists a µ ∈ [0, ν] such that

TA⊗ γS(ν) = TA(µ) +
ν − µ
R

.

If µ ∈ (ν, ν], we get

TA⊗ γS(ν) = TA(µ) +
ν − µ
R

< sup
0≤κ≤µ

{TA(κ) +
µ− κ
R
}+ ν − µ

R

≤ sup
0≤κ≤ν

{TA(κ) +
ν − κ
R
}

= TA⊗ γS(ν) ,
In the second line, we used (7), and in the third line, we
enlarged the range of the supremum. Obviously, there is a
contradiction, and we can conclude that µ ≤ ν.

Rewriting the result in Lemma 3 as

TA⊗ γS(ν) = sup
0≤κ≤ν

{TA(κ) +
ν − κ
R
}+ ν − ν

R

= max
[
sup

0≤κ<ν
{TA(κ) +

ν − κ
R
}, TA(ν)

]
+
ν − ν
R

= max{TA⊗ γS(ν−), t)}+
ν − ν
R

,

where we use the notation x− = supy<x y, we can construct
a deadline assignment for the rate service curve. Let us add
an index to the busy periods so that tn and νn denote the start
time and the first bit of the nth busy period of a flow. Then
the deadline assignment in the nth busy period is given by

d`(ν) = max
(
d`(ν−n ), tn

)
+
ν − νn
R

, ν ∈ [νn, νn+1) . (8)

For the computation of the first busy period, we define
d`(ν−1 ) = −∞. This is consistent with our derivations since
ν1 = 0 and, with TA⊗ γS ∈ To, we get TA⊗ γS(ν) = −∞
for ν < 0.

This deadline assignment is easily implemented, since we
must only keep track of the arrived bits in the current busy
period. Consider the nth busy period which starts at tn with bit
value νn. At the begin of a busy period, we take the larger of
the current time (tn) and the last assigned deadline (d`(ν−n )).
This value is added to µ

R to obtain the deadline of the µth bit
in the busy period. Since ν in (8) is equal to ν = µ+ νn for
ν ∈ [νn, νn+1), the resulting deadline is equal to (8). Note
that the start time of a busy period is simply the time of an
arrival to an empty buffer.

Latency-Rate Guarantees: We can combine the deadline
assignment of a delay server and a rate server to get the
deadline assignment of a latency-rate server. Let γ1(ν) = ν

R
and γ2(ν) = d, the service curve of a latency-rate server is
γ1⊗ γ2(ν) = ν

R + d. Since

TA⊗ (γ1⊗ γ2)(ν) = TA⊗ γ1 (ν) + d ,

the deadline of ν for a latency-rate server is given by d`(ν)
from

d`(ν) = d`(ν) + d , (9)

where d`(ν) is the deadline for γ1 computed with (8).
Piecewise linear convex service curve: The deadline com-

putation with (8) and (9) can be extended to piecewise linear



convex max-plus service curves. A single segment of such a
service curve has the form

γS(ν) =
[ν
r
− e
]+

for some r > 0 and e ≥ 0. For e = 0, this service curve is
obviously a rate server, and the deadline computation from (8)
applies. For e > 0, we essentially have a delay correction with
a negative value. Since the earliest deadline of a packet is its
arrival time, we compute the deadline as

d`(ν) = max{d`(ν)− e, TA(ν)} . (10)

with d`(ν) from (8). We obtain a piecewise convex max-plus
service curve with multiple segments, from

γS(ν) = max
i=1,...,N

{[
ν

ri
− ei

]+}
,

with e1 < e2 < . . . < eN and R1 < R2 < . . . < RN .
The deadline for the piecewise linear convex max-plus service
curve is computed by d`(ν) = maxi=1,...,N d`i(ν), where d`i
is the deadline computed for the ith segment.

Traffic shaping: The SCED principle is also applicable to
traffic shaping. A max-plus traffic envelope λE ∈ To realizes
an exact service curve, with TD(ν) = TA⊗λE(ν). Here, the
convolution provides the time when the shaper releases bit ν.
We therefore refer to the max-plus convolution as the release
time and denote it by r`, with

r`(ν) = TA⊗λE(ν) .
As an example, the max-plus envelope for a token bucket with
rate r and bucket size b has the envelope λ(ν) = [ νr − b

r ]
+. We

compute the release times with (8) and (10), were we replace
‘d`’ by ‘r`’.

VI. PACKETIZED SYSTEMS

While a fluid-flow interpretation of SCED is perfectly
aligned with network calculus theory, verifying and enforcing
deadlines for each (real) value ν of a traffic flow is obviously
not practical. In a packet system, each packet is assigned a
single deadline, and all bits belonging to the same packet
receive the same deadline. We now discuss adjustments of
SCED for a packet-level system.

Let `n denote the size of the nth packet (n ≥ 1) of a flow
and Ln =

∑N
k=1 `n the cumulative size of the first n packets,

with Lo = 0. The bits of the nth packet cover the range
Ln−1 ≤ ν < Ln. For a system with packet-level arrivals we
have

TA(ν) = T pA(n) , ν ∈ [Ln−1, Ln) ,

where T pA(n) is the arrival time of packet n. With a service
curve for delays, γS(ν) = d, the (fluid-flow) SCED deadline
assignment according to (1) is

d`(ν) = T pA(n) + d , ν ∈ [Ln−1, Ln) ,

hence a packet-level deadline assignment d`p(n) = T pA(n)+d
is congruent with the fluid-flow assignment.

With a rate-guarantee with γS(ν) = ν
R , fluid-flow SCED

assigns each bit value of a packet a different deadline. For a
packet-level system, we use [8, Eq. (12.14)] which showed

T pA⊗ γS(ν) = max
{
TA⊗ γS(L−k−1), T

p
A(k)

}
+
ν − Lk−1

R
,

for ν ∈ [Ln−1, Ln). Hence, a packet-level deadline assignment

d`p(n) = max
{
d`p(n− 1), T pA(k)

}
+
`n
R
, (11)

relates to the fluid-flow assignment d`(ν) by

d`(ν) ≤ d`p(n)− `n
R , ν ∈ [Ln−1, Ln) .

Therefore, by adjusting the service curve by an additional
delay, yielding γS′(ν) = ν+`max

R , where `max is the maximum
packet size of the flow, the deadline d`′ = TA⊗ γS′ satisfies

d`′(ν) ≤ d`p(n) , if ν ∈ [Ln−1, Ln) .

We see that the packet-level assignment in (11) meets all
deadlines of a fluid-flow assignment with the adjusted rate
service curve γS′ . The deadline assignment in (11) is of course
that of the VirtualClock scheduling algorithm in [13].

VII. CONCLUSIONS

By resorting to max-plus algebra for the computation of
deadlines, we showed that a SCED scheduler can be much
simplified. The computation of deadlines for latency-rate and
piecewise-linear convex max-plus service curves only requires
state information on the start time and the traffic served in
the current busy period. A packet-level algorithm for deadline
computations emphasized the relationship of SCED for rate-
based service curves and VirtualClock scheduling.
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