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Buffer Management for Aggregated Streaming
Data with Packet Dependencies

Gabriel Scalosub, Peter Marbach, and Jörg Liebeherr

Abstract—In many applications, the traffic traversing the network has inter-packet dependencies due to application-level
encoding schemes. For some applications, e.g., multimedia streaming, dropping a single packet may render useless the delivery
of a whole sequence. In such environments, the algorithm used to decide which packet to drop in case of buffer overflows must
be carefully designed, to avoid goodput degradation.
We present a model that captures such inter-packet dependencies, and design algorithms for performing packet discard. Traffic
consists of an aggregation of multiple streams, each of which consists of a sequence of inter-dependent packets. We provide
two guidelines for designing buffer management algorithms for this problem, and demonstrate their effectiveness. We devise an
algorithm according to these guidelines and evaluate its performance analytically, using competitive analysis. We also perform a
simulation study that shows that the performance of our algorithm is within a small fraction of the performance of the best offline
algorithm.

Index Terms—Buffer Management, Competitive Analysis, FIFO, Switch and Router Architecture, Quality of Service
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1 INTRODUCTION

In the vast majority of networked applications, application-
layer data frames are split into several smaller sized packets,
before transmission across the network. The receiving side
can make use of the data only if it receives all (or at least
sufficiently many) packets of a frame. The above implies
that such a data stream has an inter-packet dependency
structure. Most current best-effort networks, such as the
Internet, are oblivious to these dependencies, and usually
make decisions on a per-packet base. Higher-level mecha-
nisms in the protocol stack usually handle retransmissions
of lost packets. The exact dependency structure of the data
stream depends on the encoding used and it may consist of a
1-level dependency structure, where frames are independent
of each other, and the only dependencies are among packets
corresponding to the same frame. Such an encoding may
also have a higher-level dependency structure, such as the
one occurring in MPEG video encoding schemes, where
successfully decoding a frame might depend on success-
fully decoding previous or later frames. The problem of
ensuring that all packets of a frame arrive at the destination
is crucial when one considers real-time traffic, such as
streaming multimedia traffic, where retransmission of miss-
ing packets is not feasible due to delay constraints posed
by the application. Such services over packet switched
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networks have gained a huge increase in popularity in
recent years. For example, subscriptions to live broadcasts
over IPTV are expected to double and reach some 120M
subscribers worldwide by 2013, according to a recent
survey [1]. This trend motivates efforts for providing better
algorithmic solutions to ameliorate network performance in
such scenarios.

A common approach to deal with the hazardous effect
of packet loss is to employ encoding schemes, which have
long been known to provide substantial improvement in
performance. However, this approach has its limitations in
some networking environments. Specifically, some environ-
ments (e.g., wireless networks) make the usage of such
approaches prohibitively costly, due to the increased traffic
load. In scenarios, where traffic traverses bottleneck links,
the additional traffic load due to encoding may trigger
packet losses, thus, diminishing the benefits of proactive
coding. Canonical examples of such bottlenecks include
head-ends in cable content distribution networks, where
downstream traffic arrives from the backbone before it is
distributed to end users via an access network, wireless
gateways, which multiplex traffic to a multi-hop wireless
network, and network transcoders, that perform conversions
of encoded data streams in real-time. We therefore believe
that the availability of encoding schemes alone does not
replace the need to design and analyze algorithms that aim
to optimize the usage of available resources.

In this work we focus on a FIFO buffer architecture,
which has several appealing features: (a) it is simple,
(b) it maintains the arrival order of incoming traffic, hence
avoiding the need for mechanisms that deal with packet
reordering, and (c) it provides simple and reliable delay
bounds. These properties make FIFO especially attractive
for delay- and reordering-constrained streaming environ-
ments.
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The main causes for packet loss in networks are buffer
overflows due to congestion. In cases where the underly-
ing traffic has inter-packet dependencies, indiscriminately
dropping packets upon overflow may result in very poor
performance. For data streams with packet dependencies,
we must differentiate between the packet-level throughput,
i.e., the amount of data delivered in terms of packets, and
the effective goodput, i.e., the amount of data that can
be decoded effectively at the receiving end. These two
measures can be drastically different, e.g., the throughput
may be high, while its goodput is very low. As an extreme
example of such a scenario consider the case where one
packet is dropped from every frame, which results in zero
goodput, although overall packet-level throughput might be
high [2]. The method to decide which packets to drop in
case of overflow is critically important to the performance
of the system, bearing in mind that such a decision might
effect other packets which have already been forwarded,
or packets that have not yet arrived. The goal of this
paper is to devise methods that maximize the goodput of
successfully delivered traffic, as captured by the number of
useful complete frames delivered.

In this work we consider the problem of buffer man-
agement of multiple data streams in scenarios where traf-
fic has inter-packet dependencies. We provide guidelines
for designing algorithms that are guaranteed to provide
high performance in terms of goodput. Our approach and
analysis provide bounds on the performance of the pro-
posed algorithms for any traffic arrival pattern, without
requiring any stochastic or deterministic assumptions on
the processes generating the traffic. In effect, we commonly
consider the traffic to be adversarial. Different from works
which focused on estimating system performance using
either statistical or deterministic traffic models (e.g., [3],
[4]), we study packet discard policies in a much more
fine-grain sense – in fact we study how “micro” decisions
affect system performance. In this sense, our approach
is orthogonal to works that aim at exploiting statistical
multiplexing, or those that try to analyze the tradeoff
between available network resources (e.g., in terms of the
buffer size available) and system performance.

We restrict our attention to traffic where dependencies are
restricted to the intra-frame domain. A better understanding
of the algorithmic problems in this setting is essential be-
fore tackling more complex dependency structures, such as
inter-frame dependencies. Our model is general enough to
be applicable to various traffic encoding schemes, and can
potentially be combined with buffer management schemes
that deal with higher-level dependencies. Our approach
is especially suitable for best-effort environments, where
oversubscription of resources is common, and the system
goal is to optimize the use of resources in an overloaded
setting.

1.1 Our Contribution
We seek to gain a better understanding of designing buffer
management algorithms for traffic with inter-packet depen-
dencies. Our main contributions are as follows:

1) We provide two design guidelines for algorithms,
namely, (a) No-regret – Once a frame has a packet
admitted to the buffer, one should make every attempt
possible to deliver the complete frame; and (b) Ensure-
progress – Strive to deliver a complete frame as soon
as possible.

2) We devise a buffer management algorithm, WEIGHT-
PRIORITY, that follows these guidelines. We analyze
the performance of our algorithm, and show that for
any arrival traffic the ratio between its performance
and that of an optimal algorithm is always bounded.
We further prove lower bounds on the performance of
any buffer management algorithm.

3) We conduct a simulation study that further evaluates
the performance of algorithms which follow our de-
sign criteria. We show that algorithms that follow
our guidelines have a stable high performance, close
to that of the best offline algorithm. At the same
time, algorithms which do not adhere to our criteria
exhibit a fast degradation in performance as traffic
characteristics become harder.

1.2 Previous Work

Various aspects of providing traffic with Quality-of-Service
(QoS) guarantees have been studied extensively. The works
most related to our problem of packet forwarding with inter-
packet dependencies are set in the context of video traffic.
Most of these works consider specific encoding schemes
(e.g., MPEG), and higher-level inter-frame dependencies.
These works generally focus on aspects of network provi-
sioning in terms of buffer size, bandwidth, etc., and stream
admission, but mostly side-step the algorithmic question
addressed in this study, namely: “which packet should be
dropped when overflow occurs?”. Attempts to answer this
question were made at the frame level, by trying to decide
which frame to drop for specific encoding schemes so as
to have as little effect as possible on the received data
stream [5]–[7]. However, discard decisions at routers are
made at the packet level, and in cases where multiple
streams contend for network resources, making the right
decision is essential.

Ramanathan et al. [8] propose a buffer management
policy that takes packet dependencies into account, namely,
that in any case where too many packets are dropped, one
drops the entire frame. As a rule for dropping packets, they
suggest a latest-frame-first rule. This rule states that the
frame to be dropped is that for which the least number of
packets have been delivered. Ramanathan et al. then evalu-
ate their scheme assuming Markovian video sources. In our
study, we make no assumptions on the statistical nature of
the streams. Our work considers arbitrary arrival patterns
for each stream, and analyzes the system performance
from a worst-case perspective. This enables uncovering
the difficulties faced by any buffer management algorithm,
and also provide the first analytic guarantees as to the
performance of such algorithms where no assumptions are
made on the traffic.
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A substantial body of work considered priority-based
frame discard policies, for inter-frame dependencies oc-
curring in encoding schemes, either at the edge or in
the core of the network [9], [10]. The common aspect
of these approaches is discriminating between different
frames according to their importance, also referred to as
multi-frame impact. For example, for MPEG encoded video
streams, dropping a B-frame has a mere “local” effect in
terms of performance degradation, whereas dropping an
I-frame might render subsequent P- and B-frames use-
less. As mentioned we do not consider these higher-level
dependencies (or inter-frame dependencies). Instead our
main concern is to obtain a better understanding of low-
level inter-packet dependencies, and devise methods for
dealing with them. Our approach can be integrated with
any previously devised high-level priority-based policies.

Our model is close to that considered by Kesselman
et al. [11], which presented several results for a general
case where no stream-structure is underlying the arrival
traffic (i.e., every frame is independent of all other frames).
They provide a lower bound which states that no algo-
rithm can have a bounded competitive-ratio in the general
case. They further consider restricted arrival patterns where
packets corresponding to different streams satisfy some
order requirements. These assumptions are not general
enough to model any arrival patterns encountered in real-
life networks. However, they do provide worst-case guar-
antees for such restricted arrival patterns. Our model is less
restrictive than the model considered in [11], and captures
the structure of real-life data streams. Another recent related
work [12] touches on the problems of set packing and
task scheduling. This can be viewed as a special case
of the model considered by [11], assuming a unit size
buffer and limited adversaries. Several other works that deal
with competitive algorithms which aim to provide different
measures of QoS to the traffic have been studied (e.g., [13],
[14]), but none of them addresses the issues of inter-packet
dependencies. We refer to [15] for a recent survey.

Another networking environment which considered de-
pendencies between transmitted data chunks is the ATM
guaranteed frame rate service (see [16]). Research on this
service mainly focused on the tradeoff between network
provisioning and throughput, and similar to the work done
in the context of video streams, mostly considered frames
as fundamental entities which should be accepted/dropped.
This body of research did not tackle the question of what
cell-level decision should be made. Some work in this
domain studied the interaction between cell-level dropping
policies and TCP traffic [17], as well as the loss of MPEG
video frames over ATM networks [18]. This line of research
differs significantly from ours since we try to maximize the
goodput given the available resources.

Much work has been done on proactive encoding
schemes, commonly known as forward error correction or
FEC, for packetized traffic, focusing on implementation
and information-theoretic aspects of such schemes (e.g.,
[19], [20]). Our work is orthogonal to these efforts since
encoding schemes aim at providing guarantees on the

amount of packet loss a frame can incur, while still allowing
the receiving end to decode it properly. Such schemes
are usually oblivious to the specific buffer management
algorithms employed in the network that are the cause of
packet losses. Our work emphasizes the design of buffer
management algorithms with provable properties, and on
gaining insights into discard-decisions of packets. Although
our model assumes no redundancy in the data (i.e., losing a
single packet of a frame renders the entire frame useless), it
can be a starting point for designing algorithms accounting
for proactive coding. One should note that employing FEC
is not without cost. It increases the traffic volume, without
increasing the application-level data rate. Such an approach
may be prohibitive in bandwidth-restricted environments,
such as wireless networks, where increasing traffic volume
might have a disastrous effect on the overall system per-
formance, e.g., due to increased interference and collisions
(see [21]–[23]). In such environments streaming is preferred
with little (or no) FEC.

2 MODEL
2.1 Traffic model
We consider an aggregation of M streams of unit-sized
packets, denoted by S1, . . . , SM . Each stream Sm is viewed
as a sequence of frames, fmi , each consisting of a sequence
of exactly k packets, pm,i

1 , . . . , pm,i
k . A packet pm,i

j is
referred to as the j-packet of frame fmi , and its arrival
time is denoted by a(pm,i

j ). When referring to packets,
we will sometimes omit the frame index i, and use the
notation

{
pmj
}
j

when referring to the sequence of packets
corresponding to stream Sm, where pmj denotes the j’th
packet of stream Sm, and the (j mod k)-packet of frame
fmb j

k c
(i.e., the b jk c’th frame of stream Sm). The packets of

a stream arrive in order, i.e., a(pmj ) ≤ a(pmj+1) for all j.
The above notation implies the following structure on the
arrival of packets in a stream Sm consisting of rm frames:

pm0 , . . . , p
m
k−1︸ ︷︷ ︸

frame fm
0

, pmk , . . . , p
m
2k−1︸ ︷︷ ︸

frame fm
1

, . . . , pm(rm−1)k, . . . , p
m
rmk−1︸ ︷︷ ︸

frame fm
rm−1

.

The arrival of packets from different streams implies a
finite arrival sequence σ of the aggregated streams, which
is the interleaving of the arrival sequences of the individ-
ual streams. We make no assumptions on the processes
generating the arrival sequences. Figure 1 provides an
example of an interleaved arrival sequence (M = k = 2).
The example shows the grouping of packets into frames,
where the grouping of frames corresponding to stream 1
appears above the arrival sequence, and the grouping of
frames corresponding to stream 2 appears below the arrival
sequence.

2.2 Buffer model
The packets arrive at a FIFO buffer which can store up
to B ≥ k packets and which can transmit one packet per
cycle. Initially, the buffer is empty. Each cycle consists of
two steps. The first step is the delivery step: if the buffer is
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σ = p1,00 , p2,00 , p2,01 , p2,10 , p1,01 , p2,11 , p1,10 , p1,11

f1
0

f2
0 f2

1

f1
1

Fig. 1. Example of an interleaved arrival sequence.

non-empty, the head-of-the-line packet is transmitted on the
link. In the second step, called the arrival step, an arbitrary
set of packets arrives at the buffer. At the discretion of
the buffer management algorithm, some packets may be
dropped, while other packets are stored in the buffer. Note
that a buffer management algorithm may drop packets even
if there is space available at the buffer.

2.3 Performance measure
We say a frame is successfully delivered by a buffer
management algorithm ALG if ALG delivers all packets
belonging to the frame. We define the MAX-FRAME-
GOODPUT problem, denoted MFG, as the problem to
devise a buffer management algorithm which maximizes
the number of successfully delivered frames. This work
studies online algorithms for solving the MFG problem.
An online algorithm is an algorithm that, at any point in
time, knows of arrivals that have occurred up to that time
but has no information about future arrivals. This should
be contrasted with offline algorithms, which are clairvoyant
and know the entire input in advance.

We use competitive analysis [24], [25] to evaluate the
performance of online algorithms. An algorithm ALG is
said to be c-competitive if for any traffic arrival sequence
σ, the maximum number of frames successfully delivered
by any feasible schedule is at most c times the number of
frames delivered by ALG from σ, for some c ≥ 1. The
value c is referred to as the competitive ratio of algorithm
ALG. As is customary in competitive analysis, we view the
online algorithm as competing against an offline adversary
that generates the input stream, and provides an optimal
schedule for that input. Given an algorithm ALG, we will
sometimes abuse notation and refer to ALG also as the set
of packets or frames delivered by ALG.

3 LOWER BOUNDS ON THE COMPETITIVE
RATIO

In this section we show that one of the predominant
elements affecting the competitive ratio of any buffer man-
agement algorithm is the number of streams M traversing
the node. To show this, we describe two types of adver-
saries, depending on the ratio M/B between the number
of streams and the buffer size. One adversary (described in
Lemma 1) is targeted at large values of this ratio, whereas
the other adversary (described in Lemma 2) is targeted at
small values of this ratio. Each type of adversary is de-
signed to cause any algorithm to drop a substantial number
of packets, which implies dropping a substantial number of
frames. Some of the dropped packets serve as “markers”

to identify frames that will be accepted by the optimal
solution. These packets are sometimes referred to as the
packets accepted by the adversary. Subsequently, we will
combine these two adversaries in proving a single lower
that has the strongest guarantee of the two adversaries,
while removing the dependency on the ratio M/B.

The following lemma provides a lower bound that holds
for a large number of streams. The proof of this lemma
draws from techniques developed in [11].

Lemma 1. Any deterministic algorithm for MFG with
M ≥ 4B streams has competitive ratio Ω(M

B ), even for
k = 2.

Proof: Let ALG be any deterministic algorithm. Con-
sider the arrival of the first frame of each stream. Consider
an adversary that first injects M/2B bursts of 2B 1-packets,
once every B time steps, starting from time t = 0. For
every such burst, ALG may accept at most B 1-packets. It
follows that there remain B 1-packets dropped by ALG, to
which we refer as the adversary’s packets. At time t = M/2
we have a burst of all M/2 2-packets corresponding to
the 1-packets accepted by ALG. Since ALG can accept at
most B of them, it follows that ALG can deliver at most
B complete frames. The 2-packets corresponding to the
adversary’s packets arrive one in every time step, starting
at time t+ 1, such that the adversary can deliver them all
by time t+M/2 + 1. It follows that the ratio between the
number of packets delivered by ALG and the number of
packets delivered by the adversary is at least M/2B. Since
we can repeat this arrival pattern arbitrarily many times,
also for further stream frames, the result follows.

The following lemma deals with the case where the
number of streams is small.

Lemma 2. Any deterministic algorithm for MFG with
M ≤ 4B streams has competitive ratio Ω(kM

B ).

Proof: We will prove the lemma for an adversary that
uses merely M ≤ B streams. First, consider the arrival of
the first frame of each stream. We identify stream Si with
the first frame fi in that stream. Let ` = B

M , and assume
for simplicity that ` and log(k

` +2) are integers. We further
let

ti = `

i−1∑
s=1

2s + 1 = (2i − 2)`.

Consider the following arrival sequence, which consists of
log(k

` + 2) blocks, R1, . . . , Rlog( k
` +2), which are defined

as follows: At the beginning of block R1, we have the
arrival of all M j-packets corresponding to all frames, for
j = 1, . . . , 2`. This is a total of 2`M = 2B packets.
Since any algorithm can only hold B packets in its buffer,
any algorithm must drop at least B of these packets. This
implies that any algorithm must forfeit at least M/2 frames
(and can also ensure no more than that, by dropping all
packets corresponding to a forfeited frame). We refer to the
frames corresponding to M/2 such frames dropped by the
algorithm as the adversary’s frames and to the remaining
M/2 frames as the algorithm’s frames.
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For every i = 2, . . . , log(k
` + 2), block Ri consists

of the arrival of all j-packets, for j = ti, . . . , ti+1 − 1,
corresponding to all frames. At the beginning of Ri we have
the simultaneous arrival of all the packets corresponding to
the algorithm’s frames. After this burst, the j-packets of
the adversary’s frames arrive, one in each cycle, respecting
the stream order.

The frames that have not yet been dropped by the
algorithm at the end of a block Ri are called live frames. We
claim, by induction on the block number, that the number
of live frames at the end of Ri is at most M

2i .
From the discussion above, the claim clearly holds for

i = 1. Assume it holds for i − 1, and consider the arrival
of packets in block Ri. By the induction hypothesis, at the
beginning of block Ri the algorithm has at most M/2i−1

live frames. By the definition of block Ri, all j-packets, for
j = ti, . . . , ti+1 − 1, corresponding to these live frames,
arrive together at the beginning of block Ri. This yields
a total of ti+1 − ti = 2iM` = 2iB packets arriving
simultaneously. Since a fraction of 1/2i−1 of the frames are
live frames, this implies that 2iB/2i−1 = 2B of the packets
arriving in block Ri correspond to the live frames of the
algorithm. The algorithm may only accept B out of these
2B packets. In order for a frame to remain a live frame
at the end of the block, all of its packets arriving at the
beginning of the block must be accepted by the algorithm.
Hence, at least half the live frames must be forfeited by
the algorithm, leaving at most M/2i live frames that can
survive at the end of block Ri, out of the M/2i−1 live
frames at the end of the previous block, as required.

It follows that at the end of block Rlog( k
` +2), the algo-

rithm can maintain at most M/2log(
k
` +2) = M

k
` +2
≤ M

kM
B +2

live frames. The adversary, on the other hand, has none of
its packets arrive in a bursty manner, and thus can deliver
all of its M/2 frames. It follows that the ratio between
the number of frames delivered by the adversary and the
number of frames delivered by the algorithm is at least
Ω(kM

B ).
Since we can repeat this arrival pattern arbitrarily many

times, the result follows.
We now turn to combine the two adversaries described

in Lemmas 1 and 2, and provide a combined lower bound
which applies to any relation between M and B.

Corollary 3. Any deterministic algorithm for MFG with
M streams has competitive ratio Ω(kM

B ).

Proof: Given Lemmas 1 and 2, the only case left
to consider is where M ≥ 4B, and k > c, for some
absolute constant c. Consider the arrival of the first frame
of each stream. We begin by using the adversary described
in Lemma 1. At time T + M/2 + 1, the adversary has
delivered 2 packets of each of its frames, whereas ALG has
delivered 2 packets of at most B of its frames. At this point,
we can bootstrap the adversary described in Lemma 2,
focusing merely on the B frames which are still relevant
for ALG. We can therefore force ALG to drop all but an
O( 1

k ) fraction of these B frames (the adversary need not

concern itself at all with these frames). Once this adversary
has completed its injection pattern for ALG’s frames, we
have the remaining packets corresponding to the adversary’s
M/2 frames arrive one at each time step, such that the
adversary can deliver them all.

It follows that the ratio between the number of packets
delivered by ALG and that delivered by the adversary is
Ω(kM

B ). By repeating this arrival pattern arbitrarily many
times, the result follows.

4 BUFFER MANAGEMENT ALGORITHMS
AND PERFORMANCE BOUNDS

In this section we describe buffer management algorithms
for the MFG problem, where traffic consists of an inter-
leaving of multiple streams.

4.1 Design Criteria

By a close examination of the adversaries described in
the proofs of Lemmas 1 and 2, one can see that the
adversary manages to force any algorithm to drop frames
without resorting to forcing the algorithm to do any type of
preemption. The traffic produced by the adversary actually
puts all the emphasis on the algorithm’s ability to discern
which packets to accept to the buffer, and which to drop
upon arrival. Note that these decisions are made when the
algorithm’s buffer is empty, so no preemption is required.
The intuition that the main difficulty lies in admitting the
“right” packets into the buffer is also implicit in the work
of [11] where the best performing algorithm never preempts
admitted packets.

By further examining the adversaries of Lemmas 1 and 2,
one can notice that the traffic generated by the adversary
forces any algorithm to focus on specific streams/frames,
and dropping frames that would eventually turn out to be
easier to manage. One should note that since arrivals are
online, the algorithm has no way of discerning these frames
at the point it is forced to make a decision.

Combining these observations leads to the following
design criteria for competitive algorithms for our problem:

1) No-regret policy: Once a frame has a packet admitted
to the buffer, make every attempt possible to deliver
the complete frame.

2) Ensure progress: Ensure the delivery of a complete
frame as early as possible.

To implement this criteria, we will use a dynamic ranking
scheme for the traffic. The second criteria is the more
intuitive one, which takes form in the usage of preemption
rules. The balancing between the two criteria is done by
a definition of the delicate interplay between the ranking-
scheme and the preemption rules.

4.2 The WEIGHTPRIORITY Algorithm

We now turn to present our main algorithm, WEIGHTPRI-
ORITY, which follows the design criteria outlined in the
previous section. In (the beginning of the arrival step of)
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any cycle t, and for every frame fmi we define its rank at
t by

rt(f
m
i ) = (wt(f

m
i ),m)

where wt(f
m
i ) denotes the number of packets of fmi

already delivered. For every t, the above ranking implies
a strict order on all frames, where for every two frames
fmi , f

m′

i′ , fmi has rank at least as high as fm
′

i′ if and only
if rt(fmi ) ≥ rt(f

m′

i′ ) lexicographically. For completeness,
we also define a tie-breaking rule for frames of the same
stream, where given any two such frames corresponding
to the same stream we consider the frame with the lower
frame index as having the higher rank (i.e., we are biased
towards earlier frames of the same stream).

We say a frame is alive if none of its packets have been
dropped yet, and a frame fmi is said to be active at time t
if fmi is alive at time t, and wt(f

m
i ) > 0. Note that by the

definition of the streams, at any time t, at most one frame
can be active in every stream. Since the rank of a frame
depends on its weight (which may only change during a
delivery step) and its invariant stream (and frame) index,
the rank of a frame does not change during the arrival step.
However, a frame can stop being alive during the arrival
step due to having some of its packets dropped.

We let At(f
m
i ) denote the set of packets of fmi arriving

at time t. In what follows, whenever we refer to At(f
m
i ),

we implicitly assume that At(f
m
i ) 6= ∅. Let Rt(f

m
i ) denote

the set of packets residing in the buffer at the arrival step
of time t, when we consider At(f

m
i ). Given any frame fmi ,

we abuse notation and denote p ∈ fmi if p is one of the
packets of frame fmi . We extend the rank function rt to
be defined over packets as well, such that for every pm,i

j ,
rt(p

m,i
j ) = rt(f

m
i ).

Assume we handle the arrivals in batches corresponding
to distinct frames, i.e., at any cycle t, we get all packets in
At(f

m
i ) together. Furthermore, assume we handle batches

At(f
m
i ) in decreasing order of rt(fmi ). For every set of

packets At(f
m
i ), we let

Lt(f
m
i ) =

{
pm
′,i′

j ∈ Rt(f
m
i ) | rt(pm

′,i′

j ) < rt(f
m
i )
}
.

Lt(f
m
i ) denotes the set of packets of priority lower than

fmi residing in the buffer when considering At(f
m
i ). We

further define Ht(f
m
i ) = Rt(f

m
i ) \ Lt(f

m
i ). We assume

Lt(f
m
i ) is ordered in ascending order by the rt(·) order.

We say that D ⊆ Lt(f
m
i ) is a prefix of Lt(f

m
i ) if for every

frame fm
′

i′ satisfying fm
′

i′ ∩Lt(f
m
i ) 6= ∅, either fm

′

i′ ∩D = ∅
or fm

′

i′ ∩(Lt(f
m
i )\D) = ∅, and if for any p ∈ D∩fm′i′ and

p′ ∈ (Lt(f
m
i ) \D)∩ fm′′i′′ , rt(fm

′

i′ ) < rt(f
m′′

i′′ ). With these
requirements, if a packet p is in a prefix then so are all
other packets of that frame that are currently in the buffer.
Also, packets in a prefix have a rank strictly lower than all
other packets in the buffer.

Given At(f
m
i ), we say a set of packets Y ⊆ Rt(f

m
i )

yields to At(f
m
i ) if |Rt(f

m
i )| − |Y | + |At(f

m
i )| ≤ B. In

this case, by dropping Y , we are able to accept At(f
m
i ).

Furthermore, for any At(f
m
i ) we let Dt(f

m
i ) ⊆ Lt(f

m
i ) be

the minimal size prefix of Lt(f
m
i ) that yields to At(f

m
i ).

We can now define our algorithm, WEIGHTPRIORITY
(or WP, for short), which upon overflow prefers to keep
packets of higher-ranking frames. The formal definition of
algorithm WP appears in Algorithm 1.

Algorithm 1 WEIGHTPRIORITY: upon the arrival of
At(f

m
i )

1: if fmi is alive and Lt(f
m
i ) yields to At(f

m
i ) then

2: let Dt(f
m
i ) ∈ P(Lt(f

m
i )) be the minimal size set

that yields to At(f
m
i )

3: preempt Dt(f
m
i )

4: accept At(f
m
i )

5: else
6: reject At(f

m
i )

7: drop Rt(f
m
i ) ∩ fmi

8: end if
9:

In the remainder of this section we prove the following
theorem:

Theorem 4. The competitive ratio of WEIGHTPRIORITY
is O((kMB +M)k+1).

We first give a high-level description of our analysis.
We would like to map frames delivered by an optimal
solution to frames delivered by WP. To this end, we
consider a partition of time into disjoint intervals, and
identify every such interval with the highest ranking packet
delivered during this interval. This implies a ranking over
the intervals. We then map every interval to a strictly-
higher ranking interval, culminating in an interval in which
a frame is successfully delivered. By showing that there
exists a number ` that bounds both (a) the number of
frames successfully delivered by an optimal solution during
any interval, and (b) the number of intervals mapped to
any single interval, one obtains a k-height `-ary tree-
like structure underlying the mappings of intervals, which
implies the required result.

We begin our analysis by examining some of the prop-
erties of WP, captured by the following lemmas.

Lemma 5. If a packet p ∈ fmi is dropped by WP at time t,
then at the end of the arrival step of time t the buffer holds
at least one packet with rank strictly greater than rt(fmi ).

Proof: Consider first the case where p is dropped
because of rejecting At(f

m
i ) upon arrival. We could have

either p ∈ At(f
m
i ), or p is already in the buffer when

we consider At(f
m
i ). Since packets in fmi ∩ Rt(f

m
i )

are also in Ht(f
m
i ), and since we cannot accommodate

At(f
m
i ), we also drop all packets of fmi currently in

Ht(f
m
i ). We therefore have |Lt(f

m
i )| < |At(f

m
i )|, and

|Rt(f
m
i ) ∩ fmi | ≤ k − |At(f

m
i )|, implying that the overall

number of packets in the buffer that have priority at most
rt(f

m
i ) is strictly less than k. Hence, there are at least

B − k + 1 ≥ 1 packets with priority strictly greater
than rt(f

m
i ) (by our assumption that B ≥ k). Note that

for any At(f
m′

i′ ) considered after At(f
m
i ), its rank is

strictly less than rt(f
m
i ), due to the assumption on the
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order in which packets are processed. Hence, none of the
packets corresponding to other packets in Ht(f

m
i ) would

be preempted during cycle t.
Consider now the case where p is dropped due to preemp-

tion when considering At(f
m′

i′ ). By the definition of WP
in line 3 this can only happen if p ∈ Dt(f

m′

i′ ) ⊆ Lt(f
m′

i′ )
for some frame fm

′

i′ such that rt(fm
′

i′ ) > rt(p). Since any
subsequent set of packets At(f) considered after At(f

m′

i′ )
has rank strictly less than rt(fm

′

i′ ), which follows from the
assumption that we consider arrivals in decreasing order of
their rank, and by WP’s preemption condition in line 1,
none of the packets of At(f

m′

i′ ) admitted to the buffer at
time t would be preempted at time t. It follows that at
least one packet with rank strictly greater than rt(fmi ) still
resides in the buffer at the end of the arrival step of time
t.

In particular, the above lemma shows that at least one
frame is still alive after each cycle where overflow occurs.
The following lemma gives a bound on the number of active
frames in any time interval.

Lemma 6. For any time interval I , the number of active
frames during I is at most M + |I|.

Proof: Assume without loss of generality that I =
(0, . . . , `]. The number of active frames in cycle 1 is at
most M , since at any point in time, each stream can have
at most one active frame (by the order of frames within
each stream, and the fact that the buffer follows a FIFO
discipline). Since in any cycle at most one packet is sent,
this could increase the number of active frames by at most
1 in each cycle. The result follows.

Let {t`}`≥0 be the sequence of cycles where overflows
occur, such that the (`+ 1)’th cycle where overflow occurs
is t`. For every overflow cycle t`, we define the interval
I` = (t`, t` +B].

We henceforth identify every frame fmi that is not
delivered by WP with the first packet pm,i

j ∈ fmi that
is not delivered by WP. In such a case, we say packet
pm,i
j is responsible for dropping frame fmi . Note that

responsible packets are always dropped due to overflow. We
can therefore associate each frame fmi that is not delivered
by WP with a single overflow cycle where its responsible
packet is dropped.

For every overflow cycle t`, we let f` denote the highest
ranking frame that has a packet in the buffer at the end of
cycle t`, and let p` ∈ f` denote the packet closest to the
head of the buffer at the end of that cycle.

We now define a mapping over the set of frames {f`}`≥0.
Consider any f` for which p` is not delivered by WP. This
can only happen due to overflow which occurs at some
time t`′ ∈ (t`, t` + B]. In such a case we map f` to
f`′ . This mapping essentially defines sequences of frames
f`1 , f`2 , . . .. By Lemma 5 we are guaranteed that for any j,
rt`j (f`j ) > rt`j (f`j−1

), i.e., as we progress in the sequence,
the rank of the frames strictly increases. Since our arrival
sequence is finite, any such sequence must be finite, and
can therefore be referred to as (f`1 , . . . , fz(`1)) for some
index z(`1). We henceforth refer to such a sequence as

an (f`1 , fz(`1))-preemption sequence. The following lemma
shows some properties of such a sequence.

Lemma 7. Any (f`1 , fz(`1))-preemption sequence satisfies
the following properties:

1) The sequence contains at most kM frames.
2) The overflow cycles associated with the sequence are

contained in a time interval of length at most kMB.
3) The packet pz(`1) ∈ fz(`1) is delivered by WP

at some cycle t ∈ (tz(`1), tz(`1) + B]. Hence,
wtz(`1)+B(fz(`1)) ≥ wtz(`1)

(fz(`1)) + 1, that is, the
weight increases by at least 1 by time tz(`1) +B.

Proof: Since the rank of the frames along the sequence
are strictly increasing, and the number of distinct ranks is
kM , it follows that the sequence cannot be longer than
kM .

Since by definition of the mapping, the preemption of p`j
occurs at time t`j+1

∈ (t`j , t`j +B], and since the sequence
is of length at most kM , it follows that all overflow cycles
associated with the sequence are contained in the time
interval (t`1 , t`j + kMB].

Since fz(`1) is the last frame of the sequence, by def-
inition of the mapping it follows that pz(`1) ∈ fz(`1)
is delivered by WP. This further occurs at some cycle
t ∈ (tz(`1), tz(`1) + B), since pz(`1) is in the buffer but
not yet delivered at cycle tz(`1). It therefore follows that
the weight of fz(`1) increases by 1 by cycle tz(`1) +B.

We now define a sequence of non-overlapping intervals
S = {I1, I2, . . .}. Each Ij will be of length kMB, starting
from some overflow cycle t`j , such that each overflow cycle
is contained in exactly one interval in S.

1) I1 = (t1, t1 + kMB].
2) Given Ij−1, we let t`j denote the earliest overflow

cycle after Ij−1, and define Ij = (t`j , t`j + kMB].
For every such interval Ij starting at t`j , we can consider

the (f`j , fz(`j))-preemption sequence. We associate Ij with
frame fz(`j), that by property (3) in Lemma 7 is guaranteed
to have its weight increased by time tz(`j). Every such
interval can be associated with the maximum priority packet
delivered by WP during that interval, denoted p̃`j ∈ f̃`j . We
hereby refer to this frame as the increase-frame of interval
Ij . Note that f̃`j need not necessarily be one of the frames
in the preemption-sequence. However, by the maximality
of the rank of p̃`j , along with property (3) in Lemma 7,
we are guaranteed that it has a weight strictly greater than
fz(`j) at time tz(`j).

We can now complete the proof of Theorem 4.
Proof of Theorem 4: We will map frames accepted by

an optimal solution, OPT, but dropped by WP, to frames
delivered by WP. Our mapping will ensure that every frame
delivered by WP is mapped to by at most O((kMB +
M)k+1) packets, which would complete the proof.

Let fmi ∈ OPT \WP. Since fmi is dropped by WP,
there exists an overflow cycle t` where the responsible
packet of fmi is dropped. By the definition of our sequence
of intervals S, there exists an interval Ij ∈ S such that
t` ∈ Ij . We map fmi to the increase-frame of interval
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Ij . Since |Ij | ≤ kMB, it follows that there are at most
kMB+B packets accepted by OPT during such an inter-
val. In particular, there can be at most kMB+B responsible
packets accepted by OPT during such an interval. This
implies that the above method maps at most kMB + B
packets from OPT \WP to any single increase-frame.

We now describe a mapping over the set of increase-
frames. Consider any increase frame f̃`j . If this frame is
not delivered successfully by the algorithm, it is because
its responsible packet p was dropped at some overflow
cycle t`′ . Let Ij′ ∈ S be the interval for which t`′ ∈ Ij′ .
We map f̃`j to f̃`j′ . By the definition of increase-frames,
and similarly to the argument used for the preemption-
sequences, where we also defined sequences of frames with
strictly increasing weights, one can verify that the weight
of f̃`j′ is strictly greater than the weight of f̃`j . It follows
that the length of any such sequence is at most k, and the
last frame of every such sequence is delivered successfully
by WP.

We now turn to consider the overall number of increase-
frames mapped to a single increase-frame that is success-
fully delivered by WP. By definition, any increase-frame is
active, since at least one of its packets is delivered by WP.

By the fact that any interval Ij is of length kMB,
combined with Lemma 6, the overall number of active
frames encountered by WP during Ij is at most kMB+M .
Since by definition of our mapping, every increase-frame
f̃`j′ is mapped-to only by increase-frames that are active
during Ij′ , it follows that every increase-frame is mapped-
to (directly) by at most kMB+M increase-frames. Hence,
the overall number of increase-frames mapped to a single
increase-frame that is successfully delivered is bounded by
the size of the (kMB +M)-ary tree of height k.

By combining this with our upper bound on the number
of frames in OPT \WP mapped to any single increase-
frame (i.e., to a “leaf” of the tree), we obtain that every
frame successfully delivered by WP is mapped to by at
most (kMB + B)(kMB + M)k = O((kMB + M)k+1),
as required.

5 SIMULATION STUDY

We provide a simulation study where we compare the per-
formance of several buffer management and discard policies
for traffic with inter-packet dependencies. Specifically, we
examine the impact of various traffic characteristics on
the performance of our proposed algorithms. We compare
the performance of the considered algorithms with the
performance of the best known offline algorithm as a
benchmark. The offline algorithm tries to pack complete
frames onto the buffer greedily and is guaranteed to provide
a (k + 1)-approximation [11].

In addition to our WEIGHTPRIORITY algorithm we
consider the performance of several other online reference
algorithms.

The first additional algorithm, referred to as
FRAMEOBLIVIOUS, disregards the frame structure
altogether. Upon overflow, it simply refrains from

accepting further packets, regardless of the identity of
the frames to which they correspond. This algorithm is
appealing due to the fact that it does not need to maintain
any state information, and does not perform a buffer
scan upon overflow. The second additional algorithm,
referred to as SEMIFRAMEOBLIVIOUS, is similar to
FRAMEOBLIVIOUS, except for the fact that it scans the
buffer upon overflow, and drops any packets residing
in the buffer that correspond to the packet dropped due
to the overflow. This algorithm also does not require
any state information, however, it performs a buffer
scan upon overflow. The third algorithm, referred to as
STREAMOBLIVIOUS, drops an overflowing packet, as well
as all other packets of its frame. This algorithm both scans
the buffer upon overflow, and maintain state information
per stream, in order to drop also future arriving packets of
the dropped frame. We note that these algorithms do not
follow either of our design criteria.

We further consider one additional algorithm, referred
to as STREAMPRIORITY (SP), which conforms with our
design criteria. This algorithm is similar to our WEIGHT-
PRIORITY algorithm, except for its choice of rank criteria.
SP uses the stream index to define a complete order over
all frames (using the same tie-breaking rule used by WP
for frames corresponding to the same stream). SP maintains
state information per stream, however, it does not require
maintaining counters or performing packet inspection in
order to determine the dynamic weight of the stream.

5.1 Traffic Generation and Setup
We study the performance of all algorithms under high load
for an aggregate of multiple bursty streams. Each stream
is generated using a Markov modulated Poisson process
(MMPP) with two states, ON and OFF, with symmetric
transition rates. In the ON state, unit-size packets are
generated with a rate of λ, which results in an average rate
across both ON and OFF states of λ/2, that is, the effective
rate is half the ON rate. Using this process, each stream
generates a sequence of 200 frames, where each frame has
k packets.

5.2 Simulation Results
Figures 2–4 depict the results of the simulations. We
compare the goodput of the algorithms with the benchmark
offline algorithm. The performance metric is the goodput
ratio, defined as the ratio between the number of frames
successfully delivered by the algorithm, and the number
of frames successfully delivered by the benchmark offline
algorithm. The results show the average of a set of 6
simulations for each choice of parameters, as well as
the confidence intervals. We now discuss the conclusions
derived from our simulation study.

Figure 2 shows the impact of the frame size on the
performance of each algorithm. The traffic is an aggregate
of M = 50 streams, each generated by an MMPP process
as described above with an average per-stream rate of 0.025
(implying an aggregate total average rate of 1.25). This
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Fig. 2. Goodput ratio as a function of frame size (M =
50, B = 12).
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Fig. 3. Goodput ratio as a function of number of
streams (k = 6, B = 12, average stream rate of 0.025).
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Fig. 4. Goodput ratio as a function of aggregate
average arrival rate (M = 50, k = 6, B = 12).

models a high-load system, since the service rate is 1. The
buffer size bound is set to B = 12, and the frame size is

set to k = 6.
Figure 3 shows the sensitivity of increasing the number

of streams, while keeping the per-stream rate fixed, on
the performance of each algorithm. The average per-stream
rate is 0.025. Hence, as long as the number of streams is
below 40, the average aggregate arrival rate is below the
service rate of 1. The performance of all algorithms starts
to degrade as the system becomes more overloaded.

Figure 4 shows the effect of increasing the overall load
of traffic, while keeping the number of streams fixed. This
is done by increasing the rate of each stream uniformly.
As can be seen in Figure 4, if the load is increased
by increasing the rate of each stream, while keeping the
number of streams fixed, we obtain the same effect as
increasing the number of streams while maintaining the rate
of each stream fixed. This is consistent with the fact that
the goodput of our algorithms is a function of the local per-
frame performance. Hence the correspondence of a frame
to a stream has a marginal impact on the overall system
goodput.

Our experiments indicate that both algorithms satisfying
our design criteria result in a stabilized goodput as traffic
conditions become harder (either in terms of load, or in
terms of decision-complexity, underlined by the increase in
the number of packets per frame). The three algorithms
that do not conform with our guidelines exhibit a fast
degradation in performance as traffic conditions become
harder. Specifically, the performance of WP is within 96%
of the performance of the best known offline algorithm for
the problem. The performance of SP, although inferior to
that of WP, also guarantees at least 80% of the goodput
achieved by the reference offline algorithm.

6 CONCLUSIONS AND FUTURE WORK

We addressed the problem of managing buffer overflows
for traffic consisting of multiple streams, with inter-packet
dependencies.

We provided guidelines for the design of such algorithms,
and analyzed the performance of one such algorithm, both
from a worst-case competitive approach, as well as by
a simulation study. We provided guarantees on its per-
formance under any traffic conditions by proving it has
a bounded competitive ratio. We also showed that the
competitive ratio of any algorithm for our problem might
degrade linearly as a function of the number of streams in
the traffic. Our simulation study shows that algorithms that
follow our proposed design criteria yield a close to optimal
performance under variable traffic characteristics and load,
while algorithms that fail to adhere to our guidelines show
a fast degradation in performance as traffic characteristics
become more intense.

Our work raises several interesting questions. For exam-
ple, what is the interplay between the buffer management
algorithm and coding, and how can prior information
about the coding scheme (and its redundancy) be taken
into account by the algorithm for improving performance?
Another question is how to design buffer management for
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such settings, with provable performance guarantees, and
settle the gap in the competitive ratio of algorithms for the
problem.
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