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Abstract— Significant research has been dedicated to methods We show that estimating the available bandwidth in a
that estimate the available bandwidth in a network from traffic genera| network Corresponds to So|ving a minimax Optimiza-
measurements. While estimation methods abound, less progressiion problem. The problem becomes more tractable when the

has been made on achieving a foundational understanding of - . . o
the bandwidth estimation problem. In this paper, we develop a network satisfies the property of ‘min-plus linearity’. We show

min-plus system theoretic formulation of bandwidth estimation. that many existing estimation techniques can be accurately
We show that the problem as well as previously proposed characterized if we interpret them as analyzing a network with
solutions can be concisely described and derived using min-plus linear input-output relationships. We explain why available
f))é?\t\?ergnthr?:tl;/)\lll() :I?ucsaliztlighzrr]\lggn;q\?v OerEIStf(?k():ifl of atﬁtrgng \x/nk bandwidth estimation is difficult if the underlying network uses
P g mewhods e miFo scheduling by showing that the input/output relation of

relate difficulties in network probing to potential non-linearities A ) ) )
of the underlying systems, and provide a justification for the FIFO systems is decomposable into a min-plus linear and a

distinctive treatment of FIFO scheduling in network probing. disjoint non-linear region. Here, the crossing of these regions
coincides with the available bandwidth.
|. INTRODUCTION The arguments in this paper draw from known relationships

between linear system theory and the network calculus. The

The benefits of knowing how much network bandwidtuccess in describing relatively complex probing schemes us-
is available to an application has motivated the developme&ng min-plus algebra hints at a possibly stronger link between
of techniques that infer the available bandwidth from traffigandwidth estimation and network calculus. A limitation of
measurements [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], our work is that we only consider a single packet trace or
[11], [12]. Even though the number of techniques availabkquence of probing packets. Since, in principle, a system
today is significant and much empirical experience has begforetic approach does not preclude a statistical analysis,
gained, less progress has been made towards a foundatigii@dre each probe is interpreted as a random sample, we
understanding of measurement based methods for estimatie@ieve that this limitation can be eventually removed.
the available bandwidth. Recent stochastic analyses point outhe remainder of this paper is structured as follows. In
that an improved understanding of the principles of bandwidthection I1, we discuss bandwidth estimation methods and other
estimation could lead to better methods [13], [14]. related work. In Section Ill, we review the min-plus linear

In this paper, we pursue a different avenue to reason abgystem interpretation of the deterministic network calculus. In
available bandwidth estimation. We view bandwidth estimatia®ection IV, we formulate bandwidth estimation as the solution
as the analysis of a deterministic min-plus linear systemo an inversion problem in min-plus algebra. In Section V,
This approach enables us to give mathematical derivatiope derive solutions to compute the inversion, and relate them
that show how existing bandwidth estimation methods infes probing schemes from the literature. In Section VI, we
information about a network. Also, we are able to reasqostify how these probing schemes can be applied in networks
which bandwidth estimation methods can extract the most ithat are not min-plus linear. We present brief conclusions in
formation from a network. Finally, we can show that some keSection VII.
difficulties encountered when measuring available bandwidth
become evident in a system theoretic view, and that heuristicl- AVAILABLE BANDWIDTH ESTIMATION TECHNIQUES
that are applied in practice can be explained in terms of min-The goal of bandwidth estimation is to infer from mea-
plus system theory. surements a reliable estimate on the unused capacity at a

We view bandwidth estimation as the problem of detemulti-access link, a single switch, or a network path. The
mining an unknown function that describes the availabkevailable bandwidth of a network is often specified A&s=
bandwidth, based on measurements of a single sequencenaf;(C; — );), whereC; and \; are the capacity and total
probing packets or passive measurements of a single sanpdéfic, respectively, on link of a network path. The majority
path of arrivals. Given a set of (deterministic) timestamps that estimation methods monitor the transmission of control
record the transmission times of probing packets and th@irobe) packets. We call these methods active monitoring or
arrival times at the destination, we show how and how mugiiobing schemes. An alternative approach is to take passive
information can be extracted about the network. measurements by monitoring live data traffic in a network.
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The latter group is the preferred approach for measurement Input signal Output signal

based admission control (MBAC), which seeks to determine (Arrivals) (Departures)
if a network has sufficient resources to support minimal Alt) _»@_» D(t)
service requirements [15], [16]. In comparison to passive

measurements, probing schemes have an additional degree of

freed_om since they can determine the transmission pattern of Systemwiith impulse response
probing packets. (Network with service curve)

Active monitoring techniques typically generate probing
traffic as packet pairs or packet trains. Packet pairs consist of Fig. 1. Linear Time-Invariant system and min-plus linear network.
two packets with a defined spacing, and packet trains consist

of more than two packets. Since it was first suggested in | . . hat f .
[17], [18], packet pair probing has evolved significantly, ang'9na D(t) (see Fig. 1). Linear means that for any two pairs

has been used for estimating the bottleneck capacity (eg[_'lnp_ut a_nd output S|gn§1I(sA1,D1) and(Az, D), any Imegr
Bprobe[1], CapProbeg10]) as well as the available bandwidth ombination of input S|gnal$1A1(1_f) + byA(t) results in
(e.g., Spruce[2]). The rationale behind these methods builg'€ linear combination of output signalg D (£) + bz Da(1).

on the relation of packet dispersion and available bandwidzg”e"m’ar_'ant means that for any pair Of |nput§ and outputs
resources, i.e., packet pairs with a defined gap may be spakag?) @ time-shifted inputd(¢ —) results in a shifted output

out on slow or loaded links and thus carry information abo (L = 7). be the i | f th hat is th
the network path. Packet train methods (e®8BM [11], et 5(t) be the impulse response of the system, that is the

Cprobe[1], pathrate[12]) seek to improve the accuracy ofoutput signal generated by the system if the input signal is a

bandwidth, estimation over packet pairs unity (Dirac) impulse at time zero. The basic property of an
More recently proposed schemes ir;clud'm;hload [4] LTI system is that it is completely characterized by its impulse

[5], pathvar[9], TOPP [3], PTR/IGI [é], pathchirp [7], an(’j response, where the output of the system is expressed as the

BFind [8], adaptively vary the rate of probing traffic to induceconvolut|on of the input signal and the impulse response:

congestion in the network. This has been found to increase the > )

fidelity of estimation methods. For exampleathload uses D) = [oo A(m)S(t = r)dr = AxS(t).

a sequence of constant rate packet trains, and increases&h(ﬁ/lin-Plus Algebra in the Network Calculus

transmission rate of consecutive trains until they converge to R . ]

the available bandwidtrRathchirpuses packet trains, referred A Significant discovery of networking research from the

to as chirps, with an exponentially decreasing inter-packet gag 20'S IS that networks can often be viewed as linear systems,

Here, the network is probed over a range of rates similar f§1€n the usual algebra is replaced by a so-called min-plus

pathload however, the rate scan is performed within a sing%Igebra [23], [24,]’_[25]' Ina mln-p!ug algebra [26], a,dd_'“of‘ IS

packet train. replaced by a mlnlmum.(.we wr|.tel|nf|mum) and mult|pI|cat|9n
Some estimation techniques are designed with an assuriiprePlaced by an addition. Similar to LTI systems, a min-

tion that the network as a whole exhibits the behavior of }jUS linear system is a system that IS linear _under the min-

single queueing system with cross traffic. Often it is assumB/S @lgebra. This means that a min-plus linear combina-

that the network behaves as a single FIFO system [2], [3], [61°" Of input functionsinf{b; + A.(t), b2 + Ax(?)} results

[7], [19]. This is justified by the particular packet dispersion of' the corresponding linear combination of output signals

FIFO systems which is matched by empirical data [19]. Sin¢gf{b1 + D,l (t), b2 + Da(t)}. In min-plus system theory the

a flow in an overloaded FIFO system may receive a share Rygrst function

the capacity that exceeds the available bandwidth, it has been oo, Ift>0,

found that the best estimates are obtained if the probing traffic o(t) = 0, otherwise,

increases the load close to, but not beyond, an overloaded state.

An analytical investigation in [14], [20] showed that probind@kes the place of the Dirac impulse function.

schemes can be further improved by accounting for the randont-€t S(t) be the impulse response, that is, the output when

fluctuations of traffic. the input is the burst functioh(¢). Any time-invariant min-
We note that links between network calculus and bandwid@hs linear system is completely described by its impulse

estimation, have been made before mostly in the context§6Ponse, and the output of any min-plus linear system can
MBAC [15], [16], [21], [22]. be expressed as a linear combination of the input and shifted

impulse responses by
D(t) =inf{A(7) + St —7)} =t A% S(t).

1)

Il. MIN-PLUS LINEAR SYSTEM THEORY FORNETWORKS

This section reviews the linear system representation of
networks and introduces needed concepts and notation. Xfein [23], [24] we use the convention that input and output
consider a continuous-time setting. signals in the min-plus linear system theory are non-decreasing

Classical linear system theory deals with linear timeion-negative functions. In analogy to LTI systems, this oper-
invariant (LTIl) systems with input signali(¢t) and output ation is referred to as convolution of the min-plus algebra



[26].1 Conversely, if there exists a functiofi(t) such that The Legendre transform takes the min-plus convolution to an
D(t) = A S(t) for all pairs (4, D), then it follows that the addition [27], [26], that is?
system is min-plus linear.

The min-plus convolution shares many properties with the Lpsg=Lr+ Ly @)
usual convolution, e.g., it is commutative and associative. T@Rher properties of the Legendre transform that we exploit in

a.SSOCiatiVity Of min-plus COhVOlution iS Of particular impor-this paper are that, for convex functiom’swe have
tance since it implies an easy way of concatenating systems

in series. Given a tandem of two min-plus linear systéhs) L(Ly)=1T. (3)

and 5,(t), the output can be computed iteratively B¢t) = In other words, a convex functiofi can be recovered from

(AxS;)*S(t) and, with associativityD(t) = Ax(S;*S5)(t) )
holds. This leads to the important observation that the tandﬁ I)l/))f/];\elgpplymg the Legendre transform [27]. In general, we
system is equivalent to a single system with impulse response
S(t) = S1 * Sa(t). L(Lp)<f and L(Ly)=cof, 4)

The observation that some networks can be adequatelx _
modeled by a min-plus linear system led to the min-plu¥here cg denotes the convex hull gf, defined as the largest

formulation of the network calculus [23], [24], [25]. HereCOnvex function smaller thaf. _
a system is a network element or entire network, input Another property that will be used is that the Legendre

and output functionsA and D are arrivals and departuresfansform reverses the order of an inequality, i.e.,

respectively, and the impylse responsgecalled theservice feg=L<L,. (5)
curve represents the service guarantee by a network element. ‘

Network elements that are known to be min-plus linear includéhe statement is an equivalency wheris convex. Applica-

a work-conserving constant rate lini§(¢) = C't, whereC'  tions of the Legendre transform in the network calculus have
is the link capacity), a shapeiS(t) = o + pt, whereo been previously studied in [28], [29], [30].

is a burst size ang is a rate), and a rate-latency server
(S(t) = r(t —d)4+, wherer is a rate,d is a delay, and
(z)+ = max(z,0)), and their concatenations.

The relevance of the network calculus as a tool for the We view a network as a time-invariant min-plus linear or
analysis of networks results from an extension of its formalon-linear system that converts input signals (arrivals) into
framework to networks that do not satisfy the conditions sfutput signals (departures) according to a fixed but unknown
min-plus linearity. Nonlinear systems implement more conservice curveS. The service curve of the network expresses
plex mappingslI of arrival to departure function®(¢) = the available bandwidth, which can be a constant-rate or a
II(A)(t). In the network calculus, these are replaced by linegrore complex function. Measurements of a network probe,
mappings that provide bounds of the for(t) > A x S(¢t) defined as a sequence of at least two packets, can be charac-
or D(t) < A= S(t) ([24], pp. xviii). Here, S is referred to terized by an arrival functiond”(t) and a departure function
as alower service curveand S is referred to as ampper DP(t), where the functions represent the cumulative number of
service curveindicating that they are bounds on the availableits seen in the intervdl, t|. These functions are constructed
service. In a min-plus linear system, the service cusves from timestamps of the transmission and reception of packets,
both an upper and a lower service cunge=£ S = S), which and from knowledge of the packet size. In Fig. 2 we illustrate

IV. AMIN-PLUS ALGEBRA FORMULATION OF THE
BANDWIDTH ESTIMATION PROBLEM

is therefore frequently referred to agact service curve a network probe consisting of five packets of equal size
o ] with fixed spacing between consecutive packets. The vertical
B. Legendre transform in Min-Plus Linear Systems distance between arrivals and departures can be viewed as a

In linear system theory, the Fourier transform @ft), virtual backlogB(t) = AP(t)—DP(t). The horizontal distance
denoted byF;(w), establishes a dual domain, the frequenagan be viewed as delay/’(t).
domain, for analysis of LTI systems. In the frequency domain, Representing the network by a min-plus linear system, we
the Fourier transform turns the convolution to a multiplicatiorinterpret a probing scheme as trying to determine from a
that is, Fr.qg(w) = Fr(w) - Fy(w). specific sample of functiond? and DP ana priori unknown

In min-plus linear systems, theegendre transformalso lower serviceS", such thatD > A « S* holds for all pairs
referred to as convex Fenchel conjugate, plays a similar rolgl, D) of arrival and departure functions. Since the estimate

The Legendre transform of a functigfit) is defined as of the available bandwidth should not be overly pessimistic,
the goal of a probing scheme is to select a maxisia(t),
Ly(r)= S‘jp{” = [T} i.e., there is no other lower service curve larger ti4iit) that

. . _ atisfies the definition> One problem in devising a probin
Sincer can be interpreted as a rate, one may view the doméc*ln P gap g

established by the Legendre transform as a rate domairwhenever possible, from now on we use shorthand notafidga mean
‘f(t) forall t > 0, and L to mean L (r) for all > 0'.

1we re-use the symbol for notational simplicity. The context makes this We define a partial ordering of service curves, such #iat< Sy iff.
slight abuse of notation non-ambiguous. S1(t) < Sa(t) for all ¢.



the methods can be related to previously proposed probing
schemes. Some schemes can be applied to certain non-linear
systems.

We conclude this section with remarks on some general
aspects of probing schemes and their representations in min-
plus linear system theory.

e Timestamps and asynchrony of clocks\When clocks at
: > the sender and receiver of a probing packet are perfectly
timet synchronized, and the sender includes the transmission time
_ _ . _ into each probing packet, the receiver can accurately construct
Fig. 2. Example arrival and departure function of a probe of five packetsfhe functionsA? and D”. In practice, however, clocks are not
synchronized. When clocks have a fixed offset (but no drift),
scheme lies in the selection of the probing pattern, i.e.,tl arrival functionA” can be viewed as being time-shifted by
function AP, that revea's a maxima' Service curve. an UnknOWn offsef’. In the min-p|us algebra a time-Shift can
Taking a step back and looking at the overall problen®€ expressed by a convolution, i.elf(t —T') = AP x dr(t)
bandwidth estimation is trying to find a service curgg¢ Wheredr(t) = 46(t — T'). Here, the convolution of arrival
that has the best worst-case performance. This correspoftiition and service curve becomed” x ér) x S, which
to expressings® as the solution to the following optimizationdue to associativity and commutativity of the convolution
problem: operation, can be rewritten a&” * (S, * 7). Hence, when
the offset is fixed but unknown, even an ideal probing scheme
) can only compute a service curve that is a time-shifted version
SUBJECTTO  D(t) > inf {A(7) + S(t - )} of the actual service curve of the network. Drifting clocks
vt >0, for all pairs (4, D). make the problem harder. Many bandwidth estimation schemes
This problem has the structure of a max-min optimizatiogircumvents the problem of asynchronous clocks by returning
which is fundamentally hard. In addition, since service curvéobes to the sender [1], [8], or by only recording time differ-
only form a partial ordering, there may not be an optimainces of incoming probes [2], [3], [4], [6], [7]. A moment’s
solution, but only solutions that cannot be further improvedgconsideration shows that knowledge of the differences between
The bandwidth estimation problem is easier when the nélpe transmission and arrival of probing packets has the same
work can be described by a min-plus linear system. As wignitations as dealing with an unknown clock offseébetween
will see in Section VI, some non-linear networks, such dbe sender and receiver of probing packets.
FIFO systems, are min-plus linear under low load conditions Packet pairs: The arrival and departure functions of a packet
Recalling that a system is min-plus linear if it can be describguir have each only three points, i.e., the origin and the two
by an exact service curve, the bandwidth estimation probldimestamps related to the packet pair. If it can be assumed that
is reduced to solving the inversion of the service curve has a certain shape, e.g., a rate-latency curve
S(t) =r-(t—d)4+, the service curve can be recovered. In the
D(t) = Ax S"(t)for all £ > 0. aés)ence c(Jf s:uc)r;r an assumption, packet pair methods may not
If we can take a measurement 4 and D? which solves be able to recover more complex service curves.
the equation fois*, then, due to min-plus linearity, we have a
solution for all possible arrival and departure functions. Fron{- MIN-PLUS THEORY OFNETWORK PROBING METHODS
Section I, we can infer that a solution is obtained by using the In this section, we derive bandwidth estimation methods
burst function of Eq. (1) as probing pattern, i.8%(¢) = §(¢). as solutions to finding an unknown service curve for a min-
This follows since the service curve is the impulse responpkis system. We make a number of idealizing assumptions.
of a min-plus system, that ip?(¢) = § = S“(t) = S*“(¢t). First, we consider a fluid flow view of traffic and service.
However, sending a probe as a burst function is not practicahis assumption can be relaxed at the cost of additional
since it assumes the instantaneous transmission of an infimitgation. Unless stated otherwise, we assume that the network
sized packet sequence. While a burst function can be appraxipresents a min-plus linear system. This assumption will be
mated by a sufficiently large back-to-back packet train, a higpartially relaxed in Section VI. We generally assume that
volume transmission of probes consumes network resoureesurate timestamps for transmission and arrival of probes
and interferes with other packet traffic. More importanthare feasible. If measurements only record time differences
the service curve of a burst function (or its approximationhetween events or include an unknown clock offset between
may cause some networks that operate in a min-plus line@mder and receiver, the computed service curves need to be
regime to become non-linear. The observation that large packate shifted by some constant value.
trains can lead to unreliable estimates has been noted in the )
literature [12]. A. Passive Measurements
In the next section, we present derivations for three band-We first try to answer the questioktow much information
width estimation methods in min-plus linear systems. Two @fbout the available bandwidth can be extracted from passive

data
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. . . . centerin
measurements of trafficPo provide an answer we first in- 9

troduce the deconvolution operator of the min-plus algebra, TABLE |
which is defined for two functiong and g by PARAMETERS OFON-OFF SOURCES
foglt)=sup{ft+71)—g(r)}. [ Scenario I high Toad I low Toad ]
T Burstiness high | med | low || high | med | low
The deconvolution operation isot an inverse to the convo- Number of sources 1 S| 25 1 S| 25

. . Source peak rate [Mbps]| 200 40 8 200 40 8
lution (g # f @ (f * g)), however, it has aspects of such an o4 average rate [Mbps] 20 | 20| 20| 10| 10| 10

inverse. This is expressed in the following duality statement
from [24], which states that for functiong, ¢ and h, the
following equivalency hold$:

The main drawback of this method is that it can only be
f<gxh o h>fog ©6) applied tq Iinegr qetworks. For networks thaj[ do not satisfy
min-plus linearity, i.e., that can only be described by a lower
We will exploit this property to formulate the following service curve D > Ax.S) or upper service curvel{ < Ax)S5),
lemma. S only computes a (not useful) lower bound for an upper
service curveS. Note that Lemma 1 does not help us with
Lemma 1 For two non-decreasing non-negative functions designing a probing scheme, since it does not tell us how to
and i, we have select the trafficd,, for the network probes.
For illustration of the passive measurement scheme, we
(hxg)@g)*xg=hx*g. now present numerical results of an (idealized) fluid flow
. scenario of a min-plus linear system, which is governed by
Proof: Let us definef = g«h andh = f @ g. From g service curveS(t) = (b + rt) % (R[t — T]T). The system
Eq. (6) we can conclude that < g « h. By definition of f,  represents a network that regulates the ingress with a leaky-
we see from Eq. (6) that > f © g. By definition of &, this  pucket with parameterisandr, and the service corresponds to
gives ush > h. Fromh > h and f = g« h we getf > g« h. a3 latency-rate service curve with deldyand rateR. We set
Combining the two statements gives fis= g « h. Now, by 4 = (.75 Mb, » = 25 Mbps, R = 100 Mbps, andT’ = 10 ms.
inserting the definitiorh = f © g, we obtainf = g« (f ©g).  As traffic trace, we use an arrival sample path that represents
Inserting the definitiorf = g«h yieldsgxh = gx((g*h)@g). the aggregate arrivals from a set of statistically independent
Reordering the expression using commutativity of the min-plésn-off traffic sources. In theédn state a source generates
convolution completes the proof. B traffic with a given peak rate, and in ti@ff stateno data is
The lemma justifies the following passive measuremegénerated. Every millisecond, an active source leaves the On
scheme. Let us denote the arrival and departure functioggte with probability, and an Off source becomes active with
measured from a traffic trace of one or more flowsAhy and  propability g. This choice of traffic enables us to evaluate the
Dy,. By assumption of linearity, we know thdd,. = Ay xS sensitivity of the passive measurement method with respect to
holds, but the shape &f is unknown. Suppose we computehe burstiness of the trace, the fraction of available bandwidth
a function S from the trace as the deconvolution of thenhat is utilized by the flows, and the length of the measurement

departures and the arrivals, i.e., we set period.
S=D, A, . @) The parameters are depicted in Table I. _In ti_igh load
setting, we sep = 0.09 and ¢ = 0.01, resulting in a total
Then, we can conclude with Lemma 1 that arrival rate of20 Mbps. Inlow load we setp = 0.19 and

g = 0.01, which leads to an average total traffic rate of
10 Mbps. We control the burstiness of the traffic by increasing
With the duality property from Eq. (6) we obtain with Eq. (7the number of flows, and accordingly decrease the peak rate
and Eq. (8) that of each flow. Due to statistical multiplexing, an aggregate of
S<8S. multiple On-Off sources is less bursty than a single flow with
the same peak and average rate. In our plots burstiness levels

Hence, the estimate of the service cui¥és a lower service of high, medium andlow correspond to a trace with 1, 5, and
curve, such that for all pairs of arrival and departure functions; sources.

(A,D), we haveD > A« S. Since, from Eq. (8),5

Dt'r‘ = At'r‘ * S’ . (8)

; In Fig. 3(a)-3(d) we show the estimates of the lower service
can completely reconstruct the departure function from th&nesS obtained with the above method, and compare them

arrival function, we can conclude thatis the best possible ; the actual service curvs, indicated as a thick (red) line
estimate of the actual service curve that can be justified frqg ach graph. The length of the measurement is taken for
measurements ol and D, in the sense that it extracts the; second (plots on the left), 10 seconds (plots on the right). In
most information from the measurements. all plots, we see that burstier traffic leads to better estimates of
“We use shorthand notatioh= g * 1 to mean ¥(t) = (g  h)(¢) for all N€ S€rvice curve. This is expected since the burstiest traffic,
t>0. i.e., a burst impulse, can perfectly recove(see Section V).



3 et service curve 3 line moves the infimum in front of the substraction, where it
25 -~ -highburdliness 25 ; becomes a supremum. The third line is simply a substitution.
g 7 lowbursines ‘ g 2 Recalling the definition of the Legendre transform from
gt 7 gte ) Subsection 1lI-B , the right hand side of the last equation can
cot 95 . be written as the Legendre transform$fthat is,B,,q. (1) =
o5 f o5 f Ls(r). This relation has been observed in [31], [30], [28]. We

% 20 20 @ 8 10 % 20 20 @ 8 10 take a further step by applying this relation in the reverse

fmem memd transform. Due to Eq. (3), we have for convex service curves
(a) High load, after 1 second. (b) High load, after 10 seconds. S that

Y Y
3| 3|

25 . S(t)=L(Ls)(t) =Lp,,,, (t) = sup{rt — Bma(r)} .
..... <L e r
J— — 2|
%1_5 %1_5 Thus, every convex service curve can be recovered by mea-
5, 5, surements of the maximum backld8,,., by constant-rate
o5t [T 05 ‘ probe traffic that is sent at varying rates. The interpretation of
ot o’ rate scanning is that each constant bit rate stream withrrate
0T ey ¥ 0 A Py ¥ ™ reveals one poinB,,. (r) of the service curve in the Legendre
(c) Low load, after 1 second. (d) Low load, after 10 seconds.  domainLg(r).

In practice, a rate scanning method specifiesta incre-
Fig. 3. Bandwidth estimation for passive measurement of a traffic tracement which sets the increase of the rate between packet trains
arate limit, which sets the maximum rate at which the network

. : is. scanned, and the length of the packet trains. The service
For the same reason, the estimates improve when the traffic . . . . o

: e , .~ cUfve calculated via rate scanning consists of piecewise linear
trace has a higher utilization of the available bandmdttg.

Observe that all estimates improve with increasing length ?gments. The choice of the rate increment determines the

the evaluation period. This follows from the definition of theféngth of the segments, and, in this way, the accuracy of the

supremum in the min-olus deconvolution operation tomputed service curve. Without offering a proof or further
g'nce the resenteg method is ideal 'np the se.nse thada[ta, we note that (under loose assumptions) rate scanning
' P IS : Es' capable of tracking a convex service curve, up to a time

computes the largest service curve (available bandwidth) th ere the derivative of the service curve reaches the rate limit.

ca?f t;fn J:St'v{l'erd frt%mna X%“:ﬁ]n t;]af{f (tjrace, Ol;rr met:]hoﬁ/lév AI\ he higher the maximum rate, the more information about the
perio 0 Worse than existing methods, €.g., T N ervice curve is recovered.

literature [15]. Space restrictions prevent us from presenting A writerion for picking the rate limit suggested by our

comparison in this paper. derivations is to stop rate scanning when increasing the
B. Rate Scanning scanning rate does not yield an improvement of the service
. . cugve. This criteria may fail when the underlying network is
Next we consider probing schemes where sequencesr]%E min-plus linear. Pathload [4], [5] is a prototypical example

pa;:rlrlet dtrjlmz avrve tr?nstmlét:]ed Eit glﬁ_erent ratets, such _8Farate scanning method. It uses an iterative procedure which
pathload[4], [5]. We refer to these techniques as ra €-SCanniNll jes the rate- of consecutive packet trains until measured

techniques. We provide a justification for this technique us”lgelays indicate an increasing trend. Such a trend is interpreted

min-plus system theory. as reflecting that the rate has exceeded the available bandwidth.

G_lven ""F”Y‘_”" and departure functmpﬁk and D, using the In Section VI we remark that this criteria can be justified in
earlier definition of backlog, the maximum backlog can bg, iicar systems that behave linearly at low loads.

computed as The number of packets in a packet train must be large

Binaz = sup{A(t) — D(t)}. enough so that the maximum backlog can be accurately
t measured. Under the assumptions of the rate scanning tech-
If the arrivals are a constant rate function, that i) = nique, i.e., the arrival function is a constant rate function and
rt, and the network satisfies min-plus linearity, we can writéle service curve is convex, the backléyft) is a concave
Bynas @s a function of- as follows: function. Hence, if increases to the backlog caused by the
) packets of a train are sufficiently small, additional packets of
Binax(r) = Sgp{rt - H}f{” +5(-7)}} the train do not provide new information.
= sup{sup{r(t — 1) — S(t — 7)1} In Fig. 4(a) we present an example Qf the rate s_canning
t T approach for a fluid-flow service curve with a quadratic form
= sup{rt — S(¢)}. S(t) = 0.4t%. In the example, rate scanning is performed at
t

rates10, 20,...,80 Mbps. In Fig. 4(a), we plot the maxi-
The first line uses that the departures in min-plus linearum backlog observed for each scanning rate. The function
systems can be characterized By = A « S. The second B,,..(r) is constructed by connecting the measured data



4 4 7oMbes A xS for all pairs(A, D). Taking the Legendre transform we
, < | MPs obtain with the order reversing property of Eq. (5) and with
z S 3 [— Lo oees Eq. (2), that
mé )( % Lp < Laws=La+Ls .
1 L 1 -110Mbes \We can re-write this as
- X b rate limit
520 % % @ 100 Ls>Lp—La,

40 60
arrival rate [Mbps]

(a) Maximum BacklogBaz (7).

60
time[ms]

(b) Rate scanning results with differ-

ent rate limits.

Fig. 4. Service curve estimation with rate scanning.

as long as the differenc@p (r) — L 4(r) is defined for all-. A
sufficient condition is thal 4 (r) < oo, since it prevents both
transformsLp and £4 from becoming infinite at the same
value ofr. Another application of Eq. (5) yields

3 y=101 3 z:ig; L(Ls)<L(Lp—La4) .

gz 22 et senicecve /Y1 |f the system is min-plus linear, that if) = A * S, we get,
1 y=104 ,,"' 1 - E(ﬁs) :E(ED — LA) .
o o If S is convex, then by Eq. (3), we have= L(Lp — L4).
O ey Y2 Pem ¥ This provides us with a justification fqrathchirp[7] as a

probing method. If we depict the transmission of a packet chirp
as a fluid flow function, we see that it grows to an infinite rate,
thus, yielding a Legendre transform that is finite for all rates.
By measuring arrivals and departures of the chirp, denoted by
Achr? and DPP | we can compute a functiol by

S(t) = L(L penrp — L genrs)(t) .

(a) Rate Chirps. (b) Rate chirp results with different

spread factors.

Fig. 5. Service curve estimation with rate chirps.

points by lines. (For any rate exceeding the rate limit we 9)

make the conservative assumption tht,..(r) = co. The |t ihe network satisfied = A« for all arrivals, then the right
assumption gives us a Legendre transform for all rate valuesah g side of Eq. (9) compute® Ls). Then, with Eq. (4), we
In Fig. 4(b), we show the service curves that are obtaing@ain g < 5, which tells us thatS is a lower service curve
with different rate limits. The higher the rate limit, the morg, o+ satisfiesD > A« S for any traffic with arrival function

accurate the results. o A and departure functiol. If, in addition, S is convex we
Note that both the plots of the backlog in Fig. 4(a) anfzye g — S, and we can recover the service curve.

the servi_ce curves in Figure 4(b) con;i;t of linear segments,, practice, a rate chirp stops sending packets at some
Decreasing the increment of the rate will improve the accuragy, vimum rate. Suppose that packets of a chirp are transmitted

of the service curve. If we compared the service curves from 5 time intervall0, t2 ], and that the observations &F are

th t i thod with the previous subsection ; ) mazr , : _
e rate scanning me p » Wiade in[0,t2 . ]. To make a practical rate chirp comply with

would observe that the rate scanning method with rate linjte tormal requirements of the above equations, we define the
"ma: gENerates similar results as passive measurement 9ffing extension:
max
if t>1t4

constant traffic rate traffic with the same rate. The difference of

results would consist of inaccuracies due to the approximati% ) = Achrp

of the service curve by linear segments. chrp o x , A,
Dchrp 7|f 0 S t S tnD»Lax )

dDchr
DChT’P(tELa.r) + (t N tfr)Lar) d; 5 (tr?zax) )
if ¢t >0

mazxr °

if 0<t<itA

C. Rate Chirps

The need of rate scanning to measure a possibly Iarlg)éh”’(t)
number of packet sequences has motivated a method where
measurements are done with a single packet train, with @he arrival function is simply set tec past the last mea-
exponentially decreasing inter-packet spacing. The approasbrement. The departure function is continued at a rate that
proposed in [7], takes inspiration from chirp signals in signaorresponds to its slope at the time of the last measurement.
processing, which are signals whose frequencies change Wit convex service curve$, the above extensions are conser-
time. We refer to this approach asmte chirp, since the vative.
decreased gap between packets corresponds to an increase lofFig. 5(a) we show several rate chirps for a network probe.
the transmission rate. The rate chirp consists of a sequence of probing packets of

We will show that a rate chirp scheme can be justifieti200 Bytes that are transmitted at an increasing rate, starting
by properties of the min-plus system theory, specificallgt 10 Mbps and growing to 200 Mbps. The rate is increased
properties of the Legendre transform. by reducing the elapsed time between the transmission of the

Suppose we have a lower service cuvesatisfying D >  first bit of two consecutive packets, by a constant faetpr




50 and egress links to the scheduler have a propagation delay of

" _?;Z';;ﬁﬁ[xg each 10 ms. The cross traffic consists of 10 FTP sources that

= - rate chirp send traffic over a 25 Mbps access link. Probing traffic is sent

T T hideotrace to the queue on a 100 Mbps link, permitting us to overload

£ 20 the queue with probing traffic. We show the results for a burst
impulse, passive measurements, rate scanning, and rate chirp

o0 ' and compare them to the actual available bandwidth. Packet

0 sizes are set to 800 bytes. The burst function is approximated

0 200 43%6[ ”?S?O 800 1000 by transmitting back-to-back probes at the maximum rate of

100 Mbps. For passive measurements we use as traffic a high-

Fig. 6. Service curve estimation of a FIFO network. bandwidth variable bit rate video trace [33] that has an average

rate of 17.1 Mbps and a peak rate of 154 MBiate scanning
o _ is performed at increments of 4 Mbps, and the maximum
which is called the spread factor in [7]. Larger values for rate is determined using the criteria given in [5]. The rate
lead to shorter chirps that grow fast to the maximum ratghirp method uses the publicly available ns-2 simulation of
In Fig. 5(b), we show the service curves computed from thgthchirp with a minimum rate of 1 Mbps, a maximum rate
chirps in Fig. 5(a). The actual service curved§) = 0.4t2, of 80 Mbps, and a spread factor of= 1.2.
indicated as a thick (red) line in the figure. It appears that afor FIFO, shown in Fig. 6, the burst impulse transmits at the
path chirp with a smaller spread factgrwhich transmits more maximum rate of 100 Mbps, and obtains most of the available
packets over longer time interval, leads to better estimatesgndwidth 80% would be consistent with Eq. (10), however,
the service curve. the TCP background traffic in the simulations does not have a
V]. BANDWIDTH ESTIMATION IN NONLINEAR SYSTEMS: gonstant bit rate.). .The passwe_measurement .method und(_ares—
THE EIEO SYSTEM timates and sometimes overestimates the available bandwidth.
) ) o This is due to the variability of the bit rate. All other schemes
Extending bandwidth estimation to systems that are not mifzo\ide good estimates of the available bandwidth. In this
pll_JS Ilne_a_r, 1.€., are _not de_scnbed by an ex_act service C_ur\é&ample and for the chosen parameters, rate scanning and rate
raises difficult questions. First, the formulation of ba”dw'thhirps provided the same results, even though neither scheme
estimation for general networks from Section IV shows th%as tuned for this example
the structure of the estimation problem becomes hard. Morée now offer a min-plus system interpretation of bandwidth

so, since in networks with non-linearities the network serviGgyimation for FIFO for constant rate traffic. Consider the
may depend on the network traffic, knowledge of the ava”ahllﬁnction Stiso(t) = (C — r)t. From the empirical departure

bandwidth may not help with predicting network behavior, O, acterizationD of a EIFO system from Eq. (10), we can

may even be ill-defined. .verify that the following is satisfied for all > 0:
However, there are networks that can be decomposed into

a min-plus linear and a disjoint non-linear region. These D(t) = (rt) * Spifo ,if r < C =1

networks behave like a min-plus linear system at low load. D(t) > (rt) * Spifo ,if 7>C —70 .

Increasing the traffic rate beyond a threshold causes the ) .

network to enter the non-linear region. Given such a networkl€refore, Sy, is an exact service curve fad(t) = rt

the goal of bandwidth estimation is to determine the availabfgenr < C —rc, andSy;, is a lower service curve when

bandwidth of the linear region. the arrivals excee_d the threshold value. In feti s, is the _
Consider a FIFO system with capacity where all traffic in largest Iowc_ar service curve f_or a FIFO systerr_], and a solution

the network is transmitted as constant-bit rate traffic. Suppd§eth® maximization in Section IV. Any function larger than

the FIFO queue sees (cross) traffic at a rate.pfind probing Sfifo May not be a lower service curve for> ' —r.. This

traffic is sent according tel(t) = rt. As observed in [19] and &/S0 serves as a proof that a FIFO system is not min-plus

supported by simulation results therein, the departure functibpear forr» > ¢ —r.. We can view a FIFO network as a

of the probing traffic is system that is min-plus linear at rates< C' —r., and crosses
into a non-linear region when the rate exceeds the threshold.
rt, if r<C—re, The crossing of these regions coincides with the available
D(t) = . (10) . . . .
7__:7_ Ct, ifr>C—r.. bandwidth S¢;¢,. Since a probing rate abov€ — r. in a

. . FIFO system is the turning point where a backlog is created,
If the rate is above the threshald—r., the capacity allocated o heyristic inpathloadand pathchirpto stop measurements
to the probe and cross traffic is proportional to their respectiy@, o, increasing delays are observed can also be justified in
rates. As a result, the probing traffic gets more bandwid{f s of crossing the non-linear region.
when its rate is increased. We emphasize that the above statements hold only for

In Fig. 6 we show the results of bandwidth estimation for g,nstant rate cross and probing traffic. For variable rate traffic,
FIFO system obtained in an ns-2 simulation [32]. We assume

a scheduler with link capacity of 50 Mbps. Both the ingressSwe have used 2 seconds of the video trace entfredh Mars to China
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