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Abstract—This paper presents a new foundational approach
to reason about available bandwidth estimation as the analysis
of a min-plus linear system. The available bandwidth of a link
or complete path is expressed in terms of a service curve, which
is a function that appears in the network calculus to express the
service available to a traffic flow. The service curve is estimated
based on measurements of a sequence of probing packets or
passive measurements of a sample path of arrivals. It is shown
that existing bandwidth estimation methods can be derived in the
min-plus algebra of the network calculus, thus providing further
mathematical justification for these methods. Principal difficulties
of estimating available bandwidth from measurements of network
probes are related to potential nonlinearities of the underlying
network. When networks are viewed as systems that operate
either in a linear or in a nonlinear regime, it is argued that probing
schemes extract the most information at a point when the network
crosses from a linear to a nonlinear regime. Experiments on the
Emulab testbed at the University of Utah, Salt Lake City, evaluate
the robustness of the system-theoretic interpretation of networks
in practice. Multinode experiments evaluate how well the convolu-
tion operation of the min-plus algebra provides estimates for the
available bandwidth of a path from estimates of individual links.

Index Terms—Bandwidth estimation, min-plus algebra, network
calculus.

I. INTRODUCTION

HE benefits of knowing how much network bandwidth is
T available to an application has motivated the development
of techniques that infer bandwidth availability from traffic mea-
surements [6], [11], [15], [17], [20], [28], [32], [34], [39]. With
a large number of methods available and much empirical expe-
rience gained, recently an increasing effort has been put toward
improving the theoretic understanding of measurement-based
estimation of available bandwidth, e.g., [5], [26], and [40].
This paper presents a new foundational approach to reason
about available bandwidth estimation as the analysis of a
min-plus linear system. Min-plus linear system theory has
provided the mathematical underpinning for the deterministic
network calculus [8], [23]. Drawing from known relationships
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between linear system theory and the network calculus, we
will use min-plus system theory to explain how bandwidth
estimation methods infer information about a network and
find bandwidth estimation methods that can extract the most
information from a network. Some key difficulties encountered
when measuring available bandwidth become evident in a
system-theoretic view.

We view bandwidth estimation as the problem of determining
unknown functions that describe the available bandwidth based
on measurements of a sequence of probing packets or passive
measurements of a sample path of arrivals. These functions cor-
respond to the service curves that appear in the network cal-
culus, where they are used to express the available service at a
network link or an end-to-end path. Working within the context
of the network calculus, we can apply a result that allows us to
compute the service curve of a network path from service curves
of the links of the path. This is done by applying the convolution
operator of the min-plus algebra [8], [23]. We explore how well
the convolution of the available bandwidth of multiple links, ex-
pressed as service curves, can describe the available bandwidth
of an end-to-end path.

The contribution of this paper is that it offers an alterna-
tive interpretation for bandwidth estimation. Our formulation
of available bandwidth in min-plus linear system theory reveals
that the underlying estimation problem is intrinsically hard, re-
quiring the solution to a maximin optimization problem. The
optimization problem becomes more tractable when the net-
work satisfies the property of “min-plus linearity.” We show
that some existing estimation techniques, in particular those in
[17] and [34], can be interpreted as analyzing a network with
linear input—output relationships. Our derivations reveal prop-
erties of existing probing schemes presented in [17] and [34],
for example, that these techniques derive the available band-
width precisely if the network satisfies min-plus linearity. The
discovery of an implicit assumption of min-plus linearity in
these measurement methods is seemingly at odds with empir-
ical evidence that these methods have been successfully applied
in networks that do not satisfy linearity—for example, even a
single FIFO link violates the requirements of min-plus linearity.
We resolve this apparent contradiction by showing that some
networks can be decomposed into disjoint min-plus linear and
nonlinear regions. These networks behave as a min-plus linear
system at low load and become nonlinear if the load exceeds a
certain threshold. The crossing of the linear and nonlinear re-
gions marks the point where the available bandwidth can be ob-
served. A major advantage of formulating the available band-
width problem in min-plus algebra is that we can exploit the
powerful min-plus convolution operator to obtain an estimate
of the available bandwidth for end-to-end paths from estimates
of constituting links. Additionally, by generalizing the available
bandwidth in terms of service curves, we can express multiple

1063-6692/$26.00 © 2009 IEEE



LIEBEHERR et al.: SYSTEM-THEORETIC APPROACH TO BANDWIDTH ESTIMATION

data rates at different time scales. This makes it possible to dis-
tinguish a short-term reduction of the data rate due to tempo-
rary link congestion from the long-term utilization of a link or a
path. This paper also provides an answer to the problem of con-
structing a best possible passive bandwidth estimation scheme
from the measurement of a traffic trace.

The assumptions in this paper on network and traffic charac-
teristics are similar to those in many related works on bandwidth
estimation techniques (see Section II). The available bandwidth
is represented by a random process, where the source of ran-
domness is the variability of network traffic.

The time scale of network measurements is assumed to be
small compared to the time scale at which characteristics of
network traffic or network links change. This assumption is a
consequence of the requirement for time invariance in min-plus
linear system theory. However, it is allowed that the network
changes its state between repetitions of a measurement. The as-
sumption of time-invariance is not justified when properties of
a network link vary on short time scales, e.g., on wireless trans-
mission channels with random noise. Consequently, such net-
works are not adequately described in our min-plus system-the-
oretic formulation.

The remainder of this paper is structured as follows. In
Section II, we discuss bandwidth estimation methods and other
related work. In Section III, we review the min-plus linear
system interpretation of the deterministic network calculus. In
Section IV, we formulate bandwidth estimation as the solution
to an inversion problem in min-plus algebra. In Section V, we
derive solutions to compute the inversion and relate them to
probing schemes from the literature. In Section VI, we justify
how these probing schemes can be applied in networks that are
not min-plus linear. In Section VII, we present measurement
experiments of probing schemes suggested by the min-plus
system-theoretic concepts from this paper. We present brief
conclusions in Section VIIIL.

II. AVAILABLE BANDWIDTH ESTIMATION TECHNIQUES

The goal of bandwidth estimation is to infer from measure-
ments a reliable estimate of the unused capacity at a multiaccess
link, a single switch, or a network path. The available bandwidth
of a network link 7 in a time interval [t,¢ + 7) can be specified
as [39]

t+7
it b+ 7) = % /t [Ci(2) — Ai(2)]dz

where C;(t) and \;(t) are the capacity and total transmitted
traffic, respectively, on link ¢ at time ¢. We note that individual
definitions of available bandwidth used in the literature may de-
viate from the above definition. It is generally assumed that link
capacities have a constant rate, i.e., C;(z) = C;. With this, the
available bandwidth can be interpreted as a random process,
where the randomness stems from the variability of network
traffic.

If available bandwidth estimates for single links are available,
the available bandwidth of an end-to-end network path with H
links is computed as [18]

alt,t+71) = minH a;(t,t+ 7).

i=1
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Available bandwidth methods measure the transmission of a se-
quence of control (probe) packets and use the measurements
to estimate or bound the available bandwidth. Instead of esti-
mating the available bandwidth, other probing schemes seek to
determine the link with the least capacity along a path, given
by min;—1, . g C;, and referred to as the bottleneck capacity. If
the time scale of measurements is small compared to the time
scale at which characteristics of network traffic changes, net-
work traffic can be described by a deterministic function. In this
case, a single sample of the available bandwidth can be inter-
preted as being conditioned on the state of the network. Eval-
uating a large number of samples corresponds to computing
a conditional average, which is justified as long as the traffic
distribution satisfies stationarity. When network characteristics
change on a short time scale, e.g., a wireless channels with
random noise, a description of traffic and link by deterministic
functions is not suitable.

Almost all proposed probing schemes perform measurements
of packet pairs or packet trains. Packet pairs consist of two
packets with a defined spacing, and packet trains consist of more
than two packets. Since it was first suggested in [16] and [21],
packet pair probing has evolved significantly and has been used
for estimating the bottleneck capacity (e.g., Bprobe [6], Cap-
Probe [20]), the available bandwidth (e.g., ABWE [31], Spruce
[39]), and the distribution of cross traffic [27]. The rationale be-
hind these methods builds on the relation of packet dispersion
and available bandwidth resources, i.e., packet pairs with a de-
fined gap may be spaced out on slow or loaded links and thus
carry information about the network path. Some techniques,
e.g., [27] and [39], build on a model of a single link whose ca-
pacity is assumed to be known.

The majority of proposed methods employ packet trains for
bottleneck capacity estimation (e.g., PBM [32], Cprobe [6],
pathrate [11]), and for available bandwidth estimation (e.g.,
pathload [17], TOPP [28], PTR/IGI [15], and pathchirp [34]).
The general approach is to adaptively vary the rate of probing
traffic to induce congestion in the network. A comprehensive
discussion of all techniques is beyond the scope of this paper.
For details and empirical evaluations of packet train and packet
pair methods, we refer to [18] and [36]-[39]. Some studies
have found that packet trains provide more reliable bandwidth
estimates than packet pairs [18], [25]. The wide spectrum of
bandwidth estimation methods indicates the complexity of
measuring available bandwidth in a network. In particular,
the comparative evaluations of bandwidth estimation methods
sometimes widely disagree in their conclusions on the capabil-
ities and limitations of individual methods.

For the purposes of this paper, the two packet train methods
pathload and pathchirp are particularly relevant. Pathload uses
a sequence of constant rate packet trains, where the transmission
rate of consecutive trains is iteratively varied until it converges
to the available bandwidth. In pathchirp, the rate is varied within
a single packet train using geometrically decreasing interpacket
gaps. Both methods interpret increasing delays as an indication
of overload, i.e., to detect if the probing rate exceeds the avail-
able bandwidth.

Most estimation techniques are designed with an assumption
that the network as a whole exhibits the behavior of a single link
with constant rate fluid cross traffic. Often it is assumed that the
network behaves as a single FIFO system [15], [24]-[29], [34],
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[39]. This is justified by the particular packet dispersion of FIFO
systems, which is matched by empirical data [29]. It has been
found that the best estimates are obtained if the probing traffic
increases the load close to, but not beyond, the capacity of the
assumed FIFO system.

Some probing methods suggest that probing traffic should
follow a Poisson process [25], [32], [39], [44] since it can benefit
from the Poisson Arrivals See Time Averages (PASTA) prop-
erty. Briefly, the PASTA property states that a Poisson arrival
process observes the average state of the system. An empir-
ical study [40] found that Poisson probing does not necessarily
lead to improved estimates of the available bandwidth. Also, [5]
points out that in case of nonintrusive probing, Poisson probing
may not be justified since it does not minimize estimation vari-
ance when deriving quantities of interest such as available band-
widths.

A set of analytical studies [24]-[26] characterizes the dis-
persion of probing traffic over single-hop and multihop paths
in terms of probing-response curves and extracts the available
bandwidth from these curves. Under the assumption of fluid,
constant-rate cross traffic, probing-response curves feature a
sharp bend at the available bandwidth that is used as criterion
by some methods, e.g., TOPP [28]. The mode of operation
of many other methods, e.g., the detection of overload by
pathload, can be related to these curves [25]. Under general
bursty cross traffic, the unique turning point of probing-re-
sponse curves diminishes, whereas it can be recovered under
idealized conditions, e.g., using packet trains of infinite length,
as shown in [24]-[26].

An alternative approach to sending probe packets is to obtain
estimates of the available bandwidth through passive measure-
ments of user traffic. This is the preferred approach in measure-
ment-based admission control (MBAC), which seeks to deter-
mine if a network has sufficient resources to support minimal
service requirements for a traffic flow or aggregate [7], [19]. In
comparison to passive measurements, probing schemes have an
additional degree of freedom since they can control the traffic
profile of probing packets.

Finally, we discuss prior works that have employed network
calculus methodologies in MBAC and bandwidth estimation.
Most such works are found in the context of MBAC [7], [19],
[41], [43]. Here, it is often assumed, e.g., in [19] and [41], that
network nodes provide explicit support for bandwidth measure-
ments. For example, if network nodes support traffic prioriti-
zation and transmit probing traffic at the lowest priority, the
available bandwidth can be simply expressed as the difference
of the node capacity and higher-priority traffic. The authors of
[19] and [43] also investigate cross-traffic estimation of wire-
less channel conditions. End-to-end measurements without net-
work support have been considered in [7]. A major difference
to our work is that [7] analyzes bandwidth estimation within a
node busy period. In the context of the network calculus, this
approach implies the consideration of a specific class of ser-
vice curves (called strict service curves in [23]), which do not
naturally extend to a multinode analysis. A broader difference
between MBAC and bandwidth estimation is that MBAC oper-
ates in the context of providing service guarantees. Here, one
generally seeks to obtain a worst-case description of the avail-
able service or traffic in terms of time-invariant envelope func-
tions. Worst-case characterizations, even if relaxed to stochastic
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Fig. 1. Linear time-invariant system and min-plus linear network.

bounds, tend to be very conservative. In this paper, we do not use
envelopes to describe traffic or service. To our knowledge, the
only study that has considered aspects of a min-plus system-the-
oretic interpretation of available bandwidth is [3]. Under the
implicit assumptions of min-plus linearity and convexity of the
available bandwidth (concepts that are discussed in detail later
in this paper), this study exploits a known relationship between
the Legendre transform of a system and its backlog.

III. MIN-PLUS LINEAR SYSTEM THEORY FOR NETWORKS

This section reviews the linear system representation of net-
works and introduces needed concepts and notation. We con-
sider a continuous-time setting.

Classical linear system theory deals with linear time-invariant
(LTI) systems with input signal A(¢) and output signal D(t) (see
Fig. 1). Linear means that for any two pairs of input and output
signals (A1, D) and (As, D3), any linear combination of input
signals by A1 (t) 4+ by Aa(t) results in the linear combination of
output signals by D1(t) + by Dy(t). Time-invariant means that
for any pair of inputs and outputs (A, D), a time-shifted input
A(t — 7) results in a shifted output D(¢ — 7).

Let S(¢) be the impulse response of the system, that is, the
output signal generated by the system if the input signal is a
unity (Dirac) impulse at time zero. The basic property of a LTI
system is that it is completely characterized by its impulse re-
sponse in the sense that the output of the system is expressed as
the convolution of the input signal and the impulse response

D(t) = /00 A(T)S(t — T)dr =: A% S(t).

—00

A. Min-Plus Algebra in the Network Calculus

A significant discovery of networking research from the
1990s is that networks can often be viewed as linear systems
when the usual algebra is replaced by a so-called min-plus
algebra [4], [8], [23]. In a min-plus algebra, addition is replaced
by a minimum (we write infimum) and multiplication is re-
placed by an addition. Similar to LTI systems, a min-plus linear
system is a system that is linear under the min-plus algebra. This
means that a min-plus linear combination of input functions
inf{b; + A1 (t), ba + A2(t)} results in the corresponding linear
combination of output signals inf{b; + D1 (t),bs + D2(t)}. In
min-plus system theory, the burst function

0o, ift>0
5(t) = {0.

otherwise
takes the place of the Dirac impulse.
Let S(t) be the impulse response, that is, the output when
the input is the burst function 6(¢). Any time-invariant min-plus

@
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linear system is completely described by its impulse response,
and the output of any min-plus linear system can be expressed as
a linear combination of the input and shifted impulse responses
by

D(t) = iITlf{A(T) +S({t—71)} = AxS(t).

In analogy to LTI systems, this operation is referred to as con-
volution of the min-plus algebra [8].1 If there exists a function
S(t) such that D(t) = A * S(t) for all pairs (A, D), then it fol-
lows that the system is min-plus linear.

The min-plus convolution shares many properties with the
usual convolution, e.g., it is commutative and associative. The
associativity of min-plus convolution is of particular importance
since it implies an easy way of concatenating systems in series.
Given a tandem of two min-plus linear systems S1(¢) and Sa(t),
the output can be computed iteratively as D(t) = (AxS)*Sa(t)
and, with associativity, D(t) = A x (S *.S2)(t) holds. General-
izing, a tandem of N systems that are characterized by impulse
responses S1,.55,...,S N is equivalent to a single system with
impulse response

The observation that some networks can be adequately mod-
eled by a min-plus linear system led to the min-plus formula-
tion of the network calculus [8], [23]. Here, a system is a net-
work element or entire network, input and output functions A
and D are arrivals and departures, respectively, and the impulse
response S, called the service curve, represents the service guar-
antee by a network element. Network elements that are known to
be min-plus linear include work-conserving constant-rate links
(S(t) = Ct, where C is the link capacity), traffic shapers
(S(t) = o + pt, where o is a burst size and p is a rate), and
rate-latency servers (S(t) = r (t — d)4, where r is a rate, d is
a delay, and (x)4+ = max(x,0)), and their concatenations. As
in [8] and [23], we make the convention that functions in the
min-plus linear system theory are nondecreasing nonnegative
functions that pass through the origin.

The relevance of the network calculus as a tool for the
analysis of networks results from an extension of its formal
framework to networks that do not satisfy the conditions of
min-plus linearity. Nonlinear systems implement more complex
mappings IT of arrival to departure functions D(t) = TT(A)(¢).
In the network calculus, these are replaced by linear map-
pings that provide bounds of the form D(¢) > A = S(t) or
D(t) < A S(t) [23, p. xviii]. Here, S is referred to as a lower
service curve and S is referred to as an upper service curve,
indicating that they are bounds on the available service. In a
min-plus linear system, the service curve S is both an upper
and a lower service curve (S = S = S), which is therefore
frequently referred to as exact service curve.

B. Legendre Transform in Min-Plus Linear Systems

In classical linear system theory, the Fourier transform of
f(t), denoted by F(w), establishes a dual domain, the fre-
quency domain, for analysis of LTI systems. In the frequency
domain, the Fourier transform turns the convolution to a multi-
plication, that is, Fy.g(w) = Ff(w) - Fg(w).

'We reuse the symbol of the operator for notational simplicity. The context
makes this slight abuse of notation nonambiguous.
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In min-plus linear systems, the Legendre transform, also re-
ferred to as convex Fenchel conjugate, plays a similar role. The
Legendre transform of a function f(t) is defined as

Lg(r) = SITIP{TT - f(7)}-

Since r can be interpreted as a rate, one may view the domain
established by the Legendre transform as a rate domain. The Le-
gendre transform takes the min-plus convolution to an addition
[35], that is2

Lpeg= L5+ Ly )

Other properties of the Legendre transform that we exploit in
this paper are that, for convex functions f, we have

L(Ls) = . 5)

In other words, a convex function f can be recovered from L
by reapplying the Legendre transform [35]. In general, we only
have

[:(Lf) S f and [:(Lf) = convy (6)

where conv ;s denotes the convex hull of f, defined as the largest
convex function smaller than f.

Another property that will be used is that the Legendre trans-
form reverses the order of an inequality, i.e.,

[>9=>L; <L, (7

The statement is an equivalency when g is convex. The potential
of the Legendre transform in the network calculus has been pre-
viously studied in [3], [12], [14], and [30], generally focusing
on the duality of time domain and rate domain. In this paper,
we show how the properties of the Legendre transform can be
exploited to phrase bandwidth estimation as a new application
in the network calculus.

IV. A MIN-PLUS ALGEBRA FORMULATION OF THE BANDWIDTH
ESTIMATION PROBLEM

We view a network as a min-plus linear or nonlinear system
that converts input signals (arrivals) into output signals (depar-
tures) according to a fixed but unknown service curve S. The
service curve of the network expresses the available bandwidth,
which can be a constant-rate or a more complex function. Mea-
surements of a network probe, defined as a sequence of at least
two packets, can be characterized by an arrival function AP (¢)
and a departure function DP(t), where the functions represent
the cumulative number of bits seen in the interval [0,¢] and
time 0 denotes the beginning of the probe. We assume that the
system satisfies time-invariance over the duration of a probe.
This corresponds to an assumption stated in Section II that net-
work characteristics do not change over the duration of a mea-
surement. The arrival and departure functions of a probe are con-
structed from timestamps of the transmission and reception of
packets and from knowledge of the packet size. In Fig. 2, we
illustrate a network probe consisting of five packets of equal
size with fixed spacing between the transmission of consecutive
packets. The vertical distance between arrivals and departures

2Whenever possible, from now on we use the shorthand notation f to mean
“f(t) forallt > 0” and £ to mean “L(r) forall r > 0.”
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Fig. 2. Example arrival and departure function of a probe of five packets.

is defined as the virtual backlog BP(t) = AP(t) — DP(t). The
horizontal distance is defined as the delay WP ().

Representing the network by a min-plus linear system, we
interpret a probing scheme as trying to determine from a spe-
cific sample of functions AP and DP an estimate of an unknown
lower service S, such that D > A x S holds for all pairs
(A, D) of arrival and departure functions. Ideally, the estimate
should be a maximal S(¢), i.e., there is no other lower service
curve larger than S(¢) that satisfies the definition.3 The goal of
a probing scheme is to select a probing pattern, i.e., a function
AP that reveals a maximal service curve. A maximal lower ser-
vice curve S computed from AP and D? yields a sample of the
available bandwidth. Thus, S can be expressed as the solution
to the following problem:

FIND A MAXIMAL SOLUTION FOR S
SATISFYING D(t) > inf{A(7) + S(t — )},
Vt > 0, for all pairs (A, D).

Since the service curve is defined in terms of an infimum, de-
termining a maximal service curve has the flavor of a maximin
optimization, a class of problems which is fundamentally hard.

The bandwidth estimation problem is easier when the net-
work can be described by a min-plus linear system. As we will
see in Section VI, some nonlinear networks, such as FIFO sys-
tems, are min-plus linear under low load conditions. Recalling
that a system is min-plus linear if it can be described by an exact
service curve, the bandwidth estimation problem is reduced to
solving the inversion of

D(t) = A= S(t)forallt > 0.

Hence, if we take a measurement AP, DP and we can solve
DP = AP x S for S, then, due to min-plus linearity, we have
a solution for all possible arrival and departure functions. From
Section III, we can infer that a solution is obtained by using the
burst function of (2) as probing pattern, i.e., A?(¢) = 6(t). This
follows since the service curve is the impulse response of a min-
plus system, that is, D? (t) = 6*S(t) = S(t). However, sending
a probe as a burst function is not practical since it assumes the
instantaneous transmission of an infinite-sized packet sequence.
While a burst function can be approximated by a sufficiently
large back-to-back packet train, a high-volume transmission of
probes consumes network resources and interferes with other
packet traffic. The observation that large packet trains can lead
to unreliable estimates has been noted in the literature [11].

3We define a partial ordering of functions such that f < ¢ iff f() < g(¥)
for all t.
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In the next section, we present derivations for three bandwidth
estimation methods in min-plus linear systems. We are able
to relate two of these methods to previously proposed probing
schemes. We will later discuss how these schemes can be ap-
plied to certain nonlinear systems.

We conclude this section with remarks on some general as-
pects of probing schemes and their representations in min-plus
linear system theory.

* Timestamps and asynchrony of clocks: When clocks at
the sender and receiver of a probing packet are perfectly
synchronized, and the sender includes the transmission
time into each probing packet, the receiver can accu-
rately construct the functions AP and DP. In practice,
however, clocks are not synchronized. When clocks have
a fixed offset (but no drift), the arrival function AP can
be viewed as being time-shifted by an unknown offset
T. In the min-plus algebra a time-shift can be expressed
by a convolution, i.e., AP(t — T) = AP x 6p(t) where
é7(t) = 6(t—T). Here, the convolution of arrival function
and service curve becomes (A? x é7) * S, which due to
associativity and commutativity of the convolution opera-
tion, can be rewritten as AP * (S * 67 ). Hence, when the
offset is fixed but unknown, even an ideal probing scheme
can only compute a service curve that is a time-shifted
version of the actual service curve of the network. Drifting
clocks make the problem harder. Many bandwidth esti-
mation schemes circumvent the problem of asynchronous
clocks by returning probes to the sender [6] or by only
recording time differences of incoming probes [15], [17],
[28], [34], [39]. A moment’s consideration shows that
knowledge of the differences between the transmission
and arrival of probing packets has the same limitations
as dealing with an unknown clock offset 7" between the
sender and receiver of probing packets.

* Losses: Probe packets that are dropped in the network can
be thought of as incurring an infinite delay. The presen-
tation of arrival and departure functions in Fig. 2 is not
well suited for accommodating packet losses. An alter-
native presentation, which expresses arrival and departure
times of probe packets (on the y-axis) as a function of
the sequence numbers (on the x-axis) can deal with packet
losses more elegantly, but may appear less intuitive. Such
a description of traffic with flipped axes leads to a dual
representation of the network calculus that is based on a
max-plus algebra [8], [23].

* Packet pairs: The arrival and departure functions of a
packet pair have each only three points, i.e., the origin and
the two timestamps related to the packet pair. If it can be
assumed that the service curve has a certain shape, e.g., a
rate-latency curve S(t) = r - (¢t — d)4, the service curve
can be recovered. In the absence of such an assumption,
packet pair methods may not be able to recover more com-
plex service curves. This is reflected in observations that
bandwidth estimates from packet pairs tend to be less reli-
able compared to packet trains if cross traffic is bursty [18],
[25].

V. MIN-PLUS THEORY OF NETWORK PROBING METHODS

In this section, we derive bandwidth estimation methods as
solutions to finding an unknown service curve for a min-plus
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system. For the derivations, we make a number of idealizing as-
sumptions. First, we consider a fluid flow view of traffic and
service. This assumption can be relaxed at the cost of addi-
tional notation that accounts for packet sizes of arriving and de-
parting traffic and for the fact that packet transmissions cannot
be preempted (see [8] and [23]). Unless stated otherwise, we
assume that the network represents a min-plus linear system.
This assumption will be relaxed in Section VI. We generally as-
sume that accurate timestamps for transmission and arrival of
probes are feasible. If measurements only record time differ-
ences between events or include an unknown clock offset be-
tween sender and receiver, the computed service curves need to
be time-shifted by some constant value.

The derivations of the methods presented in Sections V-B
and V-C take advantage of the Legendre transform (see
Section III-B). There, we will see that the quality of the estima-
tion depends on convexity properties of the underlying service
curve. In fact, these methods can fully recover convex service
curves, but only yield the convex hull, i.e., a lower bound, for
service curves that are not convex.

A. Passive Measurements

We first try to answer the question: How much information
about the available bandwidth can be extracted from passive
measurements of traffic? We first introduce the deconvolution
operator of the min-plus algebra, which is defined for two func-
tions f and g by

fog(t)= Sgp{f(t +7)—g(7)}.

The deconvolution operation is not an inverse to the convolution
(f # (f @ g) * g). However, it has aspects of such an inverse.
This is expressed in the following duality statement from [23],
which states that for functions f, g, and h, the following equiv-
alency holds:#

f<gxh & h=>fogy. ®)
We will exploit this property to formulate the following lemma.
Lemma 1: For two functions g and h, we have

((hxg)@g)*g=hxg.

Proof: The proof makes two applications of (8). Let us
define h = f @ g and f = g * h. By definition of h, we can
conclude with (8) that f < g * h.

By definition of f, we see from (8) that h > f @ g. By our
definition of A, this givesus b > h. From h > hand f = g *h,
we get f > g x h.

Combining the two statements about the relationship of f and
g * h gives us f = g x h. Now, by inserting our definition
h = f ©g, weobtain f = g * (f @ g). Inserting our second
definition f = g h yields gxh = g* ((g* h) @ g). Reordering
the expression using commutativity of the min-plus convolution
completes the proof. ]

The lemma justifies the following passive measurement
scheme. Let us denote the arrival and departure functions
measured from a traffic trace of one or more flows by AP and
DP. By assumption of linearity, we know that D? = AP x S

4We use shorthand notation f = ¢ * h to mean “f(t) = (g * h)(t) for all
t> 00
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holds, but the shape of S is unknown. Suppose we compute a
function S from the trace as the deconvolution of the departures
and the arrivals, i.e., we set

S =DP @ AP. 9)
With this, we can derive as follows:

DP = S« AP
= ((S x AP) @ AP) x AP
= (DP @ AP) x AP
=S x AP,

The first equality holds because of our assumption of linearity,
the second equality applies Lemma 1, the third uses again the
linearity assumption, and the fourth equality follows from in-
serting (9). We can therefore conclude with Lemma 1 that

DP = AP % S. (10
Applying the duality property from (8) to D? = AP x S, we
obtain S > DP @ AP. Then, with (9) we have

S < 8.

Hence, by deconvolving D? and AP as in (9), the result Sisa
lower service curve, i.e., for all pairs of arrival and departure
functions (A, D), we have D > A x S. Since, from (10), S can
completely reconstruct the departure function from the arrival
function, we can conclude that S is the best possible estimate of
the actual service curve that can be justified from measurements
of AP and DP, in the sense that it extracts the most information
from the measurements. Since the above deconvolution com-
putes the largest available bandwidth that can be justified from
a given traffic trace, the described method will perform no worse
than any existing MBAC method from the MBAC literature [7].

The main drawback of this method is that it can only be ap-
plied to linear networks. For networks that do not satisfy min-
plus linearity, i.e., that can only be described by a lower service
curve (D > A x S) or upper service curve (D < A x S), S
only computes a (not useful) lower bound for an upper service
curve S.

Example: The Dilemma of Passive Measurements: To illus-
trate the benefits and limitations of passive measurements for
bandwidth estimation, we present an ns-2 simulation [1] of mea-
surements at a single node with capacity C. There is a propaga-
tion delay of 10 ms at the ingress link and a 10-ms delay at the
egress link. The packet scheduling algorithm is either FIFO or
Deficit Round-Robin (DRR). DRR approximates a fair queuing
discipline, which can distribute capacity equally among cross
and probe traffic. The cross traffic at this link consists of CBR
traffic, which is transmitted in 800-byte packets. The rate of
cross traffic is set to half the link capacity. The traffic source for
passive measurements is a small segment of 2 s of a high-band-
width variable bit rate video trace from [10] (the data is from
the video trace titled From Mars to China.). The frame rate is
30 frames per second, the average data rate over the entire seg-
ment is 17.1 Mbps, and the peak rate based on the interframe
spacing is 154 Mbps. We evaluate the bandwidth estimation,
when the link capacity is set to C' = 70, 50, 30 Mbps. The re-
sulting service curves are shown in Fig. 3. In each figure, the
exact service curve (thick solid line) is a latency rate service
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Fig.3. Example: Passive measurement simulation with a video source. (a) C' =
70 Mbps. (b) C' = 50 Mbps. (c) C' = 30 Mbps.

curve with delay 20 ms and rate C'/2. The computed estimates
are indicated by a dashed line for FIFO and a solid line for
DRR scheduling. For C' = 70 Mbps, the available bandwidth
is clearly underestimated. The estimates improve for C' = 50
Mbps, where the video trace accounts for a larger fraction of the
unused bandwidth. For C' = 30 Mbps, the available bandwidth
is estimated with high accuracy for the DRR link, but overes-
timated for the FIFO link. The overly optimistic estimates at a
FIFO link occur when the variable bit rate of the video traffic
overloads the link, thereby preempting cross traffic. An expla-
nation for this outcome is given in Section VI, where we dis-
cuss nonlinearities observed in overloaded FIFO systems. The
video trace example indicates a fundamental dilemma with pas-
sive measurements. On the one hand, if the traffic intensity of
the measured trace is too low, the trace does not extract enough
information from the network. On the other hand, if the traffic
intensity is too high, the traffic trace may preempt other traffic,
thus leading to inaccurate estimates.

B. Rate Scanning

We now consider an active probing scheme that transmits
packet trains at a constant rate, but varies the rate of subse-
quent trains, e.g., such as pathload [17]. We provide a justifica-
tion for this approach, which we refer to as rate scanning, using
min-plus system theory.

Given arrival and departure functions A and D, using the ear-
lier definition of backlog, the maximum backlog can be com-
puted as

Brax = Sltlp{A(t) — D(t)}.

If the arrivals are a constant rate function, that is, A(t) = rt,
and the network satisfies min-plus linearity, we can write B, ax
as a function of r as follows:
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Bax(r) = Slip {rt — iI;f{TT + S(t— T)}}

= sgp {sgp{r(t —7)—8(t — 7')}}
= sgp{rt —S(t)}.

The first line uses that output in min-plus linear systems can be
characterized by D = Ax.S. The second line moves the infimum
in front of the subtraction, where it becomes a supremum. The
third line is a substitution.

Recalling the definition of the Legendre transform from
Section III-B, the right-hand side of the last equation
can be written as the Legendre transform of S, that is,
Bumax(r) = Ls(r). This relation has been observed in [9], [12],
and [30]. We now take a further step by applying the relation in
the reverse transform. Due to (5), we have for convex service
curves S that

5(t) = L(Ls)(t) = LB, (1) = sup{rt — Bmax(r)}

Thus, every convex service curve can be completely recovered
by measurements of the maximum backlog B,,.x. For service
curves that are not convex, we obtain using (6) that

convg(t) = L(Ls)(t) = Lp,,. (t) = sgp{rt — Bumax(m)}-

The convex hull convg is a lower service curve, that is, a lower
bound on the service curve. The quality of the convex hull as
a lower bound deteriorates with the distance between the (non-
convex) service curve and its convex hull. As long as service el-
ements found in practice are reasonably well described by a la-
tency-rate function (which is convex), their service curves will
be close to their respective convex hulls. Even for nonconvex
service curves, the convex hull may contain important informa-
tion. For example, for a leaky-bucket traffic regulator with rate
r and burst size b, the convex hull recovers the rate parameters
7, but not the burst size b.

The interpretation of rate scanning is that each constant bit
rate stream with rate r reveals one point By,.x(r) of the service
curve in the Legendre domain Lg (7). If we specify a rate incre-
ment, which sets the rate increase between packet trains and a
rate limit, which sets the maximum rate at which the network is
scanned, we realize a rate scanning method that computes a ser-
vice curve consisting of piecewise linear segments. The choice
of the rate increment determines the length of the segments, and,
in this way, the accuracy of the computed service curve. We note
that rate scanning is capable of tracking a convex service curve
up to a time where the derivative of the service curve reaches the
rate limit. The higher the maximum rate, the more information
about the service curve is recovered. The number of packets in a
packet train must be large enough so that the maximum backlog
can be accurately measured.

A criterion for picking the rate limit suggested by our deriva-
tions is to stop rate scanning when increasing the scanning rate
does not yield an improvement of the service curve. This cri-
terion, however, may fail when the underlying network is not
min-plus linear. The rate scanning method pathload [17] uses
an iterative procedure that varies the rate r of consecutive packet
trains until measured delays indicate an increasing trend. In
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Fig. 4. Service curve estimation with rate scanning. (a) Maximum backlog
Bax(r). (b) Rate scanning results with different rate limits.

Section VI, we will find that similar criteria can be justified to
determine a rate limit in a nonlinear system.

In Fig. 4(a), we present an example of the rate scanning
approach for a fluid-flow service curve with a quadratic form
S(t) = 0.4t2. In the example, rate scanning is performed at
rates 10, 20, ..., 80 Mbps. In Fig. 4(a), we plot the maximum
backlog observed for each scanning rate. The function By« (7)
is constructed by connecting the measured data points by lines.
For rates r exceeding the rate limit, we can set Byax (1) = oo
to obtain a conservative Legendre transform for all rate values.
This follows from £(Ls) = Lp, . and the order-reversing
property of the Legendre transform in (7). In Fig. 4(b), we
show the service curves that are obtained with different rate
limits. The higher the rate limit, the more accurate the results.
Decreasing the increment of the rate will improve the accuracy
of the service curve. We point out that both the backlog plot in
Fig. 4(a) and the service curves in Fig. 4(b) consist of linear
segments.

C. Rate Chirps

The need of rate scanning to measure a possibly large number
of packet trains has motivated the pathchirp method [34], where
available bandwidth estimates are based on the measurement
of a single packet train, with a geometrically decreasing inter-
packet spacing. The approach takes inspiration from chirp sig-
nals in signal processing, which are signals whose frequencies
change with time. We refer to this approach as rate chirp, since
the decreased gap between packets corresponds to an increase
of the transmission rate. We will show that a rate chirp scheme
can be justified in min-plus system theory using properties of
the Legendre transform.

Suppose we have a lower service curve S satisfying D >
A x S for all pairs (A, D). Taking the Legendre transform we
obtain with the order-reversing property of (7) and with (4), that

Lp < Laxs=La+Ls.
We can rewrite this as
Ls>Lp—La

as long as the difference Lp(r) — L4(r) is defined for all 7.
A sufficient condition is that £ 4 () < oo since it prevents both
transforms £ p and £ 4 from becoming infinite at the same value
of r. Another application of (7) yields

L(Ls) < L(Lp — La).

1047

If the system is min-plus linear, thatis, D = A % S, we get
L(Ls)=L(Lp—La).

If S is also convex, then by (5), we have S = L(Lp — L4).
As in rate scanning, if .S is not convex, due to (6), applying the
Legendre transform twice on the service curve only recovers its
convex hull.

This provides us with a justification for pathchirp [34] as a
probing method. If we depict the transmission of a packet chirp
as a fluid flow function, we see that it grows to an infinite rate,
thus yielding a Legendre transform that is finite for all rates. By
measuring arrivals and departures of the chirp, denoted by Achrp
and D°""P_ we can compute a function S by

S(t) = L(Lpewp — L genep )(E). (11)
If the network satisfies D = A % S for all arrivals, then the
right-hand side of (11) computes £(Ls). With (6), we obtain
S < S, which tells us that S is a lower service curve that satisfies
D > A x S for any traffic with arrival function A and departure
function D. If S is convex, we have S = S, and we can recover
the service curve exactly.

In practical probing schemes, a packet chirp that can grow to
an infinite rate is idealized since a rate chirp cannot be trans-
mitted faster than the data rate at the sender of probe packets.
For developing a practically useful probing scheme based on
rate chirps, we propose modifications that make rate chirp im-
plementable yet comply to the formal requirements of our equa-
tions. Suppose a packet chirp is transmitted in a time interval
[0, ] and D is observed over an interval [0, 2, ]. If we set
the value of the arrival function to oo past the last measurement
at time 71, , we satisfy the requirement that £ 4(r) < co. For
the departure function, past the last measurement at t2_ . we
let the function continue at a rate that corresponds to its slope at
time t2, . The following equations express the above extrapo-

max"*

lation to the arrival and departure functions:

Ac}lrp(t) _ Aﬂllr})7 if 0 <t< téax
0, if +> ¢4
- Debre o if0 <t <D .
D (t) = { pchrp (tan) + (t _ tgax) dDdt (tgax) :
ift >tP

‘max-

For convex service curves S, we can argue that a service curve
construction with the above extrapolation yields a lower bound
on S. Let us denote the departures that correspond to an arrival
function Achrp by D*. We will show that Debrp < D* | that
is, D“h”’js a lower bound on the departures that correspond to
arrivals AP™P To see this, we first observe that, in a min-plus
linear system, the function D* must be convex. This follows
from the convexity of A°MP the relationship D = A % S that
holds for any pair of arrival and departures (A, D), and from
the fact that the min-plus convolution of two convex functions is
again a convex function [23, Th. 3.1.6, p. 136]. By construction,
DebrP defines the smallest convex extrapolation of Debrp for
times ¢ > t2 _ and, consequently, D“h”j < D*.

Now, evaluating (11) once with DehPand once with
D*, the order-inverting property of the Legendre transforms
yields that a service curve estimate computed from (11) using
(Achrp Debrp) jg a (conservative) lower bound for the exact
service curve of the system.
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Fig. 5. Service curve estimation with rate chirps. (a) Rate chirps. (b) Rate chirp
results with different spread factors.

In Fig. 5(a), we show several rate chirps for a network probe.
The rate chirp consists of a step-function that emulates a se-
quence of probing packets of 1200 bytes. The packets are trans-
mitted at an increasing rate, starting at 10 Mbps and growing to
200 Mbps. The rate is increased by reducing the elapsed time be-
tween the transmission of the first bit of two consecutive packets
by a constant factor «y, which is called the spread factor in [34].
Larger values for «y lead to shorter chirps that grow faster to the
maximum rate. In Fig. 5(b), we show the service curves com-
puted from the chirps in Fig. 5(a). The actual service curve is
S(t) = 0.4¢%, indicated as a thick solid line in the figure. A chirp
with a smaller spread factor ~, which transmits more packets
over a longer time interval, leads to better estimates of the ser-
vice curve.

VI. BANDWIDTH ESTIMATION IN NONLINEAR SYSTEMS

Extending bandwidth estimation to systems that are not
min-plus linear, i.e., cannot be described by an exact service
curve, raises difficult questions. First, the problem formula-
tion of bandwidth estimation at the beginning of Section IV
has shown that the problem has the structure of a maximin
optimization. Moreover, in networks with nonlinearities the
network service available to a traffic flow may depend on the
traffic transmitted by this flow. If this is the case, knowledge of
the available bandwidth may not help with predicting network
behavior.

In this section, we provide solutions for a class of networks
that can be decomposed into disjoint min-plus linear and non-
linear regions. These networks behave like a min-plus linear
system at low load and become nonlinear when the traffic rate
is increased beyond a threshold. In such a network, the goal of
bandwidth estimation should be to determine the available band-
width of the linear region. The interpretation is that the available
bandwidth denotes the maximum additional load that the net-
work can carry without degrading to a nonlinear system. Our
work is motivated by studying the available bandwidth at a FIFO
link. While we conjecture that most networks can be adequately
described by a system that behaves linearly at low loads, the ac-
tual scope of this class of networks remains an open problem.

A. Nonlinearity of FIFO Systems

Consider the FIFO system shown in Fig. 6 with capacity
C. Assume that we have constant-bit rate traffic that is trans-
mitted in 800-byte packets. The FIFO queue experiences (cross)
traffic at a rate of r., and probing traffic is sent according to
A(t) = rt. Assuming a link capacity of C' = 50 Mbps and
cross traffic of r. = 25 Mbps, we consider a probing rate of
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Fig. 6. FIFO system with probe and cross traffic.

TABLE I
ARRIVAL RATE AND THROUGHPUT OF PROBES IN FIFO
Probe traffic (Mbps)
Arrival rate 25 | 50 75 100
Throughput 25333 | 375 | 40

r = 25,50, 75, 100 Mbps. For an ns-2 simulation of this system,
Table I depicts the throughput of the probe packets for different
probing rates. As seen previously for passive measurements at a
FIFO queue (see Fig. 3), once the probing traffic exceeds the un-
used capacity, it preempts cross traffic and results in an overly
optimistic estimate of the available bandwidth. Empirical ob-
servations of FIFO systems with CBR cross and probe traffic in
[29] suggested the following departure function:s

rt, ifr <C —r,

D(t) = { -Ct, ifr>C—r..

(12)

Thus, if the probing rate is above the threshold C' — 7, the ca-
pacity allocated to the probe and cross traffic is proportional to
their respective rates. (Table I illustrates this relationship.) As a
result, probing traffic gets more bandwidth when its rate is in-
creased. Note that systems where the allocated rate of a flow
increases with its arrival rate violate min-plus linearity.

We now offer a min-plus system interpretation of bandwidth
estimation for the depicted FIFO scenario. Consider the func-
tion St (t) = [C' — 7] ++. From the empirical departure char-
acterization D of a FIFO system from (12), we can verify that
the following is satisfied for all ¢ > 0O:

D(t) = (rt) * Sgo, if r < C — 71,
D(t) > (rt) * Sggo, if r > C — re. (13)
Therefore, Sk, is an exact service curve for A(t) = rt when
r < C —r., and Sgs 18 a lower service curve when the arrivals
exceed the threshold value. In fact, Sgg, is the largest lower ser-
vice curve for a FIFO system and a solution to the maximization
in Section IV. Any function larger than Sg¢, may not be a lower
service curve for rates - > C'—r., indicating that a FIFO system
is not min-plus linear in this range.

These considerations suggest to view a FIFO network as a
system that is min-plus linear at rates < C — r. and crosses
into a nonlinear region when the rate exceeds the threshold. The
crossing of these regions coincides with the point where the
available bandwidth Sg¢, can be observed.

Probing schemes that vary the rate of probe traffic can some-
times be interpreted in terms of searching for the crossover from
a linear to a nonlinear regime. In particular, the rules in pathload
and pathchirp to stop measurements when increasing delays are

5A proof of this property is found in [13]. We note that closely related models
are devised for VBR cross traffic in [25]. While the statistical average of the
departures can deviate from (12), the general effect of preemption of cross traffic
as in (12) is recovered.
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observed can be justified in terms of crossing the nonlinear re-
gion (atleast in a FIFO system) since a probing rate above C'—r..
is the turning point when the buffer of the FIFO system fills up.
In the remainder of this section, we address the problem of lo-
cating this crossover point using system-theoretic arguments.

Remark: Per our discussion, a FIFO system becomes non-
linear whenever the system is overloaded and a backlog is cre-
ated. Now, if we consider a FIFO system where discrete-sized
packets arrive instantaneously, we can take a position that each
packet arrival creates a backlog, and, therefore, each packet ar-
rival makes the FIFO system nonlinear. If we devised a system
that detected nonlinearities caused by single packet arrivals, we
would only find that the available bandwidth is zero whenever
a packet is in transmission, and equal to the capacity other-
wise. The issue at hand is one of time granularity. Available
bandwidth estimation seeks to determine the unused capacity
at a time scale larger than that of a single-packet transmission,
specifically at the time scale of a packet train. In our system-the-
oretic interpretation, we need to be able to observe linearity
or nonlinearity at the same time scale, i.e., the duration of a
packet train. This adds an implicit assumption that the nonlin-
earity caused by a single packet arrival can be safely ignored. If
this is not the case, our proposed solutions may not apply.

B. Stopping Criteria

We address the problem of determining the threshold probing
rate for a system with disjoint linear and nonlinear regions. The
threshold probing rate can be interpreted as the maximum rate
at which the network can be probed without leaving the linear
region. We refer to a condition that determines the maximum
probing rate as a stopping criterion.

Nonlinearity Criterion: In a min-plus linear system, the ser-
vice curve is independent of the traffic intensity of the probe
traffic. If we have obtained, under assumption of min-plus lin-
earity, a lower service curve S from a measurement probe with
functions (4, D), then S must be a lower service curve for any
other arbitrary measurement probe (A’, D’), that is, D'(t) >
A’ x S(t) for all times ¢. A violation of the inequality indicates
that the assumption of linearity used for the computation of S
is false.

A simple nonlinearity test can be devised for systems where
increased traffic does not result in decreased output. Consider
a sequence of probes (A;, D;)i=1,2,...n, Where the traffic inten-
sity of subsequent probes is increased, that is, A;+1 > A;. By
assumption, we also have D; 11 > D;. Each probe results in an
estimate Sy (t). If there is a k for which S}, violates linearity for
some i < k, that is, D;(t) < A; % Si(t) for some ¢, then the
network is no longer in the linear region for the probe (A, Dy).

The described criterion can be directly applied to a rate scan-
ning approach with increasing probing rates where A;(t) = r;t
with 7,41 > 7;. As an alternative, one could modify the scan-
ning rate to perform a search for the maximum scanning rate in
the linear region. This makes the criterion more similar to the
scanning pattern in pathload.

Applying the nonlinearity criterion to a rate chirp approach is
less straightforward since there is only a single arrival function
A°h'P - Generating multiple arrival functions from a single rate
chirp by truncating the arrival functions merely produces trun-
cated versions of the same service curve. Transmitting multiple
rate chirps with different spread factors [see Fig. 5(a)] makes
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the criterion applicable, yet it loses the main advantage of rate
chirps of requiring only a single packet train. Thus, with only a
single packet train, we are unable to justify a stopping criterion
from min-plus linear systems theory.

Backlog Convexity Criterion: This method is appli-
cable to the rate scanning methods, with probing rates
r € [r1,re,...,mp] with 7,41 > ;. Assume that the max-
imum backlog measurement is By, (r) for rate . Recall from
Section V-B that a linear system satisfies S(t) = Lp,_,_(t)
and Bpax(r) = Ls(r) holds for all ». This motivates a test
for linearity that exploits properties of the Legendre transform
discussed in Section III-B. Under the assumption of linearity,
an estimate of the service is obtained from

S(t) = LB (1)

and Byax(r) = Lz(r) holds for all 7. Using (5) and (6), if there
exists an r such that By,,x(r) is not convex, i.e.,

Bmax(r) # convp,,, (r)

for some r, we have Byax () # Lz(r), and hence, the hypoth-
esis of a linear system is dismissed.

For systems that are linear at low probing rates and cross into
a nonlinear region after a threshold is reached, a convexity test
can be easily devised for schemes that incrementally increase
the probing rate. After each rate step, one simply performs a
test for equality of Byax(r) and L(Lp,, . )(r). If Buax(r) #
L(Lp,,,, )(r), the system has reached the nonlinear region and
the rate scan is terminated. Otherwise, it is assumed that the
system is still linear, and the probing rate is increased.

To avoid false positives and negatives in the test for equality,
we suggest a heuristic that can account for variability in the
measurements. For each value of r, we compute the difference

AB(T) = Bmax(T) -L ([’Bmax) (T)

Note that AB(r) is nonnegative since Bpax(r) >
convp,  (r). We define a parameter 5 = AB(r)/r that
expresses the normalized difference. When [ exceeds a
threshold value, we conclude that the system is no longer in the
linear region. We eliminate outliers by running a median filter
over (3 before applying the threshold test. The median filter
[33] is a noise-reduction technique, which replaces the value
at the center of a sliding window over the data by the median
of the window. The design parameter (3 is used to adjust how
quickly nonlinearity is detected in noisy data. A large value
of [ filters noise effectively but may delay the detection of
nonlinearity, and vice versa. In all our experiments, § = 4 ms
proved balanced.

An additional issue is that since packet trains have a certain
length, the maximum backlog B,,x may not be attained by a
train. In order to apply the backlog convexity criterion to fi-
nite-length packet trains, it must be shown that the backlog that
is created by fixed-length packet trains also violates convexity
once the boundary to the nonlinear region is crossed. As an ex-
ample, for FIFO systems, we obtain from (12) that the maximum
backlog generated by a packet train of L bits is

0,
Biax(r) = {L- (1 - <

ifr<C-—r,
)./ if r>C—r..

s
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For all 7 > C — .. the second derivative of BL__(r) is negative,
and thus BL__(r) is strictly concave, while it is convex for r <
C —r.. Thus, the backlog convexity criterion can be applied for

finite packet trains in this case.

VII. EXPERIMENTAL VALIDATION

In this section, we present measurement experiments on an
IP network that provide an empirical evaluation of the proposed
system-theoretic approach to bandwidth estimation. Specifi-
cally, we attempt to provide answers to the following questions:

* How well does the described min-plus system theory that

assumes an idealized fluid-flow characterization of traffic
and service translate in a packet-based environment?

e How robust are the available bandwidth methods to

changes of the distribution of the cross traffic?

* How well is a min-plus system-theoretical approach suit-

able for finding end-to-end estimates over multiple links?

We conduct a series of measurement experiments on the Em-
ulab network testbed at the University of Utah, Salt Lake City
[42], where experiments are run on a cluster of PCs that are in-
terconnected by a switched Ethernet network. Propagation de-
lays are emulated by PCs that buffer packets in transmission.
Emulab provides a realistic IP network environment, yet it offers
a controlled lab environment where traffic and resource avail-
ability can be explicitly configured. The ability to precisely con-
trol network resources enables us to evaluate how well available
bandwidth estimates match the configured availability of net-
work resources.

In our experiments, we take advantage of the fact that system
clocks in the Emulab testbed are synchronized up to 1 ms. Ac-
cording to our discussion in Section IV, if synchronized clocks
are not available, then the service curves computed in this sec-
tion should be interpreted as being horizontally displaced by an
unknown amount.

We have implemented the probing schemes for rate-scanning
(Section V-B) and rate chirps (Section V-C) using the rude-
crude traffic generator [22]. In addition, in some experiments
we include for benchmark comparison the results of measure-
ments using an unmodified version of the pathload software.

We first present measurements on a dumbbell topology as
shown in Fig. 7, where each node is realized by a PC of the
Emulab network. The figure indicates the capacity and the la-
tency of each link. Packet sizes are set to 800 bytes for cross
traffic and 1472 bytes for probing traffic. The average data rate
of the cross traffic is set to 25 Mbps. The probing method seeks
to determine the unused capacity of the link in the center of the
figure. The measurements do not address losses of probe traffic.
In fact, when a probe packet is dropped, the measurement for
this packet is ignored.

A. Experiment 1: Rate Scanning vs. Rate Chirps

We first compare the effectiveness of the Rate Scanning and
Rate Chirp methods from Sections V-B and V-C in the dumbbell
topology. We assume that CBR cross traffic is sent at a rate of
25 Mbps.

For the rate scanning method, each packet train has 400
packets, transmitted in increments of 4 Mbps, up to at most 60
Mbps. The stopping criterion is the backlog convexity criterion
from Section VI-B with a threshold of = 4 ms and a window
size of W = 3 for median filtering.
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For the rate chirp method, the initial spacing of probe packets
is set to a rate of 4 Mbps, where the spacing between subsequent
packets is governed by spread factor of v = 1.05. The chirp is
stopped once its instantaneous rate reaches 100 Mbps, resulting
in 66 packets for each chirp. The reason we let the rate chirps go
up to 100 Mbps, whereas the rate scans only go up to 60 Mbps,
is that data points at the end of the chirps become quite sparse
due to the geometric increase of the chirp’s rate. For rate chirps,
we employ the stopping criterion proposed in [34], which aims
at finding the instantaneous data rate at which one-way packet
delays start growing due to persistent overload. (Note that an
application of the nonlinearity criterion from Section VI-B to
the rate chirp method would require multiple rate chirps).

In Fig. 8(a) and (b), we present the results of 100 repeated
service curve estimates in terms of the computed service curves
for the rate scanning and rate chirp method, respectively. As
noted in Section II, each sample of the available bandwidth can
be thought of being conditioned on the state of the network. For
reference, plotted in a thick solid line, we depict a rate-latency
curve with the minimal delay (of approximately 21 ms)® and the
average available bandwidth (25 Mbps). This curve is referred
to as reference service curve and serves as an a priori bound for
the available bandwidth computations.

A comparison of Fig. 8(a) and (b) shows that rate scanning
provides more reliable estimates of the service curve than rate
chirps. We note that the pathchirp method from [34] would yield
better results since it smooths the available bandwidth over 11
estimates to deal with the variability of estimates from single
rate chirps. Rate scanning and rate chirps perform equally in an
ideal linear time-invariant system, while rate chirps are more
susceptible to random noise.

6The minimal delay consists of 20 ms propagation delay and approximately
1 ms transmission delay.
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In the remaining experiments, we only consider the rate scan-
ning method.

B. Experiment 2: Different Cross Traffic Distributions.

In this experiment, we evaluate the rate scanning method
for different distributions of the cross traffic on the dumbbell
topology. We consider cross traffic where interarrivals follow
an exponential or Pareto distribution (with shape parameter
set to 1.5). All other parameters are as in Experiment 1. In
particular, the average traffic rate of cross traffic is 25 Mbps.

In Fig. 9(a) and (b), respectively, we show the results for ex-
ponential and Pareto cross traffic. The reference service curve
is shown as a thick solid line. It is apparent that, compared to
CBR cross traffic in Experiment 1, the higher variance of the
cross traffic results in a higher variability of the service curve
estimates. At the same time, even for Pareto traffic, almost all es-
timates of the available bandwidth provide a conservative bound
for the reference service curve.

In Fig. 10, we reconcile the results from Figs. 8(a) and 9(a)
and (b) in a single graph. We compute the derivatives of the
service curves and plot the mean value averaged over the 100
estimates (with 95% confidence intervals). The graph also in-
cludes the derivative of the reference service curve (thick solid
line). The plot for the reference service curve shows a sudden
increase at time 21 ms, where the service curve jumps to a rate of
25 Mbps. The derivatives of the service estimates for CBR, ex-
ponential, and Pareto cross traffic provide lower bounds, which
become more pessimistic with increasing variance of the cross-
traffic distribution.
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TABLE II
PATHLOAD MEASUREMENTS
Cross traffic | lower bound | upper bound
CBR 22.6 Mbps 22.8 Mbps
Exponential 17.7 Mbps 25.4 Mbps
Pareto 15.9 Mbps 29.3 Mbps

As a point of reference, we show in Table II the results of
the pathload application available from [2] for the same net-
work and cross traffic parameters. Pathload is frequently used
as a benchmark to evaluate bandwidth estimation techniques.
The pathload application views available bandwidth as a rate
and returns a range that is averaged over a time interval 7 that
bounds the observed distribution of the available bandwidth. For
each cross-traffic type, we ran pathload 100 times and computed
the average values of the lower and upper bounds of the esti-
mated available bandwidth range. A comparison with Fig. 10
shows that the lower bounds of the min-plus theoretic estima-
tion yield service curves, whose long-term average rate is sim-
ilar to or above the lower bound of pathload measurements. As
expected, the variation range increases if the cross traffic has a
higher variability.

C. Experiment 3: Multiple Bottleneck Links

We now present measurements over networks with multiple
bottleneck links. Fig. 11 depicts the network setup in Emulab
with two bottleneck links. The bottleneck links have a capacity
of 50 Mbps. The interarrival distribution of cross traffic is expo-
nential with parameters as discussed earlier in this section. As
probing scheme, we again use rate scanning with the backlog
convexity stopping criterion.

For each network, we compute the end-to-end service curve
using two methods. In the first method, called End-to-End (E2E)
Probing, we send probe traffic end to end over all bottleneck
links. In the second method, referred to as Convolution, we send
probe traffic separately over each bottleneck link and construct
a service curve for each link. Then, we compute an end-to-end
service curve using the convolution operation following (3). The
convolution can be done efficiently in the Legendre domain,
where the convolution becomes a simple addition.

Note that in our computation of the available bandwidth over
multiple links, the convolution from (3) replaces the minimum
in the widely used (1). For the special case that the available
bandwidths of links are constant-rate functions, the convolution
over multiple links is equal to the minimum of the rates. For-
mally, if S;(t) = r;t for all 4, we obtain S(¢) = Sy % Sg *
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TABLE III
PATHLOAD MEASUREMENTS: MULTIPLE BOTTLENECKS

No. bottle- End-to-End Per-link probing
neck links probing with Eq. (1)

2 [14.3,20.5] Mbps | [15.1,22.6] Mbps
3 [12.2,18.2] Mbps | [13.3,19.9] Mbps
4 [11.7,17.1) Mbps | [11.8,18.1] Mbps

... x Sy(t) = min; r;. Thus, the convolution expression is a
true generalization of the currently prevailing method for com-
posing bandwidth estimation of multiple links.

In Fig. 12(a)—(c), we present the outcomes of our experiments
for two, three, and four bottleneck links, respectively. As in
Fig. 10, we present derivatives of the service curves. We depict
the average values of 100 measurements, as well as the 95% con-
fidence intervals. The reference service curve (thick solid line)
is a latency rate service curve with a delay of 10 ms for each tra-
versed bottleneck link and a rate equal to the average unused link
capacity. We observe that the results of E2E probing are larger
at shorter time scales. Over longer time intervals, the results of
the Convolution method yields larger estimates. The long-term
average rate of the computed service curves degrades with the
number of hops.

In Table III, we show as benchmark the results of pathload
measurements. We include the range of values of end-to-end
probing as well as the results of applying (1) to per-link mea-
surements. The degradation of available bandwidth estimates
as the number of bottleneck links is increased is similar as ob-
served in Fig. 12. The long-term average of the service curve in
Fig. 12 yields more optimistic results than the range of values
in Table III. While the results of the system-theoretic approach
for paths with multiple nodes are clearly encouraging, we cau-
tion against a generalization to other topologies and production
networks.
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VIII. CONCLUSION

We have developed an interpretation of bandwidth estima-
tion as a problem in min-plus linear systems, where the avail-
able bandwidth is represented by a service curve. Using service
curves as opposed to constant-rate functions permits a descrip-
tion of bandwidth availability at different time scales. We have
related difficulties with network probing to nonlinearities of the
underlying system. By interpreting a network as a system that
is min-plus linear at low loads and becomes nonlinear when
the network load exceeds a threshold, we have argued that the
crossing of the linear and nonlinear regions marks the point
where the available bandwidth can be observed. The success in
describing relatively complex probing schemes using min-plus
algebra and the ability to concatenate the available bandwidths
of multiple links using the min-plus convolution hints at a pos-
sibly stronger link between bandwidth estimation and network
calculus. In particular, the min-plus convolution operator can be
applied to obtain end-to-end estimates from per-link measure-
ments.
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