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Abstract— Significant research has been dedicated to methods
that estimate the available bandwidth in a network from traffic
measurements. While estimation methods abound, less progress
has been made on achieving a foundational understanding of
the bandwidth estimation problem. In this paper, we develop a
min-plus system theoretic formulation of bandwidth estimation.
We show that the problem as well as previously proposed
solutions can be concisely described and derived using min-plus
system theory, thus establishing the existence of a strong link
between network calculus and network probing methods. We
relate difficulties in network probing to potential non-linearities
of the underlying systems, and provide a justification for the
distinctive treatment of FIFO scheduling in network probing.

I. I NTRODUCTION

The benefits of knowing how much network bandwidth
is available to an application has motivated the development
of techniques that infer the available bandwidth from traffic
measurements [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12]. Even though the number of techniques available
today is significant and much empirical experience has been
gained, less progress has been made towards a foundational
understanding of measurement based methods for estimating
the available bandwidth. Recent stochastic analyses point out
that an improved understanding of the principles of bandwidth
estimation could lead to better methods [13], [14].

In this paper, we pursue a different avenue to reason about
available bandwidth estimation. We view bandwidth estimation
as the analysis of a deterministic min-plus linear system.
This approach enables us to give mathematical derivations
that show how existing bandwidth estimation methods infer
information about a network. Also, we are able to reason
which bandwidth estimation methods can extract the most in-
formation from a network. Finally, we can show that some key
difficulties encountered when measuring available bandwidth
become evident in a system theoretic view, and that heuristics
that are applied in practice can be explained in terms of min-
plus system theory.

We view bandwidth estimation as the problem of deter-
mining an unknown function that describes the available
bandwidth, based on measurements of a single sequence of
probing packets or passive measurements of a single sample
path of arrivals. Given a set of (deterministic) timestamps that
record the transmission times of probing packets and their
arrival times at the destination, we show how and how much
information can be extracted about the network.

We show that estimating the available bandwidth in a
general network corresponds to solving a minimax optimiza-
tion problem. The problem becomes more tractable when the
network satisfies the property of ‘min-plus linearity’. We show
that many existing estimation techniques can be accurately
characterized if we interpret them as analyzing a network with
linear input-output relationships. We explain why available
bandwidth estimation is difficult if the underlying network uses
FIFO scheduling by showing that the input/output relation of
FIFO systems is decomposable into a min-plus linear and a
disjoint non-linear region. Here, the crossing of these regions
coincides with the available bandwidth.

The arguments in this paper draw from known relationships
between linear system theory and the network calculus. The
success in describing relatively complex probing schemes us-
ing min-plus algebra hints at a possibly stronger link between
bandwidth estimation and network calculus. A limitation of
our work is that we only consider a single packet trace or
sequence of probing packets. Since, in principle, a system
theoretic approach does not preclude a statistical analysis,
where each probe is interpreted as a random sample, we
believe that this limitation can be eventually removed.

The remainder of this paper is structured as follows. In
Section II, we discuss bandwidth estimation methods and other
related work. In Section III, we review the min-plus linear
system interpretation of the deterministic network calculus. In
Section IV, we formulate bandwidth estimation as the solution
to an inversion problem in min-plus algebra. In Section V,
we derive solutions to compute the inversion, and relate them
to probing schemes from the literature. In Section VI, we
justify how these probing schemes can be applied in networks
that are not min-plus linear. We present brief conclusions in
Section VII.

II. AVAILABLE BANDWIDTH ESTIMATION TECHNIQUES

The goal of bandwidth estimation is to infer from mea-
surements a reliable estimate on the unused capacity at a
multi-access link, a single switch, or a network path. The
available bandwidth of a network is often specified asA =
mini(Ci − λi), whereCi and λi are the capacity and total
traffic, respectively, on linki of a network path. The majority
of estimation methods monitor the transmission of control
(probe) packets. We call these methods active monitoring or
probing schemes. An alternative approach is to take passive
measurements by monitoring live data traffic in a network.
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The latter group is the preferred approach for measurement
based admission control (MBAC), which seeks to determine
if a network has sufficient resources to support minimal
service requirements [15], [16]. In comparison to passive
measurements, probing schemes have an additional degree of
freedom since they can determine the transmission pattern of
probing packets.

Active monitoring techniques typically generate probing
traffic as packet pairs or packet trains. Packet pairs consist of
two packets with a defined spacing, and packet trains consist
of more than two packets. Since it was first suggested in
[17], [18], packet pair probing has evolved significantly, and
has been used for estimating the bottleneck capacity (e.g.,
Bprobe[1], CapProbe[10]) as well as the available bandwidth
(e.g.,Spruce[2]). The rationale behind these methods builds
on the relation of packet dispersion and available bandwidth
resources, i.e., packet pairs with a defined gap may be spaced
out on slow or loaded links and thus carry information about
the network path. Packet train methods (e.g.,PBM [11],
Cprobe [1], pathrate [12]) seek to improve the accuracy of
bandwidth estimation over packet pairs.

More recently proposed schemes, includingpathload [4],
[5], pathvar [9], TOPP [3], PTR/IGI [6], pathchirp [7], and
BFind [8], adaptively vary the rate of probing traffic to induce
congestion in the network. This has been found to increase the
fidelity of estimation methods. For example,pathload uses
a sequence of constant rate packet trains, and increases the
transmission rate of consecutive trains until they converge to
the available bandwidth.Pathchirpuses packet trains, referred
to as chirps, with an exponentially decreasing inter-packet gap.
Here, the network is probed over a range of rates similar to
pathload, however, the rate scan is performed within a single
packet train.

Some estimation techniques are designed with an assump-
tion that the network as a whole exhibits the behavior of a
single queueing system with cross traffic. Often it is assumed
that the network behaves as a single FIFO system [2], [3], [6],
[7], [19]. This is justified by the particular packet dispersion of
FIFO systems which is matched by empirical data [19]. Since
a flow in an overloaded FIFO system may receive a share of
the capacity that exceeds the available bandwidth, it has been
found that the best estimates are obtained if the probing traffic
increases the load close to, but not beyond, an overloaded state.
An analytical investigation in [14], [20] showed that probing
schemes can be further improved by accounting for the random
fluctuations of traffic.

We note that links between network calculus and bandwidth
estimation, have been made before mostly in the context of
MBAC [15], [16], [21], [22].

III. M IN-PLUS L INEAR SYSTEM THEORY FORNETWORKS

This section reviews the linear system representation of
networks and introduces needed concepts and notation. We
consider a continuous-time setting.

Classical linear system theory deals with linear time-
invariant (LTI) systems with input signalA(t) and output

A(t) D(t)

Input signal
(Arrivals)

System with impulse response
(Network with service curve)

Output signal
(Departures)

S(t)

Fig. 1. Linear Time-Invariant system and min-plus linear network.

signalD(t) (see Fig. 1). Linear means that for any two pairs
of input and output signals(A1, D1) and(A2, D2), any linear
combination of input signalsb1A1(t) + b2A2(t) results in
the linear combination of output signalsb1D1(t) + b2D2(t).
Time-invariant means that for any pair of inputs and outputs
(A,D), a time-shifted inputA(t−τ) results in a shifted output
D(t− τ).

Let S(t) be the impulse response of the system, that is the
output signal generated by the system if the input signal is a
unity (Dirac) impulse at time zero. The basic property of an
LTI system is that it is completely characterized by its impulse
response, where the output of the system is expressed as the
convolution of the input signal and the impulse response:

D(t) =
∫ ∞

−∞
A(τ)S(t− τ)dτ =: A ∗ S(t).

A. Min-Plus Algebra in the Network Calculus

A significant discovery of networking research from the
1990’s is that networks can often be viewed as linear systems,
when the usual algebra is replaced by a so-called min-plus
algebra [23], [24], [25]. In a min-plus algebra [26], addition is
replaced by a minimum (we write infimum) and multiplication
is replaced by an addition. Similar to LTI systems, a min-
plus linear system is a system that is linear under the min-
plus algebra. This means that a min-plus linear combina-
tion of input functionsinf{b1 + A1(t), b2 + A2(t)} results
in the corresponding linear combination of output signals
inf{b1 + D1(t), b2 + D2(t)}. In min-plus system theory the
burst function

δ(t) =

{
∞ , if t > 0 ,

0 , otherwise,
(1)

takes the place of the Dirac impulse function.
Let S(t) be the impulse response, that is, the output when

the input is the burst functionδ(t). Any time-invariant min-
plus linear system is completely described by its impulse
response, and the output of any min-plus linear system can
be expressed as a linear combination of the input and shifted
impulse responses by

D(t) = inf
τ
{A(τ) + S(t− τ)} =: A ∗ S(t).

As in [23], [24] we use the convention that input and output
signals in the min-plus linear system theory are non-decreasing
non-negative functions. In analogy to LTI systems, this oper-
ation is referred to as convolution of the min-plus algebra



[26].1 Conversely, if there exists a functionS(t) such that
D(t) = A ∗ S(t) for all pairs (A,D), then it follows that the
system is min-plus linear.

The min-plus convolution shares many properties with the
usual convolution, e.g., it is commutative and associative. The
associativity of min-plus convolution is of particular impor-
tance since it implies an easy way of concatenating systems
in series. Given a tandem of two min-plus linear systemsS1(t)
andS2(t), the output can be computed iteratively asD(t) =
(A∗S1)∗S2(t) and, with associativity,D(t) = A∗(S1∗S2)(t)
holds. This leads to the important observation that the tandem
system is equivalent to a single system with impulse response
S(t) = S1 ∗ S2(t).

The observation that some networks can be adequately
modeled by a min-plus linear system led to the min-plus
formulation of the network calculus [23], [24], [25]. Here,
a system is a network element or entire network, input
and output functionsA and D are arrivals and departures,
respectively, and the impulse responseS, called theservice
curve, represents the service guarantee by a network element.
Network elements that are known to be min-plus linear include
a work-conserving constant rate link (S(t) = C t, whereC
is the link capacity), a shaper (S(t) = σ + ρ t, where σ
is a burst size andρ is a rate), and a rate-latency server
(S(t) = r (t − d)+, where r is a rate,d is a delay, and
(x)+ = max(x, 0)), and their concatenations.

The relevance of the network calculus as a tool for the
analysis of networks results from an extension of its formal
framework to networks that do not satisfy the conditions of
min-plus linearity. Nonlinear systems implement more com-
plex mappingsΠ of arrival to departure functionsD(t) =
Π(A)(t). In the network calculus, these are replaced by linear
mappings that provide bounds of the formD(t) ≥ A ∗ S(t)
or D(t) ≤ A ∗ S(t) ([24], pp. xviii). Here,S is referred to
as a lower service curveand S is referred to as anupper
service curve, indicating that they are bounds on the available
service. In a min-plus linear system, the service curveS is
both an upper and a lower service curve (S = S = S), which
is therefore frequently referred to asexact service curve.

B. Legendre transform in Min-Plus Linear Systems

In linear system theory, the Fourier transform off(t),
denoted byFf (ω), establishes a dual domain, the frequency
domain, for analysis of LTI systems. In the frequency domain,
the Fourier transform turns the convolution to a multiplication,
that is,Ff∗g(ω) = Ff (ω) · Fg(ω).

In min-plus linear systems, theLegendre transform, also
referred to as convex Fenchel conjugate, plays a similar role.
The Legendre transform of a functionf(t) is defined as

Lf (r) = sup
τ
{rτ − f(τ)}.

Sincer can be interpreted as a rate, one may view the domain
established by the Legendre transform as a rate domain.

1We re-use the symbol for notational simplicity. The context makes this
slight abuse of notation non-ambiguous.

The Legendre transform takes the min-plus convolution to an
addition [27], [26], that is,2

Lf∗g = Lf + Lg . (2)

Other properties of the Legendre transform that we exploit in
this paper are that, for convex functionsf , we have

L(Lf ) = f . (3)

In other words, a convex functionf can be recovered from
Lf by reapplying the Legendre transform [27]. In general, we
only have

L(Lf ) ≤ f and L(Lf ) = cof , (4)

where cof denotes the convex hull off , defined as the largest
convex function smaller thanf .

Another property that will be used is that the Legendre
transform reverses the order of an inequality, i.e.,

f ≥ g ⇒ Lf ≤ Lg . (5)

The statement is an equivalency wheng is convex. Applica-
tions of the Legendre transform in the network calculus have
been previously studied in [28], [29], [30].

IV. A M IN-PLUS ALGEBRA FORMULATION OF THE

BANDWIDTH ESTIMATION PROBLEM

We view a network as a time-invariant min-plus linear or
non-linear system that converts input signals (arrivals) into
output signals (departures) according to a fixed but unknown
service curveS. The service curve of the network expresses
the available bandwidth, which can be a constant-rate or a
more complex function. Measurements of a network probe,
defined as a sequence of at least two packets, can be charac-
terized by an arrival functionAp(t) and a departure function
Dp(t), where the functions represent the cumulative number of
bits seen in the interval[0, t]. These functions are constructed
from timestamps of the transmission and reception of packets,
and from knowledge of the packet size. In Fig. 2 we illustrate
a network probe consisting of five packets of equal size
with fixed spacing between consecutive packets. The vertical
distance between arrivals and departures can be viewed as a
virtual backlogB(t) = Ap(t)−Dp(t). The horizontal distance
can be viewed as delayW (t).

Representing the network by a min-plus linear system, we
interpret a probing scheme as trying to determine from a
specific sample of functionsAp andDp an a priori unknown
lower serviceSu, such thatD ≥ A ∗ Su holds for all pairs
(A,D) of arrival and departure functions. Since the estimate
of the available bandwidth should not be overly pessimistic,
the goal of a probing scheme is to select a maximalSu(t),
i.e., there is no other lower service curve larger thanSu(t) that
satisfies the definition.3 One problem in devising a probing

2Whenever possible, from now on we use shorthand notationf to mean
‘f(t) for all t ≥ 0’, andLf to mean ‘Lf (r) for all r ≥ 0’.

3We define a partial ordering of service curves, such thatS1 ≤ S2 iff.
S1(t) ≤ S2(t) for all t.
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Fig. 2. Example arrival and departure function of a probe of five packets.

scheme lies in the selection of the probing pattern, i.e., a
function Ap, that reveals a maximal service curve.

Taking a step back and looking at the overall problem,
bandwidth estimation is trying to find a service curveSu

that has the best worst-case performance. This corresponds
to expressingSu as the solution to the following optimization
problem:

MAXIMIZE S
SUBJECT TO D(t) ≥ infτ{A(τ) + S(t− τ)},

∀t ≥ 0, for all pairs (A, D).

This problem has the structure of a max-min optimization,
which is fundamentally hard. In addition, since service curves
only form a partial ordering, there may not be an optimal
solution, but only solutions that cannot be further improved.

The bandwidth estimation problem is easier when the net-
work can be described by a min-plus linear system. As we
will see in Section VI, some non-linear networks, such as
FIFO systems, are min-plus linear under low load conditions.
Recalling that a system is min-plus linear if it can be described
by an exact service curve, the bandwidth estimation problem
is reduced to solving the inversion of

D(t) = A ∗ Su(t) for all t ≥ 0.

If we can take a measurement ofAp andDp which solves
the equation forSu, then, due to min-plus linearity, we have a
solution for all possible arrival and departure functions. From
Section III, we can infer that a solution is obtained by using the
burst function of Eq. (1) as probing pattern, i.e.,Ap(t) = δ(t).
This follows since the service curve is the impulse response
of a min-plus system, that is,Dp(t) = δ ∗ Su(t) = Su(t).
However, sending a probe as a burst function is not practical,
since it assumes the instantaneous transmission of an infinite
sized packet sequence. While a burst function can be approxi-
mated by a sufficiently large back-to-back packet train, a high-
volume transmission of probes consumes network resources
and interferes with other packet traffic. More importantly,
the service curve of a burst function (or its approximation),
may cause some networks that operate in a min-plus linear
regime to become non-linear. The observation that large packet
trains can lead to unreliable estimates has been noted in the
literature [12].

In the next section, we present derivations for three band-
width estimation methods in min-plus linear systems. Two of

the methods can be related to previously proposed probing
schemes. Some schemes can be applied to certain non-linear
systems.

We conclude this section with remarks on some general
aspects of probing schemes and their representations in min-
plus linear system theory.
• Timestamps and asynchrony of clocks:When clocks at
the sender and receiver of a probing packet are perfectly
synchronized, and the sender includes the transmission time
into each probing packet, the receiver can accurately construct
the functionsAp andDp. In practice, however, clocks are not
synchronized. When clocks have a fixed offset (but no drift),
the arrival functionAp can be viewed as being time-shifted by
an unknown offsetT . In the min-plus algebra a time-shift can
be expressed by a convolution, i.e.,Ap(t − T ) = Ap ∗ δT (t)
where δT (t) = δ(t − T ). Here, the convolution of arrival
function and service curve becomes(Ap ∗ δT ) ∗ Su, which
due to associativity and commutativity of the convolution
operation, can be rewritten asAp ∗ (Su ∗ δT ). Hence, when
the offset is fixed but unknown, even an ideal probing scheme
can only compute a service curve that is a time-shifted version
of the actual service curve of the network. Drifting clocks
make the problem harder. Many bandwidth estimation schemes
circumvents the problem of asynchronous clocks by returning
probes to the sender [1], [8], or by only recording time differ-
ences of incoming probes [2], [3], [4], [6], [7]. A moment’s
consideration shows that knowledge of the differences between
the transmission and arrival of probing packets has the same
limitations as dealing with an unknown clock offsetT between
the sender and receiver of probing packets.
• Packet pairs:The arrival and departure functions of a packet
pair have each only three points, i.e., the origin and the two
timestamps related to the packet pair. If it can be assumed that
the service curve has a certain shape, e.g., a rate-latency curve
S(t) = r · (t−d)+, the service curve can be recovered. In the
absence of such an assumption, packet pair methods may not
be able to recover more complex service curves.

V. M IN-PLUS THEORY OFNETWORK PROBING METHODS

In this section, we derive bandwidth estimation methods
as solutions to finding an unknown service curve for a min-
plus system. We make a number of idealizing assumptions.
First, we consider a fluid flow view of traffic and service.
This assumption can be relaxed at the cost of additional
notation. Unless stated otherwise, we assume that the network
represents a min-plus linear system. This assumption will be
partially relaxed in Section VI. We generally assume that
accurate timestamps for transmission and arrival of probes
are feasible. If measurements only record time differences
between events or include an unknown clock offset between
sender and receiver, the computed service curves need to be
time shifted by some constant value.

A. Passive Measurements

We first try to answer the question:How much information
about the available bandwidth can be extracted from passive



measurements of traffic?To provide an answer we first in-
troduce the deconvolution operator of the min-plus algebra,
which is defined for two functionsf andg by

f ® g(t) = sup
τ
{f(t + τ)− g(τ)}.

The deconvolution operation isnot an inverse to the convo-
lution (g 6= f ® (f ∗ g)), however, it has aspects of such an
inverse. This is expressed in the following duality statement
from [24], which states that for functionsf , g and h, the
following equivalency holds:4

f ≤ g ∗ h ⇔ h ≥ f ® g. (6)

We will exploit this property to formulate the following
lemma.

Lemma 1 For two non-decreasing non-negative functionsg
and h, we have

((h ∗ g)® g) ∗ g = h ∗ g .

Proof: Let us definef = g ∗ h and h̃ = f ® g. From
Eq. (6) we can conclude thatf ≤ g ∗ h̃. By definition of f ,
we see from Eq. (6) thath ≥ f ® g. By definition of h̃, this
gives ush ≥ h̃. Fromh ≥ h̃ andf = g ∗ h we getf ≥ g ∗ h̃.
Combining the two statements gives usf = g ∗ h̃. Now, by
inserting the definitioñh = f ® g, we obtainf = g ∗ (f ® g).
Inserting the definitionf = g∗h yieldsg∗h = g∗((g∗h)®g).
Reordering the expression using commutativity of the min-plus
convolution completes the proof.
The lemma justifies the following passive measurement
scheme. Let us denote the arrival and departure functions
measured from a traffic trace of one or more flows byAtr and
Dtr. By assumption of linearity, we know thatDtr = Atr ∗S
holds, but the shape ofS is unknown. Suppose we compute
a function S̃ from the trace as the deconvolution of the
departures and the arrivals, i.e., we set

S̃ = Dtr ®Atr . (7)

Then, we can conclude with Lemma 1 that

Dtr = Atr ∗ S̃ . (8)

With the duality property from Eq. (6) we obtain with Eq. (7)
and Eq. (8) that

S̃ ≤ S .

Hence, the estimate of the service curveS̃ is a lower service
curve, such that for all pairs of arrival and departure functions
(A,D), we have D ≥ A ∗ S̃. Since, from Eq. (8),S̃
can completely reconstruct the departure function from the
arrival function, we can conclude that̃S is the best possible
estimate of the actual service curve that can be justified from
measurements ofAtr andDtr, in the sense that it extracts the
most information from the measurements.

4We use shorthand notationf = g ∗ h to mean ‘f(t) = (g ∗ h)(t) for all
t ≥ 0’.

centering

TABLE I

PARAMETERS OFON-OFF SOURCES.

Scenario high load low load

Burstiness high med low high med low
Number of sources 1 5 25 1 5 25

Source peak rate [Mbps] 200 40 8 200 40 8
Total average rate [Mbps] 20 20 20 10 10 10

The main drawback of this method is that it can only be
applied to linear networks. For networks that do not satisfy
min-plus linearity, i.e., that can only be described by a lower
service curve (D ≥ A∗S) or upper service curve (D ≤ A∗S),
S̃ only computes a (not useful) lower bound for an upper
service curveS. Note that Lemma 1 does not help us with
designing a probing scheme, since it does not tell us how to
select the trafficApr for the network probes.

For illustration of the passive measurement scheme, we
now present numerical results of an (idealized) fluid flow
scenario of a min-plus linear system, which is governed by
a service curveS(t) = (b + rt) ∗ (R[t − T ]+). The system
represents a network that regulates the ingress with a leaky-
bucket with parametersb andr, and the service corresponds to
a latency-rate service curve with delayT and rateR. We set
b = 0.75 Mb, r = 25 Mbps,R = 100 Mbps, andT = 10 ms.

As traffic trace, we use an arrival sample path that represents
the aggregate arrivals from a set of statistically independent
On-Off traffic sources. In theOn state, a source generates
traffic with a given peak rate, and in theOff stateno data is
generated. Every millisecond, an active source leaves the On
state with probabilityp, and an Off source becomes active with
probability q. This choice of traffic enables us to evaluate the
sensitivity of the passive measurement method with respect to
the burstiness of the trace, the fraction of available bandwidth
that is utilized by the flows, and the length of the measurement
period.

The parameters are depicted in Table I. In thehigh load
setting, we setp = 0.09 and q = 0.01, resulting in a total
arrival rate of20 Mbps. In low load, we setp = 0.19 and
q = 0.01, which leads to an average total traffic rate of
10 Mbps. We control the burstiness of the traffic by increasing
the number of flows, and accordingly decrease the peak rate
of each flow. Due to statistical multiplexing, an aggregate of
multiple On-Off sources is less bursty than a single flow with
the same peak and average rate. In our plots burstiness levels
of high, medium, andlow correspond to a trace with 1, 5, and
25 sources.

In Fig. 3(a)-3(d) we show the estimates of the lower service
curvesS̃ obtained with the above method, and compare them
to the actual service curveS, indicated as a thick (red) line
in each graph. The length of the measurement is taken for
1 second (plots on the left), 10 seconds (plots on the right). In
all plots, we see that burstier traffic leads to better estimates of
the service curve. This is expected since the burstiest traffic,
i.e., a burst impulse, can perfectly recoverS (see Section IV).
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Fig. 3. Bandwidth estimation for passive measurement of a traffic trace.

For the same reason, the estimates improve when the traffic
trace has a higher utilization of the available bandwidth.
Observe that all estimates improve with increasing length of
the evaluation period. This follows from the definition of the
supremum in the min-plus deconvolution operation.

Since the presented method is ideal in the sense that it
computes the largest service curve (available bandwidth) that
can be justified from a given traffic trace, our method will
perform no worse than existing methods, e.g., from the MBAC
literature [15]. Space restrictions prevent us from presenting a
comparison in this paper.

B. Rate Scanning

Next we consider probing schemes where sequences of
packet trains are transmitted at different rates, such as
pathload[4], [5]. We refer to these techniques as rate-scanning
techniques. We provide a justification for this technique using
min-plus system theory.

Given arrival and departure functionsA and D, using the
earlier definition of backlog, the maximum backlog can be
computed as

Bmax = sup
t
{A(t)−D(t)}.

If the arrivals are a constant rate function, that is,A(t) =
rt, and the network satisfies min-plus linearity, we can write
Bmax as a function ofr as follows:

Bmax(r) = sup
t
{rt− inf

τ
{rτ + S(t− τ)}}

= sup
t
{sup

τ
{r(t− τ)− S(t− τ)}}

= sup
t
{rt− S(t)}.

The first line uses that the departures in min-plus linear
systems can be characterized byD = A ∗ S. The second

line moves the infimum in front of the substraction, where it
becomes a supremum. The third line is simply a substitution.

Recalling the definition of the Legendre transform from
Subsection III-B , the right hand side of the last equation can
be written as the Legendre transform ofS, that is,Bmax(r) =
LS(r). This relation has been observed in [31], [30], [28]. We
take a further step by applying this relation in the reverse
transform. Due to Eq. (3), we have for convex service curves
S that

S(t) = L(LS)(t) = LBmax
(t) = sup

r
{rt−Bmax(r)} .

Thus, every convex service curve can be recovered by mea-
surements of the maximum backlogBmax by constant-rate
probe traffic that is sent at varying rates. The interpretation of
rate scanning is that each constant bit rate stream with rater
reveals one pointBmax(r) of the service curve in the Legendre
domainLS(r).

In practice, a rate scanning method specifies arate incre-
ment, which sets the increase of the rate between packet trains,
a rate limit, which sets the maximum rate at which the network
is scanned, and the length of the packet trains. The service
curve calculated via rate scanning consists of piecewise linear
segments. The choice of the rate increment determines the
length of the segments, and, in this way, the accuracy of the
computed service curve. Without offering a proof or further
data, we note that (under loose assumptions) rate scanning
is capable of tracking a convex service curve, up to a time
where the derivative of the service curve reaches the rate limit.
The higher the maximum rate, the more information about the
service curve is recovered.

A criterion for picking the rate limit suggested by our
derivations is to stop rate scanning when increasing the
scanning rate does not yield an improvement of the service
curve. This criteria may fail when the underlying network is
not min-plus linear. Pathload [4], [5] is a prototypical example
of a rate scanning method. It uses an iterative procedure which
varies the rater of consecutive packet trains until measured
delays indicate an increasing trend. Such a trend is interpreted
as reflecting that the rate has exceeded the available bandwidth.
In Section VI we remark that this criteria can be justified in
non-linear systems that behave linearly at low loads.

The number of packets in a packet train must be large
enough so that the maximum backlog can be accurately
measured. Under the assumptions of the rate scanning tech-
nique, i.e., the arrival function is a constant rate function and
the service curve is convex, the backlogB(t) is a concave
function. Hence, if increases to the backlog caused by the
packets of a train are sufficiently small, additional packets of
the train do not provide new information.

In Fig. 4(a) we present an example of the rate scanning
approach for a fluid-flow service curve with a quadratic form
S(t) = 0.4t2. In the example, rate scanning is performed at
rates10, 20, . . . , 80 Mbps. In Fig. 4(a), we plot the maxi-
mum backlog observed for each scanning rate. The function
Bmax(r) is constructed by connecting the measured data
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points by lines. (For any rater exceeding the rate limit we
make the conservative assumption thatBmax(r) = ∞. The
assumption gives us a Legendre transform for all rate values.)
In Fig. 4(b), we show the service curves that are obtained
with different rate limits. The higher the rate limit, the more
accurate the results.

Note that both the plots of the backlog in Fig. 4(a) and
the service curves in Figure 4(b) consist of linear segments.
Decreasing the increment of the rate will improve the accuracy
of the service curve. If we compared the service curves from
the rate scanning method with the previous subsection, we
would observe that the rate scanning method with rate limit
rmax generates similar results as passive measurement of a
constant traffic rate traffic with the same rate. The difference of
results would consist of inaccuracies due to the approximation
of the service curve by linear segments.

C. Rate Chirps

The need of rate scanning to measure a possibly large
number of packet sequences has motivated a method where
measurements are done with a single packet train, with an
exponentially decreasing inter-packet spacing. The approach,
proposed in [7], takes inspiration from chirp signals in signal
processing, which are signals whose frequencies change with
time. We refer to this approach asrate chirp, since the
decreased gap between packets corresponds to an increase of
the transmission rate.

We will show that a rate chirp scheme can be justified
by properties of the min-plus system theory, specifically,
properties of the Legendre transform.

Suppose we have a lower service curveS satisfyingD ≥

A ∗S for all pairs(A,D). Taking the Legendre transform we
obtain with the order reversing property of Eq. (5) and with
Eq. (2), that

LD ≤ LA∗S = LA + LS .

We can re-write this as

LS ≥ LD − LA ,

as long as the differenceLD(r)−LA(r) is defined for allr. A
sufficient condition is thatLA(r) < ∞, since it prevents both
transformsLD and LA from becoming infinite at the same
value ofr. Another application of Eq. (5) yields

L(LS)≤L(LD − LA) .

If the system is min-plus linear, that is,D = A ∗ S, we get,

L(LS)=L(LD − LA) .

If S is convex, then by Eq. (3), we haveS = L(LD − LA).
This provides us with a justification forpathchirp [7] as a

probing method. If we depict the transmission of a packet chirp
as a fluid flow function, we see that it grows to an infinite rate,
thus, yielding a Legendre transform that is finite for all rates.
By measuring arrivals and departures of the chirp, denoted by
Achrp andDchrp, we can compute a functioñS by

S̃(t) = L(LDchrp − LAchrp)(t) . (9)

If the network satisfiesD = A∗S for all arrivals, then the right
hand side of Eq. (9) computesL(LS). Then, with Eq. (4), we
obtain S̃ ≤ S, which tells us that̃S is a lower service curve
that satisfiesD ≥ A ∗ S̃ for any traffic with arrival function
A and departure functionD. If, in addition, S is convex we
haveS̃ = S, and we can recover the service curve.

In practice, a rate chirp stops sending packets at some
maximum rate. Suppose that packets of a chirp are transmitted
in a time interval[0, tAmax], and that the observations ofD are
made in[0, tDmax]. To make a practical rate chirp comply with
the formal requirements of the above equations, we define the
following extension:

Ãchrp(t) =

{
Achrp , if 0 ≤ t ≤ tAmax ,

∞ , if t > tAmax ,

D̃chrp(t) =





Dchrp , if 0 ≤ t ≤ tDmax ,

Dchrp(tDmax) + (t− tDmax)dDchrp

dt (tDmax) ,
if t > tDmax .

The arrival function is simply set to∞ past the last mea-
surement. The departure function is continued at a rate that
corresponds to its slope at the time of the last measurement.
For convex service curvesS, the above extensions are conser-
vative.

In Fig. 5(a) we show several rate chirps for a network probe.
The rate chirp consists of a sequence of probing packets of
1200 Bytes that are transmitted at an increasing rate, starting
at 10 Mbps and growing to 200 Mbps. The rate is increased
by reducing the elapsed time between the transmission of the
first bit of two consecutive packets, by a constant factorγ,
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which is called the spread factor in [7]. Larger values forγ
lead to shorter chirps that grow fast to the maximum rate.
In Fig. 5(b), we show the service curves computed from the
chirps in Fig. 5(a). The actual service curve isS(t) = 0.4t2,
indicated as a thick (red) line in the figure. It appears that a
path chirp with a smaller spread factorγ, which transmits more
packets over longer time interval, leads to better estimates of
the service curve.

VI. BANDWIDTH ESTIMATION IN NONLINEAR SYSTEMS:
THE FIFO SYSTEM

Extending bandwidth estimation to systems that are not min-
plus linear, i.e., are not described by an exact service curve,
raises difficult questions. First, the formulation of bandwidth
estimation for general networks from Section IV shows that
the structure of the estimation problem becomes hard. More
so, since in networks with non-linearities the network service
may depend on the network traffic, knowledge of the available
bandwidth may not help with predicting network behavior, or
may even be ill-defined.

However, there are networks that can be decomposed into
a min-plus linear and a disjoint non-linear region. These
networks behave like a min-plus linear system at low load.
Increasing the traffic rate beyond a threshold causes the
network to enter the non-linear region. Given such a network,
the goal of bandwidth estimation is to determine the available
bandwidth of the linear region.

Consider a FIFO system with capacityC, where all traffic in
the network is transmitted as constant-bit rate traffic. Suppose
the FIFO queue sees (cross) traffic at a rate ofrc, and probing
traffic is sent according toA(t) = rt. As observed in [19] and
supported by simulation results therein, the departure function
of the probing traffic is

D(t) =

{
rt , if r ≤ C − rc ,

r
r+rc

Ct , if r > C − rc .
(10)

If the rate is above the thresholdC−rc, the capacity allocated
to the probe and cross traffic is proportional to their respective
rates. As a result, the probing traffic gets more bandwidth
when its rate is increased.

In Fig. 6 we show the results of bandwidth estimation for a
FIFO system obtained in an ns-2 simulation [32]. We assume
a scheduler with link capacity of 50 Mbps. Both the ingress

and egress links to the scheduler have a propagation delay of
each 10 ms. The cross traffic consists of 10 FTP sources that
send traffic over a 25 Mbps access link. Probing traffic is sent
to the queue on a 100 Mbps link, permitting us to overload
the queue with probing traffic. We show the results for a burst
impulse, passive measurements, rate scanning, and rate chirp
and compare them to the actual available bandwidth. Packet
sizes are set to 800 bytes. The burst function is approximated
by transmitting back-to-back probes at the maximum rate of
100 Mbps. For passive measurements we use as traffic a high-
bandwidth variable bit rate video trace [33] that has an average
rate of 17.1 Mbps and a peak rate of 154 Mbps.5 Rate scanning
is performed at increments of 4 Mbps, and the maximum
rate is determined using the criteria given in [5]. The rate
chirp method uses the publicly available ns-2 simulation of
pathchirp, with a minimum rate of 1 Mbps, a maximum rate
of 80 Mbps, and a spread factor ofγ = 1.2.

For FIFO, shown in Fig. 6, the burst impulse transmits at the
maximum rate of 100 Mbps, and obtains most of the available
bandwidth (80% would be consistent with Eq. (10), however,
the TCP background traffic in the simulations does not have a
constant bit rate.). The passive measurement method underes-
timates and sometimes overestimates the available bandwidth.
This is due to the variability of the bit rate. All other schemes
provide good estimates of the available bandwidth. In this
example and for the chosen parameters, rate scanning and rate
chirps provided the same results, even though neither scheme
was tuned for this example.

We now offer a min-plus system interpretation of bandwidth
estimation for FIFO for constant rate traffic. Consider the
function Sfifo(t) = (C − rc)t. From the empirical departure
characterizationD of a FIFO system from Eq. (10), we can
verify that the following is satisfied for allt ≥ 0:

D(t) = (rt) ∗ Sfifo , if r ≤ C − rc

D(t) ≥ (rt) ∗ Sfifo , if r > C − rc .

Therefore,Sfifo is an exact service curve forA(t) = rt
when r ≤ C − rc, andSfifo is a lower service curve when
the arrivals exceed the threshold value. In fact,Sfifo is the
largest lower service curve for a FIFO system, and a solution
to the maximization in Section IV. Any function larger than
Sfifo may not be a lower service curve forr > C − rc. This
also serves as a proof that a FIFO system is not min-plus
linear for r > C − rc. We can view a FIFO network as a
system that is min-plus linear at ratesr ≤ C−rc, and crosses
into a non-linear region when the rate exceeds the threshold.
The crossing of these regions coincides with the available
bandwidth Sfifo. Since a probing rate aboveC − rc in a
FIFO system is the turning point where a backlog is created,
the heuristic inpathloadandpathchirp to stop measurements
when increasing delays are observed can also be justified in
terms of crossing the non-linear region.

We emphasize that the above statements hold only for
constant rate cross and probing traffic. For variable rate traffic,

5We have used 2 seconds of the video trace entitledFrom Mars to China.



e.g., TCP cross traffic and a video trace in Fig. 6, the
interpretation remains to be established. Revising the notion of
min-plus linearity so that short-term fluctuations of traffic do
not make the system non-linear, as long as the long-term rate
does not exceed the available bandwidth, is an open problem
and a topic of future research.

The above considerations motivates a criteria for finding the
threshold rate and the service curve for any non-linear system
with disjoint linear and non-linear regions. For constant rate
probe trafficAx(t) = xt and measured departuresDx, let us
use any of the methods from Section V to find a functionS̃
satisfying

Dx(t) = (xt) ∗ S̃(t) .

Since an exact service curve must hold for all rates of the probe
traffic, S̃ is not an exact service curve, if there is a ratey < x
such thatDy(t) 6= (yt) ∗ S̃(t) for somet ≥ 0. In this case,x
is above the threshold that makes the system leave the linear
region, and the probing rate needs to be reduced. This criteria
can also be used by techniques such as rate scanning and rate
chirps, which start at low transmission rates and increase the
probing rate. The probing stops as soon as non-linearity of the
system is detected.

VII. C ONCLUSIONS

We expressed measurement-based estimation of available
bandwidth as a problem in min-plus linear systems, where
the available bandwidth is represented by a service curve. We
investigated the limits of passive measurements and derived
the best service curve estimate that is justified by a given
measurement trace. We showed that probing methods such as
rate scanning and rate chirps can be derived in terms of the
min-plus algebra. We related difficulties with network prob-
ing to non-linearities of the underlying system. The concise
derivation and motivation of relatively sophisticated probing
methods point to further links between network measurement
approaches and min-plus system theory, which await full
exploration.
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