
Customizable Services for Application-Layer Overlay
Networks

by

Tony Yu Zhao

A thesis submitted in conformity with the requirements
for the degree of M.A.Sc

Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright c© 2012 by Tony Yu Zhao



Contents

1 Introduction 1

1.1 Application-layer Overlay Networks . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Data Delivery in Application-layer Overlay Networks . . . . . . . 4

1.2 Advantages of Data Delivery Services Realized at the Application-layer . 5

1.3 Towards a Flexible Overlay Architecture . . . . . . . . . . . . . . . . . . 7

1.3.1 Data Delivery Services as Overlay Middleware Services . . . . . . 8

1.3.2 Current Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Related Works 14

2.1 Configurable Network Services . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 The x-kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Extensible Transport . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Protocol Boosters . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.4 NetServ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Active Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Softnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Programmable Switches - A Discrete Approach . . . . . . . . . . 18

2.2.3 ACTIVE IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

ii



2.2.4 ANTS - An Integrated Approach . . . . . . . . . . . . . . . . . . 18

2.2.5 ESP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Automatic Generation of Network Protocols . . . . . . . . . . . . . . . . 19

2.3.1 Network Protocols Expressed as State Machines . . . . . . . . . . 20

2.3.2 Network Protocols Expressed as Grammar . . . . . . . . . . . . . 20

2.4 Automatic Generation of Overlay Networks . . . . . . . . . . . . . . . . 21

2.4.1 MACEDON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.2 Declarative Networking . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Background 23

3.1 HyperCast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Overlay Socket . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1.1 Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1.2 Overlay Node . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1.3 CSA Processor . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1.4 Forwarding Engine . . . . . . . . . . . . . . . . . . . . . 28

3.1.1.5 MessageStore . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.2 HyperCast Services . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.2.1 Hop-to-Hop Acknowledgement . . . . . . . . . . . . . . 36

3.1.2.2 End-to-End Acknowledgement . . . . . . . . . . . . . . . 41

3.1.2.3 Other Services . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 SCXML: State Chart XML . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Apache Commons SCXML . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1.1 SCXML Engine . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1.2 Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1.3 Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 XQuery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Saxon XQuery and XSLT Processor . . . . . . . . . . . . . . . . . 49

iii



4 Design of Customizable Services 51

4.1 Finite-State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Executable Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1.1 Basic Events . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1.2 Composite Events . . . . . . . . . . . . . . . . . . . . . 61

4.2.1.3 Mapping of Events to Input Symbols . . . . . . . . . . . 64

4.2.2 History of Basic Events . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.3 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.3.1 Actions - Set of Overlay Network Primitives . . . . . . . 69

4.2.3.2 Mapping of Output Symbols to Actions . . . . . . . . . 72

4.2.3.3 Format of Executable Specification . . . . . . . . . . . . 73

4.2.4 Expressiveness of Executable Specification . . . . . . . . . . . . . 74

4.2.4.1 Custom Control Messages . . . . . . . . . . . . . . . . . 74

4.2.4.2 Expressiveness of Composite Events . . . . . . . . . . . 74

4.2.4.3 Types of Expressible Services . . . . . . . . . . . . . . . 76

4.3 Executable Specification Processor . . . . . . . . . . . . . . . . . . . . . 83

4.3.1 Creation and Deployment of Services . . . . . . . . . . . . . . . . 83

4.3.2 Using Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.3 Finite-State Machine Execution . . . . . . . . . . . . . . . . . . . 86

5 Implementation 90

5.1 MessageStore Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1.1 Implementation Overview . . . . . . . . . . . . . . . . . . . . . . 93

5.1.2 A Service as an Executable Specification . . . . . . . . . . . . . . 97

5.1.2.1 Header and Meta Data . . . . . . . . . . . . . . . . . . . 98

5.1.2.2 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1.2.3 States and State Transitions . . . . . . . . . . . . . . . . 104

iv



5.1.2.4 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1.3 New MessageStore Objects . . . . . . . . . . . . . . . . . . . . . . 109

5.1.3.1 ExecSpec Object . . . . . . . . . . . . . . . . . . . . . . 109

5.1.3.2 GenericFSM Object . . . . . . . . . . . . . . . . . . . . 112

5.1.4 Service Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.1.4.1 Message Arrival Event . . . . . . . . . . . . . . . . . . . 116

5.1.4.2 Timer Expiration Event . . . . . . . . . . . . . . . . . . 120

5.1.4.3 Handling Events . . . . . . . . . . . . . . . . . . . . . . 122

5.1.4.4 Executing Actions . . . . . . . . . . . . . . . . . . . . . 124

5.1.5 List of Supported Actions - Network Primitives . . . . . . . . . . 131

5.1.6 Discussion of the Implementation . . . . . . . . . . . . . . . . . . 133

5.1.7 Mechanisms to Improve MessageStore Performance . . . . . . . . 134

5.1.7.1 Pre-allocation of Finite-State Machines . . . . . . . . . . 134

5.1.7.2 “Warm-starting” the Apache Commons SCXML Engine 137

5.2 Service Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.2.1 Services Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6 Evaluation 144

6.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.1.1 Testbed Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.1.2 Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.1.3 Overlay Network Topology using DT Protocol . . . . . . . . . . . 148

6.1.4 Underlay Substrate . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2 Overview of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.2.1 Measurement Methodology . . . . . . . . . . . . . . . . . . . . . . 152

6.2.2 Configuration Parameters . . . . . . . . . . . . . . . . . . . . . . 152

6.2.3 Experiment Topologies . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2.4 List of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 155

v



6.3 Hop-to-Hop Acknowledgment in Single-Hop Network . . . . . . . . . . . 157

6.3.1 Java-based Implementation and SCXML-Based Implementation Per-

formance at send rate of 100 Mbps, 10 Mbps, and 1 Mbps . . . . 157

6.3.2 Bottleneck Analysis of Java-based Implementation . . . . . . . . . 164

6.3.2.1 The effect of the number of stored FSMs in MessageStore

on per message processing time . . . . . . . . . . . . . . 170

6.3.3 Bottleneck Analysis of SCXML-based Implementation . . . . . . . 174

6.3.4 Performance Improvements for SCXML-Based Implementation . . 181

6.3.4.1 Performance improvements using preallocation of FSMs 181

6.3.4.2 Performance improvements using warm-start of SCXML

engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.3.4.3 Performance at send rate of 100 Mbps, 10 Mbps, and 1

Mbps using warm-start . . . . . . . . . . . . . . . . . . . 188

6.3.4.4 Overhead of performance improving mechanisms . . . . 192

6.3.5 Sustainable Throughput and Delay . . . . . . . . . . . . . . . . . 193

6.4 Hop-to-Hop Acknowledgment in Multi-Hop Network . . . . . . . . . . . . 196

6.4.1 Two-Hop Transfer for Java-based Implementation (at send rate of

4.0 Mbps) and SCXML-Based Implementation (at send rate of 1.0

Mbps) Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.4.1.1 Bottleneck Analysis of Java-based Implementation . . . 200

6.4.1.2 Bottleneck Analysis of SCXML-based Implementation . 201

6.4.1.3 Sustainable Throughput and Delay . . . . . . . . . . . . 205

6.4.2 Five-Hop Transfer for Java-based Implementation (at send rate of

1.8 Mbps) and SCXML-Based Implementation (at send rate of 0.7

Mbps) Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 207

6.5 End-to-End Acknowledgment in Single-Hop Network . . . . . . . . . . . 209

vi



6.5.1 Java-based Implementation and SCXML-Based Implementation Per-

formance at send rate of 100 Mbps, 10 Mbps, and 1 Mbps . . . . 209

6.5.2 Bottleneck Analysis of Java-based Implementation . . . . . . . . . 214

6.5.3 Bottleneck Analysis of SCXML-based Implementation . . . . . . . 220

6.5.4 Sustainable Throughput and Delay . . . . . . . . . . . . . . . . . 224

6.6 End-to-End Acknowledgment in Multi-Hop Network . . . . . . . . . . . . 226

6.6.1 Two-Hop Transfer for Java-based Implementation (at send rate of

4.0 Mbps) and SCXML-Based Implementation (at send rate of 1.0

Mbps) Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 226

6.6.2 Five-Hop Transfer for Java-based Implementation (at send rate of

0.8 Mbps) and SCXML-Based Implementation (at send rate of 0.7

Mbps) Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 230

6.7 Memory Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

6.7.1 Hop-to-Hop Acknowledgement Service in Single-Hop Network . . 232

6.7.2 End-to-End Acknowledgement Service in Single-Hop Network . . 237

7 Conclusions and Future Work 239

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Bibliography 243

vii



List of Figures

1.1 A application-layer overlay network. Overlay nodes with logical addresses

1, 2, 3 corresponding to substrate elements with different IPv4 address.

Network applications communicate to the overlay nodes using logical ad-

dresses are not aware of the substrate addresses or topology. Overlay nodes

sends and receives messages using the IPv4 interfaceses and port numbers. 2

1.2 Flooding of messages of 3 nodes . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Differences between data delivery over the Internet and over an application-

layer overlay network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Evolution of application-layer overlay networks . . . . . . . . . . . . . . . 8

1.5 Service layers in overlay middleware . . . . . . . . . . . . . . . . . . . . . 9

1.6 Adding data delivery services for application-layer overlay middleware . . 10

3.1 An overlay socket and its components . . . . . . . . . . . . . . . . . . . . 26

3.2 (a) A HyperCast application message (b) A HyperCast application mes-

sage marked with a service and a payload (c) A HyperCast application

message marked with a service without a payload. . . . . . . . . . . . . . 29

3.3 How a message is process by its finite-state machine (FSM) in MessageStore 32

3.4 Services in HyperCast . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

viii



3.5 (a) The sender (S) delivers a message to its children nodes (node 1 and

node 2). (b) When node 1 and node 2 get the message, they send H2H

ACKs to parent node S. In the meantime, the data is forwarded to their

children node (node 3, 4, 5, 6). (c) When node 3, 4, 5, 6 receive the

message, they send H2H ACKs to their respective parents nodes 1 and 2. 37

3.6 State machine diagram for Hop-to-Hop Acknowledgement service . . . . 40

3.7 (a) The sender (S) delivers a message to its children node (node 1 and

node 2), which forward the message to their children nodes (nodes 3, 4, 5,

6). (b) When leaf nodes 3, 4, 5, and 6 receive the message, they send a

Full ACK to their parent nodes. (c) The ACKs are merged at node 1 and

2. (d) Node 1 and 2 will send Full ACKs to their parent node, the sender

(S). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 State machine diagram for End-to-End Acknowledgement service . . . . 44

3.9 Interacting components of the Apache Commons SCXML framework . . 47

4.1 Abstraction of a service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 A service decomposed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 A finite-state machine diagram . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 A Mealy machine and a Moore machine with the same behaviour . . . . 55

4.5 Using timers to specify a given sequence of actions . . . . . . . . . . . . . 60

4.6 Finite-state machine for message selection service . . . . . . . . . . . . . 78

4.7 Finite-state machine for connection establishment service between two nodes 79

4.8 Finite-state machine for a leaky bucket transmitter . . . . . . . . . . . . 80

4.9 Message processing in MessageStore . . . . . . . . . . . . . . . . . . . . . 84

4.10 Execution models for finite-state machines . . . . . . . . . . . . . . . . . 87

4.11 Finite-state machine execution engine and its interaction with the overlay

node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

ix



5.1 Message handling in MessageStore . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Overview of implementation in MessageStore to use executable specifica-

tion for services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Mapping of a message arrival or timer expiration to an event in the exe-

cutable specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Mapping of an action in the executable specification to a Java method . . 96

5.5 The structure for an executable specification of a service defined by a

finite-state machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6 Relationships of the SCXML representation of the executable specification

to the ExecSpec object . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.7 A GenericFSM object extends the AbstractStateMachine object and in-

stantiate three actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.8 Component of GenericFSM object and interactions with ExecSpec object 114

5.9 Processing of a message arrival event in MessageStore . . . . . . . . . . . 119

5.10 Processing of a timer expiration event in MessageStore . . . . . . . . . . 121

5.11 Event processing by the handleEvent method in GenericFSM Object . . 123

5.12 Creating an action in GenericFSM object using SCXML custom actions

interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.13 Action processing by the dispatchAction method in GenericFSM Object . 127

5.14 Pre-allocation of GenericFSM objects during MessageStore initialization . 135

5.15 How preallocated FSMs are used in MessageStore . . . . . . . . . . . . . 135

5.16 Warm-start mechanism during MessageStore initialization . . . . . . . . 138

5.17 Interactions of MessageStore with the Services Server . . . . . . . . . . . 140

5.18 How MessageStore handles a message with a new serviceID . . . . . . . . 141

6.1 Network topology setup of experiments . . . . . . . . . . . . . . . . . . . 147

6.2 Application-layer overlay topology setup of experiments . . . . . . . . . . 150

6.3 Sequence number versus time for Hop-to-Hop Acknowledgement . . . . . 159

x



6.4 Per message delay versus time for Hop-to-Hop Acknowledgement . . . . . 160

6.5 Throughput versus time for Hop-to-Hop Acknowledgement . . . . . . . . 163

6.6 MessageStore per message processing time versus time for Hop-to-Hop

Acknowledgement of the Java-based implementation . . . . . . . . . . . . 166

6.7 Backlog of messages buffered in MessageStore for data and control mes-

sage, and the number of stored FSMs in MessageStore versus time for

Hop-to-Hop Acknowledgement for the Java-based implementation . . . . 168

6.8 MessageStore per message processing time versus time for Hop-to-Hop Ac-

knowledgement of the Java-based implementation without removing any

MessageStore stored FSMs . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.9 Backlog of messages buffered in MessageStore for data and control mes-

sage, and the number of stored FSMs in MessageStore versus time for

Hop-to-Hop Acknowledgement for the Java-based implementation with-

out removing any MessageStore stored FSMs . . . . . . . . . . . . . . . . 172

6.10 Throughput versus time for Hop-to-Hop Acknowledgement for the Java-

based implementation without removing any MessageStore stored FSMs . 173

6.11 MessageStore per message processing time versus time for Hop-to-Hop

Acknowledgement for the SCXML-based implementation . . . . . . . . . 175

6.12 Component breakdown of MessageStore per message processing time ver-

sus time for Hop-to-Hop Acknowledgement for the SCXML-based imple-

mentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.13 Backlog of messages buffered in MessageStore for data and control mes-

sage, and the number of stored FSMs in MessageStore versus time for

Hop-to-Hop Acknowledgement for the SCXML-based implementation . . 178

6.14 MessageStore per message processing time versus time for Hop-to-Hop

Acknowledgement for the SCXML-based implementation with 0, 100, 200

preallocated FSMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

xi



6.15 MessageStore per message processing time versus time for Hop-to-Hop

Acknowledgement for the SCXML-based implementation with warm-start

and 0, 100, 200 preallocated FSMs . . . . . . . . . . . . . . . . . . . . . 186

6.16 Sequence Number versus time for Hop-to-Hop Acknowledgement with

warm-start for the SCXML-based implementation . . . . . . . . . . . . . 189

6.17 Per message delay versus time for Hop-to-Hop Acknowledgement with

warm-start for the SCXML-based implementation . . . . . . . . . . . . . 190

6.18 Throughput versus time for Hop-to-Hop Acknowledgement with warm-

start for the SCXML-based implementation . . . . . . . . . . . . . . . . 191

6.19 Throughput versus time for Hop-to-Hop Acknowledgement . . . . . . . . 193

6.20 Per message delay versus time for Hop-to-Hop Acknowledgement . . . . . 194

6.21 Average throughput versus time for Hop-to-Hop Acknowledgement . . . 195

6.22 Average per message delay versus time for Hop-to-Hop Acknowledgement 195

6.23 Sequence number versus time for Hop-to-Hop Acknowledgement for the

Java-based implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.24 Sequence number versus time for Hop-to-Hop Acknowledgement for the

SCXML-based implementation . . . . . . . . . . . . . . . . . . . . . . . . 198

6.25 Throughput versus time for Hop-to-Hop Acknowledgement for the Java-

based implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.26 Throughput versus time for Hop-to-Hop Acknowledgement for the SCXML-

based implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.27 MessageStore per message processing time versus time for Hop-to-Hop

Acknowledgement for the Java-based implementation . . . . . . . . . . . 202

6.28 MessageStore per message processing time versus time for Hop-to-Hop

acknowledgement for the SCXML-based implementation . . . . . . . . . 204

6.29 Average throughput versus time for Hop-to-Hop Acknowledgement . . . 205

6.30 Average per message delay versus time for Hop-to-Hop Acknowledgement. 206

xii



6.31 Average throughput and average delay for each receiver for Hop-to-Hop

Acknowledgement using the Java-based implementation . . . . . . . . . . 207

6.32 Average throughput and average delay for each receiver for Hop-to-Hop

Acknowledgement using the SCXML-based implementation . . . . . . . . 208

6.33 Sequence number versus time for End-to-End Acknowledgement . . . . . 210

6.34 Per message delay versus time for End-to-End Acknowledgement . . . . . 211

6.35 Throughput versus time for End-to-End Acknowledgement . . . . . . . . 213

6.36 MessageStore per message processing time versus time for End-to-End

Acknowledgement of the Java-based implementation . . . . . . . . . . . . 215

6.37 Backlog of messages buffered in MessageStore for data and control mes-

sage, and the number of stored FSMs in MessageStore versus time for

End-to-End Acknowledgement for the Java-based implementation . . . . 218

6.38 MessageStore per message processing time versus time for End-to-End

Acknowledgement for the SCXML-based implementation . . . . . . . . . 221

6.39 Backlog of messages buffered in MessageStore for data and control mes-

sage, and the number of stored FSMs in MessageStore versus time for

End-to-End Acknowledgement for the SCXML-based implementation . . 222

6.40 Average throughput versus time for End-to-End Acknowledgement . . . . 224

6.41 Average per message delay versus time for End-to-End Acknowledgement 225

6.42 Average throughput versus time for End-to-End Acknowledgement . . . . 227

6.43 Average per message delay versus time for End-to-End Acknowledgement 227

6.44 Average throughput and average delay for each receiver for End-to-End

Acknowledgement using the Java-based implementation . . . . . . . . . . 230

6.45 Average throughput and average delay for each receiver for End-to-End

Acknowledgement using the SCXML-based implementation . . . . . . . . 231

6.46 Heap memory usage versus time for Hop-to-Hop Acknowledgement for the

Java-based implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 234

xiii



6.47 Heap memory usage versus time for Hop-to-Hop Acknowledgement for the

SCXML-based implementation . . . . . . . . . . . . . . . . . . . . . . . . 234

6.48 Heap memory usage versus time for Hop-to-Hop Acknowledgement for the

SCXML-based Implementation (Sender (S), with warm-start, with initial

and max heap size of 512MB) . . . . . . . . . . . . . . . . . . . . . . . . 236

6.49 Heap memory usage versus time for Hop-to-Hop Acknowledgement for the

Java-based implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 237

6.50 Heap memory usage versus time for End-to-End Acknowledgement for the

SCXML-based implementation . . . . . . . . . . . . . . . . . . . . . . . . 238

xiv



List of Tables

3.1 Messages for the Hop-to-Hop Acknowledgment service . . . . . . . . . . . 38

3.2 Timers for the Hop-to-Hop Acknowledgment service . . . . . . . . . . . . 39

3.3 Messages for the End-to-End Acknowledgment service . . . . . . . . . . . 43

3.4 Timers for the End-to-End Acknowledgment service . . . . . . . . . . . . 43

3.5 Other HyperCast Services . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Example of one-to-one mapping between basic events and input symbols 64

4.2 Example of many-to-one mapping between basic events and input symbols 65

4.3 Example of one-to-many mapping between basic events and input symbols 65

4.4 Types of Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Format of an executable specification . . . . . . . . . . . . . . . . . . . . 73

4.6 Composite events expressible using first-order logic . . . . . . . . . . . . 75

4.7 State transitions for message selection service . . . . . . . . . . . . . . . 78

4.8 State transitions for connection establishment service . . . . . . . . . . . 81

4.9 State transitions for a leaky bucket transmitter . . . . . . . . . . . . . . 82

5.1 Events for Hop-to-Hop Acknowledgment Service . . . . . . . . . . . . . . 100

5.2 Supported Actions in MessageStore . . . . . . . . . . . . . . . . . . . . . 132

6.1 Definition of Measured Metrics . . . . . . . . . . . . . . . . . . . . . . . 153

6.2 List of Experiments for Hop-to-Hop Acknowledgement service . . . . . . 155

6.3 List of Experiments for End-to-End Acknowledgement service . . . . . . 156

xv



6.4 MessageStore per message processing time of first 5 data messages at the

Sender (S) and Receiver (R) without warm-start . . . . . . . . . . . . . 183

6.5 MessageStore per message processing time of first 5 data messages at the

Sender (S) and Receiver (R) with warm-start . . . . . . . . . . . . . . . 185

6.6 Overhead of Performance Improving Mechanisms . . . . . . . . . . . . . 192

xvi



Chapter 1

Introduction

Networking today serves increasingly complex distributed applications in increasingly

heterogeneous networking environments (e.g. wireless ad-hoc networks, sensor networks

and mesh networks). Applications such as distributed file-sharing or peer-to-peer mul-

timedia streaming typically implement custom network services based on application

requirements. As new network applications emerge, a more efficient way of deploying

these services should be investigated.

1.1 Application-layer Overlay Networks

Application-layer overlay networks provide a feasible solution for the introduction of

custom network services without changes to the existing network infrastructure.

An overlay network is a logical network built on top of one or more existing networks,

called underlay networks. Communication endpoints, called nodes, in the overlay network

can be thought of as being connected by virtual links, called logical links, each of which

corresponds to a path through one or more physical links in the underlying network. For

example, the Internet was built as an overlay network over the telephone network [23]

and peer-to-peer file-sharing systems are overlay networks built on top of the Internet

[21].

1



Chapter 1. Introduction 2

1

2

3

Application-layer 
Overlay Network

Substrate 
(Underlay) 
Network

142.150.235.1:9998

142.198.1.1:9999

10.0.0.1:8080

overlay node overlay node

overlay node

applicationapplicationapplication

Network 
Applications

Figure 1.1: A application-layer overlay network. Overlay nodes with logical addresses

1, 2, 3 corresponding to substrate elements with different IPv4 address. Network appli-

cations communicate to the overlay nodes using logical addresses are not aware of the

substrate addresses or topology. Overlay nodes sends and receives messages using the

IPv4 interfaceses and port numbers.

An application-layer overlay network is an overlay network where all the nodes in the

network are end-systems running applications. In comparison to lower-layer network ele-

ments such as routers and switches, these nodes are user applications that can implement

capabilities beyond basic operations of storing and forwarding packets. Application-layer

overlay networks can construct and manipulate their own network topologies without

modifying lower-level network infrastructures. Application-layer overlay networks are

used as a means to provide custom network services using custom network topologies,



Chapter 1. Introduction 3

custom addressing schemes, and custom routing semantics not available in the underlying

networks. An application-layer overlay network is illustrate in Figure 1.1.

Many of these application-layer overlay networks exist in the literature. For example,

Chord [42], Tapestry [51], Pastry [40] are application-layer overlay networks providing

distributed directory services. Distributed directories are optimized data repositories

supporting data search, data browsing, data storage and data retrieval operations. The

aforementioned systems implement distributed hash tables (DHTs). Distributed hash

tables create an overlay network topology that efficiently maps identifiers/keys to overlay

nodes and stores data in (key, value) pairs much like a hash table. In particular, Chord

[42] nodes organize themselves in a logical ring topology, known as the Chord ring.

The Resilient Overlay Network (RON) is an application-layer overlay network on top of

the existing Internet routing substrate that allows distributed Internet applications to

detect and recover from path outages and periods of degraded performance [23]. RON

nodes monitor the quality of Internet routing path and decide whether to route packets

directly over the Internet or indirectly by way of other overlay nodes in RON’s own logical

topology. End System Multicast (ESM) [31] is an application-layer overlay network that

supports a multicast service for streaming live, high quality video and audio to a large

number of end-hosts. ESM maintains its network topology as a tree of overlay nodes and

consistently manipulates the tree to minimize end-to-end latency.

Applications such as distributed file sharing requires reliable transmission of data from

one sender to many receivers. Peer-to-peer multimedia streaming applications benefits

from reliable, in-order data communication. We believe that application-layer overlay

networks serve as a possible solution for large-scale, distributed applications with spe-

cialized data delivery requirements.



Chapter 1. Introduction 4

1.1.1 Data Delivery in Application-layer Overlay Networks

In any communication system, a specified set of data delivery capabilities are provided as

a service. Data delivery is the process of moving data (in the form of messages) containing

data from a sender to a receiver. Once the sender (S) and the receiver (R) are connected,

data can be transferred from S to the R along the established path (S,N0, N1, ..., Nn, R);

where N0, N1, ..., Nn denote intermediate nodes along the path.

The sender transmits a sequence of data units (d0, d1, d2, d3, ..., dn−1, dn) containing

information to the receiver. Under ideal conditions, the data received at the receiver is

identical to the original sequence. However, in an unreliable communication network,

links connecting network nodes are subject to data duplication, reordering, and loss. A

data delivery service that allow data duplication, reordering, or loss is called a best-effort

service. For example, User Datagram Protocol (UDP) provides a best-effort data delivery

service. On the other hand, a reliable service guarantees that a data unit di transmitted

from the sender to the receiver is eventually received. A no-duplicates service guarantees

that no data unit di transmitted by the sender is received more than once by the receiver.

An in-order service guarantees that the sequence of data units received at the receiver,

at any time, is in the same order as they were sent by the sender. The Transmission

Control Protocol (TCP) a reliable, in-order data delivery service.

General purpose transport-layer protocols like TCP cannot guarantee end-to-end data

delivery beyond best-effort. In an application-layer overlay network, there is no notion

of end-to-end connection establishment at the transport-layer between two overlay nodes

with a path of more than one hop. TCP can transfer messages reliably and in-order

between two directly connected overlay nodes, but an overlay node can still drop an

message after it has been received but before it could be forwarded. A cause of such

a drop can be a change in the network topology while a message is en route from the

sender to the receiver. In application-layer overlay networks where nodes have high

mobility, if a reliable data service is required, it must be provided by the application. As



Chapter 1. Introduction 5

a result, many overlay network applications provide custom data delivery services, on top

of UDP. These custom data delivery services are realized by the use of control messages

(acknowledgements, negative-acknowledgements, etc.) at the application-layer.

1.2 Advantages of Data Delivery Services Realized

at the Application-layer

A

B C

message 
A to C

message 
A to B

message 
C to B

message 
B to C

Figure 1.2: Flooding of messages of 3 nodes

Consider the problem of eliminating duplicate packets in an application-layer overlay

network that uses flooding for distributing messages over an UDP underlay. In flooding,

every overlay node tries to forward every message to each of its neighbours. Flooding

is very wasteful in terms of the networks bandwidth consumption. Duplicate packet

transmission occur, unless certain precautions are taken. For example in Figure 1.2,

if node B and node C are neighbours with node A and neighbours with each other

they will receive a message sent from source node A twice. For example, node B does

not know that the message has already been received; the original message from source

A and the duplicate message from source C are treated as separate messages. If nodes

retain information on received messages and do not forward perviously received messages,



Chapter 1. Introduction 6

duplicate messages can be eliminated.

The above scenario is an example of a value-added data delivery service in an application-

layer overlay network. The duplicate-elimination service, at the application-layer, adds

value beyond the best-effort service.

Application 

Transport (TCP) 

Network (IP) 

Application 

Transport (TCP) 

Network (IP) Network (IP) Network (IP) 

(a) Internet

Application 

Overlay Node 

Underlay 

Application 

Overlay Node 

Underlay Underlay Underlay 

Overlay Node Overlay Node 

(b) Application-layer overlay network

Figure 1.3: Differences between data delivery over the Internet and over an application-

layer overlay network

In application-layer overlay networks, data delivery services are provided at the

application-layer compared to data delivery over the Internet which are provide at the

transport layer. As illustrated by Figure 1.3a, over the Internet, node-to-node con-

nection is established at the network-layer. Messages are transmitted using IP in the

network-layer hop by hop across IP nodes using best effort data delivery and the end-

hosts use control messages to provide better than best-effort service at the transport-

layer. In application-layer overlay networks, node-to-node connection is established at

the same layer as data delivery. This allow data delivery to leverage the intermediate

nodes (N0, N1, ..., Nn) on the path from the sender to the receiver.



Chapter 1. Introduction 7

For example, in a network sensitive to delay, rather than only having packet retrans-

mission processing at the sender and receiver, intermediate nodes can work cooperatively

to retransmit lost packets to improving latency. As another example of cooperative pro-

cessing, each overlay node can aggregate data before sending it to its next-hop destination,

thus reducing overall network bandwidth.

In order to leverage intermediate nodes over the Internet, the network-layer must be

extended universally, which makes large-scale deployment unfeasible.

Moreover, data delivery services implemented at the application-layer overlay net-

works gives applications control over delivery semantics. Data delivery services can be

optimized for specific network applications and network environments. Furthermore,

many services can be operated simultaneously on the same set of overlay nodes for dif-

ferent applications.

1.3 Towards a Flexible Overlay Architecture

Network applications implementing application-layer overlay networks are composed of

(1) overlay services such as node discovery, topology construction and management, ad-

dressing, routing, and (2) application-specific services. Early application-layer overlay

networks such as Chord [42], RON [23], and ESM [31] integrated application-specific

services and overlay services. In this approach, every network application using the

overlay network must provide an implementation of application-layer overlay network as

illustrated in Figure 1.4a.

In the integrated approach, network applications in the same domain (peer-to-peer

file-sharing, multimedia streaming, etc.) implement similar overlay functions. In a mid-

dleware approach, shown in Figure 1.4b, overlay functions are available as services to

be used by multiple applications. The middleware exposes interfaces for user applica-

tions to access services provided by the application-layer overlay network. For example,



Chapter 1. Introduction 8

Application A

overlay 
services

Application B

overlay 
services

Application C

overlay 
services

(a) Integrated approach

Application A Application B Application C

overlay services

(b) Middleware approach

Figure 1.4: Evolution of application-layer overlay networks

openDHT [38] is middleware providing a distributed hash table (DHT) service to network

applications through simple put and get operations.

Modern overlay middleware systems such as iOverlay [35] and HyperCast [6] imple-

ment more general middleware infrastructures supporting multiple overlay topologies,

node discovery algorithms, routing schemes, multicast models, etc. These overlay mid-

dleware systems are designed with interfaces between the application and overlay services

allowing developers to create network applications without detailed knowledge of internal

details of application-layer overlay networks.

1.3.1 Data Delivery Services as Overlay Middleware Services

There are advantages for overlay middleware to support data delivery services where

all network applications can take advantage of a unified implementation. Overlay mid-

dleware systems can provide a platform to integrate data delivery services into overlay



Chapter 1. Introduction 9

middleware functionality. Overlay middleware can allow network applications to select

appropriate data delivery semantics on-demand. In this way, data delivery services can

be viewed as services built on top of overlay services such as addressing, node discov-

ery, topology management, and routing as illustrated by Figure 1.5 since data delivery

assumes that connectivity between overlay nodes already exist.

Overlay Services
(topology management, routing, addressing, node discovery)

Substrate

Application Application Application Application

Substrate Substrate Substrate

Data
Delivery 
Service

Data
Delivery 
Service

Data
Delivery 
Service

Data
Delivery 
Service

interface

interface

ap
pl

ica
tio

ns
ov

er
la

y 
m

id
dl

ew
ar

e
un

de
rla

y

Figure 1.5: Service layers in overlay middleware

Some overlay middleware systems, such as HyperCast [6], implement a selected set

of data delivery services and provide an interface for network applications to add new

services whenever more functionality is needed. HyperCast [6] instantiates and executes

data delivery services based on markings messages. New data delivery services can be

loaded on-demand to the overlay middleware by applications. This flexible mechanism is

illustrated in Figure 1.6. Here an application introduces to the overlay middleware a new

service, which is dynamically loaded into the overlay middleware. Network applications



Chapter 1. Introduction 10

determine the data delivery service to use based on marking messages. When an overlay

node receives a message marked for a certain service, the appropriate data delivery service

is instantiated. A state machine at the overlay nodes is created for each marked messages.

Control messages can then update a message’s state information when they are received

at the overlay node.

Overlay Services
(topology management, routing, addressing, node discovery)

Substrate

Application Application Application Application

Substrate Substrate Substrate

Data
Delivery 
Service

Data
Delivery 
Service

Data
Delivery 
Service

Data
Delivery 
Service

interface

interface

ap
pl

ica
tio

ns
ov

er
la

y 
m

id
dl

ew
ar

e
un

de
rla

y

specification

Figure 1.6: Adding data delivery services for application-layer overlay middleware

1.3.2 Current Challenges

A data delivery service is composed of (1) a portion unique to each service and (2) com-

mon tasks shared between many services. The common tasks include creating messages,

sending messages, etc. The portion that is unique to each service is its behavior, i.e., the

processing flow. Existing overlay middleware provide a shared library for the common

tasks but their is no unified set of common tasks between different overlay middleware.

Hence a data delivery service may require a different implementation for each different



Chapter 1. Introduction 11

overlay middleware.

Overlay middleware may have many data delivery service that do the same thing.

There is no easy way to determine if any two implementation are of the same data

delivery service. Hence, common data delivery services may be implemented multiple

times. Also there is no way to determine if implementations of the same data delivery

service on different overlay middleware perform the same tasks. This motivates having

services expressed in a form other than code.

Currently, data delivery services are hard-coded, in the sense that it is not possible

to pass executable code between overlay nodes. If overlay nodes can execute a service

directly from a description of the service, then it becomes feasible to deploy services to

overlay nodes without modifying the software. If overlay nodes receive descriptions of

services and execute them directly, a mechanism to validate a service specification during

run-time is needed. The specification needs to be checked against malicious behaviour

and security breaches.

In this thesis, we present an overlay middleware design for deploying new data delivery

services that address these challenges and potentially foster the rapid evolution of services

for overlay middleware systems.

1.4 Contributions

In this thesis, we propose a novel method for network applications to declare and add

new data delivery services into an overlay middleware system. We extend the current

architecture for data delivery services employed by HyperCast [6]. We define each service

in terms of a specification. A specification for a service is the set of requirements that

the service must satisfy which includes its behaviour logic. These specification can be

dynamically loaded by overlay nodes.

We define a format for service specifications and provide an execution environment



Chapter 1. Introduction 12

to execute these specifications directly. Within the scope of our research, we define data

delivery services that react to two types of asynchronous events 1) arrival of messages

and 2) expiration of timers. The behaviour portion of a service is described using a

finite-state automata. We create a small set of overlay network primitives representing

actions that are the common tasks shared by all data delivery services. The set of overlay

network primitives are actions supporting a wide variety of data delivery services, but

not necessarily every possible service.

We use XML [17] to describe service specifications. XML is a W3C standard that

provides a simple format that is widely understood making it interoperable in many ap-

plication domains. We validate the service specifications using XML schema descriptions

during runtime.

For our prototype system, we leverage the architecture of HyperCast [27]. A compo-

nent is developed, which allows applications to dynamically define data delivery services

and deploy it in the overlay network. We employ a SCXML execution engine [1] to exe-

cute these service specifications. Since all data structures and functions used by the data

delivery service are defined in XML, we create a general and interoperable prototype

that could be adapted to any overlay middleware system. Our methodology easily allows

our system to be improved, as better XML parsers and XML schema validators become

available in the future.

In the remaining chapters, we describe in detail our design and describe classes of data

delivery problems that can be solved by our approach. We believe that our design provides

an effective method which allows services to evolve rapidly, and change functionality

dynamically based on network application requirements.



Chapter 1. Introduction 13

1.5 Organization

This thesis is organized as follows. Chapter 2 surveys related work. Chapter 3 gives

background detail on the enabling technologies for our system. Architectural goals and

details of our approach are provided in Chapter 4. Chapter 5 describes the implemen-

tation of our prototype. We evaluate our methodology in Chapter 6. We conclude with

discussions and future work in Chapter 7.



Chapter 2

Related Works

This chapter describes literature that inspired our work. The majority of the research

adds support for new network services in the network-layer, the transport-layer, or the

application-layer using application-layer overlay networks.

2.1 Configurable Network Services

A number of efforts support network service configurability by user applications. Some

of these are described below.

2.1.1 The x-kernel

The x-kernel is a framework for implementing network protocols [34]. X-kernel provides a

library of protocol elements for manipulating messages, addresses, events, memory tables,

threads, etc. There is operating system support for a generic mechanism for composing

these protocol elements based on layering to create larger protocols. The x-kernel project

demonstrated that large protocols can be expressed in terms of layered micro-protocols

while still maintaining high performance [37]. While the main objective of x-kernel was

to design, build, and test protocol implementation techniques, it provided a dynamic

14



Chapter 2. Related Works 15

method to compose protocol elements on a per-packet basis allowing new transport layer

services to be introduced.

2.1.2 Extensible Transport

There has been a steady stream of research over the years on configurable and extensible

transport solutions to unify different transport protocols. Most notably Bridges et al. [28]

proposes a general transport architecture where all possible transport functions are as-

sembles from small modules called micro-protocols. Micro-protocols are small algorithms

that implement individual mechanisms of reliable delivery, congestion control, in-order

delivery, flow control, etc. Applications create a customized data transport solution by

selecting a set of micro-protocols and assembling them together. The result is a flexible

mechanism to address application defined transport requirements.

Since there is no reasonable way to determine the types of micro-protocols, new micro-

protocols are created whenever more functionality is needed, which may results in increas-

ingly complex micro-protocol implementations and integration problems over time [28].

Given the possibility of having a large number of micro-protocols, a non-trivial mech-

anism is needed to compose them together in the correct order to achieve the desired

behaviour without creating harmful side-effects.

2.1.3 Protocol Boosters

Feldmeier et al. [32] presented a methodology for enhancing network layer and trans-

port layer protocols using elements called protocol boosters. The approach taken by the

researchers leverages the layered TCP/IP suite and allows sub-layers to be inserted be-

tween two end-hosts in a manner that is transparent to the rest of the protocol stack.

Protocol boosters allow dynamic protocol customization by network applications. Pro-

tocol boosters are agents (software modules) that reside anywhere in the network and

operate independently or cooperatively with other protocol boosters using their own con-



Chapter 2. Related Works 16

trol messages to “boost” (add new functionality) to existing transport protocols. The

emphasis of protocol boosters is to improve performance by adapting network processing

to both the application and network environment without altering existing network pro-

tocol behaviour. For example, acknowledgment messages (ACKs) can be compressed on

a system using a protocol booster to reduce ACK latency over asymmetric transmission

channels. Also, video transmitted over a lossy link may be augmented or boosted by a

forward correction (FEC) module using this approach.

2.1.4 NetServ

NetServ [41] is an extensible architecture deploying new core network services. Resources

and functions on a network node is broken up into small, reusable building blocks. A

new core network service is composed from these building blocks and executed using Java

which provides security, resource management, and portability. Network services, mod-

ules that are Java JAR files, are deployed dynamically using the component framework

for Java.



Chapter 2. Related Works 17

2.2 Active Networks

In an active network, routers or switches perform customized computations on the mes-

sages flowing through them. These networks are “active” in the sense that nodes, routers

and switches can perform computations on, and modify, the packet contents. Packets con-

tain executable code. This processing can be customized on a per-user or per-application

basis. Users use their packets to program the network. The concept of active network

emerged from the Defence Advanced Research Projects Agency (DARPA) in the 1990s.

Active networks emerged to address (1) the difficulty of integrating new protocols into

a standardized network infrastructure, (2) poor network performance due to redundant

network operations at several protocol layers, and (3) the difficulty of accommodating

new services in the existing network architecture. Active networks gave rise to the idea

of a programmable network. Since active networks operate at the network layer they are

suited to implement network protocol extensions such as routing.

2.2.1 Softnet

Softnet [50] is an experimental, distributed packet radio network from the 1980s that

allowed users to define their own high level-services (datagram, virtual calls, file transfer,

mailboxes, etc.), as well as changes of link layer protocols. Softnet nodes were dual

processor systems with one processor dedicated to the link and the other to user tasks.

Packets in Softnet are considered to be programs and are interpreted at intermediate

nodes. A standard set of functions allows the packets to control the node hardware,

e.g., allowing packets to retransmit themselves to other nods, store programs in remote

nodes, and synchronize with other packets. Softnet is the first example of a programmable

network and inspired interest in active networks.



Chapter 2. Related Works 18

2.2.2 Programmable Switches - A Discrete Approach

The programmable switch approach to active networking maintains the existing packet

format and provides a discrete mechanism for downloading programs [22]. The Switch-

Ware project developed a programmable switch that allows digitally signed type-checked

modules to be loaded into network nodes. Out-of-band program loading is used to support

new services, called value-added services. For example, users can inject custom process-

ing programs into routers and send packets through these routers to use the value-added

services. Services are separated from the switching by moving their processing to special

processors. This approach is “passive” since users directly extend the functionality of

switches beforehand and network elements can only perform pre-loaded computations on

user data.

2.2.3 ACTIVE IP

ACTIVE IP is an attempt to inject programs into the network to tailor node processing

[49]. The ACTIVE IP system was a proof-of-concept active network designed for network

probing. It allowed Tcl code fragments to be tagged with user IP packets that are custom

processed using a set of available primitives. ACTIVE IP tried to show that network

services can be composed from a relatively small set of primitives. It also showed that Tcl

programs can be compactly expressed thus allowing them to be transferred as payload.

2.2.4 ANTS - An Integrated Approach

The capsule approach replaces passive packets with packets containing executable pro-

grams which encapsulated in transmission frames and executed at each network node

[44, 48]. In this approach, every message is a program. ANTS is an integrated approach

to active networks where user programs are integrated with packet data. When a capsule

arrives at an active node, its content is executed. The capsule have the ability to invoke



Chapter 2. Related Works 19

build-in primitives which provide access to node resources. The primitives build into each

node include (1) packet manipulation, (2) node resource access, and (3) control of packet

flow. The capsules approach allows application-specific processing to be injected into

the network in order to build custom services such as multicast, data aggregation, etc.

Tennenhouse and Wetherall [43] studied issues related to component specifications, ac-

tive storage, multicast acknowledgement fusion, and network-based-traffic filtering. One

key idea of the capsules approach is that the programs contained within each packet

are dispatched to a transient execution environment where they are safely executed. The

capsules consume short term storage which is eventually “garbage-collected” by the node.

The execution environment restricts resource access outside of the environment to only

built-in primitives.

2.2.5 ESP

To address the need for network support for end-to-end services, ephemeral state process-

ing (ESP) [29] provides special “ESP” packets to create and manipulate small amount

of temporary state at routers using predefined operations, called instructions. States are

“soft” and reclaimed if they are not refreshed by new ESP packets. ESP is different from

ANTS in that each ESP packet can invoke only a single instruction on a state making

the per-packet processing time bounded. The researchers identified three applications

of ESP: (1) controlling packet flow, i.e., creating ephemeral state at router interfaces

where packet forward/drop decisions will be made, (2) calculations on user data and

data aggregation, and (3) discovering topology information.

2.3 Automatic Generation of Network Protocols

We next describe efforts to express network protocols as specifications.



Chapter 2. Related Works 20

2.3.1 Network Protocols Expressed as State Machines

There exist a body of work on automatic generation of network protocol implementations

from specification of the OSI protocols expressed as finite-state machines. Examples

include Esterel [26], Estelle [45], LOTOS [45], SDL [45], etc. These specifications were

compiled into implementations [30, 47] using custom compilers. The primary focus of this

research is on supporting formal specification and verification of protocols while increasing

readability and reusability of code. Here, state machines transitions are triggered by

arrival of messages and timer events from the network or from the local node.

2.3.2 Network Protocols Expressed as Grammar

An alternative to state machines is RTAG [24], where network protocols are expressed as

a grammar. Incoming messages and events are expressed as tokens causing reductions in

grammar rules. The behaviour of the protocols is held on the parser stack rather than

encapsulated as a finite-state machine. An advantage of this approach is that specification

forms can be restricted through syntax of tokens as in network programming languages.

For example, PLAN [33], a Packet Language for Active Networks, is a programming

language for active networks. It is designed to be compact so programs can be carried

directly in packets.



Chapter 2. Related Works 21

2.4 Automatic Generation of Overlay Networks

The following body of literature explores the automatic generation of overlay networks

from a specification.

2.4.1 MACEDON

MACEDON [39] adopts a finite-state machine approach to automatically generate over-

lay network code from a specifications. MACEDON can implement a number of overlay

protocols (e.g., Chord, Pastry, etc) with only a few hundred lines of MACEDON specifi-

cation code. The performance of a MACEDON network is comparable to a custom C++

implementation.

2.4.2 Declarative Networking

Declarative Overlays [36] is a methodologies for automatically generating overlay net-

works using a declarative language. The prototype system, P2, enables applications to

express application-layer overlay networks in a compact and reusable specification. Dif-

ferent from protocol centric overlay specification approaches such as MACEDON [39],

which specify overlay execution via automata for event and message handling, P2 uses

a structure-centric approach by viewing the network as a relational database. P2 uses

a declarative language based on database query languages to describe relationships be-

tween network nodes. This methodology is similar to the approach taken for distributed

hash tables (DHTs), which specifies overlays by focusing on a network graph structure

(hypercube, torus, de Bruijn graph, small-world graph, etc.), whose invariant properties

must be maintained via asynchronous messaging [36].

P2 maintains the overlay by running distributed queries over network graphs. The

structure of the overlay network is specified as the relationship between entries in the

tables representing overlay nodes, and control messages (represented as <key, value>



Chapter 2. Related Works 22

tuples) are queries on those tables. In Declarative Routing [36], the authors demonstrated

that recursive queries can be used to express a variety of wired and wireless routing

protocols in a concise manner.

Declarative approaches cannot express applications requirements for different combi-

nations of reliable data delivery, in-order data delivery, congestion control, and ow control

end-to-end services without severe modifications to the declarative language constructs

[36]. Implementing these using declarative networking require support for timers (e.g.,

retransmission timers, state timers). The current declarative language does not support

multi-rule atomicity. This leaves specifications susceptible to race conditions [36].



Chapter 3

Background

In this chapter, we describe three technologies that are relevant to our research. Our

design and implementation extend and leverage these software packages.

3.1 HyperCast

HyperCast [6] is an overlay middleware implemented in Java that provides abstractions

and primitives for network applications to build and maintain application-layer overlay

networks. HyperCast provides a facility that enable development of new services. Our

work extends HyperCast to enable customizable services.

Network applications use HyperCast to construct an application-layer overlay network

on top of underlay networks, called substrate networks in HyperCast, without changing

Internet routing or switching infrastructure. In HyperCast, a substrate network is any

packet-based communication channel, which provides either a unicast or multicast packet

delivery. TCP/IP, UDP, IP, Ethernet, 802.11 networks, and other overlay networks are

all examples of substrate networks.

Our design and implementation is part of the HyperCast project. Below we describe

portions of HyperCast middleware that are relevant relevant to our research.

23



Chapter 3. Background 24

3.1.1 Overlay Socket

HyperCast introduces the concept of overlay sockets as end-points of communication

in an overlay network. Overlay sockets are equivalent to overlay nodes. A HyperCast

overlay network is simply viewed as a collection of overlay sockets. Applications can use

the APIs of the overlay sockets to send application messages to other overlay sockets.

Overlay sockets are created and configured by applications with attributes that specify

the name of the overlay network to join, the type of overlay network topology (Delaunay

Triangulation, Hypercube, Spanning Tree, DHT, etc.), the communication protocol to

use for overlay messages (UDP, TCP), etc. To maintain the overlay network, overlay

sockets exchange control messages, called protocol messages among each other.

Each overlay socket defines two types of identifiers. The logical address uniquely iden-

tifies an overlay within a overlay network. Overlay network functions such as naming,

routing, and topology management use logical addresses. For example, a node in Hy-

perCast determines a next hop destination for each message using only the destination

node’s logical address of that message. The format of the logical address depends on the

network topology of the overlay network. For example, a logical address can be a positive

integer (Spanning Tree) or a multi-dimensional coordinate spaces (x, y) (Delaunay Trian-

gulation). An overlay socket can have multiple heterogenous substrate networks. Each

of these substrate networks is identified by an substrate address. A substrate address

consists of an underlay address and information that uniquely identifies the substrate

(address realm and protocol type). The underlay address identifies a network attach-

ment point (unicast) or multiple network attachment points (multicast or anycast) and

is used to send and receive messages. Examples of address realms are public IPv4 net-

work, private IPv4 networks, IPv6 network, ethernet, etc. The protocol type identifies

different instance of the same network. HyperCast support multiple formats of substrate

addresses. For a simple example, if the substrate network is TCP in a public IPv4 address

realm, then the substrate address is < publicip, tcp, 128.100.100.128 : 8080 >.



Chapter 3. Background 25

In HyperCast, the overlay node identifier, i.e., the logical address, and its substrate

network attachment points, i.e., the substrate addresses, are decoupled. Applications

only deal with logical addresses, and do not see the substrate addresses of an overlay

socket. Each logical address can be associated with multiple substrate addresses and

each node in the overlay network maintains a set of address binding, called the address

list. An overlay node does not need to have the complete address list of another overlay

node to be able to contact it. An overlay node that is connected to only one substrate

can only use substrate addresses that belong to that particular substrate.

HyperCast overlay sockets provide application programming interfaces (API) for net-

work application. The overlay socket API allows applications to create a new overlay

network, to join and leave existing overlay networks, and to send and received data from

other overlay nodes once the overlay network is configured. Before an overlay socket

is created, the application configures the components of the overlay socket such as the

the overlay network to join, the type of overlay topology to use, the size of buffers, etc.

Once created, the overlay socket can attempt to join an overlay network specified by the

overlay network identifier. Once the overlay socket successfully joins the overlay network,

it can create, transmit, and receive application messages. Application messages can be

send via unicast, multicast, or flood.

Each overlay socket isolates overlay functions such as message forwarding, topology

management, within well-defined modules. Figure 3.1 shows the main components of an

overlay socket and their relationships to each other.

3.1.1.1 Adapter

Each overlay socket provides an abstraction layer of the substrate networks using an

adapter. The overlay socket uses the adapter to send and receive messages to substrate

networks identified by substrate addresses. The adapter maintains two buffers for incom-

ing messages, one for protocol messages and one for application messages. The adapter



Chapter 3. Background 26

Overlay Socket Interface

Overlay
Socket

Adapter

Adapter Interface

Address Repository Timer

Interface 
1

Interface
2

Interface
n

Interface
3

Overlay Node

Overlay Node Interface

Forwarding 
Engine

MessageStore

MessageStore 
message?

MessageStore 
will do 

forwarding?

Timers

address resolutionApplication message Protocol message

Send
message

Receive
message

Callback

Substrate
Network

1

Substrate
Network

2

Substrate
Network

3

Substrate
Network

n

Application message and Protocol messages

Yes

No

No

......

......

Message 
destined for 
local node?

Application message

Yes

Application message

No
(forward to 
next-hop)

next
hop

Figure 3.1: An overlay socket and its components



Chapter 3. Background 27

passes messages to other overlay socket components to be processed.

The adapter has one interface for each substrate network to which the overlay socket

is connected. Each interface provides the send and receive functions for that substrate

network. Some example interfaces are UDP Unicast interface, UDP Multicast interface,

TCP interface, Ethernet interface, etc.

The adapter is responsible for the management of substrate addresses. The address

repository is a subcomponent of the adapter that maintains the address bindings between

the logical address and underlay addresses. The address repository is able to resolve a

logical address to a substrate address. Moreover, the address repository allows other

overlay socket components to add, remove, and update address bindings.

The adapter also contains a timer thread which provide timing service for all compo-

nents of the overlay socket.

3.1.1.2 Overlay Node

The overlay node is responsible for maintaining the overlay network topology. It runs

a protocol that establishes and maintains the overlay network topology using protocol

messages. The overlay node is the only component in the overlay socket that is aware of

the overlay topology. Each type of overlay topology has its own type of overlay node.

3.1.1.3 CSA Processor

The CSA processor is constructed as a layer between the adapter and overlay node and

is transparent to both. All incoming and outgoing protocol messages are passed through

the CSA processor. The CSA processor control the selection of the substrate addresses

associated with a logical address.



Chapter 3. Background 28

3.1.1.4 Forwarding Engine

The forwarding engine implements the forwarding mechanics for application messages. It

is responsible for sending, receiving, and forwarding application messages in the overlay

network.

In HyperCast, all application messages are transmitted along trees that are embed-

ded in the overlay network topology. Here we provide some definition regarding these

embedded tree nodes that we will use later in this thesis. The topmost node in a tree is

called the root node. Each node in a tree has zero or more child nodes, which are below

it in the tree. A node that has a child is called that child node’s parent node. A node

has at most one parent. A leaf node is any node that does not have child nodes. A node

p is an ancestor of a node q if it exists on the path from the root to node q. The node

q is called a descendant of p.

Multicast messages are forwarded downstream with the sender as the root of the

tree. Unicast messages are sent upstream in an embedded tree with the receiver at the

root. When flooding is used, an overlay socket forwards application messages to all

its neighbours in the overlay topology and all neighbours that receive the message will

forward the message to all of its neighbours. The forwarding mechanisms are realized

based solely on the logical addresses of application messages. Forwarding decision are

made based on the destination logical address for unicast messages and the source logical

address for multicast messages.

When an overlay socket receives an application messages it is passed to the forwarding

engine. An application can receive application messages through a blocking read or

through a non-blocking callback. If the message the local overlay socket is the destination

of the message, it is passed to the application. If the message has to be forwarded, the

forwarding engine communicates with the overlay node to determine the next-hop(s) and

forwards the message.

The forwarding engine is also responsible for delivering application messages marked



Chapter 3. Background 29

with services to the MessageStore. By default, HyperCast provides a best-effort (unreli-

able, unordered, possible duplication) delivery service for application messages. Applica-

tion messages can be marked as a MessageStore message to realize an enhanced delivery

service. The description of the MessageStore is described in the next section. Here, we

describe how the Forwarding Engine processes these special messages.

A default HyperCast application message is composed of a header and a sequence

of extensions as seen in Figure 3.2(a). The header of an application message specifies

parameters such as version, delivery mode, source logical address, previous-hop logical

address, hop limit, etc. Following the overlay message header is a set of extensions.

The extensions are linked by the extension field as shown in dark grey. The sequence

of extensions are terminated with the “0x00” in the extension field. The data for the

application message is linked as an extension called “Payload Extension”.

Overlay message 
header

(at least 14 bytes)

Payload
Extension
(1 byte)

Payload
(variable)

0x00
(1 byte)

(a)

Overlay message 
header

(at least 14 bytes)

Payload
Extension
(1 byte)

Payload
(variable)

FSM
Extension
(1 byte)

ServiceID
(2 bytes)

0x00
(1 byte)

Message 
Type

(1 bytes)

MessageID 
(4 bytes)

(b)

Overlay message 
header

(at least 14 bytes)

FSM
Extension
(1 byte)

ServiceID
(2 bytes)

0x00
(1 byte)

Message 
Type

(1 bytes)

MessageID 
(4 bytes)

(c)

Figure 3.2: (a) A HyperCast application message (b) A HyperCast application message

marked with a service and a payload (c) A HyperCast application message marked with

a service without a payload.

For HyperCast application messages containing payload marked with an enhanced

delivery service, the application message contains an additional extension called the FSM



Chapter 3. Background 30

Extension as shown in Figure 3.2(b). This extension identifies the type of service in the

ServiceID field. The MessageType field identifies a message type that is depended on the

service. The MessageID field specifies a message identifier that is created at the source

of the message when the application payload is sent for the first time. This message

identifier should uniquely identify a message among all messages currently processed

by all overlay sockets of the overlay network. However, uniqueness is not enforced by

HyperCast. Payload messages marked with an enhanced delivery service is called a

MessageStore data message. Additionally, an application message can be marked with

an enhanced delivery service without containing payload data as shown in Figure 3.2c.

This type of message is called a MessageStore control message.

A comprehensive description of the message formats in HyperCast can be found in

the HyperCast document [8].

When sending or receiving application messages marked with an enhanced delivery

service, the forwarding engine first checks if the application message has an FSM Exten-

sion. If the message has this extension, the message is cloned and the cloned message

is passed to the MessageStore to be processed. A thread in the MessageStore processes

the cloned message currently with the forwarding engine from this point onward. The

original message resumes processing in the forwarding engine. If the message is to be

received by the application, it is the responsibility of the MessageStore to forward the

cloned message to the application. This is because MessageStore determines when and

how a message should be forwarded to the application yet messages destined for other

nodes in the overlay network should be forwarded as soon as they are received by the

forwarding engine.

In the next section, we describe in detailed the MessageStore component.



Chapter 3. Background 31

3.1.1.5 MessageStore

MessageStore is a component of the the overlay socket responsible for realizing services

beyond the default best-effort delivery service. It is an optional component inside an over-

lay socket. MessageStore is initialized with the HyperCast configuration object when the

overlay socket is created. There is a thread responsible for processing application mes-

sages delivered to the MessageStore. When the overlay socket joins the overlay network,

this thread is started. When the overlay socket leaves the overlay network, this thread

is terminated.

In HyperCast, the MessageStore provides a set of services that can be invoked when

application messages are sent marked with an enhanced delivery service. For each service,

a finite-state machine (FSM) specifies how messages are handled by the MessageStore.

The service also specifies the supported delivery mode.

When MessageStore receives a new message marked with a service’s identifier (ServiceID),

a finite-state machine instance for that service is created for that message. MessageStore

creates a new finite-state machine instance for every data message received with a new

message identifier (“MessageID”). The finite-state machine instance stores the received

data message corresponding to the message identifier, and additional control information.

Using the finite-state machine, the MessageStore is determines the state of the data mes-

sage. It then can send or receive control messages to or from other overlay nodes in the

overlay network.

Figure 3.3 illustrates the steps involved in processing a MessageStore message. The

following steps occur:

1. The message is received at the MessageStore by the method receiveMessage.

The message is checked to determine if its a data message containing payload

or a control message. The message is then written to the MessageStore FIFO

queues DataBuffer (for data messages) or ControlBuffer (for control message)



Chapter 3. Background 32

FSMStore

<serviceID,msgID> FSM

DataBuffer ControlBuffer

Message Message

Message

Message

Message

MessageProcessor

ProcessMessage

Message

New 
msgID?

createFSM

FSM

getFSM

FSM

FSM

Message

ReceiveMessage

Yes

No

Check Get Update

Data 
Message?

Message

Yes No

Figure 3.3: How a message is process by its finite-state machine (FSM) in MessageStore

correspondingly.

2. The MessageStore has a MessageProcessor thread that constantly checks if the

queues DataBuffer and ControlBuffer have messages available, and, if so, de-

queues them to be processed.



Chapter 3. Background 33

3. The processMessage method processes each message. The service identifier of

message is extracted and checked against the list of supported services in Message-

Store.

If the service is found, the message identifier MessageID of the message is extracted

and checked along with the service identifier ServiceID (the unique identifier of

a finite-state machine instance for a data message consists of a service identifier

and a message identifier) against the MessageStore repository of stored finite-state

machine instances. If the repository does not contain a finite-state machine instance

with this unique identifier, it means the message is new. A new finite-state machine

instance is created using the createFSM method. If the repository already contains

the finite-state machine (FSM) instance, the reference to it is obtained using the

getFSM method from the MessageStore repository.

Data messages contain payload data and control messages contain control infor-

mation (i.e. acknowledgments, no-acknowledgment, etc.). Both message types are

recognized as part of one finite-state machine instance for a service if they have the

same unique identifier. In the case of data messages, if two messages have the same

unique identifier, they are treated as two copies of the same message, even if they

have different payloads or different source logical addresses. The unique identifier

of a control message associates the control message with a data message.

4. If a message is a data message, the message is stored with the finite-state ma-

chine instance if it is new. If the message is a control message, the corresponding

finite-state machine instance is updated. Depending on the service, this may in-

volve sending new control messages to other overlay nodes, transmitting the data

message, or setting timers.

5. The finite-state machine instance for message is stored (new message) or updated

(message already received) in the finite-state machine repository of MessageStore.



Chapter 3. Background 34

For a detailed implementation of the HyperCast MessageStore, please refer to the

design document [7].



Chapter 3. Background 35

3.1.2 HyperCast Services

HyperCast provides six services within the MessageStore component. Each of these ser-

vices is identified by a unique service identifier and implemented as a finite-state machine.

The finite-state machines for the services are implemented by a common MessageStore

finite-state machine interface as shown in Figure 3.4. In the next sections we describe

in detail two of the reliable message delivery services: Hop-to-Hop acknowledgment and

End-to-End acknowledgment. The other four services will be described concisely at the

end of this section.

FSM

End-to-end 
Acknowledgement

Hop-to-hop 
Acknowledgment

Duplicate Elimination

Incast

Synchronization

Best-effort Ordering

implement

Figure 3.4: Services in HyperCast



Chapter 3. Background 36

3.1.2.1 Hop-to-Hop Acknowledgement

Hop-to-Hop Acknowledgement is a service for reliable transfer of messages across a single-

hop in an overlay network topology. Hop-to-Hop acknowledgement enhances single-hop

reliability over unreliable communication links (e.g., UDP). In this service, an acknowl-

edgment from a child node indicates to the sender that an immediate child node has

received the message successfully. However, the sender does not know if all nodes have

successfully received the message.

A sender that has transmitted a data message expects to receive an acknowledgement

from children nodes to which the message was sent. When an overlay node receives a

message, it immediately sends an acknowledgment, called the H2H ACK, to its parent

node. If the node is not a leaf in the tree, it also forwards the message to its immediate

children. Figure 3.5 shows an example of this service.

After a time limit, if a sender has not received an acknowledgment from a child, it

sends to the child a message to request an acknowledgment (ACK Request) in case the

acknowledgment was lost. If a child node does not have the message, then it sends a

negative-acknowledgment (NACK) in reply.

A retransmission is performed only when the sending node receives a NACK. The

intended receiver of a data message (the child node) is responsible for recovering the data

message if it is not received. If the data message cannot be recovered, then the node

will give up. Additionally, the sender (the parent node) is responsible for requesting

acknowledgment from its child nodes using the ACK Request message. If it still does not

receive an acknowledgment after a reasonable amount of time, then it will give up. Thus,

each node in the overlay network makes a best-effort to enhance single-hop reliability.

The Hop-to-Hop Acknowledgement service uses five message types which are de-

scribed in Table 3.1.

Four types of timeouts are used for the Hop-to-Hop Acknowledgment service. The

timers are described in Table 3.2.



Chapter 3. Background 37

S

1

3 4

2

5 6

ACK

Payload

(a)

S

1

3 4

2

5 6

ACK

Payload

(b)

S

1

3 4

2

5 6

ACK

Payload

(c)

Figure 3.5: (a) The sender (S) delivers a message to its children nodes (node 1 and node

2). (b) When node 1 and node 2 get the message, they send H2H ACKs to parent node S.

In the meantime, the data is forwarded to their children node (node 3, 4, 5, 6). (c) When

node 3, 4, 5, 6 receive the message, they send H2H ACKs to their respective parents

nodes 1 and 2.

In Figure 3.6, the finite-state machine for the Hop-to-Hop Acknowledgment service

is shown. States are indicated by circles. The initial state is the grey single circle



Chapter 3. Background 38

Table 3.1: Messages for the Hop-to-Hop Acknowledgment service

Message Description

Payload Payload message contains the payload data. The payload message

is forwarded along the edges of a spanning tree from a source to the

destination, where the source is the root of the spanning tree. Each

node that receives a payload message forwards it to its children in

the tree as well as to the local application. If a node has the payload

message stored in the MessageStore and has already forwarded the

payload message, then it will not forward the payload message

again. A node that receives a NACK from a child node and that

holds the payload message retransmits the payload message to the

requesting child node.

H2H ACK A H2H ACK acknowledges the receipt of a single payload message.

A H2H ACK is sent immediately after a payload is received for

the first time or immediately after an ACK Request message is

received.

ACK Request ACK Request message is used to request the transmission of a H2H

ACK from a child node. The ACK Request message is sent from

the parent node to its immediate children.

NACK A NACK is sent from a child node to its parent in the tree to

request for the retransmission of a payload message.

Reset A node sends a reset message when it gives up or is forced to give

up on a particular message. A node that receives a reset message

sends the reset message to all of its children.



Chapter 3. Background 39

Table 3.2: Timers for the Hop-to-Hop Acknowledgment service

Timer Description

TimeoutACK ,

TimeoutmaxACK

If a payload message is transmitted for which H2H ACK messages

are expected, then the TimeoutACK is set. If not all H2H ACK

messages are received when the TimeoutACK timer goes off then

an ACK Request message is transmitted to the children which

have not yet sent H2H ACK messages. Also, a new TimeoutACK

is scheduled. The state machine is reset and Reset messages are

transmitted to all children nodes if not all H2H ACK messages are

received after TimeoutmaxACK .

TimeoutNACK ,

TimeoutmaxNACK

A TimeoutNACK is scheduled immediately after a NACK is trans-

mitted. If the message has not arrived after TimeoutNACK , then

another NACK message is requested and a new TimeoutNACK is

scheduled. The state machine is reset and Reset messages are

transmitted to all children nodes if not all H2H ACK messages are

received after TimeoutmaxNACK times out.

TimeoutRST and

TimeoutmaxRST

A TimeoutRST is scheduled when the state machine is reset and

Reset messages are transmitted to all children after TimeoutRST .

All state information is deleted after TimeoutmaxRST .

TimeoutMsg Once all required operations for a payload message have been per-

formed, the service enters the “Done” state where the TimeoutMsg

is set. All of the state information is deleted after TimeoutMsg.



Chapter 3. Background 40

labelled “Init”. The grey double circle labelled “Done” is the final state for normal

service operation. Arcs represent state transitions; each arc is labelled with an input

event (E) which triggers the transition and the actions (A) to be performed as result.

E: NACK
A: retransmit
    Payload
    to children

E: ACK Request
A: send H2H ACK
    to parent
    (if not source)

E: TimeoutACK
A: send ACK
    Request to  
    children

E: TimeoutmaxRST

E: NACK (if source)
A: send Reset
    to children

E: TimeoutRST
A: send Reset

Reset Init

Wait for 
ACK

Don't have 
payload

E: Payload
A: forward Payload to children,
    send H2H ACK (if not source)
    to parent

E: ACK Request or NACK 
    (if not source)
A: send NACK

E: Payload (not leaf)
A: forward Payload to children,
    send H2H ACK to parent

E: TimeoutNACK

     or ACK Request

A: send NACK
    to parent

E: Reset or 

     TimeoutmaxACK
A: send Reset to 
    children

E: Reset
A: send Reset to 
    children

E: all H2H ACKs received
    or TimeoutmaxACK

E: Payload (leaf)
A: send ACK
    (if not source)

E: NACK
A: retransmit
    Payload
    to children

E: ACK Request
    (if not source) 
A: send ACK

E: Reset or 

     TimeoutmaxACK
A: send Reset to 
    children

E: TimeoutMsg
A: remove FSM

E: Payload (leaf)
A: send H2H ACK to parent
    (if not source)

Done

Figure 3.6: State machine diagram for Hop-to-Hop Acknowledgement service



Chapter 3. Background 41

3.1.2.2 End-to-End Acknowledgement

End-to-End Acknowledgement is a service for reliable end-to-end transfer of messages to

all nodes in an overlay network. In this service, an acknowledgment (Full ACK) indicates

that all nodes that are the sender’s descendants have received the message.

Message transmission in this service proceeds as follows. A node that is a leaf in

the tree sends an full acknowledgment (Full ACK) to its parent node upon receipt of a

message. A node that is not a leaf in the tree will transmit a Full ACK to its parent node

once it has received Full ACKs from all of its children. When the source of a payload

message receives a Full ACK, then it knows all of the nodes that are its descendants in

the tree have received the message. Figure 3.7 shows an example of this service in a tree

topology.

If a non-leaf node received some acknowledgments but not all acknowledgments from

its children nodes, then it will send a partial acknowledgment (Partial ACK) to its parent.

This ensures that some kind of acknowledgement is transmitted upstream, even though

not all nodes have acknowledged the receipt of the message. The transmission of Partial

ACKs is enforced by timers.

After a time limit, if a sender has not received an acknowledgment from its child, a

sender sends to a child node a message to request an acknowledgment (ACK Request) to

query if the child has received the message. If a child node does not have the message,

then it sends a negative-acknowlegdment (NACK) in reply. If the sender requires that

all receivers must receive the message, a retransmission is performed when the sender

receives NACKs.

There are a total of six message types that are used by the End-to-End Acknowl-

edgement service. Payload, ACK Request, NACK and Reset messages have the same

meaning as described in Hop-to-Hop acknowledgement service (Section 3.1.2.1). Two

types of additional messages are listed (Table 3.3):

Timeouts for the End-to-End acknowledgement service include all the timeout types



Chapter 3. Background 42

S

1

3 4

2

5 6

ACK

Payload

(a)

S

1

3 4

2

5 6

Full ACK

Payload

(b)

S

1

3 4

2

5 6

Full ACK

Payload

(c)

S

1

3 4

2

5 6

Full ACK

Payload

(d)

Figure 3.7: (a) The sender (S) delivers a message to its children node (node 1 and node

2), which forward the message to their children nodes (nodes 3, 4, 5, 6). (b) When leaf

nodes 3, 4, 5, and 6 receive the message, they send a Full ACK to their parent nodes. (c)

The ACKs are merged at node 1 and 2. (d) Node 1 and 2 will send Full ACKs to their

parent node, the sender (S).

of Hop-to-Hop Acknowledgement service described in Section 3.1.2.1. Here the acknowl-

edgment timers represent the full acknowledgment timers. One additional timeout is



Chapter 3. Background 43

Table 3.3: Messages for the End-to-End Acknowledgment service

Message Description

Full ACK A Full ACK is sent by a leaf node to its parent node after it

receives a payload message. A non-leaf node sends a Full ACK

to its parent node after it receives Full ACKs from all of its

child nodes.

Partial ACK A Partial ACK acknowledges a the node downstream is waiting

for Full ACKs from its children. Non-leaf nodes send Partial

ACKs periodically to their parent nodes.

described in Table 3.4.

Table 3.4: Timers for the End-to-End Acknowledgment service

Timer Description

TimeoutPACK TimeoutPACK is scheduled to send Partial ACK periodically by

non-leaf nodes in a tree to their respective parent nodes.

In Figure 3.8, the finite-state machine for the End-to-eop acknowledgment service is

shown. States are indicated by circles. The initial state is labelled as “Init”. The final

state is labelled as “Done”. Arcs represent state transitions; each arc is labelled with

an input event (E) which triggers the transition and the actions (A) to be performed as

result.



Chapter 3. Background 44

E: NACK
A: retransmit
    Payload
    to children

E: TimeoutACK 

     (not all Partial 

     ACKs received)
A: send ACK
    Request to
    children

E: TimeoutmaxRST

E: NACK (if source)
A: send Reset
    to children

E: TimeoutRST
A: send Reset

Reset Init

Wait for 
ACK

Don't have 
payload

E: Payload
A: forward Payload
    to children

E: ACK Request or NACK 
    (if not source)
A: send NACK

E: Payload (not leaf)
A: forward Payload to children,
    send H2H ACK to parent

E: TimeoutNACK

     or ACK Request

A: send NACK
    to parent

E: Reset or 
A: send Reset to 
    children

E: Reset
A: send Reset to 
    children

E: all Full/Partial ACKs 
     received
A: send Full/Partial ACK
    (if source) to application

E: Payload (leaf)
A: send  send Full ACK
    (if not source) to 
     application

E: NACK
A: retransmit
    Payload
    to children

E: ACK Request
    (if not source) 
A: send Full ACK

E: Reset or 

     TimeoutmaxACK
A: send Reset to 
    children

E: TimeoutMsg
A: remove FSM

Done

E: ACK Request 
    or TimeoutACK

     (if not source)

A: send Partial ACK to 
    parent (if not source)

E: Payload (leaf)
A: send Full ACK to parent
    (if not source) and 
    application

Figure 3.8: State machine diagram for End-to-End Acknowledgement service



Chapter 3. Background 45

3.1.2.3 Other Services

HyperCast also provides several other services. They are described in Table 3.5. For a

comprehensive document on all HyperCast service, we refer to [7].

Table 3.5: Other HyperCast Services

Network Service Description

Duplicate Elimination This service discards a message if it is a duplicate of an earlier

received message.

Synchronization Each overlay node stores each transmitted and received mes-

sage and periodically synchronizes the stored message with its

neighbors in the overlay network.

InCast This service merges the payload of unicast messages with iden-

tical destination addresses and message identifiers.

Best Effort Ordering In this service, received messages are passed to the application

program in the order of sequence numbers. However, there

can be “holes” in the middle of the sequence due to the loss

of messages.



Chapter 3. Background 46

3.2 SCXML: State Chart XML

State Chart XML(SCXML), State Machine Notation for Control Abstraction is a markup

language to express generic state machines in XML [17]. SCXML provides the XML

syntax for specifying any deterministic FSM using XML. SCXML is an ongoing W3C

standard. The last working draft of the specification was released by the W3C in February

2012 [16].

Our implementation uses SCXML to specify the finite-state machines for the services

as SCXML documents. The details of SCXML documents can be found at the W3C

working draft [16]. These SCXML document can then be executed by an SCXML based

execution environment such as Apache Commons SCXML [1].

Here we provide a brief overview of the SCXML components. In Chapter 5 we will

discuss in detail the relevant portions that our implementation uses.

3.2.1 Apache Commons SCXML

Apache Commons SCXML is a Java library that provides an execution framework for

state machines specified in SCXML. Apache Commons SCXML provides classes to parse

the SCXML specification of a finite-state machine to create a finite-state machine in-

stance. The finite-state machine instance contains the software realization of the SCXML

document. Since HyperCast MessageStore services are finite-state machines, they can be

specified in SCXML.

The SCXML parser creates two additional interacting components from the SCXML

Document. The first is the SCXML Datamodel, which contains application defined

data elements. The data elements are in the form of XML DOM (Data Object Model)

trees [15]. The SCXML Datamodel can be referenced in SCXML and other software

components can also interact with the data through the Apache Commons SCXML

libraries.



Chapter 3. Background 47

Finite-state machine 
(FSM)

instance

SCXML
Engine

SCXML
Datamodel

SCXML
Parser

Custom
Actions

SCXML
Document

outgoing action

incoming event

Domain

Bridge

Figure 3.9: Interacting components of the Apache Commons SCXML framework

The Custom Actions interface allows applications to define custom SCXML tags that

specify executable content within SCXML documents. Processing of the content will be

delegated to components outside of the Apache Commons SCXML. The Custom Actions

interface allow applications to define how and where the processing of these executable

content occurs.

The other interacting components of this framework, as defined by Apache Commons

SCXML, are shown in Figure 3.9. Below we describe these components.



Chapter 3. Background 48

3.2.1.1 SCXML Engine

The SCXML engine is a generic event-driven state machine based execution environment.

The finite-state machine instance can is executed by the SCXML engine. The SCXML

engine does not store any information related to a particular finite-state machine in-

stances. Therefore, it is possible for one SCXML engine to execute multiple finite-state

machine instances. The SCXML engine implementation is single-threaded.

3.2.1.2 Domain

The Domain is the application that communicates with the SCXML engine. The domain

is a software program that sends events to the SCXML engine and processes executable

content from the Custom Actions interface. In our implementation, the Domain is a

network application running a HyperCast overlay socket.

3.2.1.3 Bridge

The Bridge is the two-way communication link that 1) processes the events from the

Domain and triggers those events in the SCXML engine updating the finite-state machine

instance, and 2) processes the executable content from the Custom Actions interface and

trigger them in the Domain.



Chapter 3. Background 49

3.3 XQuery

XQuery is a language for querying data represented in XML. Given an XML document

represented as a DOM tree, XQuery uses XPath expression syntax to query specific parts

of an XML document.

An XPath expression specifies a path. For example, given a XML document called

nodes.xml:

<NodeA>
<NodeB>

<NodeC>100</NodeC>
</NodeB>

</NodeA>

A XPath expression that queries the value of <NodeC> is: /NodeA/NodeB/NodeC.

XPath syntax can be a complex expressions that specifies the direction to navigate from

a node, and filters on a node’s name and value. For a complete reference on XPath we

refer to [19].

XQuery supplements the path expression provided by XPath by adding conditional

expressions and comparisons. An example XQuery expression using conditional expres-

sion and comparisons that returns true if the value of <NodeC> is equal to 100 is:

for $x in doc("nodes.xml")/NodeA/NodeB/NodeC
return if $x=100
then <out>true</out>
else <out>false</out>

XQuery is a powerful query language that have many additional features. We have

only showed a simple example of XQuery syntax. For a complete reference on XQuery

we refer to [20].

3.3.1 Saxon XQuery and XSLT Processor

The Saxon XQuery and XSLT Processor [14] is a Java-based XQuery processor that is

XML schema aware. An XML schema is a description of a XML document, expressed in

terms of constraints on the structure and content of documents. The schema is used to



Chapter 3. Background 50

validate the correctness of XML documents. For a complete reference on XML schema,

we refer to [18].



Chapter 4

Design of Customizable Services

In this chapter, we describe a software architecture that enables custom data delivery

services for application-layer overlay networks. These services are defined by applications

and dynamically deployed to an application-layer overlay middleware system. We view a

service as a distributed software application, on a non-empty set of cooperating overlay

nodes N0, N1, ..., Nn, that receives inputs, from which the service produces outputs as

shown in Figure 4.1.

serviceinputs outputs

Figure 4.1: Abstraction of a service

Some services can sufficiently determine their outputs solely based on current inputs

while other services need additional information about the changes in the inputs over

time to determine its outputs. The concept of states is used to represent information

about a service’s history. In reference to automata theory, a state is a unique stage of

processing in a service. A service can have one or more states. A service determines its

next state based on its current state and on its current inputs. Hence, the current state

51



Chapter 4. Design of Customizable Services 52

contains the information on how the service reached the present situation.

service

service-independent tasks service-dependent tasks

processing 

inputs

processing 

outputs

behaviour of 

the service

finite-state 

machine

model

events actions

represent represent

Figure 4.2: A service decomposed

We model a service with two components as illustrated by Figure 4.2. The first com-

ponent involves processing of service-independent tasks. Different services share common

tasks, e.g., sending messages, setting timers, etc. While different overlay networks net-

works may specify different message formats, timer formats, and method signatures for

common tasks, the semantics involved in processing these data structures and functions

are common to all services. We decompose these common tasks into two sets: 1) the

processing of inputs to the service, and 2) the processing of outputs produced by the

service during execution. The inputs to be processed (e.g., the arrival of messages, expi-

ration of timers, etc.) are called events and the outputs produced (e.g., overlay network

function invocations such as sending messages, querying local node statistics, etc.) are

called actions.

The second component are service-dependent tasks, i.e., tasks that are unique to each

service. For example, when and what outputs are produced when a service process certain

inputs. In services that behave differently, this component characterizes the behaviour of



Chapter 4. Design of Customizable Services 53

each service. The behaviour logic is independent of the different formats for inputs and

outputs. We model the behaviour of a service by a deterministic finite-state machine. In

the next section, we formally define deterministic finite-state machines.

4.1 Finite-State Machine

A deterministic finite-state machine can be presented as a directed graph (Figure 4.3)

with the following elements (E, S, δ, F,A), where:

• E = (E1, E2, ..., En) is a finite, non-empty set of input symbols. These represents

events.

• A = (A1, A2, ..., An) is a finite, non-empty set of output symbols. These represents

actions.

• S = (S0, S1, S2, ..., Sn) is a finite, non-empty set of states. In Figure 4.3, states are

represented by circles with unique designator symbols, S0, S1, orS2, written inside

them.

• S0 ∈ S is the initial state. In Figure 4.3, the initial state is S0.

• F ⊂ S is the set of final states. In Figure 4.3, the final state is S1, is drawn with a

double circle.

• δ is the state-transition function: (δ : S × E → S × A). In Figure 4.3, transitions

are represented as edges between states. An edge is drawn as an arrow directed

from the present-state to the next-state. The mapping Ei/Ai on an edge describes

that the state transition occurs on an input symbol Ei and produces an output

symbol Ai. For example, state S0 transitions to S1 on the input symbol E1 and

produces the output symbol A1.

A finite-state machine can be deterministic and non-deterministic. In deterministic

finite-state machines, every state has exactly one transition for each possible input (δ :

S × E → S).



Chapter 4. Design of Customizable Services 54

S0

S1

E1/A1 S2

E2/A2

E3/A3

E2/A2

Figure 4.3: A finite-state machine diagram

The finite-state machine definition given above describes a Mealy machine, finite-state

machines whose output symbols are determined by both their current states and by the

value of their inputs (δ : S×E → S×A). This is in contrast to a Moore machine, whose

output symbols are determines solely by the states (δ : S → S×A). Moore machines are

typically used in sequential digital logic hardware systems where states change only when

the global clock changes, resulting in constant state transition rates. Mealy machines are

widely used in software systems where the input symbols E are asynchronous events

that occur at irregular intervals. An asynchronous event is initiated outside the scope

of the finite-state machine software that is to be handled by the finite-state machine.

For example, sensor outputs, user actions (mouse clicks, key presses), messages, and

hardware and software timers. A state machine that uses asynchronous events as inputs

is called event-driven.



Chapter 4. Design of Customizable Services 55

A

B

0/0

C

1/00/0

1/1 0/1

1/0

(a) Mealy machine

A/0

B/0

0

C/0

1

0

D/1

1

1

E/1

0

1

0

0

1

(b) Moore machine

Figure 4.4: A Mealy machine and a Moore machine with the same behaviour

In theory, any Mealy machine can be converted to a Moore machine. However, Mealy

machines have two advantages over Moore machines. First, Mealy machines tend to have

fewer states and state transitions due to the ability to have outputs on transitions rather

than states. For example, in Figure 4.4, the Mealy machine in Figure 4.4(a) has 2 fewer

states and 4 less state transitions compare to the Moore machine in Figure 4.4(b) with the

same behaviour. Secondly, Mealy machine react faster to inputs since they do not have

to wait for a clock. However, Mealy machines must take into consideration asynchronous



Chapter 4. Design of Customizable Services 56

feedback as input changes immediately cause output changes. This is typically not an

issue for services as our inputs, described in Section 4.2.1, operate on a network time

scale (subject to network delays) which is more than several order of magnitudes slower

compared to processor clocks.

We limit the type of the finite-state machine in our design to be a deterministic, event-

driven Mealy finite-state machine. This is because for overlay services, the service state

on an overlay node changes when it receives information from, or transmits information

to other overlay nodes. Since overlay nodes are typically independent end-hosts with

different resource capabilities at different geographical locations, there may not be a

notion of globally synchronized time when they communicate with each other. Hence,

service inputs are asynchronous events coming from other systems.



Chapter 4. Design of Customizable Services 57

4.2 Executable Specification

Event-driven deterministic finite-state machines can be used as a high-level design guide-

line for developing software. Such finite-state machines can be informal and translated

into executable code. Our objective is to specify a service as a finite-state machine which

can be executed directly, i.e., an executable specification. An executable specification

contains information on (1) accepted inputs to the service (e.g., message arrivals, timer

expirations, etc.), (2) outputs of the service that are invocations to tasks (e.g., send data

messages, send control messages, setting timers, etc.), and (3) the finite-state machine

representing the behaviour of the service.

Executable specifications are created by network application developers. Application-

layer overlay middleware running on overlay network nodes can interpret these executable

specifications and execute them.

Our first task is to express the finite-state machines of services in a computer-usable

form. We can use a graph description language to describe a finite-state machine in a ma-

chine readable form. Many graph description languages exists for finite-state machines,

such as: DOT Language [3], Graph Modeling Language (GML) [10], GraphML [2], GXL

[11], Directed Graph Markup Language [5], State-chart XML (SCXML) [16], etc.

In order to express our services as an executable specification we first define a template

for executable specifications. First we define valid inputs that our services will accept.

Next we define how these inputs are mapped to events E for the finite-state machine.

Then we define a list of network tasks that the finite-state machines can invoke using

output symbols A. lastly, we define how these network tasks are invoked by the service

using output symbols A.

Our objective is to provide a design for the executable specification that can be used

to define a wide range of useful services. Finite-state machines for services should be

concise with a small number of input symbol set (E), output symbol set (A), states S,

and state transitions (δ). The goal is to express the executable specification of a service



Chapter 4. Design of Customizable Services 58

by a small markup file which can be quickly parsed and validated.

In the following sections, we describe in detail our design of the executable specifica-

tion.

4.2.1 Inputs

We define the inputs of a finite-state machine for a service to be asynchronous events.

We define two categories of events: (1) basic events and (2) composite events.

4.2.1.1 Basic Events

Basic events are events that cannot be further decomposed with respect to being inputs to

a service. They are identified by the symbol Ebasic with the name of the events as subscript

in the finite-state machine. For example, EbasicACK
is represents an acknowledgement

message event. We restrict basic events to two types: (1) arrival of a message, and (2)

expiation of a timer.

In an application-layer overlay network, overlay nodes communicate with each other

with messages in order to establish connections, perform synchronization, transfer and

request data, etc. There are two groups of messages: (1) data messages, and (2) control

messages. Data messages are messages containing user payload and control messages

contain control information between overlay nodes.

Services have the ability to set a timer, that will expire after a certain amount of time.

Timers can be used to set the maximum waiting time until the occurrence of a specific

event (e.g., wait 10s for the arrival of a message). In this scenario, timers ensure that

the finite-state machine does not wait indefinitely for an event. Timers can also be used

to set the maximum waiting time for a task to complete (e.g., wait 10s after performing

a periodic synchronization of global clocks before reading the clock). In this scenario,

timers are used to specify a temporal order.

For example, if a finite-state machine in state S1 wants to create a sequence of output



Chapter 4. Design of Customizable Services 59

symbols representing actions that are order sensitive A : (A1, A2, ..., An) based on a single

input E1, the transition (δ : S1 × E1 → S2 × A1, A2, ..., An) cannot guarantee the order

that any Ai will finish before Ai+1, ..., An because the execution of these actions A are

are asynchronous to the exception of the finite-state machine.

What we want is a sequence of transitions (δ1 : S1 × E1 → S2 × A1), (δ2 : S2 ×

“A1” → S3 × A2), ..., (δn−1 : Sn−1 × “An−1” → Sn × An). We put some symbols Ai

in quotations because these are actually actions and not events. Hence, we add a new

action called “create timer” that sets a waiting period for an action to finish and when

the timer expires the event ET ime−out is inputted to the finite-state machine, such that

(δ1 : S1 × E1 → S2 × A1, create timer), (δ2 : S2 × ET ime−out → S3 × A2, create timer),

..., (δn−1 : Sn−1 × ET ime−out → Sn × An) as illustrated in Figure 4.5. This preserves the

ordering of actions.



Chapter 4. Design of Customizable Services 60

S1

S2

S3

...

Sn

E1 / A1, create timer

ETime-out / A2, create timer

ETime-out / A3, create timer

ETime-out / An

Figure 4.5: Using timers to specify a given sequence of actions



Chapter 4. Design of Customizable Services 61

4.2.1.2 Composite Events

Basic events specify individual message arrivals or individual timer expirations. However,

some input conditions are based on several basic events, i.e., a combination message

of arrivals and timer expirations. For example, consider an overlay node thats sends

messages to multiple neighbour nodes and waits for acknowledgement messages from

each neighbour. After the message is sent, depending on the acknowledgement messages

received from the neighbour nodes within a specific time period, the following outcomes

are possible:

1. Acknowledgement messages from all neighbour nodes are received within a specified

time interval.

2. Acknowledgement messages from some but not all neighbour nodes are received

within a specified time interval.

3. No acknowledgement message is received from any neighbour nodes within a spec-

ified time interval.

Each outcomes results in different actions taken by the service. Evidently, these input

conditions are based on a set of multiple message arrival events and one timer expiration

event.

We define input conditions based on a set of basic events as composite events. Com-

posite events are identified by the symbol Ecomposite with the name of the event as the

subscript in the finite-state machine. When given a collection of basic events, composite

events describe (1) constraints on a set of basic events, (2) a combination of sets of basic

events, and (3) quantification on a set basic events.

From an automata theory point of view, any composite events can be expressed with

basic events and states/state transitions. For example, if we assume above that we only

have three neighbours A, B, and C, and EbasicACKi
is the basic event that an acknowl-

edgement message arrived from neighbour i. The scenario that all messages arrived from



Chapter 4. Design of Customizable Services 62

neighbours A, B, and C is the set of all permutation of the set (EbasicACKA
, EbasicACKB

,

EbasicACKC
). However, listing permutations of basic events would cause an explosion in

states and state transitions for the finite-state machine. Also, using neighbour identifiers

in states, the state machine must change if the neighbour set changes during runtime.

We use first-order logic to express composite events from a set of basic events. First-

order logic is a formal reasoning system that defines a set of rules over a set of individual

elements. First-order logic defines predicates P (x), that denote a statement P concerning

an element x, over a range of individual elements. A predicate can take the role as either

a property on a element P (x) or a relation between elements P (x, y). The set defined

by {x|P (x)} or {x|P (x, y)}, is a set of elements for which P is true. For example, if an

overlay node sends a message to all its neighbour nodes with identifiers A, B, C then

{x|x is a neighbour} is the set {A,B,C}.

Using the acknowledgment message example mentioned previously, we can transform

the natural language description of the three input conditions described above as first-

order logic statements. The relationship that an acknowledgement message EbasicACK
has

arrived from a specific neighbour d is defined by the expression from(d,EbasicACK
). The

relationship that a timer expired Ebasictimeout
for a specific neighbour d is defined by the

expression for timeout(d,Ebasictimeout
).

The statements at the beginning of this section are expressed in first-order logic as

follows:

1. “For each neighbour d, there exists an acknowledgement message EbasicACK
, such

that EbasicACK
comes from d and there does not exist a timeout Ebasictimeout

for d

indicating the maximum waiting time for the acknowledgment has expired for d.”

∀d : (∃EbasicACK
: from(d,EbasicACK

)∩ 6 ∃Ebasictimeout
: timeout(d,Ebasictimeout

)).

2. “For at least one neighbour d but not all neighbour d, there exists an acknowledge-

ment message EbasicACK
, such that EbasicACK

comes from d and there does not exist



Chapter 4. Design of Customizable Services 63

a timeout Ebasictimeout
for d indicating the maximum waiting time for the acknowl-

edgment has expired for d.”

∃d : (∃EbasicACK
: from(d,EbasicACK

)∩ 6 ∃Ebasictimeout
: timeout(d,Ebasictimeout

)) ∩

6 ∀d : (∃EbasicACK
: from(d,EbasicACK

)∩ 6 ∃Ebasictimeout
: timeout(d,Ebasictimeout

)).

3. “There does not exist neighbour d, for which there exists an acknowledgement mes-

sage EbasicACK
, such that EbasicACK

comes from d and there does not exist a timeout

Ebasictimeout
for d indicating the maximum waiting time for the acknowledgment has

expired for d.”

6 ∃d : (∃EbasicACK
: from(d,EbasicACK

)∩ 6 ∃Ebasictimeout
: timeout(d,EbasicACK

)).

Using these first-order logic expressions, we can concisely express these three complex

composite events to generate input symbols Ecompositeall acks received
, Ecompositesome acks received

,

and Ecompositeno acks received
respectively.



Chapter 4. Design of Customizable Services 64

4.2.1.3 Mapping of Events to Input Symbols

In this section, we describe our mechanism to translate generic message arrivals and timer

expirations from the overlay node to specific events identified by unique input symbols

that the finite-state machine can understand.

Basic events (messages or timers) have attributes such as message identifier, source

address, destination address, message type, sequence number, timer identifier, etc. The

executable specification defines a set of filters on these attributes that discriminate be-

tween different categories of messages and timers that the service accepts. Each category

of messages and timer maps to their associated input symbol(s) in the finite-state ma-

chine. The mapping of basic events to input symbols can be one-to-one, one-to-many, or

many-to-one. The filters are applied in the order they are define, hence, more discriminate

filters need to appear ahead of less discriminant filters in the definitions.

Table 4.1: Example of one-to-one mapping between basic events and input symbols

# Filter Basic Event Input

Symbol

1 message type=ACK Acknowledgement (ACK) message EbasicACK

2 message type=Payload Payload message EbasicPayload

3 message type=NACK Negative-Acknowledgement

(NACK) message

EbasicNACK

Table 4.1 provides an example of one-to-one mapping of basic events to input symbols.

Assuming a message has arrived, the executable specification applies the filters on the

message attributes to characterize the message as an acknowledgement (ACK) message,

a payload message, or a negative-acknowledgement (NACK) message each represented

by a unique input symbol representing the associated basic event. Note that in this

case we only applied filters on the message type, but filter can be applied to one or more



Chapter 4. Design of Customizable Services 65

message attributes. For example, a filter of “message type=ACK, source address=1” will

characterize messages that are acknowledgement messages coming from source address

1.

Table 4.2: Example of many-to-one mapping between basic events and input symbols

# Filter Basic Event Input

Symbol

1 - Any message Ebasicmessage

In certain scenarios it is desired to have many basic events that map to a single input

symbol. For example, different messages types can map to a single Ebasicmessage input

symbol for a service that wishes to treat them indiscriminately as shown in Table 4.2. In

this case, the filter does not check any message attributes.

Table 4.3: Example of one-to-many mapping between basic events and input symbols

# Filter Basic Event Input

Symbol

1 message type=ACK,

source address =

local node

Acknowledgment (ACK) message

that is not expected

EbasicACK

Ebasicerror

Conversely, a single basic event can map to more than one input symbol. Suppose an

acknowledgement arrives (EbasicACK
), and the source address is the local node, it indicates

that an error occurred as the local node should not of received its own acknowledgment

message. We can filter the acknowledgement message based on the source address and

generate two basic events: 1) an acknowledgement message arrived, 2) an unexpected

error. This is illustrated in Table 4.3.

Composite events are defined in the executable specification in the following format:



Chapter 4. Design of Customizable Services 66

(Ebasicname1 , Ebasicname2 , ...), first-order logic expression, Ecompositename

Where (Ebasicname1 , Ebasicname2 , ...) is the list of input symbols representing basic events

that compose the composite event, and Ecompositename is the symbol representing the

composite event with a specific name. When an input symbol Ebasic is produced in the

process aforementioned, the first-order logic expressions for all composite events that are

have the symbol in its list (Ebasicname1 , Ebasicname2 , ...) are evaluated. If the evaluation

results in a true statement, the corresponding composite event symbol Ecompositename is

generated.



Chapter 4. Design of Customizable Services 67

4.2.2 History of Basic Events

In our design, a finite-state machine records all basic events in a history of basic events,

and maintains them in a database. This database can be queried to build composite

events as detailed in Section 4.2.1.2. The database stores only basic events information

(messages and timer attributes), and not input symbols (Ebasic) or state transitions. The

reason is that the database of basic events is a separate component from the finite-state

machine and input symbols and state transitions are only understood by the finite-state

machine.

The history of basic events is needed for several reasons. Due to the mapping be-

tween basic events and symbols (one-to-one, one-to-many, many-to-one) the use of input

symbols and states alone does not preserve all information about an event. A finite-state

machine state will know the list of input symbols that has lead it to the current point of

execution, but it cannot go back and retrieve the information regarding a specific event.

As an example, if in the future, a message must be retransmitted, the entire message

must be preserved; not just the knowledge that the message has arrived in the past.

By keeping a history of all events, our design does not need local variables to store

information not inherent to the finite-state machine. Since all input symbols are based

on events, the history permits the composition of any local variables anytime.

The history of basic events is a database that can be used to restore or rollback the

execution of a finite-state machine.

Lastly, the history of basic events has the ability to provide the concept of time to the

system. While the finite-state machine stores information about arrival order of events,

the history of basic events also log the time of events. This is useful if the database needs

to be queried for events that occurred in a specific time interval, for example, whether a

message arrived within the last 15 seconds.



Chapter 4. Design of Customizable Services 68

4.2.3 Outputs

Finite-state machine execution produces output symbols that map to a set of common

tasks to be performed. We call these tasks actions. Actions are identified by the symbol

A with the name of the action as the suffix. The actions are executed by the overlay node

and are asynchronous to the execution of the finite-state machine. We define a small set

of common actions that the finite-state machines can invoke to realize a wide spectrum

services. We call this set of common actions overlay network primitives.

Actions can be invoked by the finite-state machine in three different ways as illustrated

in Table 4.4. The table describes when an action can be performed and provides examples

of actions.

Table 4.4: Types of Actions

Category Description

Entry action Action is performed when entering a state. For example,

logging state information.

Exit action Action is performed when exiting a state. For example,

cleaning up data structures that are only within the scope

of one state.

Transition action Action is performed depending on the state and the input

symbol (δ : S × E → S × A). For example, retransmit-

ting a message in the event of a negative-acknowledgement

message. Note that this is different from entry and exit

actions because entry and exit actions are only performed

when there is an external-transition (change of state), but

transition actions are performed when in both external-

transition and self-transitions (no change of state).



Chapter 4. Design of Customizable Services 69

4.2.3.1 Actions - Set of Overlay Network Primitives

Our object is to define a small set of actions common to most overlay network services.

The choice of the set of actions and their complexity represents a tradeoff. The number of

required actions and the complexity of the finite-state machine is inversely proportional

to the complexity of individual actions. If actions are too simple (store a variable, load

a variable, set a variable, write to a register, etc.), then common tasks (e.g. sending a

message) require a large number of these overlay network primitives. The finite-state

machine require a large number of states and state transitions to define the large number

of actions in their correct order. The executable specification, consequently, may become

too large. Since executable specifications are create by network application developers,

the actions should be linked to tasks from a human developer’s perspective (e.g., sending

a message).

On the other hand, if actions are complex tasks, the resulting number of states of the

finite-state machine would be small. However, as actions become more complex, they also

become increasingly specialized. This means that the set of actions may grow large. This

specialization may reduce the opportunity for sharing the set of available actions between

finite-state machines of different services. For example, a complex action like“perform

traffic shaping using token bucket algorithm” involves a subset of common tasks (setting

timers to control the rate, buffering messages, etc.) that can be shared with other

actions like “TCP congestion control” and “perform traffic shaping using leaky bucket

algorithm”. Hence in this case, instead of a large number of states when the actions are

too fine-grained, we have an explosion of actions when overlay network primitives are

overly complex and specialized.

Our objective is to define a set of actions that creates a small set of overlay network

primitives which are common to most network services and with a moderate degree of

complexity. These network primitives should be easily understandable by developers and

useful in a variety of applications. We define these overlay network primitives below.



Chapter 4. Design of Customizable Services 70

There are two categories of overlay network primitives: 1) primitives that manipu-

late messages, 2) primitives that perform network functions. First we provide the two

primitives for manipulating messages.

1. createMessage(∗message, list < attribute, value >)

Creates a new message using list. The list is collection of required message at-

tributes and their associated values. The attributes include:

DeliveryMode
DestinationAddress
HopLimit
MessageID
MessageType
Payload

The MessageID identifies a message for a service. The MessageType identifies the

message type (acknowledgement, negative-acknowledgement, payload, etc.). The

DeliveryMode specifies if the message is to be sent using unicast, multicast, or

flood. The DestinationAddress is the logical address of the destination node in

the overlay network. This value can be left null in the case of multicast or flood. The

HopLimit is the number of logical links traversed before the message is dropped.

If this is left null, then it will default to a value of “255”. The Payload is the

data to be carried by the message and can be null in the case of control messages.

When a message is created the ServiceID of the service is automatically set for the

message. Each Message has a unique <MessageID, ServiceID> tuple. Note that

we do not specify a SourceAddress and PreviousHopAddress for the message, this

is set automatically to the logical address of the local node when the message is sent.

2. setMessage(∗message, list < attribute, value >)

Takes a message and modifies one or more attributes contained in list. The list is

collection of message attributes and their associated values. The attributes that

can be modified are the same as in the primitive createMessage.



Chapter 4. Design of Customizable Services 71

Tasks such as copying of messages, concatenating of message payloads, etc. are not de-

fined as primitives since they can be performed using createMessage and setMessage.

For example, copying a message is performed by creating a new message with all at-

tributes of the message to be copied specified in the list parameter. The attributes for

the message to be copied can obtained from stored message in the history of basic events.

Next we present primitives that perform network tasks.

1. toApplication(∗message)

Delivers a message to the application running the local overlay node.

2. sendDataMessage(∗message)

Sends a data message (messages with a payload) to the DestinationAddress with

the specified DeliveryMode. The local node invoking sendDataMessage sets its own

logical address as the SourceAddress and PreviousHopAddress. The MessageType

is set to “Payload”.

3. sendControlMessage(∗message)

Sends a control message (messages without a payload) to the DestinationAddress

with the specified DeliveryMode. The local node invoking sendControlMessage

sets its own logical address as the SourceAddress and PreviousHopAddress. The

message must not contain a payload and MessageID must correspond to a data

message.

4. forwardMessage(∗message)

Forwards a message not intended for the local node. The HopLimit is decremented

and the PreviousHopAddress is set to the local node’s logical address.



Chapter 4. Design of Customizable Services 72

5. setT imer(timerIdentifier, duration)

Sets a timer for the service with the TimerID given by the parameter timerIdentifier.

The timer expires after the specified duration in milliseconds. When a timer is set

the ServiceID of the service is automatically set for the timer. Each timer has a

unique <TimerID, ServiceID> tuple.

6. terminate(serviceIdentifier,messageIdentifier)

Terminate the finite-state machine instance for with a ServiceID given by the

parameter serviceIdentifier and a MessageIdentifier given by the parameter

messageIdentifier. Each finite-state machine instance is identified by a unique

<MessageID, ServiceID> tuple.

7. updateNodeInfo(∗nodeInfo)

Updates the local node information, the event stores node information in the His-

tory of Basic Events that can be accessed by a service. Node information includes

the local node’s logical address and other topology information (parents, children,

neighbours, etc.). This primitive is useful for updating neighbourhood information

in networks with mobility.

4.2.3.2 Mapping of Output Symbols to Actions

An executable specification defines tasks it performs using a finite set of symbols A that

correspond to actions. An actions consists of the symbol Aname which identifies the name

of the action and a set of symbols (p1, p2, ..., pn) representing parameters associated with

that action. These symbols are outputted by the finite-state machine asynchronously to

the overlay node where these symbols are interpreted.

The overlay node maps the the symbol Aname to an invocation of a method with the

name. The set of symbols (p1, p2, ..., pn) are then sent to that method as input data

parameters for the method.



Chapter 4. Design of Customizable Services 73

4.2.3.3 Format of Executable Specification

A service’s executable specification have the format shown in Table 4.5.

Table 4.5: Format of an executable specification

Inputs List of filtered input message events and their correspond-

ing input symbols Ebasicmessage

List of filtered input timer events and their corresponding

input symbols Ebasictimer

List of composite events composed from the defined ba-

sic events evaluated using first-order logic expressions and

their corresponding input symbols Ecomposite

Behavior/Execution Flow Finite-state machine (states S, initial state S0, final states

F , state transitions on inputs and producing outputs δ :

S × E → S × A)

Outputs List of actions and their corresponding output symbols A

and parameters (p1, p2, ...pn) corresponding to an overlay

network primitive



Chapter 4. Design of Customizable Services 74

4.2.4 Expressiveness of Executable Specification

4.2.4.1 Custom Control Messages

Applications can define any number of custom control messages for their services. Using

the createMessage primitive, custom MessageType attributes can be defined for a ser-

vice. As long as the executable specification provide the correct mapping of these control

message to input symbols based on the “MessageType=” filters, these control messages

can be processed by the service as specified by the finite-state machine defined by the

application. It is up to the onus of the created of the executable specification to ensure

that the control messages that they create are also correctly processed as events. We do

not place any restrictions on the number and usage of control messages.

4.2.4.2 Expressiveness of Composite Events

Composite events are evaluated using first-order logic expressions on a set of basic events.

Table 4.6 shows the types of composite events that first-order logic can express.

There are limitations with using first-order logic. First, first-order logic predicates

are associated with sets of individuals; in higher-order logic theories they may be also

associated with sets of sets. Hence, some complicated features of natural language cannot

be express in first-order logic. However, higher-order logic systems do not have complete

formal deductive/inference systems. This makes it difficult to implement deductive/infer-

ence systems for high-order logic in software. We argue that events requiring higher-order

logic are rare in communication systems where every message usually belong to only one

set based on message type (acknowledgment, negative-acknowledgment, payload, etc.),

and higher-order logic expressions like “there is at least one thing in common” between

messages are not typically useful.

Second, first-order logic cannot express quantification over predicates [25]. An exam-

ple of quantification over predicates is the statement “if the message A has the correct



Chapter 4. Design of Customizable Services 75

Table 4.6: Composite events expressible using first-order logic

Type Syntax Example Usage

Property and

Relationship

P (x)

P (x, y)

(1) arrived message has the expected sequence number:

expected(Ebasicmessage)

(2) message arrived from a source:

from(address, Ebasicmessage)

Equality x = y,

x 6= y

(1) two message arrival are the same:

Ebasicmessage1 = Ebasicmessage2

Combination P (x) ∩ P (y),

P (x) ∪ P (y),

P (x)→ P (y)

(1) message arrived from destination A and destination B:

from(A,Ebasicmessage) ∩ from(B,Ebasicmessage)

(2) message arrived from destination A or destination B:

from(A,Ebasicmessage) ∪ from(B,Ebasicmessage)

(3) if message arrived from destination A, then message also

arrived from destination B:

from(A,Ebasicmessage)→ from(B,Ebasicmessage)

Quantification ∀x,

∃x,

6 ∃x

6 ∀x

(1) messages have arrived from all neighbours d:

∀d : (∃Ebasicmessage : from(d,Ebasicmessage))

(2) at least one messages have arrived from neighbours d

∃d : (∃Ebasicmessage : from(d,Ebasicmessage))

(3) no messages have arrived from any neighbours d

6 ∃d : (∃Ebasicmessage : from(d,Ebasicmessage))

(4) some (not all) messages have arrived from neighbours d:

∃d : (∃Ebasicmessage : from(d,Ebasicmessage))∩

6 ∀d : (∃Ebasicmessage : from(d,Ebasicmessage))



Chapter 4. Design of Customizable Services 76

sequence number, then there is at least one thing message A has in common with message

B”. Also the statement “for every set S of messages and every message x, either x is in

S or it is not” cannot be expressed in first-order logic. Again, these expressions are not

typically useful in a network setting.

Third, first-order logic also cannot express statements such as “message A arrived

very slowly” or“message A’s sequence number is very small” [25]. For an executable

specification of services, we do not encounter these type of statements since all our inputs

are independent events need that are not compared relatively to each other.

Lastly, first-order logic cannot express statements regarding the order of input events

[25]. For example, “message A arrived before message B”. First-order logic can only

state “message A arrived ∩ message B arrived”. However, this ordering of events in

expressed by using timers in the finite-state machine as previously described in Section

4.2.1.1.

Given these arguments, we believe that composite events expressed in first order

logic are sufficient for a wide range of services, despite some limitations the expressive

power. First-order logic systems based on deductive reasoning and inferencing are readily

available and can be leveraged by our design. For example, all relational databases are

based on first-order logic.

4.2.4.3 Types of Expressible Services

Our network primitives allow a large set of network services to be realized. Simple tasks

can be performed using a single action from the list. For example, the createMessage

primitive allows the creation of new messages of any identifier, message type, sequence

number, and payload specified by the services. The created message can be transmitted

to a destination using unicast, multicast, or broadcast using the sendMessage primitive.

Any message can be modified using the setMessage primitive. Since all past events are

persistently stored (Section 4.2.2), they can be queried any time by a service to obtain



Chapter 4. Design of Customizable Services 77

any previous message’s attributes.

Using this set of network primitive, we are able to express all actions performed

by data delivery services present in HyperCast [6] described in Section 3.1.2. Next we

describe examples of other types of services that can be expressed.

Example 1: A service selectively accepts or discards messages based on message’s

source addresses; i.e., a simple firewall allowing messages coming from certain logical

addresses to pass through to the application. This service is realized by using filters

defined in the executable specification for basic events (Section 4.2.1.3). Here, we define

a set of filters on arriving messages based on messages’ source address attribute. One

filter is defined for every logic address that the firewall allows messages through. Hence,

only accepted messages can trigger input symbols for the finite-state machine. Then

the finite-state machine, upon receipt of the symbols, performs the action of delivering

the message to the application. A timer is set to terminate the service after a specified

duration. A finite-state machine diagram for this service is shown in Figure 4.6. The list

of events and corresponding actions for this service is described in Table 4.7.

Example 2: A service that provides TCP-like connection establishment between

two nodes. The service is realized through of a three way handshake between 2 nodes (A

and B) as follows: Node B, after a setup period specified by the timeout, sends a SYN

message to node A. Node A sends a SYN+ACK to node A when it receives the SYN

message from A. Node B, upon recipe of the SYN+ACK message from node A, sends an

ACK message to node A. The connection is established when node A receives the ACK.

A finite-state machine diagram for this service is shown in Figure 4.7. The list of

events and actions for this handshaking service is described in Table 4.8.

Example 3: A traffic shaping service can be created by producing tokens (using

timers) as inputs to the finite-state machine to specify when a message should be sent.

For example, a leaky bucket traffic shaper can be specified by list of events and actions

described in Table 4.9, and a finite-state machine diagram for this service is shown in



Chapter 4. Design of Customizable Services 78

Init

Sent

   receive matching message / deliver message to application

Done

   time-out / terminate

Figure 4.6: Finite-state machine for message selection service

Table 4.7: State transitions for message selection service

State Event Condition Action

Init Message arrived Message’s source

address maps to a

symbol

Go to state Sent and deliver the

message to application

Init Message arrived Message’s source

address does not

map to a symbol

Do nothing

Sent Timeout to terminate

the service

In all cases Go to state Done

Done - - Terminate the finite-state ma-

chine upon entry



Chapter 4. Design of Customizable Services 79

Init

SYNRCVD

   received SYN / send SYN+ACK SYNSent

   received time-out / send SYN

Established

   received ACK

   received SYN / send SYN+ACK

   received SYN+ACK / send ACK

Figure 4.7: Finite-state machine for connection establishment service between two nodes

Figure 4.8.

We believe our design is expressive enough to be extended to overlay routing, topol-

ogy management, network address translation, and network discovery services with minor

changes. All these overlay services are based on the transfer of special overlay control

messages (beacon messages, control messages, bootstrap messages, etc.) that an exe-

cutable specification can accommodates as described in Section 4.2.4.1. The history of



Chapter 4. Design of Customizable Services 80

Init

Wait

   receive message

   receive token / send message

Done

   time-out / terminate

Figure 4.8: Finite-state machine for a leaky bucket transmitter



Chapter 4. Design of Customizable Services 81

Table 4.8: State transitions for connection establishment service

State Event Condition Action

Init SYN message arrived In all cases Go to state SYNRCVD and

send SYN+ACK message

Init Timeout In all cases Go to state SYNSent

SYNRCVD ACK message arrived In all cases Go to state Established

SYNSent SYN message arrived In all cases Go to state SYNRCVD and

send SYN+ACK message

SYNSent SYN+ACK message

arrived

In all cases Go to state Established and

send ACK message

basic events is able to store the complete message history of these control messages and

it can be used by composite events to query network information. However, currently

our design does not allow a finite-state machine defined by the application in an exe-

cutable specification to be modified during runtime. The executable specifications are

currently immutable. Some routing, network address translation, network discovery, and

topology management services may require new states and state transitions to be created

dynamically as the overlay network changes.

Services that our current design cannot express are services that require operation

on a synchronized clock. For example, packet scheduling, queue management, measuring

the network, etc. Our input events and output actions operate asynchronously, and on a

network scale which is inadequate for time-sensitive tasks.



Chapter 4. Design of Customizable Services 82

Table 4.9: State transitions for a leaky bucket transmitter

State Event Condition Action

Init Message arrived In all cases Go to state Wait

Wait Receives a token In all cases Self-transition and send mes-

sage

Wait Timeout to terminate

the service

In all cases Go to state Done

Done - - Terminate the finite-state ma-

chine upon entry



Chapter 4. Design of Customizable Services 83

4.3 Executable Specification Processor

In this section we describe a software system on overlay nodes that can execute services

from executable specifications. At a high level, our design extends the concept of Mes-

sageStore introduced in HyperCast [6]. The MessageStore is a component transparent

to network applications that process service messages. The original MessageStore have

a fixed set of services, our design extends this by allowing new services to be added to

MessageStore during run-time.

4.3.1 Creation and Deployment of Services

New services are created by specifying new executable specifications with the format

described in Section 4.2.3.3. Each service is assigned an unique identifier ServiceID.

The local application that creates a new service directly load its executable specification

to its overlay node’s MessageStore and also publishes the executable specification on a

remote server responsible for storing the executable specifications for all services. Overlay

nodes without the new service can download its executable specification from the remote

server.

Once an executable specification is downloaded successfully, it is validated and stored

in MessageStore in a repository with the ServiceID as the search key. The validation

process checks the executable specification to ensue the structure of the executable spec-

ification is complete, correct, and any data types are of the correct form (byte strings,

characters, integers, floats, etc.). Currently there is no facility to check against malicious

behaviour or security flaws in executable specifications.

Finite-state machines of the services can be instantiated given an executable specifi-

cation of the service. These finite-state machines, when executed, realize the services.



Chapter 4. Design of Customizable Services 84

4.3.2 Using Services

An application invoke a service by transmitting overlay data messages marked with a

service (with ServiceID as one of its message attributes). The message can be sent

using unicast, multicast, or flood in the overlay network. Any overlay node that sends or

receives a message with marked with a ServiceID will process the message in its local

MessageStore. The processing of this message in MessageStore is illustrated in Figure

4.9.

MessageStore

key: <MessageID, ServiceID>

key: ServiceID key: ServiceID

Message with 
MessageID, 
ServiceID

Have 
executable 

specficaion?

Instantiate new 
finite-state 
machine

Yes

download 
specification

Noexecutable 
specification

execute finite-
state machine for 

service

Repository of 
Execution

Specifications 

store 

New messageID 
for service?

Repository 
of finite-state 

machines 

Services 
Repository on 
Remote Server

YesNo

update

execute finite-
state machine for 

service
store

Figure 4.9: Message processing in MessageStore

When an overlay receives a message from the application or from another overlay

node, the message is first examined to see if the message contains a ServiceID attribute.

If this attribute is present, the message is associated with a service and the processing



Chapter 4. Design of Customizable Services 85

is delegated to the local MessageStore. MessageStore check its repository of executable

specifications for the ServiceID (i.e., if it knows how to process the service). The

downloaded executable specification is validated and parsed, and stored in MessageStore’s

repository of services. If the service is not found in the MessageStore, the node attempts

to download the service’s executable specification from a remote server that contains

the executable specifications of all known services. In the scenario where the executable

specification is not found on the remote server, an overlay node sends a service request

message to all its neighbours asking any neighbours with the executable specification for

the service to publish the executable specification to the remote server. The overlay node

then waits and attempts to download the executable specification from the remote server.

This is repeated for a application specified number of tries, after which the message with

with the unknown ServiceID is dropped.

The received message is then examined for its MessageID attribute. Service mes-

sages are uniquely identified by their MessageIDs. MessageStore instantiates a new in-

stance of a service as a finite-state machine (defined by the service’s executable spec-

ification) when it receives a message with a new <MessageID, ServiceID> tuple. In

other words, a finite-state machine is instantiated for every message with a unique

<MessageID, ServiceID> tuple. The finite-state machine is then executed. A finite-

state machine of a <MessageID, ServiceID> tuple is stored locally in MessageStore in

a repository until the service for that tuple completes. In the case that the received mes-

sage has a preexisting <MessageID, ServiceID> tuple in the MessageStore repository,

the corresponding finite-state machine is obtained, executed, and updated.

Messages are categorized as data messages containing payload and control messages

containing control information (i.e. ACK, NACK, etc.). Both message types are rec-

ognized as part of one instance for a service, i.e., one finite-sate machine, if they have

the same <MessageID, ServiceID> tuple. For data messages, if two messages have the

same MessageID and ServiceID they are treated as two copies of the same message,



Chapter 4. Design of Customizable Services 86

even if they have different payloads or different source addresses. Control messages that

have the same MessageID and serviceID as a data message belong to the same service

instances (i.e., they are control messages for the data message).

In the next section, we describe how finite-state machines are executed.

4.3.3 Finite-State Machine Execution

Our design decouples the description of the finite-state machine and the execution en-

vironment that executes the finite-state machine. An execution specification is shared

between all finite-state machines of its service. This allows a single copy of certain service

information (description of inputs, output, states, and state transitions described in the

executable specification) to be shared among a large number of finite-state machines of

the same service (Figure 4.10b), compared with the original MessageStore Figure 4.10a)

where each finite-state machine must have its own individual copy.

MessageStore provides a finite-state machine execution engine that can execute finite-

state machines. Given a finite-state machine specified by an executable specification, the

execution engine is a software environment that receives input symbols, and performed

state transitions and actions. There is a finite-state machine execution engine instance

for each finite-state machine and its components are shown in Figure 4.11.

When a finite-state machine for a service is instantiated, it starts in the starting state

specified in the executable specification and waits for input symbols. The overlay node

communicates with a finite-state machine via its Event Handler and Action Dispatcher

interfaces. Events (messages, timers) are delivered from the overlay node to the Event

Handler to be processed. The Event Handler is the software realization of the events

to input mappings as described in Section 4.2.1.3. The Event Handler filters the events

based on the executable specification and produce input symbols for the finite-state

machine. Basic events trigger input symbols Ebasic and are stored in the history of basic

events as described in Section 4.2.2. The Event Handler also checks if any composite



Chapter 4. Design of Customizable Services 87

finite-state machine 
description
finite-state 
machine 

description

finite-state 
machine 
execution 

environment

MessageID 1 
for service A

finite-state machine 
description
finite-state 
machine 

description

finite-state 
machine 
execution 

environment

finite-state machine 
description
finite-state 
machine 

description

finite-state 
machine 
execution 

environment

MessageID 2 
for service A

MessageID 3 
for service A

(a) Finite-state machine description and execution environment coupled

executable 
specfication

finite-state machine 
description

finite-state 
machine 

description

finite-state 
machine 
execution 

environment

MessageID 1 
for service A

finite-state machine 
descriptionfinite-state 
machine 
execution 

environment

finite-state machine 
description
finite-state 
machine 
execution 

environment

MessageID 2 
for service A

MessageID 3 
for service A

(b) Finite-state machine description and execution environment decou-

pled

Figure 4.10: Execution models for finite-state machines

events are built from with the input symbols Ebasic as described in Section 4.2.1.3. If so,

the first-order logic expressions for those composite events are evaluated using a first-

order logic processor provided in MessageStore. This processor can query the history of



Chapter 4. Design of Customizable Services 88

Finite-state machine

Overlay Node

Event 
Handler

Action 
Dispatcher

Basic Events:
messages, 

timers

History of 
Basic Events

Finite-state 
Machine 

Execution 
Engine

Executable 
Specification

Actions: 
network 

primitives

First-order logic 
Processor

store 
Ebasic 

queries

create

if composite 
events 

based on 
Ebasic 

Ebasic A (p1,p2,..pn) 

Ecomposite 

Figure 4.11: Finite-state machine execution engine and its interaction with the overlay

node

basic events if needed.

Based on the finite-state machine’s current state and the input symbols produced

from the Event Handler, the finite-state machine execution engine checks if any state

transitions need to be make and if any actions need to be performed.

Actions to be perfumed are defined in the executable specification. The finite-state

machine produces output symbols A representing these actions. The Action Dispatcher

is the software realization of the mapping from output symbols A to actions as de-



Chapter 4. Design of Customizable Services 89

scribed in Section 4.2.3.2. Output symbols A correspond overlay network primitives in

MessageStore as described in Section 4.2.3.1. The Action dispatcher invokes the prim-

itive identified by the name of the output symbols A along with its list of parameters

(p1, p2, ...pn). The primitive then process the action asynchronously to the execution of

the finite-state machine.



Chapter 5

Implementation

In this chapter, we discuss the implementation for application customizable data trans-

fer services in the HyperCast overlay middleware software system. To accomplish this,

we extend the existing MessageStore implementation in HyperCast 4.0. There are three

design consideration that have influenced our implementation. First, the MessageStore

should be service independent in the sense that it can be used to realize any service that

can be specified as a finite-state machine using SCXML. Second, the implementation

of the MessageStore should require no modifications to other HyperCast components.

Thirdly, the design of the MessageStore should be modularized with clearly defined in-

terfaces to other components. This allows each individual component to be upgraded or

replaced with minimal modifications to other MessageStore components.

5.1 MessageStore Extensions

Realizing application customizable information services without modifications to the ex-

isting HyperCast software system requires that all modifications be made locally in Mes-

sageStore. There is no modification to how messages marked with a service are sent

or received by the overlay node. Recall that MessageStore was originally designed as

a component within the overlay socket to provide services without altering the pro-

90



Chapter 5. Implementation 91

cessing of incoming and outgoing messages not using the services. In the context of

HyperCast, MessageStore is an on-demand processor component that is invoked when

messages marked with services are transferred in an application-layer overlay network.

MessageStore

ForwardingEngine

ProcessMessage

has FSM 

extension?

ReceiveMessage

No

Message

Yes

Cloned Message Message

deliver to 

application if 

reached 

destination, else 

forward

do nothing

if reached 

destination, else 

forward

Cloned Message

sending and 

receiving unicast 

and multicast 

messages

Figure 5.1: Message handling in MessageStore

In Figure 5.1, the overlay node is either sending an outgoing message or receiving

an incoming message (both unicast and multicast). The processing in the Message-

Store is the same for both scenarios. The message is processed in the processMessage

method of the ForwardingEngine. The ForwardingEngine checks if the message has an

FSM extension (marked with a service). If the message is not marked with a service,



Chapter 5. Implementation 92

the ForwardingEngine processes the message without involving the MessageStore. If the

message is marked with a service, it is cloned and the cloned message is passed to the

receiveMessage method of the MessageStore. A thread in the MessageStore processes

the cloned message concurrently with the ForwardingEngine from this point onward.

The flow is designed in this way since the processing time of a message in the Message-

Store, may require a significant amount of processing. Thus, if the overlay node is not

the intended destination of the message, forwarding the message after the processing is

completed by the MessageStore may increase the delay. By cloning messages, messages

can be forwarded to their next-hop destinations as soon as they are received by the

ForwardingEngine. This processing flow exists in HyperCast 4.0 and was not altered.

The original message resumes processing in the ForwardingEngine but is only for-

warded and not passed to the application in the overlay node. The MessageStore takes

over responsibility of choosing when and how the message is passed to the application.



Chapter 5. Implementation 93

5.1.1 Implementation Overview

Our implementation does not change the core concept of the MessageStore, i.e., it is a

repository of data messages that executes finite-state machines for those messages. Also,

we do not modify the MessageStore interface as viewed by other HyperCast components.

Our implementation modifies the MessageStore by storing the services as executable

specifications in SCXML and providing facilities to execute these services using a generic

SCXML execution engine. An overview of the implementation is shown in Figure 5.2.

From an executable specification given as a SCXML document, MessageStore creates

an finite-state machine Java object, referred to as a FSM object, which contains three

major components. The first component is the SCXML engine which is able to directly

execute the executable specification. The second component is the Event Handler which

takes messages and timers from the MessageStore relating to this finite-state machine

(FSM) object and triggers them as events in the SCXML engine. This is illustrated in

Figure 5.3. The Event Handler takes a message arrival or timer expiration coming from

MessageStore and checks event’s attributes against the defined events in the executable

specification for the name of the event. The defined event attributes, in the form of a

XML DOM tree, is used as a filters on the message/timer. If a match is found, the name

of the event is used to trigger the SCXML engine. The triggered events are stored in the

History of Basic Events (See Section 4.2.1.1).

The third component is the Action Dispatcher which takes actions defined in the exe-

cutable specification (embedded in the SCXML document) and executes the correspond-

ing Java method pre-defined in the MessageStore’s list of actions. The list of actions is

the set of overlay network primitives discussed in the previous chapter. This is illustrated

in Figure 5.4. The executable specification uses the SCXML custom actions interface to

creates actions, in the form of XML documents, to be executed based on event arrivals

and state transitions. The XML document is a DOM tree where the root element of the

tree is the name of the Java method provided by MessageStore. The children elements



Chapter 5. Implementation 94

Executable
Specification

(SCXML document)

MessageStore

 FSM object

Event Handler

Action Dispatcher

SCXML Engine

create

List of Actions

events
(messages, 

timers)

execute 
actions

Figure 5.2: Overview of implementation in MessageStore to use executable specification

for services

contains the list of parameters that maps to the Java method’s parameters. The Action

Dispatcher is responsible for mapping the tree elements to the actual Java method.

In the following sections, we describe our implementation in detail. First, we discuss

how a service is defined as an executable specification in SCXML. Then, we describe

the software components in the MessageStore to process the executable specifications.

Lastly, we describe our mechanisms to deploy new services to MessageStore.



Chapter 5. Implementation 95

Event Description
(XML snippet of executable 

specification)

event name

attributes in a 
tree structure 
(DOM model)

attribute 1, attribute 2, ..., attribute nmessage or timer

(Java)

event name

checks to see 
if matches

trigger

Figure 5.3: Mapping of a message arrival or timer expiration to an event in the executable

specification



Chapter 5. Implementation 96

Action
(XML DOM tree)

method name

parameters in 
a tree 

structure

parameter 1, parameter 2, ..., parameter n,method name

(Java)

Figure 5.4: Mapping of an action in the executable specification to a Java method



Chapter 5. Implementation 97

5.1.2 A Service as an Executable Specification

As discussed in the previous chapter, we specify services in the form of an executable

specification. This is in contrast to the hard-coded finite-state machines which define ser-

vices in the MessageStore in HyperCast 4.0. We modify MessageStore to use executable

specifications in the form of SCXML documents. There is one SCXML documents for

each service. The SCXML document can be parsed and executed by the Apache Com-

mons SCXML engine. In this section, we describe in detail how we specify a service using

SCXML.

S0

S1

S2

E1 / A1

E2 / A2

E3 / A3

CE1 / A3

executable specification

meta data:
   service name, service id, delivery
   modes, initial state = S0, ...

events:
   basic: (E1, E2, E3)
   composite: (CE1)

states, state transitions, and actions
   S0: 
          transition on E2 to S1 and do A2
          transition on CE1 to S2 and do A3   
          on E1 do A1
    S1: 
          transition on E3 to S2 and do A3
    S2: 

Figure 5.5: The structure for an executable specification of a service defined by a finite-

state machine

As illustrated in Figure 5.5, the executable specification is composed of 1) a declara-

tion of meta-data, 2) a declaration of events (E1, CE1, E2, ...) where En represents a basic

event and CEn represents a composite event, 3) a declaration of states (S0, S1, ...) and



Chapter 5. Implementation 98

state transitions based on the events (S0→ S1 on E2, ...), and 4) a declaration of actions

(A1, A2, ...) that are performed as a consequence of events and/or state transitions. The

meta data definitions and the definition of events are sections in the SCXML document

which provide the necessary information for the Event Handler and Action Dispatcher

to process the service as described previously.

5.1.2.1 Header and Meta Data

The executable specification for a service contains meta data. The meta data is contained

in the header and meta data section of the SCXML document. The header portion of the

executable specification describes the XML version, SCXML version, namespaces, and

initial state of the service. We use the Hop-to-Hop Acknowledgment service, described

in Section 3.1.2.1, as an example SCXML document.

<?xml version="1.0"?>
<scxml version="1.0"

xmlns="http://www.w3.org/2005/07/scxml"
xmlns:action="http://my.custom-actions.domain/action"
initialstate="init">

The above SCXML snippet identifies the XML and SCXML versions as“1.0” and

defines the default namespace (xmlns) and the action namespace (xmlns:action). The

action namespace is the namespace for the SCXML element tag <action:>. The XML

snippet enclosed within the <action></action> describe an action and its parameters

corresponding to a Java method as described in Figure 5.4. The Action Dispatcher maps

these actions to the list of network primitives in MessageStore. The initialstate

attribute defines the initial state of the finite-state machine. Additional meta data

is contained within two custom SCXML data elements <data name="service"> and

<data name="metaops"> as shown below.

<datamodel>
<data name="service">

<serviceName>h2hack</serviceName>
<serviceID>1</serviceID>
<serviceType>message-oriented</serviceType>
<serviceDeliveryMode>unicast,multicast</serviceDeliveryMode>

</data>



Chapter 5. Implementation 99

<data name="metaops">
<messageStoreWillForwardMessage>false</messageStoreWillForwardMessage>
<processIntermediateUnicastMessage>true</processIntermediateUnicastMessage>

</data>
</datamodel>

For this example service, the service name is “h2hack”, and its identifier (serviceID)

is 1. The service supports message-oriented delivery with delivery modes of unicast and

multicast. Message-oriented delivery means that one finite-state machine is created per

data message for a service. The first meta data defines that for this service, MessageStore

does not forward messages. This means that a data message will be forwarded as soon

as it is received by the overlay node and a cloned copy of the message will be processed

in MessageStore (default behavior). If the tag <messageStoreWillForwardMessage> is

set to true, it means that MessageStore is responsible for forwarding the message. In this

case, a data message marked with this service is not cloned. This is useful in services such

as Duplicate Elimination where a message is checked to see if it has already been received

before forwarding. The second meta data determines if MessageStore will process unicast

messages if the overlay node is an intermediate node between the source and destination.

For some services, intermediate nodes need not process a service message. This is done

to reduce overhead at intermediate nodes.



Chapter 5. Implementation 100

5.1.2.2 Events

Table 5.1: Events for Hop-to-Hop Acknowledgment Service

Event Basic/Composite Type

Payload message basic message

Local ACK message basic message

ACK request message basic message

NACK message basic message

Reset message basic message

TimeoutACK basic timer

TimeoutMaxACK basic timer

TimeoutNACK basic timer

TimeoutRST basic timer

TimeoutMaxRST basic timer

TimeoutMSG basic timer

all ACKs received composite first-order logic expression

on Local ACK messages

Events of an executable specification are either basic events or composite events.

Recall that a basic event is either a message arrival or a timer expiration. Composite

events are based on first-order logic expression evaluation of one or more basic events.

For the Hop-to-Hop Acknowledgment service we have the 11 events (Table 5.1). There

is one composite event, when all “Local ACK messages” have been received for a for-

warded message. Which expressed that acknowledgement messages have arrived from all

expected nodes.

In the SCXML document, events descriptions are enclosed within <data name="events">

elements. We leverage the SCXML datamodel as these event descriptions are structured



Chapter 5. Implementation 101

data. The SCXML datamodel express data as a DOM tree. The corresponding section

in the executable specification is specified in SCXML as follows:

<datamodel>
<data name="events">

<Basic>
<!-- messages -->
<Event name="h2hnackmessage">

<Message>
<MessageType>1</MessageType>

</Message>
</Event>
<Event name="h2hackmessage">

<Message>
<MessageType>2</MessageType>

</Message>
</Event>
<Event name="h2hackreqmessage">

<Message>
<MessageType>3</MessageType>

</Message>
</Event>
<Event name="resetmessage">

<Message>
<MessageType>4</MessageType>

</Message>
</Event>
<Event name="payloadmessage">

<!-- the message type is defined in HyperCast -->
<!-- to be 0x80 in 8 bits for a Payload -->
<!-- Message which is -128 decimal -->
<Message>

<MessageType>-128</MessageType>
</Message>

</Event>
<!-- timers -->
<Event name="finaldelete">

<!-- this is a timer set in the initial state to -->
<!-- auto-delete the finite-state machine -->
<!-- after a certain extended period of time -->
<Timer>

<TimerIdentifier>1</TimerIdentifier>
</Timer>

</Event>
<Event name="nacktimeout">

<Timer>
<TimerIdentifier>2</TimerIdentifier>

</Timer>
</Event>
<Event name="acktimeout">

<Timer>
<TimerIdentifier>3</TimerIdentifier>

</Timer>
</Event>
<Event name="maxacktimeout">

<Timer>
<TimerIdentifier>4</TimerIdentifier>

</Timer>
</Event>
<Event name="msgtimeout">

<Timer>
<TimerIdentifier>5</TimerIdentifier>

</Timer>



Chapter 5. Implementation 102

</Event>
<Event name="resettimeout">

<Timer>
<TimerIdentifier>6</TimerIdentifier>

</Timer>
</Event>
<Event name="maxresettimeout">

<Timer>
<TimerIdentifier>7</TimerIdentifier>

</Timer>
</Event>

</Basic>
</data>

</datamodel>

Basic events are identified by the SCXML element <Basic>. Let us discuss a few

events in detail. For example, the basic event named “payloadmessage” indicates that it is

an event based on the receipt of a “Payload message”. The SCXML elements <Message>

and <MessageType>, which are required attributes of the event named “payloadmessage”,

indicate that the event is triggered by messages with a message type decimal value of 0x80.

(The event named “payloadmessage” filters messages based on these two attributes.)

Similarly, the basic event named “acktimeout” is an timer expiration event based on

TimeoutACK (See Table 3.2). The SCXML elements <Timer> and <TimerIdentifier>,

which are parameters for the event description named “acktimeout”, indicate that the

event is triggered by a timer with identifier “1”.

For the Hop-to-Hop Acknowledgement service we have one composite event when

the overlay node receives all “Local ACK messages” from all children nodes after the

“Payload message” is forwarded to them. This event is triggered if the set of the source

logical addresses of received “Local ACK messages” contains the set of logical addresses

of children nodes.

This relationship is expressed in first-order logic as discuss in the Section 4.2.1.2. The

express is as follows:

“For each neighbour d, there exists an acknowledgement message EbasicACK
, such that

EbasicACK
comes from d and there does not exist a timeout Ebasictimeout

for d indicating

the maximum waiting time for the acknowledgment has expired for d.”



Chapter 5. Implementation 103

∀d : (∃EbasicACK
: from(d,EbasicACK

)∩ 6 ∃Ebasictimeout
: timeout(d,Ebasictimeout

)).

This composite event is defined as follows in the executable specification:

<Composite>
<Event name="allh2hackmessagesreceived">

<ConstituentBasicEvent>h2hackmessage</ConstituentBasicEvent>
<XQuery>

let $x := //Node[last()]/Children/LogicalAddress,
let $y := //Event[@name="h2hackmessage"]/Message/SourceAddress return
for $i in $x return
if ($i = $y) then &lt;out&gt;true&lt;/out&gt; else &lt;out&gt;false&lt;/out&gt;

</XQuery>
</Composite>

Composite events are specified within the SCXML element <Composite>. The above

SCXML snippet identifies the name of the composite event as “allackmessagesreceived”.

This composite event’s first-order logic express is evaluated when the basic event “h2hackmessage”

is triggered. The first-order logic expression of the composite event is expressed using

XQuery and XPath contained within the <XQuery> element (See Section 3.3).

The XQuery sets two variables x and y. The variable x is the set containing all the lo-

cal node’s children’s logical addresses and the variable y is the set of all acknowledgement

message’s source logical addresses. Both of these data is queried from the History of Basic

Events (See Section 4.2.2) using XPath. Recall all acknowledgement messages recorded

as events when they arrive and the node information is updated when updateNodeInfo

(See Section 4.2.3.1)is invoked. The last() predicate indicates the last updated node

information is to be used. The last two lines of the XQuery expression means that if for

all local node’s children logical addresses, if there is an acknowledgement with a match-

ing source logical address then the expression evaluates to true, else false. Note that the

result is outputted as <out>true</out> and <out>false</out> elements and the &lt;

and &gt; symbols are the unicode equivalent of < and > which are illegal characters

in an XML document.

The expression are evaluated using Saxon XQuery and XSLT processor libraries. A

true result triggers the composite event “allackmessagesreceived”.



Chapter 5. Implementation 104

5.1.2.3 States and State Transitions

The next part of the executable specification is the declaration of states and state transi-

tions. The syntax of states and state transitions is defined by the SCXML specification.

Below is the SCXML portion describing the states and state transitions for the Hop-to-

Hop Acknowledgment service (See Figure 3.6).

<state id="init">
<transition event="payloadmessage" target="waitack">

...
</transition>
<transition event="h2hackreqmessage" target="nopayload">

...
</transition>
<transition event="finaldelete">

...
</transition>

</state>

<state id="waitack">
<transition event="allh2hackmessagesreceived" target="done">

...
</transition>
<transition event="h2hackreqmessage">

...
</transition>
<transition event="h2hnackmessage">

...
</transition> -->
<transition event="resettimeout" target="reset">

...
</transition>
<transition event="acktimeout">

...
</transition>
<transition event="maxacktimeout" target="done">

...
</transition>

</state>

<state id="nopayload">
<transition event="payloadmessage">

...
</transition>
<transition event="h2hackreqmessage">

...
</transition>
<transition event="reset" target="reset">

...
</transition>
<transition event="nacktimeout">

...
</transition>
<transition event="maxnacktimeout" target="reset">

...
</transition>

</state>

<state id="done">



Chapter 5. Implementation 105

<transition event="h2hackreqmessage">
...

</transition>
<transition event="h2hnackmessage">

...
</transition> -->
<transition event="resettimeout" target="reset">

...
</transition>
<transition event="deletetimeout" target="init">

...
</transition>

</state>

<state id="reset">
<transition event="resettimeout">

...
</transition>
<transition event="maxresettimeoout" target="init">

...
</transition>

</state>

According to the finite-state machine of the Hop-to-Hop Acknowledgment service

there are five states “init”, “waitack”, “reset”, “nopayload” and “done” as defined by

SCXML elements <state id="...">. Note that the “init” state was previously defined

as the initial state in the header in Section 5.1.2.1. The <transition ...> element

specifies the name of the event that will cause a change in state in the attribute event,

and the target state of the transition in the attribute target. For example, the“init” state

will transition to the“waitack” state when the event named “payloadmessage” (arrival

of “Payload message”) is triggered. Note that <transition ...> elements that do not

contain a target are self-transitions.



Chapter 5. Implementation 106

5.1.2.4 Actions

Lastly we describe how actions are specified in the executable specification. Actions

are defined by the <action:> element. Actions delegate processing to our own code

that we interfaced with the Apache Commons SCXML engine through the provided

CustomActions interface. This is described in more detail in Sections 5.1.3.2 and 5.1.4.4.

The <action:> element can be embedded within <state> elements or within <transition>

elements as shown below.

<state id="...">
<onentry>

<action:...>
</onentry>

</state>

<state id="...">
<onexit>

<action:...>
</onexit>

</state>

<state id="...">
<transition event="..." target="...">

<action:...>
</transition>

</state>

Actions placed within <state> element use enclosing <onentry> or <onexit> tags.

If an action is enclosed using the <onentry> tag, it will be performed upon every entry

to the state. If an action is enclosed using the <onexit> tag, it will be performed every

time when the state is exited. If the action is embedded within a state transition, it is

performed when that state transition is performed.

An action is specified in SCXML by first giving it a name corresponding to a method

in the MessageStore, i.e., the overlay network primitives. Then the parameters for that

method are set.

<action:create name="name of method in list of actions"/>
<action:set name="name of method in list of actions"

field="XPath expression"
value="string value"/>

<action:set name="name of method in list of actions"
field="XPath expression"
value="XPath expression"/>

<action:execute name="name of method in list of actions"/>



Chapter 5. Implementation 107

The details of the implementation of actions are discussed later in this chapter.

We now present some, not a complete set, of the actions specified in SCXML for the

Hop-to-Hop Acknowledgment service.

Example Action 1: The following actions set a timer using the Java method

setTimer:

<action:create name="setTimer"/>
<action:set name="setTimer" field="Timer/TimerIdentifier" value="2"/>
<action:set name="setTimer" field="Timer/TimerValue" value="5000"/>
<action:execute name="setTimer"/>

The above SCXML snippet creates an action (<action:create...>) named “set-

Timer” that sets (<action:set...>) the fields TimerIdentifier and TimerValue as

“2” and 5000ms respectively. The action is then sent to the MessageStore to be executed

when the (<action:execute...>) element is used. Note that in Hop-to-Hop Acknowl-

edgement’s specification, a timer identified by “2” correspond to a TimeoutNACK.

Example Action 2: The following SCXML snippet sends a “Local ACK Message”.

<!-- send acknowledgement back -->
<action:create name="sendMessage"/>
<action:set name="sendMessage" field="Message"

xpath="/HistoryOfEvents/Event[@name=’payloadmessage’][last()]/Message"/>
<action:set name="sendMessage" field="Message/DeliveryMode" value="3"/>
<action:set name="sendMessage" field="Message/DestinationAddress"

xpath="/HistoryOfEvents/Event[@name=’payloadmessage’][last()]/Message/PreviousHopAddress"/>
<action:set name="sendMessage" field="Message/MessageType" value="2"/>
<action:execute name="sendMessage"/>

The “sendMessage” action corresponds to the method called sendMessage in the

MessageStore. Once the action is created, parameters corresponding to the action are

set. The parameter for the sendMessage method is a message contained in a DOM tree

with root element Message. This message is first set (<action:set...>) as a copy of the

last received “Payload message” in the History of Basic Events obtained by an XPath

expression defined in the attribute xpath of the element <action:set ...>. Evaluation

of the Xpath expression results in an XML snippet representing the last received “Payload

message” embedded as a parameter in the action sendMessage.



Chapter 5. Implementation 108

The delivery mode, destination address, and message type of this message are then

modified using <action:set ...>. The delivery mode is unicast. The destination ad-

dress is changed to the previous-hop address of the last received “Payload message”. The

message type is set to “2”, which corresponds to a “Local ACK message”.

Example Action 3: Similarly, below is an action to send a “NACK Message”.

<!-- send no-acknowledgement back -->
<action:create name="sendMessage"/>
<action:set name="sendMessage" field="Message"

xpath="/HistoryOfEvents/Event[@name=’payloadmessage’][last()]/Message"/>
<action:set name="sendMessage" field="Message/DeliveryMode" value="3"/>
<action:set name="sendMessage" field="Message/DestinationAddress"

xpath="/HistoryOfEvents/Event[@name=’payloadmessage’][last()]/Message/PreviousHopAddress"/>
<action:set name="sendMessage" field="Message/MessageType" value="1"/>
<action:set name="sendMessage" field="Message/Payload" value="No Acknowledgement"/>
<action:execute name="sendMessage"/>

Example Action 4: Finally, the action to retransmit the last received “Payload

Message” to all children nodes (delivery mode of “1” indicates multicast) is shown below.

<!-- retransmit the payload to the children -->
<action:create name="sendMessage"/>
<action:set name="sendMessage" field="Message"

xpath="/HistoryOfEvents/Event[@name=’payloadmessage’][last()]/Message"/>
<action:set name="sendMessage" field="Message/DeliveryMode" value="1"/>
<action:set name="sendMessage" field="Message/HopLimit" value="1"/>
<action:execute name="sendMessage"/>



Chapter 5. Implementation 109

5.1.3 New MessageStore Objects

MessageStore has been modified to support two new objects that allow it to support pro-

cessing of executable SCXML specifications. The first object, called ExecSpec, encap-

sulates the executable specification of a service. The second object, called GenericFSM,

contains the finite-state machine that is executed by the Apache Commons SCXML

engine. This object is generic since all services use instances of the same object. It is im-

portant to note the separation between the service specification (in object ExecSpec) and

the code that the MessageStore needs to execute the service (in object GenericFSM). One

ExecSpec object is created for each service and one GenericFSM object is created for each

data message corresponding to that service (identified by the <MessageID, ServiceID>

tuple.

5.1.3.1 ExecSpec Object

In MessageStore, we provide a hash-table called serviceSpecifications which is a

repository for all loaded services in the MessageStore available to the application. Each

entry in this hash-table is indexed by a unique serviceID and each entry contains an

object representing the executable service specification (ExecSpec object).

To load a service, an executable specification in the form of a SCXML document

is passed to the MessageStore method initializePreDefinedService. The SCXML

document is checked against a locally stored XML schema, provided as a URI, using the

method validateSpecification to ensure that the structure of the SCXML document

is correct and all elements have the expected format.

If the SCXML document is valid the method parses the SCXML document using the

Apache Commons SCXML library’s SCXMLParser and creates an ExecSpec object. Con-

ceptually, the ExecSpec object is the executable specification’s object in MessageStore.

The ExecSpec object contains the finite-state machine describing the behaviour of the

service in the SCXML FSM object which can be executed using methods in the Apache



Chapter 5. Implementation 110

Commons SCXML engine. An ExecSpec object also extracts the meta-data, events, and

actions defined in the SCXML document. As previously described, these data are de-

fined and use by our implementation. For each service, an ExecSpec object is created

and stored in the hash-table serviceSpecifications.

executable specification
meta-data:
   service name, service id, delivery
   modes, initial state = S0, ...

events:
   basic: (E1, E2, E3)
   composite: (CE1)

states, state transitions, and actions
   S0: 
          transition on E2 to S1 and do A2
          transition on CE1 to S2 and do A3   
          on E1 do A1
    S1: 
          transition on E3 to S2 and do A3
    S2: 

ExecSpec object
meta data

basicEvents Table
name = En<type,deliverymode, ...>

E1=payloadmessagetype=0x80

compositeEvents Table

FOL 
expression

check when <basic 
event> is triggered

name = CEn

E2=h2hackmessage CE1=allh2hackmessagesreceived

SCXML FSM object

(E1, E2, E3)

(CE1)

Figure 5.6: Relationships of the SCXML representation of the executable specification

to the ExecSpec object

Figure 5.6 describes the main data structures of the ExecSpec object. The meta data

is stored in private member variables in the ExecSpec object. The list of events is stored

in two tables, one for basic events and one fore composite events.

The data structure basicEvents is a hash-table that contains the list of basic events,

consisting of the event names and the attributes of arrived message/expired timer that

must match to trigger the event. For example, in the Hop-to-Hop Acknowledgment

service, when a message arrives with message type equal to 0x80, the basic event named

“payloadmessage” is triggered.

The data structure compositeEvents is a hash-table that contains the list of com-

posite events identified by name, the names of basic events that will cause the compos-

ite events to be evaluated, and the first-order logic expression (FOL) that triggers the



Chapter 5. Implementation 111

composite events. For the Hop-to-Hop Acknowledgement service, the composite event

“allh2hackmessagesreceived” is checked every time a basic event “h2hackmessage” is trig-

gered using the first-order logic expression defined in Section 5.1.2.2. If the first-order

logic expression evaluates to true, the composite event is trigged.

The ExecSpec object contains an SCXML FSM object, created from the parsed

SCXML document’s state and state transitions. This is the realization of the SCXML

specification of states, state transitions, and actions in code. This object is used to create

FSM instances by the GenericFSM object that can be executed by the Apache Commons

SCXML engine as explained in the following section.



Chapter 5. Implementation 112

5.1.3.2 GenericFSM Object

Finite-state machine instances for a service in the new MessageStore are encapsulated by

GenericFSM objects, which reference to an ExecSpec object.

When MessageStore receives a new message marked with a ServiceID, a GenericFSM

object for that message can be created using the ExecSpec’s object obtained from

the repository of all loaded services (the serviceSpecifications hash-table). The

createFSM method instantiates a GenericFSM object of the corresponding service which

takes the SCXML FSM object as a parameter. This GenericFSM object has access to all

subcomponents of the corresponding ExecSpec object. The GenericFSM object also has

access to the MessageStore and the overlay node.

The MessageStore creates and stores a new GenericFSM object for every data message

received with a new MessageID. The GenericFSM object are stored in the MessageStore

hash-table repository called FSMStore (This data structure existed previously but is

now modified to store GenericFSM objects instead of service-specific FSM objects). The

uniqueID of a GenericFSM object for a data message, used as the key in the hash-table,

consists of both its ServiceID and MessageID.

AbstractStateMachine
CustomActions

Generic FSM Object
SCXMLEngine
SCXMLExecutor

FSM Instance

setAction

createAction

executeAction

Extends

Figure 5.7: A GenericFSM object extends the AbstractStateMachine object and instan-

tiate three actions



Chapter 5. Implementation 113

The GenericFSM object has many subcomponents. At its core, it contains a Apache

Commons SCXML engine which has the methods to execute an instance of the SCXML

FSM object contained in the ExecSpec object.

The GenericFSM object extends the Apache Commons SCXML AbstractStateMachine

object. We provide three custom actions methods using the Apache Commons SCXML’s

custom action interface called createAction, setAction, and executeAction that en-

able the SCXML engine to process the elements<action:create>, <action:set>, and

<action:execute> in the SCXML document of an executable specification. These meth-

ods are implemented in MessageStore and extend the Apache Commons SCXML’s Action

object. These three actions are instantiated upon the instantiation of the GenericFSM

object. Figure 5.7 illustrates this.

Some other subcomponents in the GenericFSM object communicate with the Apache

Commons SCXML engine. Their relationship can be see in Figure 5.8. The Event

Handler is realized in method handleEvent, which receives events (messages and timers).

It has access to both the basicEvents and compositeEvents tables to check if message

arrivals and timer expirations should result in an event trigger in the FSM. The events

to be triggered are passed to the Apache Commons SCXML engine. The Event Handler

also stores each basic event that triggers in the historyOfEvents table. This table,

representing the History of Basic Events, can be queried for information regarding past

basic events.

Recall that an action is created and the parameters for that action are set by the

SCXML engine using the <action:create> and <action:set> SCXML elements. For

each action, an entry is created in the ActionsQueue. Each action has a name corre-

sponding to a Java method in MessageStoreActions. The ActionsQueue buffers ac-

tions so they can be modified, i.e., adding or modifying parameters queried from the

History of Basic Events, anytime before executing them. This information is stored in

the ActionsQueue until the SCXML element <action:execute> tag is evaluated by the



Chapter 5. Implementation 114

GenericFSM Object

handleEvent dispatchAction
SCXMLEngine

SCXMLExecutor
FSM Instance

historyOfEvents
time Event

ActionsQueue
An parameters <p1,p2,p3...>
A1 messagetype=0x2, ...

ExecSpec Object
meta-data

basicEvents Table 
name = En<type,deliverymode, ...>

compositeEvents Table
FOL 

expression
check when <basic 
event> is triggered

name = CEn

SCXML FSM object
     contains list of actions to perform < A1, A2, ..., An> in 
     the FSM

MessageStoreActions
A1 (Java method)

parameters <p1,p2,p3...>

Check

Invoke

Store

Trigger Execute

Create, Set Dequeue

Map to method

FSM instance = 
instance of 

SCXML FSM 
object

Figure 5.8: Component of GenericFSM object and interactions with ExecSpec object



Chapter 5. Implementation 115

Apache Commons SCXML engine. At that point, the processing of an action specified by

its name in the SCXML element <action:execute> is passed to the Action Dispatcher.

The Action Dispatcher is realized in the method dispatchAction, which takes an

action and instantiates the Java method in the MessageStoreActions outside of the

GenericFSMObject and passing it all parameters of the action. The Java method then

executes asynchronously to the GenericFSMObject.



Chapter 5. Implementation 116

5.1.4 Service Execution

In the next four sections, we discuss in detail the execution flow of services in Mes-

sageStore. In Section 5.1.4.1 and 5.1.4.2, we describe how messages arriving at the

MessageStore and timer expirations in the MessageStore are passed as events to their

corresponding finite-state machine instance. In Section 5.1.4.3, we describe how each

GenericFSM object processes these events using the Event Handler. Lastly, in Section

5.1.4.4, we describe how actions are invoked by the Action Dispatcher.

5.1.4.1 Message Arrival Event

Figure 5.9 illustrates the steps involved in processing an arrived message at the Message-

Store. The following steps occur:

1. The message is received at the MessageStore by the method receiveMessage (bot-

tom of Figure 5.9). The message is checked to determine if it is a data message

containing payload or a control message. The message is then written to the Mes-

sageStore FIFO queues DataBuffer (for data messages) or ControlBuffer (for

control message).

2. Within the MessageStore, there is a MessageProcessor thread that reads from the

queues DataBuffer and ControlBuffer when they have messages available and

dequeues them to be processed.

3. In the MessageProcessor, messages are handled by the processMessage method.

The ServiceID of the message is extracted and checked against the list of supported

services using the serviceSpecifications hash-table. If the service does not exist

in MessageStore, a request for the service’s executable specification is sent, and the

processing of the message is postponed until the specification arrives. If no service

specification is found within an application specified time, the message is dropped.

This will be discussed in detail in Section 5.2.



Chapter 5. Implementation 117

If the service is found, the MessageID of the message is extracted and checked

against the MessageStore repository of stored GenericFSM objects. Recall that the

<MessageID, ServiceID> tuple uniquely identifies a GenericFSM object for a data

message.

If the repository does not contain a GenericFSM object with this uniqueID, it means

the message is new. Then, a new GenericFSM object is created using the createFSM

method and the Apache Commons SCXML engine is started for that instance. If

the repository already contains the GenericFSM object, the reference to the existing

GenericFSM object is retrieved using the getFSM method from the MessageStore

repository.

4. The processMessage method also invoked the createEvent method which mar-

shall the complete message into an Event object. The event object contains the

message, as a XML DOM tree. For example, a data message of the Hop-to-Hop

Acknowledgment service, after marshalling, will give the following XML document.

<Event>
<Message>

<MessageIdentifier>1</MessageIdentifier>
<ServiceIdentifier>H2HACK</ServcieIdentifier>
<DeliveryMode>1</DeliveryMode>
<HopLimit>255</HopLimit>
<SourceAddress>100,100</SourceAddress>
<DestinationAddress>200,200</DestinationAddress>
<PreviousHopAddress>100,100</PreviousHopAddress>
<MessageType>128</MessageType>
<Payload>Hello World</Payload>
<RootAddress>100,100</RootAddress>

</Message>
</Event>

Note that the RootAddress is a HyperCast message attribute and is not used in

the finite-state machine, nevertheless, it is still an attribute of the message. The

Event object is then passed to the GenericFSM object to be processed by method

handleEvent as shown in Figure 5.8.

5. The GenericFSM object is stored (in case of a new uniqueID) or updated (in case



Chapter 5. Implementation 118

of an existing uniqueID) in the finite-state machine repository (FSMStore) of Mes-

sageStore.



Chapter 5. Implementation 119

FSMStore

<serviceID,msgID> GenericFSM

ServiceSpecifications

Specification<serviceID>

DataBuffer ControlBuffer

Message Message

Message

Message

Message

MessageProcessor

ProcessMessage

Message

New 

serviceID?

New 

msgID?

getFSM

GenericFSM

createFSM

GenericFSM

createEvent

Event

Message

GenericFSM

handleEvent

Event

Message

ReceiveMessage

No

Yes

No

UseCheck Check Get

Update

Data 

Message?

Message

Yes No

Yes

request for 

service 

specification

start SCXML

engine

Figure 5.9: Processing of a message arrival event in MessageStore



Chapter 5. Implementation 120

5.1.4.2 Timer Expiration Event

Figure 5.10 illustrates the steps involved when a timer expires in MessageStore. The

following steps occur:

1. When a timer expires, the overlay node gets notified by the timerExpired method.

The method delivers the timer to the MessageStore (if MessageStore is instantiated)

if the timer a MessageStore timer.

2. The MessageStore method timerExpired extracts the timer object reference to the

GenericFSM object that issued the timer and attempts to obtain that GenericFSM

object from the MessageStore finite-state machine repository FSMStore. If that

GenericFSM object is not found, the timer expiration is ignored. If a GenericFSM

object exists for the timer, a reference is obtained using the method getFSM.

3. The timerExpired method invokes the createEvent method to marshall the timer

into an Event object which contains the timer as a XML DOM tree. For example,

a TimeoutACK of the Hop-to-Hop Acknowledgment service will give the following

XML document after marshalling.

<Event>
<Timer>

<TimerIdentifier>3</TimerIdentifier>
</Timer>

</Event>

The Event object is then passed to the GenericFSM object to be processed by the

handleEvent method.

4. The GenericFSM object is updated and stored in the finite-state machine repository

(FSMStore).



Chapter 5. Implementation 121

FSMStore

<serviceID,msgID> GenericFSM

MessageStore.timerExpired

getFSM
GenericFSM createEvent

Event

GenericFSM

handleEvent

OL_Socket.timerExpired

Get

Timer

<timerID> reference to GenericFSM

Timer

<timerID> reference to GenericFSM

Timer

<timerID>

Event

Timer

<timerID>

Figure 5.10: Processing of a timer expiration event in MessageStore



Chapter 5. Implementation 122

5.1.4.3 Handling Events

Figure 5.11 illustrates the steps taken by the handleEvent method within a GenericFSM

object to process an event (Event object). The following steps occur:

1. The Event object is received by the handleEvent method of a GenericFSM object.

2. The handleEvent method checks the list of basic events (E1, E2, ...) of this ser-

vice using its reference to the basicEvents table in its executable specification

(ExecSpec object) to see if one or more basic events need to be triggered in the

Apache Commons SCXML engine. If no basic event needs to be triggered, the

event object is released. If one or more basic event are to be triggered, the names

of the triggered events are obtained from the basicEvents table and are passed

to the fireEvent method of the Apache Commons SCXML engine which adds

the event’s names names (E1, E2, ...) to the engine’s event queue. The engine then

triggers these events on the state machine. When the basic events are triggered,

the event object that caused these basic events is saved in the historyOfEvents

table with a timestamp.

3. The handleEvent method then checks the compositeEvents table in its executable

specification object to see if there are any composite events (CE1, CE2, ...) that

must be evaluated due to the already triggered basic events names (E1, E2, ...) re-

sulting from the event object. If one or more composite events must be evaluated,

the first-order logic XQuery expressions for those composite events are obtained

from the compositeEvents table and evaluated using the executeFOL method from

the Saxon XQuery and XLST processor libraries. These libraries were loaded upon

instantiation of the MessageStore. If the first-order logic XQuery expression evalu-

ates to true, the composite event names associated with it (CE1, CE2, ...) are passed

to the fireEvent method of the Apache Commons SCXML engine which adds their

names (CE1, CE2, ...) to the engine’s event queue. Note that even if composite



Chapter 5. Implementation 123

events were triggered, the event object is not saved in the historyOfEvents ta-

ble. Conceptually speaking, composite events are always composed of basic events.

Therefore, if the entire history of basic events is logged, any composite event can

be reconstituted by querying the historyofEvents table.

4. The SCXML engine processes the event names (E1, E2, ...) and (CE1, CE2, ...) and

issues state transitions or actions using the SCXMLExecutor.

SCXMLEngine

handleEvent

basicEvents Table

name = En<type,deliverymode, ...>

E1

Event

has

Event?
Yes

Yes

historyOfEvents

time Event Object

Event

fireEvent

CE1

compositeEvents Table

FOL expression<name = E1, ...> name = CEn

CE1

part of 

composite 

event?

fireEvent

E1

executeFOL

FOL expression
true?

EventQueue

E1

CE1

SCXMLExecutor

FSM Instance

E1

Yes

Check Check Get

Store

Event

Figure 5.11: Event processing by the handleEvent method in GenericFSM Object



Chapter 5. Implementation 124

5.1.4.4 Executing Actions

Figure 5.12 illustrates the steps taken to create, set, and execute an action by the

GenericFSM object. Recall that the actions are defined in XML snippets embedded in the

executable specification stored as an SCXML FSM object in the ExecSpec object. The

SCXML FSM object is passed as a reference to the GenericFSM object upon instantiation

the GenericFSM object. The actions are mapped to pre-defined methods in Message-

Store. The list of pre-defined methods are provided by the class MessageStoreActions.

All methods in the MessageStoreActions class expect an XML document as parameter.

This class is described in detail in Section 5.1.5.

The following steps occur in executing an action.

1. As previously described, the Apache Commons SCXML engine is aware of the

types actions that need to be processed from SCXML document describing the

executable specification. These are SCXML elements of the format <action ...>.

As soon as one of these SCXML elements needs to be performed, the engine del-

egates processing to the custom actions interface CustomActions. We have im-

plemented three methods in the GenericFSM object, createAction, setAction,

and executeAction which handle the three SCXML elements <action:create>,

<action:set>, and <action:execute> respectively. This was described in Section

5.1.3.2.

2. To execute an action, an action must be created (shown as Step 1 in Figure

5.12). The <action:create ...> element invokes the createAction method of

the GenericFSM object. This method creates a new entry, in the form of an XML

DOM tree, in the ActionsQueue table with the name of the action, An as the at-

tribute of the root element. The name of the action must correspond to a method

in the class MessageStoreActions.

3. Next the parameters for this action must be set (shown as Step 2 in Figure 5.12).



Chapter 5. Implementation 125

The <action:set ...> element invokes the setAction method of the GenericFSM

object. This method updates the action named An with the list of parameters

(p1, p2, ...) in the ActionsQueue table. The parameters are added to the root ele-

ment An as children nodes in the XML DOM tree. These parameters corresponds to

input parameters for the method called An in the MessageStoreActions class. The

XML DOM tree with the name of the action as the root element and parameters

as children represents the action.

4. Finally, the actionAn is executed with the <action:execute ...> elements (shown

as Step 3 in Figure 5.12) which passes control to the executeAction method of

the GenericFSM object. The method dequeues the action with the root element

attribute of An from the ActionsQueue and sends the action (XML DOM tree) to

the dispatchAction method. The action is also stored, with a timestamp, in the

historyOfActions table.

5. The dispatchAction method receives the action (XML DOM tree) extract from the

action the method name An. Using Java reflection, disptachAction instantiates

and invokes the method in the MessageStoreAction class with the method name

equal to An and sends the remaining XML DOM tree as the parameter. If the

method name An is not found, an exception is thrown and the action is discarded.

This is shown in Figure 5.13.

6. The method An in MessageStoreActions extracts the input parameters in the form

of an XML DOM tree and then proceeds to execute the action if the parameters

are correct. The execution of the action is asynchronous to the execution of the

GenericFSM object. Hence, the GenericFSM object does not know if this action

succeeds or fails. This is also shown in Figure 5.13.



Chapter 5. Implementation 126

GenericFSM Object
SCXMLEngine

SCXMLExecutor
FSM Instance

An
a task to be 
performed

createAction

An

setAction

An

executeAction

An

ActionsQueue
An parameters <p1,p2,p3...>

historyOfEvents
time Event

Store

dispatchAction

An parameters <p1,p2,p3...>

historyOfActions
time action

An

MessageStoreActions
An

parameters <p1,p2,p3...>

Action

action execute asynchronously to 
the GenericFSM object

Use

step 1

step 2
step 3

Get

Map

Figure 5.12: Creating an action in GenericFSM object using SCXML custom actions

interface



Chapter 5. Implementation 127

dispatchAction

An parameters <p1,p2,p3...>

MessageStoreActions

An

parameters <p1,p2,p3...>

Action
(XML DOM tree)

method name

parameters in 
a tree 

structure

Method An in 
MessageStoreActions?

Yes
invoke the method An  
and send it the tree of 

parameter

throw 
warning, 
terminate 

action

No

parameters valid for 
the method An?

Yes

process 
action

throw 
warning, 
terminate 

action

No

Figure 5.13: Action processing by the dispatchAction method in GenericFSM Object



Chapter 5. Implementation 128

We again use Hop-to-Hop Acknowledgment example to show how an action, such

as sending an acknowledgement message, is issued and processed. Recall from Section

5.1.2.4 that the following SCXML snippets create an action that sends a “Local ACK

message” upon receipt of a “Payload message”.

<!-- send acknowledgement back -->
<action:create name="sendMessage"/>
<action:set name="sendMessage" field="Message"

xpath="/HistoryOfEvents/Event[@name=’payloadmessage’][last()]/Message"/>
<action:set name="sendMessage" field="Message/DeliveryMode" value="3"/>
<action:set name="sendMessage" field="Message/DestinationAddress"

xpath="/HistoryOfEvents/Event[@name=’payloadmessage’][last()]/Message/PreviousHopAddress"/>
<action:set name="sendMessage" field="Message/MessageType" value="2"/>
<action:execute name="sendMessage"/>

The GenericFSM object then takes the following step:

1. An action is first created.

<action:create name="sendMessage"/>

Creates an action with the root element of the XML DOM tree An = “sendMes-

sage” and enqueues it on ActionsQueue. The name of the action corresponds to

the method sendMessage in the MessageStoreActions class. At this point the

ActionsQueue would have the following action. Note that the action does not yet

have any parameters.

<Action name="sendMessage">
</Action>

2. The parameters for the action is set.

<action:set name="sendMessage" field="Message"
xpath="/HistoryOfEvents/Event[@name=’payloadmessage’][last()]/Message"/>

<action:set name="sendMessage" field="Message/DeliveryMode" value="3"/>
<action:set name="sendMessage" field="Message/DestinationAddress"

xpath="/HistoryOfEvents/Event[@name=’payloadmessage’][last()]/Message/PreviousHopAddress"/>
<action:set name="sendMessage" field="Message/MessageType" value="2"/>

The first <action:set ...> element copies the XML DOM tree of the last re-

ceived “Payload message” appends it to the newly created XML DOM tree of the



Chapter 5. Implementation 129

action “sendMessage” under the child element <Message> assigned by the field

attribute. The setAction method does this by taking the XPath expression in the

field xpath and performing an XPath query of the historyOfEvents table search-

ing for the last “Payload message” event. The result of the query is the XML

DOM tree representing the last received ”Payload message”. Similarily, the next

two <action:set ...> elements modify the delivery mode, destination address,

and message type nodes of the XML DOM tree of the action “sendMessage” to

have a delivery mode value of “3”, destination address logical address equal to the

previous-hop address, and a message type of “2”. After these manipulations the

ActionsQueue would have the following action.

<Action name="sendMessage">
<Message>

<MessageIdentifier>1</MessageIdentifier>
<ServiceIdentifier>H2HACK</ServiceIdentifier>
<DeliveryMode>3</DeliveryMode>
<HopLimit>255</HopLimit>
<SourceAddress>200,200</SourceAddress>
<DestinationAddress>100,100</DestinationAddress>
<PreviousHopAddress>200,200</PreviousHopAddress>
<MessageType>2</MessageType>
<RootAddress>100,100</RootAddress>

</Message>
</Action>

The XML DOM tree representing the action “sendMessage” now contain a mes-

sage as its children enclosed within the <Message> element. This representing a

parameter for the “sendMessage” action that is a “Local ACK message”.

3. The action is then executed.

<action:execute name="sendMessage"/>

Finally, the actionAn=“sendMessage” is executed with the <action:execute ...>

elements which passes control to the executeAction method in the GenericFSM

object. The method finds the action with the name “sendMessage” using an XPath

query and dequeues the action from the ActionsQueue table. The action “sendMes-



Chapter 5. Implementation 130

sage” is then stored in the historyOfActions table. The action is then sent to the

dispatchAction method.

4. The dispatchAction method extracts the action name “sendMessage”, and using

Java reflection, instantiates and invokes the sendMessage method in the MessageStoreAction

class. The XML DOM tree of the “Local ACK message”, enclosed in the<Message>

element, is sent to sendMessage as the parameter.

5. The sendMessage method parses the XML DOM tree representing the “Local ACK

message” creating a “Local ACK message” object and execute the action.



Chapter 5. Implementation 131

5.1.5 List of Supported Actions - Network Primitives

The set of actions provided by the class MessageStoreActions in MessageStore a set

of common overlay network primitives. This set of primitives are the only methods any

service may invoke. We believe we have equipped the MessageStoreActions primitives

that are useful for many services, and which perform tasks easily understood by devel-

opers. In particular, all existing services of HyperCast 4.0 can be expressed. If new

primitives are required for a service, they should be added to this MessageStoreActions

class.

Table 5.2 lists the actions currently available in MessageStoreActions. All the pa-

rameter for these method is represented as a XML DOM tree described previously.

This list of supported actions corresponds to those defined Section 4.2.3.1. Note

that the two message manipulation primitives createMessage and sendMessage are not

present. These actions are provided by our custom action createAction and setAction

using the SCXML element <action:create...> and <action:set...>. For example,

to create a message, an action is created and the message parameters are set using

setAction. Similarly, to modify a message, the message is first obtained using XPath

query on the historyOfEvents and any fields can be changed using setAction.



Chapter 5. Implementation 132

Table 5.2: Supported Actions in MessageStore

Action Description Parameters

sendDataMessage Sends a data message to the list
of destination nodes with the spec-
ified delivery mode (unicast, mul-
ticast, ood). The invoking node
sets its own logical address as the
source logical address and previous-
hop logical address. This method
automatically adds the service’s
ServiceID and a MessageID. The
message type is 0x80.

data message

sendControlMessage Sends a control message to the
destination node(s) with the spec-
ified delivery mode (unicast, mul-
ticast, ood). The invoking node
sets its own logical address as the
source logical address and previous-
hop logical address. This method
automatically adds the service’s
ServiceID. The MessageID corre-
spond to a data message.

control message

toApplication Passes a message to the application. data message

setTimer Sets a timer in the MessageStore.
This method automatically sets the
ServiceID and a reference in the
timer to GenericFSM instance that
created it.

MessageStore timer
object (TimerID, du-
ration in milliseconds)

terminate Removes a GenericFSM instance
from the MessageStore repository
FSMStore.

uniqueID of the
GenericFSM instance
<MessageID, ServiceID>

tuple

updateNodeInfo Updates the local node informa-
tion and stores the information in
the historyOfEvents under the
<Node> elements. Node informa-
tion includes the local nodes logi-
cal address and other topology in-
formation (parents, children, neigh-
bours, etc.).

-



Chapter 5. Implementation 133

5.1.6 Discussion of the Implementation

We designed the GenericFSM object to only process data expressed as XML DOM trees

rather than Java objects. Events and actions are all in the form of XML DOM trees.

Conceptually this means the GenericFSM object is a XML processor. An advantage of

this approach is that the objects are not coupled with a specific implementation of the

overlay middleware, i.e., a message object is described XML rather than instantiated

from an overlay specific Java class. Hence, the core component of MessageStore can be

interoperable with different overlay networks.

Also, all the History of Basic Events repository stores Events expressed as XML DOM

trees. Hence, this repository can be easily moved to a database or multiple parallel

databases if needed.



Chapter 5. Implementation 134

5.1.7 Mechanisms to Improve MessageStore Performance

The new design MessageStore must instantiate two large libraries for each GenericFSM

object: 1) Apache Commons SCXML engine and 2) Saxon XQuery and XLST processor

(for processing first-order logic expressions). Since Java loads class libraries on-demand,

performance degrades when these libraries are loaded. To mitigate this performance

degradation we provide two mechanisms. First, we allow the pre-allocation of GenericFSM

objects during the initialization of MessageStore. Second, we provide a mechanism to

“warm-start” the Apache Commons SCXML engine to force loading of a portion of the

required libraries. We do not “warm-start” the SAxon XQuery and XLST processor

because involves the use of composite events.

5.1.7.1 Pre-allocation of Finite-State Machines

Figure 5.14 shows the pre-allocation of FSM instances during MessageStore initialization.

The <Preallocated> parameter in the configuration file for the HyperCast overlay can

be used by the application to set the number GenericFSM objects to be pre-allocated.

If the value is not set or if the value is set to 0, no FSMs are pre-allocated. The pre-

allocated GenericFSM objects are stored in the preallocatedFSM collection. Note that

these pre-allocated FSMs are not started and they have no reference to any executable

specification, i.e., no reference to an ExecSpec object. Hence, the pre-allocated object

can be used by any service.

When a new message is received by the MessageStore that requires a new instance

of the GenericFSM object, the processMessage method first checks the pool of pre-

allocated GenericFSM objects (stored in the collection preallocatedFSM) to see if there

are any remaining. If there are pre-allocated GenericFSM objects available, one of the

object is obtained. The ExecSpec object is identified by the ServiceID of the message

and the Apache Commons SCXML engine is then started for the GenericFSM object.

This processing flow is shown in Figure 5.15.



Chapter 5. Implementation 135

Is the configuration 

parameter <Preallocated> 

set to > 0?

Create an FSM instance 

(GenericFSM) without 

reference to any service

Place the FSM instance 

(GenericFSM) in the 

preallocatedFSM collection

MessageStore initialization

Finish

Repeat n times; where n is 

the number of preallocated 

FSMs define in the 

configuration parameter 

<Preallocated>

Figure 5.14: Pre-allocation of GenericFSM objects during MessageStore initialization

MessageProcessor

ProcessMessage

Message

New 

serviceID?

New 

msgID?

createFSM

FSM

No Yes

NoYes

request for 

service 

specification

Pre-allocated 

FSM available?

Pool of Pre-allocated 

GenericFSM Objects

FSM

FSM

FSM

No

Yes

FSM

Figure 5.15: How preallocated FSMs are used in MessageStore



Chapter 5. Implementation 136

In Chapter 6, the performance improvement due to this pre-allocated FSMs is evalu-

ated. With a pre-allocation of 100 FSMs for a 1-hop transfer of 10,000 overlay messages

of 1,024 bytes using the Hop-to-Hop Acknowledgement service, the delay of the first few

messages processed by MessageStore was reduced by up to 100 milliseconds per message.



Chapter 5. Implementation 137

5.1.7.2 “Warm-starting” the Apache Commons SCXML Engine

We use the term“warm-start” to describe our approach to force some, but not all, required

classes of the Apache Commons SCXML libraries to be loaded during the initialization of

MessageStore prior to processing any messages. The Java Classloader, by default, uses

on-demand loading of class libraries. This means that classes are not loaded into the

Java Virtual Machine until they are actually used, even if the classes are instantiated.

Since the Apache Commons SCXML is a set of large libraries, the on-demand loading

degrades the performance of message processing in the MessageStore for the first few

received messages. For the first few messages, the Java Classloader must load all classes

required to process the message into the Java Virtual Machine before processing it. Our

mechanism does not force all existing Apache Commons SCXML libraries to be loaded,

since this would reduce available memory in the Java Virtual Machine. The “warm-

start” mechanism attempts to load a core set of classes for the Apache Commons SCXML

libraries needed to process the simplest finite-state machine within our context.

Figure 5.16 shows the “warm-start” of Apache Commons SCXML engine during Mes-

sageStore initialization.

The “warm-start” mechanism uses a SCXML document for a dummy service that is

loaded into the MessageStore. The dummy service has a ServiceID of 0. The finite-state

machine of the service has one state where it receives any message with its correspond-

ing ServiceID. There are no actions or state transitions for the dummy service. The

“warm-start” mechanism is used when the <WarmStart> parameter in the HyperCast

configuration file is set to “true”. Upon MessageStore initialization, the parameter ex-

ecutable specification (ExecSpec object) is created from the SCXML document of the

dummy service. Then 10 GenericFSM objects are instantiated and the Apache Commons

SCXML engine is started for each GenericFSM object. Note that this is a forced instan-

tiation. Under normal circumstances, the GenericFSM object is only instantiated if a

message belonging to that service is received. We do not send or any receive messages,



Chapter 5. Implementation 138

Is the configuration 

parameter <WarmStart> 

set to true?

Create an executable 

specification (ExecSpec 

object) using the SCXML 

document for the service 

"dummy"

Create one instance of FSM 

(GenericFSM object) for the 

service "dummy"

Start the SCXML engine for 

the created GenericFSM 

object

Create and send a "dummy" 

message to the instance of 

FSM (GenericFSM object)

The instance of FSM 

(GenericFSM) handles 

the "dummy" message 

MessageStore initialization

Finish

Figure 5.16: Warm-start mechanism during MessageStore initialization

instead we create an event object representing a dummy message with a payload of 1,024

bytes and passes this event object directly to the handleEvent method of the GenericFSM

object. The event is then processed by the Apache Commons SCXML engine.

In Chapter 6 we show the primary performance bottleneck is the processing within



Chapter 5. Implementation 139

the Apache Commons SCXML engine. The “warm-start” mechanism can reduce the

delay of the first few messages processed by MessageStore by few hundred milliseconds.



Chapter 5. Implementation 140

5.2 Service Deployment

There are two mechanism to deploy a new service to MessageStore. The first mechanism is

to invoke the MessageStore API called loadService which takes a URI for an executable

specification and deploys it in the MessageStore. The second mechanism involves the use

of a Services Server. We do not send executable specifications directly as messages in

the overlay since the SCXML documents can be extremely large.

5.2.1 Services Server

Overlay Node

MessageStore

Executable

Specification

SCXML

SCXML SCXMLdownload upload

Services Server

check 

serviceID

Figure 5.17: Interactions of MessageStore with the Services Server

If HyperCast is running in an environment where it has access to the Internet, the



Chapter 5. Implementation 141

overlay nodes can interact with a special HTTP server called the “Services Server”.

This server is the same type of server that is available in HyperCast for overlay socket

configurations. The server stores executable specifications identified by the ServiceID

in SCXML document form. The interactions of MessageStore with the Services Server

are shown in Figure 5.17. The location of the Services Server is configurable in the

HyperCast configuration file. Executable specification can be loaded using the method

loadService by the method with a URI to the SCXML document. Alternatively, Hy-

perCast provides methods to interact with the Services Server and download and upload

SCXML documents for services on-demand.

HyperCast contains the implementation of this Services Server. This server is a

minimal implementation of an HTTP server and is run as a standalone application. The

Services Server is accessible through a TCP port. This port number is configured in the

HyperCast configuration file.

DataBuffer ControlBuffer

Message Message

Message

Message

Message

MessageProcessor

ProcessMessage

Message

New 
serviceID?

Yes

No

continue 
processing

sendServiceQuery

ServiceRequestMessage

Is the service 
on services 

server?

downloadSpecification

SCXML 
document

send to the 
source of the 

message

download 
from 

services 
server

Message

write the 
message to the 

back of the 
MessageStore 

message buffers

Yes

No

Figure 5.18: How MessageStore handles a message with a new serviceID



Chapter 5. Implementation 142

Next we describe how an overlay node without a specific service can obtain the exe-

cutable specification from the Services Server. Figure 5.18 presents an illustration. When

a message arrives at the MessageStore processing thread processMessage its ServiceID

is extracted and checked. If MessageStore currently does not have the executable spec-

ification for that service, MessageStore attempts to contact the Services Server if its is

configured in the HyperCast configuration XML file. If the Services Server cannot be

contacted or doesn’t exist, the message is dropped. If the Services Server is contacted

successfully, MessageStore checks the server for an executable specification with he re-

quired ServiceID. If found, the MessageStore downloads the SCXML document using

the method downloadSpecification. An ExecSpec object is then created from this

SCXML document and the message is processed.

If the Services Server is contacted successfully but the ServiceID is not found, the

MessageStore will attempt to contact the source node of the message in the overlay

network for the executable specification. Since message created at the source node,

it means it will likely have the executable specification for the service. To do this, a

node that received a message marked with an unknown service (assuming the service is

not found on the Services Server) sends a MessageStore control message called “Service

Request message” to the source node of the unknown service message. This “Service

Request message” is marked with the ServiceID of the unknown service and with a

MessageType attribute of “-1”. This corresponds to a special class of messages that when

received by MessageStore, (since they are marked with a MessageStore extension) are

processed completely within MessageStore (not delegated to GenericFSM object). Any

overlay nodes that receives this “Service Request message” will extract the ServiceID to

obtain the executable specification. If the executable specification is found, the SCXML

document for that sServiceID is uploaded to the Services Server.

After a node sends the “Service Request message”, the unprocessed message is placed

back to the end of the MessageStore message queues, so it can be processed again. When



Chapter 5. Implementation 143

the message is processed again, MessageStore again checks if the Services Server has

the executable specification for the message. This process continues until MessageStore

obtains the executable specification or when a configurable (in HyperCast configuration

file) number of tries are attempted.



Chapter 6

Evaluation

In this chapter, we present the evaluation of our design and implementation for cus-

tomizable services for application-layer overlay networks. Our evaluation has four main

objectives. First, we determine the bottlenecks in our implementation for the Java-based

system and the SCXML-based system through various runtime benchmark experiments.

The Java-based system refers to the existing implementation where each customizable

service is defined and realized by a Java class object. The SCXML-based system refers

to the new implementation where each customizable service is defined by an executable

specification and executed by a generic SCXML engine. Second, we examine the sustain-

able performance for each of these system for single-hop, two-hop, and five-hop overlay

message transfer. Thirdly, we compare the performance overhead of the Java-based sys-

tem versus the SCXML-based system. Lastly, we evaluate the effectiveness of our systems

for supporting customizable services for application-layer overlay networks.

Due to the large number of possible services our systems can support, we choose to

focus in detail on two end-to-end message transfer services: 1) Hop-to-hop Acknowledge-

ment (Section 3.1.2.1), and 2) End-to-end Acknowledgement (Section 3.1.2.2). These

two services have sufficient complexity to allow detailed evaluation of our objectives for

single-hop and multi-hop overlay message transfer scenarios.

144



Chapter 6. Evaluation 145

For the evaluation, we conducted measurement experiments using a locally available

testbed network at the University of Toronto. Before we present the experiments in

detail, we describe the setup of the testbed network and our configuration for single-hop,

two-hop and five-hop overlay message transfers.



Chapter 6. Evaluation 146

6.1 Experiment Setup

6.1.1 Testbed Network

Our experiments were performed using a local testbed configured using Emulab. Emulab

is an emulation system for creating and running large-scale networked and distributed

system experiments using arbitrary user-defined network topologies [9]. Emulab provides

a web interface for developing, managing, and debugging network systems. Emulab allows

us to remotely manage and configure network topologies.

The Emulab testbed at the University of Toronto consists of 22 Dell PowerEdge 2950

III PCs each with two Quad-Core Intel Xeon X8 5400 series processors clocked at 2.00

GHz, and 4GB DDR2 RAM. Out of the 22 PCs, 2 machines are dedicated as control

servers, one for the gateway to the remaining 20 machines, and one for the web server to

access Emulab’s web interface. Each PC has an Intel VT PCIe Quad-port Copper Gigabit

Ethernet NIC with 4 Gigabit Ethernet interfaces proving 8 usable Ethernet interfaces per

PC. Four 48-port Cisco Catalyst 4949-10GE switches interconnect the PCs.

Emulab supports a variety of operating systems. For our experiments, we use the

Fedora Core 6 Linux distribution with the Linux 2.6.20.6 kernel version.

6.1.2 Network Topology

For our experiments, we set up networks consisting of up to 6 network nodes connected

using bidirectional Ethernet links. The network topology for these 6 nodes is in the form

of a daisy-chain as visualized in Figure 6.1. There are 6 network nodes (node-1, node-2,

node-3, node-4, node-5, and node-6). Bidirectional links of 100 Mbps transfer capacity

connect adjacent nodes (node-1 and node-2, node-2 and node-3, etc.). The current version

of Emulab supports a maximum link capacity of 100 Mbps. These bidirectional links are

set using Emulab to have 0 ms delay. This means there is no added delay, but there is still

the transmission delay between adjacent nodes. As illustrated by Figure 6.1, each end of a



Chapter 6. Evaluation 147

node-1

node-2

node-3

node-4

192.168.1.1

192.168.1.2

100 Mbps

192.168.2.1

192.168.2.2

100 Mbps

192.168.3.1

192.168.3.2

100 Mbps

node-5

192.168.4.1

192.168.4.2

100 Mbps

node-6

192.168.5.1

192.168.5.2

100 Mbps

Figure 6.1: Network topology setup of experiments



Chapter 6. Evaluation 148

bidirectional link connects to a network interface with a unique IP address. For example,

the link between node-1 and node-2 connects the network interface of 192.168.1.1 and

192.168.1.2 and the link between node-2 and node-3 connects the network interfaces of

192.168.2.1 and 192.168.2.2.

We manually set the IP routing tables on each of the nodes such that packets are

forwarded properly in the configured topology. In this manner, a packet sent from node-

1 destined for node-6 must traverse the links between node-1 and node-2, node-2 and

node-3, node-3 and node-4, node-4 and node-5, and node-5 and node-6 before reaching

node-6.

The clocks for each of the 6 nodes are synchronized using NTP (Network Time Proto-

col). NTP is a protocol for synchronizing clocks over packet-switched networks [12]. The

clocks across our experimental testbed have a jitter of less than 30µs. All nodes (node-1

through node-6) communicate with a central gateway server (ops.testbed.nrl) that serves

as the master clock for the slave nodes (node-1 through node-6). A sample output below

of the NTP peering list shows this relationship between the gateway (ops.testebed.nrl)

and node-1.

[tony@node-1 ~]$ ntpq -p
remote refid st t when poll reach delay offset jitter

==============================================================================
*ops.testbed.nrl 128.100.102.201 3 u 911 1024 377 0.102 0.228 0.021

A traceroute from node-1 to node-6 displays the actual delays and route. The output

is as follows.

[tony@node-1 ~]$ traceroute node-6
traceroute to node-6 (192.168.5.2), 30 hops max, 40 byte packets
1 node-2-link12 (192.168.1.2) 1.366 ms 1.359 ms 1.353 ms
2 node-3-link23 (192.168.2.2) 1.442 ms 1.439 ms 1.434 ms
3 node-4-link34 (192.168.3.2) 3.325 ms 3.323 ms 3.319 ms
4 node-5-link45 (192.168.4.2) 3.405 ms 3.403 ms 3.399 ms
5 node-6-link56 (192.168.5.2) 3.394 ms 3.391 ms 3.386 ms

6.1.3 Overlay Network Topology using DT Protocol

We use HyperCast as the middleware to construct and maintain an application-layer

overlay network of 6 overlay nodes on top of the physical network topology as described



Chapter 6. Evaluation 149

in Section 6.1.2. The overlay network topology is also a daisy chain as shown in Figure 6.2.

Every physical node is assigned a unique logical address and every logical link corresponds

to an existing physical link. Hence, for our experiments, the physical network topology

and overlay network topology are identical. For our experiments, we use a structured

overlay protocol to build a topology using the Delaunay Triangulation protocol. The

protocol is referred to as the DT Buddy List protocol in the HyperCast middleware. Each

node is assigned a logical address in the form of a (x,y) coordinate. In our experiment,

Node-1 is assigned a logical address of (100,100), node-2 assigned a logical address of

(200,200), node-3 assigned a logical addresses of (300,300), etc.

We configure the nodes such that node-n obtain its neighbourhood information (Buddy

List) from node-(n−1). We manually assign every logical address in the overlay network.

Note that our nodes do not actually form a triangulation since it is manually configured

to be in a daisy-chain. Additionally we configure the overlay network such that every

node can only establish logical connections to its immediate neighbours. For example,

node-1 can only connect with node-2 and node-3 only connect with node-2 in our overlay

network. This was accomplished by making the logical links between adjacent nodes have

different substrates identifiers mimicking different substrates (the actual substrates are

all TCP/IP). This multi-substrate overlay setup [46] for HyperCast. For example, in Fig-

ure 6.2, node-1 connects to node-2 using TCP on substrate 1, node-2 connects to node-3

using TCP on substrate 2, etc. In this way, if the HyperCast application is not running

on node-2, messages sent from node-1 to node-3 would never reach its destination. We

created this setup because we want to control how overlay messages are forwarded from

source to destination in our overlay topology at the application-layer. Emulab has a

separate control network that can interfere with message delivery during multicast if we

do not enforce these conditions. The result is that all overlay messages must traverse

through node-1 to node-(n− 1) in order to reach node-n.

The neighbourhood information for node-2 is shown below. Node-2 has two neigh-



Chapter 6. Evaluation 150

substrate 1

substrate 2

substrate 3

substrate 4

substrate 5

100,100

200,200

300,300

400,400

500,500

600,600

node-1

node-2

node-3

node-4

node-5

node-6

TCP

TCP

TCP

TCP

TCP

Figure 6.2: Application-layer overlay topology setup of experiments



Chapter 6. Evaluation 151

bours (100,100) corresponding to node-1 and (300,300) corresponding to node-3.

Receiver Logical address is 200,200.

<?xml version="1.0" encoding="UTF-8"?>
<NeighborTable>
<LogicalAddress>300,300</LogicalAddress>
<SubstrateAddress>tcp2|192.168.2.2:9800</SubstrateAddress>
<CW/>
<CCW/>

</NeighborTable>
<?xml version="1.0" encoding="UTF-8"?>
<NeighborTable>
<LogicalAddress>100,100</LogicalAddress>
<SubstrateAddress>tcp1|192.168.1.1:9800</SubstrateAddress>
<CW/>
<CCW/>

</NeighborTable>

6.1.4 Underlay Substrate

For our experiments, we use TCP/IP substrates. Using TCP/IP guarantees there is no

packet loss between the network interfaces of the overlay nodes during overlay messages

transfer. Loss can only occur if buffers in the overlay socket or the MessageStore over-

flows. With our fixed configuration, overlay messages cannot be dropped due to topology

changes. When we want to measure the impact of dropped messages, we induce loss by

dropping messages at overlay nodes.



Chapter 6. Evaluation 152

6.2 Overview of Experiments

6.2.1 Measurement Methodology

Table 6.1 shows the list of metrics that are of interest for our experiments.

To obtain metrics within HyperCast we built a detailed logging system. The logging

system utilizes timestamps of nanosecond precision using the Java System.nanoTime().

Upon receiving and processing of a data message or control message, the MessageStore

logs parameters: message processing time (Tmsg), MessageStore data message buffer back-

log (Ldata), MessageStore control message buffer backlog (Lcontrol), and MessageStore

stored FSMs (NFSM) in an external file.

We provide a TTCP [4] variant for overlay messages using HyperCast implemented in

Java. TTCP is a utility for measuring network metrics popular on UNIX systems using

the User Datagram Protocol (UDP) or Transmission Control Protocol (TCP) protocols.

We use TTCP to set the transmission rate between overlay nodes and measure the

network parameters such as sent time of messages (Tsent), received time of messages

(Treceived), transmission delay (D), throughput, etc.

6.2.2 Configuration Parameters

The following are configuration parameters that are fixed for our experiments:

• MessageStore parameters

– MessageStore Data Message Buffer Backlog (Ldata): maximum size of 10,000

messages for this droptail buffer.

– MessageStore Control Message Buffer Backlog (Lcontrol): maximum size of

10,000 messages for this droptail buffer.

– MessageStore Stored FSMs (NFSM): initial capacity of the hash table that

stores FSMs in MessageStore of 1,000 buckets with a load factor of 0.75. The



Chapter 6. Evaluation 153

Table 6.1: Definition of Measured Metrics

Metric Description

Delay (D) The elapsed time from when a data message is sent by
the sender application (Tsent) to when it is received
by the receiver application measured with millisecond
precision.

Message Processing Time (Tmsg) The elapsed time from when a data/control message
arrives from the adapter to when it is delivered to the
application. This is the total processing time in the
overlay socket plus the MessageStore, including the
time the message spends in the buffers. This metric
is measured with nanosecond precision.

MessageStore Data Message
Buffer Backlog (Ldata)

The number of data messages awaiting processing by
the MessageStore.

MessageStore Control Message
Buffer Backlog (Lcontrol)

The number of control messages awaiting processing
by the MessageStore.

MessageStore Stored FSMs (NFSM) The number of FSMs stored in the MessageStore hash
table. This metric is indicative of how many FSMs
are created (one for each data message) waiting to
receive control messages.

Received Time (Treceived) The time when a data message is received by
the receiver application measured with millisecond
precision.

Sequence Number (seq) The sequence number of a sent data message.

Sent Time (Tsent) The time when a data message is sent by the sender
application measured with millisecond precision.

Message Size (S) The size of a data message in Bytes.

Throughput (throughput) The throughput is calculated using a moving average
of the 500 last received data messages. The through-
put is calculated by the following formula:

Throughputi+500=
Si+Si+1+Si+2,...,Si+500
Treceivedi+500

−Tsenti
; i > 0

The units for throughput is kilobits-per-second
(Kbps).



Chapter 6. Evaluation 154

load factor is the ratio of the number of stored entries and the size of the hash

table’s array of buckets. The load factor is a measure of how full the hash

table must be before its capacity is automatically increased.

• Hop-to-Hop Acknowledgement service and End-to-End Acknowledgement service

parameters

– TimeoutACK : The maximum time a sender of a data message waits for an

acknowledgment message before sending an acknowledgment request. The

value is set to 1 second.

– TimeoutDelete: The amount of time the sender of a data message keeps a stored

FSM in its MessageStore after the FSM reaches completion. The value is set

to 10 seconds.

6.2.3 Experiment Topologies

We conducted experiments using single-hop, two-hop, and five-hop overlay message trans-

fer scenarios over the network setup in Section 6.1.3. Below we detail which nodes and

links are used for each of the three transfer scenarios.

• single-hop transfer: we use node-1 and node-2 in the network topology. We

transfer overlay messages from node-1 Sender (S) to node-2 Receiver (R) using

overlay multicast.

• two-hop transfer: we use node-1, node-2 and node-3 in the network topology. We

transfer overlay messages from node-1 Sender (S) to node-2 Receiver 1 (R1) and

node-3 Receiver 2 (R2) using overlay multicast. Here node-2 is the intermediate

node, i.e., messages multicast to node-3 (R2) are forwarded by node-2 (R1).

• five-hop transfer: we use node-1 through node-6 in the network topology. We

transfer overlay messages from node-1 Sender (S) to node-2 Receiver 1 (R1), node-



Chapter 6. Evaluation 155

3 Receiver 2 (R2), node-4 Receiver 3 (R3), node-5 Receiver 4 (R4) and node-

6 Receiver 5 (R5) using overlay multicast. Here node-2 through node-5 are the

intermediate nodes.

6.2.4 List of Experiments

Table 6.2 and 6.3 provides an overview of the following sections in this chapter and

descriptions of the experiments contained within those sections.

Table 6.2: List of Experiments for Hop-to-Hop Acknowledgement service

Section Scenario Description

6.3.1 single-hop sequence number vs. time, delay vs. sequence number,
throughput vs time) of the Java-based implementation and
the SCXML-based implementation

6.3.2 single-hop bottleneck analysis of the Java-based implementation
6.3.3 single-hop bottleneck analysis of the SCXML-based implementation
6.3.4 single-hop performance improvements of the SCXML-based implementa-

tion
6.3.5 single-hop sustainable throughput and delay of the Java-based implemen-

tation and the SCXML-based implementation.

6.4.1 two-hop sequence number vs. time, delay vs. sequence number,
throughput vs time of the Java-based implementation and the
SCXML-based implementation.

6.4.1.1 two-hop bottleneck analysis of the Java-based implementation.
6.4.1.2 two-hop bottleneck analysis of the SCXML-based implementation.
6.4.1.3 two-hop sustainable throughput and delay of the Java-based implemen-

tation and the SCXML-based implementation.

6.4.2 five-hop sustainable throughput and delay of the Java-based implemen-
tation and the SCXML-based implementation.



Chapter 6. Evaluation 156

Table 6.3: List of Experiments for End-to-End Acknowledgement service

Section Scenario Description

6.5.1 single-hop sequence number vs. time, delay vs. sequence number,
throughput vs time of the Java-based implementation and the
SCXML-based implementation.

6.5.2 single-hop bottleneck analysis of the Java-based implementation.
6.5.3 single-hop bottleneck analysis of the SCXML-based implementation.
6.5.4 single-hop sustainable throughput and delay of the Java-based implemen-

tation and the SCXML-based implementation.

6.6.1 two-hop sustainable throughput and delay of the Java-based implemen-
tation and the SCXML-based implementation.

6.6.2 five-hop sustainable throughput and delay of the Java-based implemen-
tation and the SCXML-based implementation.



Chapter 6. Evaluation 157

6.3 Hop-to-Hop Acknowledgment in Single-Hop Net-

work

6.3.1 Java-based Implementation and SCXML-Based Implemen-

tation Performance at send rate of 100 Mbps, 10 Mbps,

and 1 Mbps

In this set of experiments, we study the performance of the Java-based and SCXML-

based implementations of the Hop-to-Hop Acknowledgement service. The experiments

consist of a single-hop transfer of 10,000 overlay messages with 1,024 bytes payloads from

node-1 (Sender S) to node-2 (Receiver R). The sending rates are set to 100 Mbps, 10

Mbps, and 1 Mbps. 100 Mbps is the maximum link rate in our Emulab network.

Figure 6.3 shows the overlay data message sequence numbers (seq) as a function

of time for the Java-based ((a),(c),(e)) and SCXML-based ((b),(d),(f)) implementations

with send rates of 100 Mbps, 10 Mbps, and 1 Mbps. The red data points in the figures

are the sent times (Tsent) of each sequence number of data messages at the Sender S

measured in milliseconds. These data points are repositioned such that the sent time

of the first data message is at time 0s. The green data points represent the received

times (Treceived) of each sequence number of data messages at the Receiver R measured

in milliseconds. These data points are also repositioned such that the first data point is

the difference between received time (Treceived) and the sent time (Tsent) of the first data

message (with sequence number 1).

For both the Java-based implementation and SCXML-based implementation, at 100

Mbps and 10 Mbps, the receivers experience delays, as seen by the increasing difference

between the sending time and received time for each message. This delay is the total time

each message spends in the overlay socket (buffer and processing) and in the MessageStore

(buffer and processing). We show in Section 6.3.2 and 6.3.3 that the increasing delays



Chapter 6. Evaluation 158

are the result of increasing MessageStore buffer backlog when messages arrive at an

unsustainable rate. From this it is evident that both implementations cannot sustain a

rate of 10 Mbps and above. At a sending rate of 1 Mbps, both implementations perform

well with no noticeable delay between the sent time and received time.



Chapter 6. Evaluation 159

 0

 2000

 4000

 6000

 8000

 10000

 0  2  4  6  8  10  12  14  16  18

M
es

sa
ge

 S
eq

ue
nc

e 
Nu

m
be

r

Time (s)

S, 100Mbps
R, 100Mbps

(a) Java-based, send rate = 100Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  5  10  15  20  25  30  35  40  45  50

M
es

sa
ge

 S
eq

ue
nc

e 
Nu

m
be

r

Time (s)

S, 100Mbps
R, 100Mbps

(b) SCXML-based, send rate = 100Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  2  4  6  8  10  12  14  16  18

M
es

sa
ge

 S
eq

ue
nc

e 
Nu

m
be

r

Time (s)

S, 10Mbps
R, 10Mbps

(c) Java-based, send rate = 10Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  5  10  15  20  25  30  35  40  45  50

M
es

sa
ge

 S
eq

ue
nc

e 
Nu

m
be

r

Time (s)

S, 10Mbps
R, 10Mbps

(d) SCXML-based, send rate = 10Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  10  20  30  40  50  60  70  80  90

M
es

sa
ge

 S
eq

ue
nc

e 
Nu

m
be

r

Time (s)

S, 1Mbps
R, 1Mbps

(e) Java-based, send rate = 1Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  10  20  30  40  50  60  70  80  90

M
es

sa
ge

 S
eq

ue
nc

e 
Nu

m
be

r

Time (s)

S, 1Mbps
R, 1Mbps

(f) SCXML-based, send rate = 1Mbps

Figure 6.3: Sequence number versus time for Hop-to-Hop Acknowledgement



Chapter 6. Evaluation 160

Figure 6.4 shows the per message delay (D) as a function of the sequence number

(seq) for data messages for both the Java-based and SCXML-based implementations.

The delay is the total delay from when the message is sent at the sender to when it

received by the application at the receiver measured in milliseconds. The red, green, and

blue data points represent sending rates of 100 Mbps, 10 Mbps, and 1 Mbps respectively.

From these two figures, we see that at 100 Mbps and 10 Mbps sending rates, both

implementations show increasing per message delays. At a sending rate of 1 Mbps, the

Java-based implementation show negligible a per message delay. The SCXML-based

implementation show per message delay for the first 1,000 messages at approximately 1

s.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0  2000  4000  6000  8000  10000

Pe
r M

es
sa

ge
 D

el
ay

 (m
s)

Sequence Number (Per Message)

R, 100Mbps
R, 10Mbps

R, 1Mbps

(a) Java-based

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0  2000  4000  6000  8000  10000

Pe
r M

es
sa

ge
 D

el
ay

 (m
s)

Sequence Number (Per Message)

R, 100Mbps
R, 10Mbps

R, 1Mbps

(b) SCXML-based

Figure 6.4: Per message delay versus time for Hop-to-Hop Acknowledgement



Chapter 6. Evaluation 161

Next we examine how the delays are reflected in the throughput at the receivers.

We show the receiver throughput as a function of time in Figure 6.5 for both the Java-

based ((a),(c),(e)) and SCXML-based ((b),(d),(f)) implementations with send rates of

100 Mbps, 10 Mbps, and 1 Mbps. The throughput is displayed on the y-axis of the

figures and is calculated according to the formula presented in Table 6.1. The first data

point for throughput is calculated at the received time of the 500th message. Time

is represented on the x-axis. Similar to previous plots, the time represents the received

times (Treceived) of each sequence number of data messages at the Receiver R. These data

points are repositioned such that the first data point is the difference between received

time (Treceived) and the sent time (Tsent) of first the data message.

At 100Mbps and 10Mbps sending rate for the Java-based implementation, the receiver

throughput initially has a value of approximately 20 Mbps and 10 Mbps, respectively,

and then decreases to under 4 Mbps around 10s. Beyond 10s, the throughput rises to

a steady-state value of slightly above 4 Mbps. For the sending rate of 1 Mbps (Figure

6.5(e)) for the Java-based implementation, the receiver throughput matches exactly the

sending rate of 1 Mbps. These plots seem to indicate the sustainable throughput for the

Java-based implementation is approximately 4 Mbps. Note that the initial data point for

throughput (calculated with the 500th received message) occurs later for lower sending

rates since a lower sending rate results in longer times until the 500th message is received.

For the SCXML-based implementation, there is a different pattern for the throughput

observed with sending rate of 100 Mbps and 10 Mbps. The receiver throughput is low

in the beginning and steadily rises to a steady-state throughput of around 2 Mbps.

At 1 Mbps sending rate (Figure 6.5(f)), the SCXML-implementation shows a spike in

the throughput between 5 s and 10 s, and then maintains a steady-state throughput

equivalent to the sending rate. For the SCXML-based implementation, the first calculated

data point for sending rates of 100 Mbps, 10 Mbps, and 1 Mbps occurs at approximately

the same time (around 5s) independent of the sending rate. This indicates that the



Chapter 6. Evaluation 162

performance of the SCXML-based implementation encounters a performance bottleneck

at the beginning of an experiment. In contrast, the Java-based implementation suggest

that the system is bottlenecked at a later time due to the high initial throughput and

the steady decrease to steady-state. If we compare Figure 6.3 with Figure 6.5 we see

evidence that the Java-based implementation performs faster in the beginning, while the

SCXML-based implementation performs slower in the beginning.

A closer examination of the initial 1,000 message received in Figure 6.5(f) shows

that the throughput spike encountered between 5 s and 10 s corresponds to the per

message delay pattern seen in Figure 6.4(b). Initially, there is a large per message

delay which slowly decreases to small delays after 1,000 messages. Since the throughput

is calculated with a sliding window of 500 messages, the decrease in the elapsed time

between consecutively received messages (less per message delay as the sequence number

increases) after a large initial delay results in this burst pattern in the throughput.



Chapter 6. Evaluation 163

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0  2  4  6  8  10  12  14  16  18

Th
ro

ug
hp

ut
 S

lid
in

g 
W

in
do

w 
50

0 
M

es
sa

ge
s 

(K
bp

s)

Time (s)

R, 100Mbps

(a) Java-based, send rate = 100Mbps

 0

 500

 1000

 1500

 2000

 2500

 0  5  10  15  20  25  30  35  40  45  50

Th
ro

ug
hp

ut
 S

lid
in

g 
W

in
do

w 
50

0 
M

es
sa

ge
s 

(K
bp

s)

Time (s)

R, 100Mbps

(b) SCXML-based, send rate = 100Mbps

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  2  4  6  8  10  12  14  16  18

Th
ro

ug
hp

ut
 S

lid
in

g 
W

in
do

w 
50

0 
M

es
sa

ge
s 

(K
bp

s)

Time (s)

R, 10Mbps

(c) Java-based, send rate = 10Mbps

 0

 500

 1000

 1500

 2000

 2500

 0  5  10  15  20  25  30  35  40  45  50

Th
ro

ug
hp

ut
 S

lid
in

g 
W

in
do

w 
50

0 
M

es
sa

ge
s 

(K
bp

s)

Time (s)

R, 10Mbps

(d) SCXML-based, send rate = 10Mbps

 0

 200

 400

 600

 800

 1000

 1200

 0  10  20  30  40  50  60  70  80  90

Th
ro

ug
hp

ut
 S

lid
in

g 
W

in
do

w 
50

0 
M

es
sa

ge
s 

(K
bp

s)

Time (s)

R, 1Mbps

(e) Java-based, send rate = 1Mbps

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  10  20  30  40  50  60  70  80  90

Th
ro

ug
hp

ut
 S

lid
in

g 
W

in
do

w 
50

0 
M

es
sa

ge
s 

(K
bp

s)

Time (s)

R, 1Mbps

(f) SCXML-based, send rate = 1Mbps

Figure 6.5: Throughput versus time for Hop-to-Hop Acknowledgement



Chapter 6. Evaluation 164

6.3.2 Bottleneck Analysis of Java-based Implementation

We next determine the performance bottlenecks for Hop-to-Hop Acknowledgement ser-

vice by profiling 1) the per message processing time (Tmsg), 2) the MessageStore buffers

(Ldata and Lcontrol) and, 3) the number of stored FSMs (NFSM) in the MessageStore. The

metrics are described in Table 6.1. The bottleneck analysis is based on the same set of

experiments detailed in Section 6.3.1.

First we examine the Java-based implementation. In Figure 6.6 the MessageStore

per message processing time for the Java-based implementation of Hop-to-Hop Acknowl-

edgement is shown for send rates of 100 Mbps, 10 Mbps, and 1 Mbps. The x-axis time

in these figures is the same metric as those in Section 6.3.1 and Section 6.3.4. The left

column figures (Figure 6.6(a),(c),(e)) show processing times at the Sender (S) and the

right column figures (Figure 6.6(b),(d),(f)) show the processing times at the Receiver

(R). The red data points represent data messages and the green data points represent

control messages (in this service they are acknowledgement messages). Hence, the re-

ceiver does not process any control messages. The sender processes data messages after

they are forwarded; that is, messages are forwarded first, and are then processed at the

MessageStore to ensure fast forwarding as explained in Chapter 5. In the case of Hop-to-

Hop Acknowledgement, the sender also waits to receive acknowledgement messages from

the receiver.

From the message processing times we first note that control messages take less time

to process than data messages because data messages have a payload. On average, it

takes MessageStore, at steady-state, approximately 0.5 ms - 1 ms to process a control

message and 1.5 ms - 2 ms to process a data messages; depending on the send rate and

if the data is measured at the sender or receiver. Processing of data messages at the

sender appears to take more time than at the receiver. This is because the sender needs

to perform more computation since it also receives control messages. The processing

times for unsustainable send rates (10 Mbps and 100 Mbps) is also longer than for the



Chapter 6. Evaluation 165

sustainable send rate (1 Mbps). The general pattern in these figure exhibit that the

MessageStore processing time starts at approximately 0.1 ms and steadily increases to

the steady-state value around the 10s mark for both the receiver and senders. This

correlates directly to the higher initial throughput seen in Figure 6.5(a),(c) and the

receiver reaching the steady-state throughput at 10 s.

The data shown in Figure 6.6 shows very little variance. There are outliers in the plots

but due the the large number of data points for each figure (10,000), these constitute a

small percentage. We have examined these outliers and have found no link between them

and our design and implementation. We thus believe these data points are caused by the

standard Java libraries. The likely explanations are that these outliers are caused by data

structure resizing and/or Java garbage collection. We observe outliers in all experiments

in this Chapter and conclude with the same explanations.



Chapter 6. Evaluation 166

 0.1

 1

 10

 100

 1000

 0  5  10  15  20  25  30  35  40

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 100Mbps
control messages, 100Mbps

(a) Sender (S), send rate = 100Mbps

 0.1

 1

 10

 100

 1000

 0  2  4  6  8  10  12  14  16  18

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 100Mbps

(b) Receiver (R), send rate = 100Mbps

 0.1

 1

 10

 100

 1000

 0  5  10  15  20  25  30  35  40

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 10Mbps
control messages, 10Mbps

(c) Sender (S), send rate = 10Mbps

 0.1

 1

 10

 100

 1000

 0  2  4  6  8  10  12  14  16  18

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 10Mbps

(d) Receiver (R), send rate = 10Mbps

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1Mbps
control messages, 1Mbps

(e) Sender (S), send rate = 1Mbps

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1Mbps

(f) Receiver (R), send rate = 1Mbps

Figure 6.6: MessageStore per message processing time versus time for Hop-to-Hop Ac-
knowledgement of the Java-based implementation



Chapter 6. Evaluation 167

In Figure 6.7 we present the size of the MessageStore buffers (Ldata and Lcontrol) and

the number of stored FSMs (NFSM) in the MessageStore as a function of time. The x-axis

time in these figures is the same metric as those in previous sections. The left column

figures (Figure 6.7(a),(c),(e)) show the Sender (S) and the right column figures (Figure

6.7(b),(d),(f)) show the Receiver (R). The red data points represent the number of

stored FSMs (NFSM) in the MessageStore’s hash table. The green data points represent

the number of backlogged messages in the MessageStore data message buffer (Ldata).

The blue data points represent the number of backlogged messages in the MessageStore

control message buffer (Lcontrol).

These plots show that at send rates of 100 Mbps and 10 Mbps, a large backlog of data

messages is built up at both the sender and and the receiver. At a rate of 100 Mbps,

almost all of 10,000 data messages are buffered before being processed since MessageStore

cannot process messages at that rate. A the lower rate of 10 Mbps, less than 50% of data

messages are buffered. At a rate of 1Mbps, there is no backlog of data messages at the

sender or receiver. For control messages received at the sender, the plots show a large

backlog of messages in the buffer for unsustainable send rate of 100 Mbps and 10Mbps

and no backlog of messages at a send rate of 1 Mbps. We notice that the downslope

of green and blue curves are nearly identical. This downslope is the rate at which the

messages are being dequeued from the MessageStore data and control message buffers.

It appears that this rate is bounded to an upper value of approximately 200 messages

per second.

Looking at the red data points, the number of stored FSMs (NFSM) in the Message-

Store, there appears to be a correlation between the number of stored FSMs (Figure 6.7)

and the processing time for each message (Figure 6.6) for both the sender and receiver.

We see that when the MessageStore has no stored FSMs, the processing time is low.

As the number of stored FSMs increase, so does the message processing time. For the

senders, the number of stored FSMs reaches a maximum at around 10 s seen in Figures



Chapter 6. Evaluation 168

 0

 2000

 4000

 6000

 8000

 10000

 0  5  10  15  20  25  30  35  40

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 100Mbps
MessageStore Data Message Buffer, 100Mbps

MessageStore Control Message Buffer, 100Mbps

(a) Sender (S), send rate = 100Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  2  4  6  8  10  12  14  16  18

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 100Mbps
MessageStore Data Message Buffer, 100Mbps

MessageStore Control Message Buffer, 100Mbps

(b) Receiver (R), send rate = 100Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  5  10  15  20  25  30  35  40

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 10Mbps
MessageStore Data Message Buffer, 10Mbps

MessageStore Control Message Buffer, 10Mbps

(c) Sender (S), send rate = 10Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  2  4  6  8  10  12  14  16  18

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 10Mbps
MessageStore Data Message Buffer, 10Mbps

MessageStore Control Message Buffer, 10Mbps

(d) Receiver (R), send rate = 10Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  10  20  30  40  50  60  70  80  90

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 1Mbps
MessageStore Data Message Buffer, 1Mbps

MessageStore Control Message Buffer, 1Mbps

(e) Sender (S), send rate = 1Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  10  20  30  40  50  60  70  80  90

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 1Mbps
MessageStore Data Message Buffer, 1Mbps

MessageStore Control Message Buffer, 1Mbps

(f) Receiver (R), send rate = 1Mbps

Figure 6.7: Backlog of messages buffered in MessageStore for data and control message,
and the number of stored FSMs in MessageStore versus time for Hop-to-Hop Acknowl-
edgement for the Java-based implementation



Chapter 6. Evaluation 169

6.7(a),(c),(e) and achieves steady-state thereafter. This is reflected in the message pro-

cessing times, for both data and control messages, seen in Figures 6.6(a),(c),(e) where

the processing time steadily increases until after 10 s where steady-state is reached. At

the senders, the FSMs gets removed when acknowledgement messages corresponding to

the data messages are received. The FSMs then reaches its final state and are removed

after a timer expires (TimeoutDelete), this timer is set at 10s as described in Section

6.2.2. Hence steady-state is reached at around 10 s. For the receivers, the number of

stored FSMs reaches a maximum at around 1s seen in Figure 6.7(b),(d) and achieves

steady-state thereafter.

This trend is also reflected in the message processing times of data messages, seen in

Figures 6.6(b),(d),(f) where the processing time steadily increases until around the 1-1.5s

mark where steady-state is reached. Note that the receivers do not receive any control

messages in this set of experiments. The receivers do not wait for acknowledgement

messages and terminates as soon as the FSMs reaches its final state. Hence steady-state

is reached much earlier at around 1 s - 1.5 s. Steady-state is not reached immediately

since there is a large per message delay initially as shown in Figure 6.4.

We argue that the correlation between the message processing time and the number

of stored FSMs in the MessageStore is due to the hash table access times. Since the

FSMs are stored in the MessageStore in a hash-table of 10,000 buckets with a load factor

of 0.75, it takes longer to search, retrieve, and update any existing or new FSMs as the

hash table becomes fuller.

To confirm this we conduct a supplementary set of experiments with send rate of 100

Mbps, 10 Mbps, and 1 Mbps without ever removing any stored FSMs (i.e., no FSMs are

removed once the acknowledgements are received at the sender from the receiver).



Chapter 6. Evaluation 170

6.3.2.1 The effect of the number of stored FSMs in MessageStore on per

message processing time

Figure 6.8, Figure 6.9, Figure 6.10 show the MessageStore processing time, MessageStore

data and control message backlog, MessageStore stored FSMs, and throughput as a

function of time without ever removing an allocated FSMs. These figures are displayed

in the same manner as those in figures of the previous two sections.

The figures confirms the hypothesis that, as the number of stored FSMs increases

in MessageStore (red curve in Figure 6.9), the per message processing time increases

accordingly (Figure 6.8), which results in a continuously decreasing throughput (Figure

6.10) over time.

If we compare Figure 6.9 and Figure 6.7, we see that if we do not remove the FSMs,

the stored number of FSMs in MessageStore does not reach steady-state (red curve Figure

6.9) for all send rates at both the Sender (S) and Receiver (R). This negatively affects the

performance of our systems if we compare the message processing times between Figures

6.6 and 6.8. When the FSMs are removed the message processing times reaches steady-

state (Figures 6.6). In contrast, if the FSMs are not removed, the message processing

times continues to increase and never reaches steady-state (Figures 6.8).

This is reflected in the throughput, without removing the FSMs, the throughput

(Figure 6.10(a),(b)) does not reach steady-state at rates of 100 Mbps and 10 Mbps

compared to Figures 6.5(a),(c).

After evaluating the measurements for the Java-based implementation of Hop-to-Hop

acknowledgement, we have determined that the primary performance overhead for the

system is the number of stored FSMs in the MessageStore. This number of FSMs is

directly related to the rate of which messages are processed in MessageStore.



Chapter 6. Evaluation 171

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 100Mbps
control messages, 100Mbps

(a) Sender (S), send rate = 100Mbps

 0.1

 1

 10

 100

 1000

 0  5  10  15  20  25  30  35  40

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 100Mbps

(b) Receiver (R), send rate = 100Mbps

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 10Mbps
control messages, 10Mbps

(c) Sender (S), send rate = 10Mbps

 0.1

 1

 10

 100

 1000

 0  5  10  15  20  25  30  35  40

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 10Mbps

(d) Receiver (R), send rate = 10Mbps

 0.1

 1

 10

 100

 1000

 0  20  40  60  80  100

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1Mbps
control messages, 1Mbps

(e) Sender (S), send rate = 10Mbps

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1Mbps

(f) Receiver (R), send rate = 10Mbps

Figure 6.8: MessageStore per message processing time versus time for Hop-to-Hop Ac-
knowledgement of the Java-based implementation without removing any MessageStore
stored FSMs



Chapter 6. Evaluation 172

 0

 2000

 4000

 6000

 8000

 10000

 0  10  20  30  40  50  60  70  80  90

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 100Mbps
MessageStore Data Message Buffer, 100Mbps

MessageStore Control Message Buffer, 100Mbps

(a) Sender (S), send rate = 100Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  5  10  15  20  25  30  35  40

N
u

m
b

e
r 

o
f 

M
e

s
s
a

g
e

s

Time (s)

Stored FSMs, 100Mbps
MessageStore Data Message Buffer, 100Mbps

MessageStore Control Message Buffer, 100Mbps

(b) Receiver (R), send rate = 100Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  10  20  30  40  50  60  70  80  90

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 10Mbps
MessageStore Data Message Buffer, 10Mbps

MessageStore Control Message Buffer, 10Mbps

(c) Sender (S), send rate = 10Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  5  10  15  20  25  30  35  40

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 10Mbps
MessageStore Data Message Buffer, 10Mbps

MessageStore Control Message Buffer, 10Mbps

(d) Receiver (R), send rate = 10Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  10  20  30  40  50  60  70  80  90  100

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 1Mbps
MessageStore Data Message Buffer, 1Mbps

MessageStore Control Message Buffer, 1Mbps

(e) Sender (S), send rate = 1Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  10  20  30  40  50  60  70  80  90

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 1Mbps
MessageStore Data Message Buffer, 1Mbps

MessageStore Control Message Buffer, 1Mbps

(f) Receiver (R), send rate = 1Mbps

Figure 6.9: Backlog of messages buffered in MessageStore for data and control message,
and the number of stored FSMs in MessageStore versus time for Hop-to-Hop Acknowl-
edgement for the Java-based implementation without removing any MessageStore stored
FSMs



Chapter 6. Evaluation 173

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0  5  10  15  20  25  30  35  40

Th
ro

ug
hp

ut
 S

lid
in

g 
W

in
do

w 
50

0 
M

es
sa

ge
s 

(K
bp

s)

Time (s)

R, 100Mbps

(a) Java-based, send rate = 100Mbps

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  5  10  15  20  25  30  35  40

Th
ro

ug
hp

ut
 S

lid
in

g 
W

in
do

w 
50

0 
M

es
sa

ge
s 

(K
bp

s)

Time (s)

R, 10Mbps

(b) Java-based, send rate = 10Mbps

 0

 200

 400

 600

 800

 1000

 1200

 0  10  20  30  40  50  60  70  80  90

Th
ro

ug
hp

ut
 S

lid
in

g 
W

in
do

w 
50

0 
M

es
sa

ge
s 

(K
bp

s)

Time (s)

R, 1Mbps

(c) Java-based, send rate = 1Mbps

Figure 6.10: Throughput versus time for Hop-to-Hop Acknowledgement for the Java-
based implementation without removing any MessageStore stored FSMs



Chapter 6. Evaluation 174

6.3.3 Bottleneck Analysis of SCXML-based Implementation

In this section we analyze the bottlenecks in the performance of the SCXML-based im-

plementation of Hop-to-Hop Acknowledgement. We profile 1) the per message processing

time (Tmsg), 2) the MessageStore buffers (Ldata and Lcontrol), and 3) the number of stored

FSMs (NFSM) in the MessageStore. The metrics are described in Table 6.1. The bottle-

neck analysis is based on the same set of experiments as detailed in Section 6.3.1.

In Figure 6.11 the MessageStore per message processing time for the SCXML-based

implementation of Hop-to-Hop Acknowledgement is shown for send rate of 100 Mbps,

10 Mbps, and 1 Mbps. The x-axis time in these figures is the same metric as those in

Section 6.3.1 and Section 6.3.4. The left column figures (Figure 6.11(a),(c),(e)) show

processing times at the Sender (S) and the right column figures (Figure 6.11(b),(d),(f))

show the processing times at the Receiver (R). The red data points represent data

messages and the green data points represent control messages (in this service they are

acknowledgement messages) in the same manner as Section 6.3.2.

For the same reason as in the Java-based implementation, the sender S takes longer to

process messages. The control messages also take less time to process than data messages.

Compared to the Java-based implementation shown in Figure 6.6, the SCXML-based im-

plementation show a different trend for per message processing times. It takes the sender

(Figures 6.11(a),(c),(e)) approximately 2.5 ms to process a control message and approx-

imately 5 ms to process a data message. It takes the receiver (Figures 6.11(b),(d),(f))

approximately 5ms to process data messages. The message processing time is indepen-

dent of the send rate. Here, at all send rates, the sender finishes processing messages

at around 80s; this indicates the sustainable processing rate is around 1Mbps at the

sender. Independent of the sending rate, the first message takes approximately 450 ms

to process, and the initial bulk of messages before 5 s takes significant more time than

the steady-state processing time reached around the 10 s mark.

The SCXML-based implementation consists of multiple software modules as described



Chapter 6. Evaluation 175

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 100Mbps
control messages, 100Mbps

(a) Sender (S), send rate = 100Mbps

 0.1

 1

 10

 100

 1000

 0  5  10  15  20  25  30  35  40  45  50

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 100Mbps

(b) Receiver (R), send rate = 100Mbps

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 10Mbps
control messages, 10Mbps

(c) Sender (S), send rate = 10Mbps

 0.1

 1

 10

 100

 1000

 0  5  10  15  20  25  30  35  40  45  50

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 10Mbps

(d) Receiver (R), send rate = 10Mbps

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1Mbps
control messages, 1Mbps

(e) Sender (S), send rate = 1Mbps

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1Mbps

(f) Receiver (R), send rate = 1Mbps

Figure 6.11: MessageStore per message processing time versus time for Hop-to-Hop Ac-
knowledgement for the SCXML-based implementation



Chapter 6. Evaluation 176

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

obtain specification, 100Mbps
obtain fsm, 100Mbps

convert message to xml, 100Mbps
scxml execution, 100Mbps

(a) Sender (S), send rate = 100Mbps

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0  5  10  15  20  25  30  35  40  45  50

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

obtain specification, 100Mbps
obtain fsm, 100Mbps

convert message to xml, 100Mbps
scxml execution, 100Mbps

(b) Receiver (R), send rate = 100Mbps

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

obtain specification, 10Mbps
obtain fsm, 10Mbps

convert message to xml, 10Mbps
scxml execution, 10Mbps

(c) Sender (S), send rate = 10Mbps

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0  5  10  15  20  25  30  35  40  45  50

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

obtain specification, 10Mbps
obtain fsm, 10Mbps

convert message to xml, 10Mbps
scxml execution, 10Mbps

(d) Receiver (R), send rate = 10Mbps

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

obtain specification, 1Mbps
obtain fsm, 1Mbps

convert message to xml, 1Mbps
scxml execution, 1Mbps

(e) Sender (S), send rate = 1Mbps

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

obtain specification, 1Mbps
obtain fsm, 1Mbps

convert message to xml, 1Mbps
scxml execution, 1Mbps

(f) Receiver (R), send rate = 1Mbps

Figure 6.12: Component breakdown of MessageStore per message processing time versus
time for Hop-to-Hop Acknowledgement for the SCXML-based implementation



Chapter 6. Evaluation 177

in Chapter 5. To analyze the performance of the system, we show additional timestamps

for processing times of each of these modules with nanosecond precision. We show the

results in Figure 6.12. These set of six figures is the same set of experiments as Section

6.3.1 and supplements Figure 6.11. The x and y axis have the same metrics and the

left columns (Figure 6.12(a),(c),(e)) show processing times at the Sender (S) for data

messages and the right column figures (Figure 6.12(b),(d),(f)) show the processing times

at the Receiver (R) for data messages. The red data points represent the time need for

MessageStore to extract the ServiceID of a data message and obtain the appropriate

executable specification for that service. The green data points represent the amount of

time MessageStore takes to obtain the FSM for the data message from the MessageStore

hash table. The blue data points represent the amount of time MessageStore takes to

convert the message object to an Event object as described in Chapter 5. The purple

data points represent the amount of time spent by the Apache Commons SCXML engine

to execute the event.

From the figure, we see that the message processing times is dominated by the Apache

Commons SCXML engine processing. Up to 80% of processing time is consumed by the

SCXML engine execution. We can conclude that the performance for the SCXML-based

implementation of Hop-to-Hop Acknowledgement is limited by the performance of the

SCXML execution engine. The large initial processing times measured for the SCXMl

engine processing correlates to the throughput seen in Figure 6.5. The throughput is low

in the beginning of an experiment and steadily increases to the steady-state value.

As with our analysis of the Java-based implementation, in Figure 6.13 we present

the size of the MessageStore buffers (Ldata and Lcontrol) and the number of stored FSMs

(NFSM) in the MessageStore as a function of time. The figures in the left column (Fig-

ure 6.13(a),(c),(e)) show the Sender (S) and the figures in the right column (Figure

6.13(b),(d),(f)) show the Receiver (R). The red data points represent the number of

stored FSMs (NFSM) in the MessageStore’s hash table. The green data points repre-



Chapter 6. Evaluation 178

 0

 2000

 4000

 6000

 8000

 10000

 0  10  20  30  40  50  60  70  80

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 100Mbps
MessageStore Data Message Buffer, 100Mbps

MessageStore Control Message Buffer, 100Mbps

(a) Sender (S), send rate = 100Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  5  10  15  20  25  30  35  40  45  50

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 100Mbps
MessageStore Data Message Buffer, 100Mbps

MessageStore Control Message Buffer, 100Mbps

(b) Receiver (R), send rate = 100Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  10  20  30  40  50  60  70  80

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 10Mbps
MessageStore Data Message Buffer, 10Mbps

MessageStore Control Message Buffer, 10Mbps

(c) Sender (S), send rate = 10Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  5  10  15  20  25  30  35  40  45  50

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 10Mbps
MessageStore Data Message Buffer, 10Mbps

MessageStore Control Message Buffer, 10Mbps

(d) Receiver (R), send rate = 10Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  10  20  30  40  50  60  70  80  90

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 1Mbps
MessageStore Data Message Buffer, 1Mbps

MessageStore Control Message Buffer, 1Mbps

(e) Sender (S), send rate = 1Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  10  20  30  40  50  60  70  80  90

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 1Mbps
MessageStore Data Message Buffer, 1Mbps

MessageStore Control Message Buffer, 1Mbps

(f) Receiver (R), send rate = 1Mbps

Figure 6.13: Backlog of messages buffered in MessageStore for data and control message,
and the number of stored FSMs in MessageStore versus time for Hop-to-Hop Acknowl-
edgement for the SCXML-based implementation



Chapter 6. Evaluation 179

sent the number of backlog messages in the MessageStore data message buffer (Ldata).

The blue data points represent the number of backlogged messages in the MessageStore

control message buffer (Lcontrol).

As with the Java-based implementation, these plots show that at send rates of 100

Mbps and 10 Mbps, nearly all data messages are backlogged at the MessageStore buffers

at both the sender and and the receiver. At a rate of 1 Mbps, there is very little

backlog of data messages at the sender or receiver. The size of the backlog for the

SCXML-based implementation at each time instant is larger than those seen in the Java-

based implementation (Figure 6.9). This is to be expected since the SCXML-based

implementation takes longer to process a message. The downslope of the green and blue

curves are nearly identical in Figure 6.13(a),(c). This downslope is the rate at which the

messages are being dequeued from the MessageStore data and control message buffers.

It appears that this rate is bounded to an upper value of approximately 120 messages per

second for the SCXML-based implementation. This is 60% of the rate of the Java-based

implementation.

A point of interest in Figure 6.13(a),(c),(e) is that the red curve is nearly identical

in all three send rates. This is not the case for the Java-based implementation. This

means that the number of stored FSMs in MessageStore is not significantly affected by

the send rate, but rather depends on the rate at which MessageStore processes these

messages. This is because the time spent in the execution of the FSM by the SCXML

engine is significantly longer than searching, retrieving, and updating any stored FSMs

(less than an order of magnitude). This is confirmed by the Figure 6.12 which shows

that the message processing time is dominated by the SCXML engine processing. Thus,

in the SCXML-based implementation, the performance bottleneck is not governed by

the number of stored FSMs in MessageStore as it is in the case for the Java-based

implementation. In the case of the SCXML-based implementation, it appears that the

pricinple bottleneck is the SCXML engine execution.



Chapter 6. Evaluation 180

From Figure 6.11 we know that the per message processing time is initial large and

reaches steady-state after about 10s. This results in the throughput patterns seen in

Figure 6.5(b),(d),(f). After investigating, we determined that the cause of the large

initial message processing time in the MessageStore is caused by the lazy class loading

of the Java Virtual Machine described in Section 5.1.7. Since Java only loads classes on-

demand, we observe an extremely large processing time for the first few messages, since

many SCXML engine classes must be loaded to process these messages. It takes some

time for the Java Virtual Machine to use locality to determine which classes should be

cached. Eventually all required classes are cached and class-loading overhead ceases to

be a major issue. In Section 6.3.4, we provide two methods to improve the large start-up

overhead of the SCXML-based implementation.



Chapter 6. Evaluation 181

6.3.4 Performance Improvements for SCXML-Based Implemen-

tation

In this section, we present experiments that show how the performance for the SCXML-

based implementation of Hop-to-Hop Acknowledgement can be improved. First, using

the method “preallocation of FSMs” (Section 5.1.7.1) we reduce the class-loading over-

head when creating new FSMs by using preallocated FSMs prior to the start of message

transfer. This reduces the processing time to create a FSM from an executable speci-

fication. Second, we “warm-start” the SCXML engine (Section 5.1.7.2) by sending 10

dummy messages of the dummy service to force some SCXML classes to be loaded. Even

though not all required SCXML classes will be loaded using this method, a significant

performance improvement will be achieved.

As in previous experiments, the experiment consists of transferring 10,000 overlay

messages with 1,024 bytes of payload using the service Hop-to-Hop Acknowledgement

from node-1 (Sender S) to node-2 (Receiver R). We use a send rate of 1 Mbps. We

chose this rate since it is sustainable for the SCXML-based implementation as seen in

previous experiments. Our objective is to compare the performance to a system without

performance tuning. We first show measurements of the system with 0, 100, 200 pre-

allocated FSMs and without warm-start in Figure 6.14. Then we show measurements of

the system with 0, 100, 200 preallocated FSMs with warm-start in Figure 6.15. Finally

we show the initialization overhead of these two mechanisms in Table 6.6.

6.3.4.1 Performance improvements using preallocation of FSMs

The measurements of MessageStore per message processing time as a function of time for

preallocating 0, 100, and 200 FSMs without warm-start are shown in Figures 6.14. The

figures in the left column (subfigures (a),(c),(e)) show processing times at the Sender (S)

and the figures in the right column (subfigures (b),(d),(f)) show the processing times at



Chapter 6. Evaluation 182

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1Mbps
control messages, 1Mbps

(a) Sender (S), preallocated = 0,
without warm-start

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1Mbps

(b) Receiver (R), preallocated = 0,
without warm-start

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1Mbps
control messages, 1Mbps

(c) Sender (S), preallocated = 100,
without warm-start

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1Mbps

(d) Receiver (R), preallocated = 100,
without warm-start

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1Mbps
control messages, 1Mbps

(e) Sender (S), preallocated = 200,
without warm-start

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1Mbps

(f) Receiver (R), preallocated = 200,
without warm-start

Figure 6.14: MessageStore per message processing time versus time for Hop-to-Hop
Acknowledgement for the SCXML-based implementation with 0, 100, 200 preallocated
FSMs



Chapter 6. Evaluation 183

the Receiver (R). The red data points represent data messages and the green data points

represent control messages.

Table 6.4: MessageStore per message processing time of first 5 data messages at the
Sender (S) and Receiver (R) without warm-start

Pre-allocated FSMs Message # Sender (S) Receiver (R)

0 1 452 ms 444 ms
2 376 ms 342 ms
3 341 ms 332 ms
4 312 ms 317 ms
5 300 ms 297 ms

100 1 352 ms 350 ms
2 375 ms 343 ms
3 334 ms 330 ms
4 298 ms 314 ms
5 299 ms 296 ms

200 1 355 ms 347 ms
2 376 ms 366 ms
3 334 ms 337 ms
4 301 ms 316 ms
5 301 ms 249 ms

We also present detailed data for the first 5 data messages. Table 6.4 show the

MessageStore per message processing time of first 5 data messages at the Sender (S) and

Receiver (R) for preallocating 0, 100, and 200 FSMs without warm-start.

From Figure 6.14(a),(b) and Table 6.4, we see that without preallocation of FSMs and

no warm-start, the processing time of the first data message at the sender and receiver

is approximately 450 ms. The processing of the next four messages steadily decreases to

approximately 300 ms. With a preallocation of 100 FSMs (Figure 6.14(c),(d)) and Table

6.4, the processing time of the first data message at the sender and receiver is reduced

to 350 ms. The next four messages do not show a significant decrease in processing

time compared to 0 pre-allocated FSMs. Increasing to 200 preallocated FSMs (Figure

6.14(e),(f)) and Table 6.4, does not further reduce the processing time of the first data



Chapter 6. Evaluation 184

message. The preallocation of FSMs does not seem to significantly reduce processing

time for data messages after the first. Also note that this mechanism does not affect

control messages since in our setup, only data messages will cause a FSM to be created.



Chapter 6. Evaluation 185

6.3.4.2 Performance improvements using warm-start of SCXML engine

The measurements of MessageStore per message processing time as a function of time

for preallocating 0, 100, and 200 FSMs with warm-start are shown in Figures 6.15. The

figures in the left column (subfigures (a),(c),(e)) show processing times at the Sender (S)

and the figures in the right column (subfigures (b),(d),(f)) show the processing times at

the Receiver (R). The red data points represent data messages and the green data points

represent control messages.

Table 6.5: MessageStore per message processing time of first 5 data messages at the
Sender (S) and Receiver (R) with warm-start

Pre-allocated FSMs Message # Sender (S) Receiver (R)

0 1 49.8 ms 51.7 ms
2 21.5 ms 49.1 ms
3 19.0 ms 17.9 ms
4 19.7 ms 18.3 ms
5 19.2 ms 26.7 ms

100 1 55.0 ms 51.7 ms
2 20.5 ms 48.2 ms
3 18.8 ms 19.6 ms
4 19.5 ms 19.3 ms
5 17.9 ms 16.7 ms

200 1 54.9 ms 53.3 ms
2 19.2 ms 17.4 ms
3 18.8 ms 17.1 ms
4 19.2 ms 17.2 ms
5 18.0 ms 16.3 ms

Again, We present detailed data for the first 5 data messages. Table 6.5 show the

MessageStore per message processing time of first 5 data messages at the Sender (S) and

Receiver (R) for preallocating 0, 100, and 200 FSMs with warm-start.

From Figure 6.15(a),(b) and Table 6.5 we see that without preallocation of FSMs

and with warm-start, the processing time of the first data message at the sender and



Chapter 6. Evaluation 186

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1Mbps
control messages, 1Mbps

(a) Sender (S), preallocated = 0,
with warm-start

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1Mbps

(b) Receiver (R), preallocated = 0,
with warm-start

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1Mbps
control messages, 1Mbps

(c) Sender (S), preallocated = 100,
with warm-start

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1Mbps

(d) Receiver (R), preallocated = 100,
with warm-start

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1Mbps
control messages, 1Mbps

(e) Sender (S), preallocated = 200,
with warm-start

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1Mbps

(f) Receiver (R), preallocated = 200,
with warm-start

Figure 6.15: MessageStore per message processing time versus time for Hop-to-Hop Ac-
knowledgement for the SCXML-based implementation with warm-start and 0, 100, 200
preallocated FSMs



Chapter 6. Evaluation 187

receiver is approximately 50 ms. The subsequent messages also show significantly reduced

processing times compared the times without warm-start. The processing of the next four

messages steadily decreases to approximately 19 ms. However, a preallocation of 100

FSMs (Figure 6.15(c),(d)) or 200 FSMs (Figure 6.15(e),(f)) the does not further reduce

the processing time of the first five data message’s at the sender and receiver when using

warm-start.

In the case of warm-start, the amount of FSMs preallocated have negligible impact

on the performance of the system as seen by the nearly identical message processing

times for warm-start with 0, 100, and 200 preallocated FSMs. This is because when

using warm-start, the mechanism sends 10 dummy messages to the SCXML engine and

FSMs must be created for those dummy messages invoking the same mechanism of FSM

creation as that the preallocating FSMs mechanism. Hence, when sung warm-start, pre-

allocating FSMs becomes redundant. In conclusion, warm-start is the mechanism we

advocate improve performance.

This set of experiments validates that the large initial performance overhead for the

SCXML-based implementation is primarily due to on-demand class loading by the Java

Virtual Machine; whether its the FSM object or the SCXML engine.



Chapter 6. Evaluation 188

6.3.4.3 Performance at send rate of 100 Mbps, 10 Mbps, and 1 Mbps using

warm-start

Next, we repeat the experiments in Section 6.3.1 using the warm-start for the SCXML-

based implementation of Hop-to-Hop Acknowledgement. The experiments are identical

as that of Section 6.3.1 consists of transferring 10,000 overlay messages with 1,024 bytes

of payload of the service Hop-to-Hop Acknowledgement from node-1 (Sender S) to node-

2 (Receiver R) with send rates of 100 Mbps, 10 Mbps, and 1 Mbps. Figures 6.16, 6.17,

6.18 are similar to Figure 6.3, 6.4, 6.5 with the same x and y axis, but run with the

warm-start mechanism.

Send rates of 100 Mbps and 10 Mbps remains unsustainable as seen by the increasing

delays between the sent time (red) and received time (green) at the receiver in Figure

6.16(a),(b). At the send rate of 1 Mbps (Figure 6.16(c)), we see a smaller initial delay

(the difference between the sending time (S) and the received time (R)) for each message

compared to the SCXML-based implementation without warm-start in Figure 6.3(f).

This is also evident in the delay plot in Figure 6.17(a) at the 1 Mbps sending rate.

Compared to the system without warm-start, the initial delay (delay of messages 1-500)

at the sending rate of 1 Mbps is approximately halved. This is due to the decrease in

the initial delay of the system caused by warm-start as described in Section 6.3.4.2.

This decrease in the initial delay is also reflected in the throughput as seen in Figure

6.18. Even though at 100 Mbps and 10 Mbps (Figure 6.18(a)(b)) send rates the system

is still unsustainable, we see that the first data point recorded with the 500th received

message is at an earlier time compared to the system without warm-start for all send

rates. At 100 Mbps send rate, Figure 6.5(b) shows the first data point slightly after 5 s

while Figure 6.18(a) shows the first data point slightly before 5s. At 10 Mbps send rate,

Figure 6.5(d) also shows the first data point slightly after 5 s while Figure 6.18(b) shows

the first data point at approximately 4.5 s. This means that the initial 500 messages are

processed faster by the receiver with warm-start. Also, the initial peak seen at the send



Chapter 6. Evaluation 189

 0

 2000

 4000

 6000

 8000

 10000

 0  5  10  15  20  25  30  35  40  45  50

M
es

sa
ge

 S
eq

ue
nc

e 
Nu

m
be

r

Time (s)

S, 100Mbps
R, 100Mbps

(a) SCXML-based, with warm-start, send rate =
100Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  5  10  15  20  25  30  35  40  45

M
es

sa
ge

 S
eq

ue
nc

e 
Nu

m
be

r

Time (s)

S, 10Mbps
R, 10Mbps

(b) SCXML-based, with warm-start, send rate =
10Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  10  20  30  40  50  60  70  80  90

M
e

s
s
a

g
e

 S
e

q
u

e
n

c
e

 N
u

m
b

e
r

Time (s)

S, 1Mbps
R, 1Mbps

(c) SCXML-based, with warm-start, send rate =
1Mbps

Figure 6.16: Sequence Number versus time for Hop-to-Hop Acknowledgement with warm-
start for the SCXML-based implementation



Chapter 6. Evaluation 190

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0  2000  4000  6000  8000  10000

Pe
r M

es
sa

ge
 D

el
ay

 (m
s)

Sequence Number (Per Message)

R, 100Mbps
R, 10Mbps

R, 1Mbps

(a) SCXML-based, with warm-start

Figure 6.17: Per message delay versus time for Hop-to-Hop Acknowledgement with warm-
start for the SCXML-based implementation

rate of 1Mbps (Figure 6.18(c)) between the 5s and 10s mark is reduced to a maximum

peak value of 1.2 Mbps from the 1.4 Mbps seen in Figure 6.18(f). It is important to

note that the long term steady-state throughput is unchanged with warm-start. This is

expected since the warm-start mechanism only improves the initial overhead due to Java

class loading. The principle bottleneck remains the SCXML engine processing.



Chapter 6. Evaluation 191

 0

 500

 1000

 1500

 2000

 2500

 0  5  10  15  20  25  30  35  40  45  50

Th
ro

ug
hp

ut
 S

lid
in

g 
W

in
do

w 
50

0 
M

es
sa

ge
s 

(K
bp

s)

Time (s)

R, 100Mbps

(a) SCXML-based, with warm-start, send rate =
100Mbps

 0

 500

 1000

 1500

 2000

 2500

 0  5  10  15  20  25  30  35  40  45

Th
ro

ug
hp

ut
 S

lid
in

g 
W

in
do

w 
50

0 
M

es
sa

ge
s 

(K
bp

s)

Time (s)

R, 10Mbps

(b) SCXML-based, with warm-start, send rate =
10Mbps

 0

 200

 400

 600

 800

 1000

 1200

 0  10  20  30  40  50  60  70  80  90

Th
ro

ug
hp

ut
 S

lid
in

g 
W

in
do

w 
50

0 
M

es
sa

ge
s 

(K
bp

s)

Time (s)

R, 1Mbps

(c) SCXML-based, with warm-start, send rate =
1Mbps

Figure 6.18: Throughput versus time for Hop-to-Hop Acknowledgement with warm-start
for the SCXML-based implementation



Chapter 6. Evaluation 192

6.3.4.4 Overhead of performance improving mechanisms

Table 6.6: Overhead of Performance Improving Mechanisms

Mechanism Avg. Processing Time over 10 trials

preallocation of 100 FSMs 114.7 ms

warm-start of SCXML engine 763.2 ms

The mechanisms 1) preallocation of FSMs and 2) warm-starting the SCXML engine

are performed during the initialization of MessageStore. These mechanisms introduce

overhead that increases the time from when the overlay socket starts and when it finishes

initialization. We used nanosecond precision timestamps to measure the time required

to perform these two mechanisms. We collected data for 10 trials and average them to

display in the Table 6.6. It can be seen that the warm-start of SCXML-engine consumes

considerable processing time.



Chapter 6. Evaluation 193

6.3.5 Sustainable Throughput and Delay

The next set of experiments are performed to more precisely determine the sustainable

performance of the Java-based implementation and the SCXML-based implementation

(with warm-start) in a single-hop transfer of 10,000 overlay messages with 1,024 bytes

payloads from node-1 (Sender S) to node-2 (Receiver R) using the Hop-to-Hop Acknowl-

edgment service. We vary the send rate close to the estimated sustainable send rate from

Section 6.3.1 (approximately 4.0 Mbps for Java-based implementation and approximately

1.0 Mbps for SCXML-based implementation).

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  5  10  15  20  25

Th
ro

ug
hp

ut
 S

lid
in

g 
W

in
do

w 
50

0 
M

es
sa

ge
s 

(K
bp

s)

Time (s)

R, 4.5Mbps
R, 4.4Mbps
R, 4.3Mbps
R, 4.2Mbps
R, 4.1Mbps
R, 4.0Mbps

(a) Java-based

 0

 500

 1000

 1500

 2000

 0  10  20  30  40  50  60  70  80  90

Th
ro

ug
hp

ut
 S

lid
in

g 
W

in
do

w 
50

0 
M

es
sa

ge
s 

(K
bp

s)

Time (s)

R, 1.5Mbps
R, 1.4Mbps
R, 1.3Mbps
R, 1.2Mbps
R, 1.1Mbps
R, 1.0Mbps

(b) SCXML-based, with warm-start

Figure 6.19: Throughput versus time for Hop-to-Hop Acknowledgement

Figure 6.19 shows that the throughput as a function of time for both the Java-

based implementation (with varying send rates between 4.0 Mbps-4.5 Mbps) and the

SCXML-based implementations (with varying send rates between 1.0 Mbps-1.5 Mbps).

The throughput is displayed on the y-axis of the figures and is calculated according to

the formula presented in Table 6.1. The first data point for throughput is calculated at

the received time of the 500th message. The x-axis represents time.

Figure 6.20 shows the corresponding per message delays. The delay is the total delay

from when the message is sent at the sender to when it received by the application at

the receiver measured in milliseconds.



Chapter 6. Evaluation 194

 0

 500

 1000

 1500

 2000

 0  2000  4000  6000  8000  10000

Pe
r M

es
sa

ge
 D

el
ay

 (m
s)

Sequence Number (Per Message)

R, 4.5Mbps
R, 4.4Mbps
R, 4.3Mbps
R, 4.2Mbps
R, 4.1Mbps
R, 4.0Mbps

(a) Java-based

 0

 500

 1000

 1500

 2000

 0  2000  4000  6000  8000  10000

Pe
r M

es
sa

ge
 D

el
ay

 (m
s)

Sequence Number (Per Message)

R, 1.5Mbps
R, 1.4Mbps
R, 1.3Mbps
R, 1.2Mbps
R, 1.1Mbps
R, 1.0Mbps

(b) SCXML-based, with warm-start

Figure 6.20: Per message delay versus time for Hop-to-Hop Acknowledgement

From these figure, it is evident that for the Java-based implementation, the system

is sustainable at or below 4.0 Mbps. Above 4.0 Mbps, the system shows increasing per

message delays. For the SCXML-based implementation, since the system is bottlenecked

in the beginning, the system does not show increasing message delays over time up to

1.5Mbps. However, faster sending rates results in a larger number of initial messages

experiencing very higher initial delay. For practical purposes, a sending rate of less than

1.0 Mbps is recommended as any faster sending rate results in too high of an initial

performance overhead.

In Figures 6.21 and Figure 6.22, we plot the average throughput and average per

message delay for the same set of experiments over all data messages with error-bars

indicating the minimum and maximum value. The average delay in Figures 6.22 clearly

illustrates that the sustainable performance is around 4.0 Mbps for the Java-based im-

plementation and around 1.0 Mbps for the SCXML-based implementation. At higher

rates the average delays increase sharply.

We also note that the higher the send rate, the more variability in the throughput

(indicated by the greater range of the minimum and maximum throughput values) in the

system for both implementations.



Chapter 6. Evaluation 195

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 4  4.1  4.2  4.3  4.4  4.5

Av
er

ag
e 

Th
ro

ug
hp

ut
 (K

bp
s)

Send Rate (Mbps)

R, min-max
R, average

(a) Java-based

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1  1.1  1.2  1.3  1.4  1.5

Av
er

ag
e 

Th
ro

ug
hp

ut
 (K

bp
s)

Send Rate (Mbps)

R, min-max
R, average

(b) SCXML-based, with warm-start

Figure 6.21: Average throughput versus time for Hop-to-Hop Acknowledgement

 0

 50

 100

 150

 200

 250

 300

 350

 400

 4  4.1  4.2  4.3  4.4  4.5

Av
er

ag
e 

De
la

y 
(m

s)

Send Rate (Mbps)

R, average

(a) Java-based

 0

 50

 100

 150

 200

 250

 1  1.1  1.2  1.3  1.4  1.5

Av
er

ag
e 

De
la

y 
(m

s)

Send Rate (Mbps)

R, average

(b) SCXML-based, with warm-start

Figure 6.22: Average per message delay versus time for Hop-to-Hop Acknowledgement



Chapter 6. Evaluation 196

6.4 Hop-to-Hop Acknowledgment in Multi-Hop Net-

work

In this set of experiments, we study and compare the performance of the Java-based

and the SCXML-based implementations of the Hop-to-Hop Acknowledgement service in

a multi-hop scenario.

6.4.1 Two-Hop Transfer for Java-based Implementation (at send

rate of 4.0 Mbps) and SCXML-Based Implementation (at

send rate of 1.0 Mbps) Performance

This set of experiments consists of transferring 10,000 overlay messages with 1,024 bytes

of payload of the service hop-to-hop acknowledgement from node-1 (Sender S) to node-

2 (Receiver 1 R1) and node-3 (Receiver 2 R2) using overlay multicast. Due to the

overlay topology settings, messages from node-1 (Sender) to node-3 (Receiver 2) must

pass through the intermediate node-2 (Receiver 1), hence forming a two-hop transfer.

We present similar figures as described in Section 6.3.1 for the single-hop scenario.

The send rates are the determined sustainable rates for single-hop (Section 6.3.5),

i.e., 4.0 Mbps for the Java-based implementation and 1.0 Mbps for the SCXML-based

implementation.

Figures 6.23 and 6.24 show the overlay data message sequence numbers (seq) as a

function of the time for the Java-based and SCXML-based implementations respectively.

The red data points in the figures are the sent times of each sequence number of data

messages at the Sender S measured in milliseconds. The green data points represent

the received times (Treceived) of each sequence number of data messages at Receiver 1 R1

measured in milliseconds. The blue data points represent the received times (Treceived) of

each sequence number of data messages at Receiver 2 R2 measured in milliseconds.



Chapter 6. Evaluation 197

Figure 6.23(a) shows that the send rate of 4.0 Mbps, which is sustainable for single-

hop overlay message transfer, is not sustainable for the two-hop scenario. The graph

for node-3 (Receiver 2 R2) overlaps with the graph for node-1 (Sender S). However,

the graph for node-2 (Receiver 1 R1) shows increasing per message delays as evident in

the unsustainable scenario as previous explained in Section 6.3.1. Note that node-2 is

the intermediate node in the overlay setup between the node-1 and node-3. Through

experimentation with different send rates, we determined that the sustainable rate for

the two-hop system is approximately 1.8 Mbps, which we in Figure 6.23(b).

 0

 2000

 4000

 6000

 8000

 10000

 0  5  10  15  20  25  30  35  40

M
es

sa
ge

 S
eq

ue
nc

e 
Nu

m
be

r

Time (s)

S, 4.0Mbps
R1, 4.0Mbps
R2, 4.0Mbps

(a) Java-based, send rate = 4.0Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  5  10  15  20  25  30  35  40  45  50

M
es

sa
ge

 S
eq

ue
nc

e 
Nu

m
be

r

Time (s)

S, 1.8Mbps
R1, 1.8Mbps
R2, 1.8Mbps

(b) Java-based, send rate = 1.8Mbps

Figure 6.23: Sequence number versus time for Hop-to-Hop Acknowledgement for the
Java-based implementation

For the SCXML-based implementation, Figure 6.24(a) shows much overlap between

the graphs for node-1 (Sender S), node-2 (Receiver 1 R1) and node-3 (Receiver 2 R2).

Figure 6.24(a) seems to indicate that the single-hop sustainable rate of 1.0 Mbps is

sustainable for the two-hop system. Node-2 experiences per message delays, however the

delays do not increase over time. At a lower send rate of 0.7 Mbps shown in Figure

6.24(b), the system is sustainable and the graph for node-2 does not show per message

delays.

Next we examine how delays are reflected in the throughput at the receivers. We



Chapter 6. Evaluation 198

 0

 2000

 4000

 6000

 8000

 10000

 0  10  20  30  40  50  60  70  80  90

M
es

sa
ge

 S
eq

ue
nc

e 
Nu

m
be

r

Time (s)

S, 1.0Mbps
R1, 1.0Mbps
R2, 1.0Mbps

(a) SCXML-based, send rate = 1.0Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  20  40  60  80  100  120

M
es

sa
ge

 S
eq

ue
nc

e 
Nu

m
be

r

Time (s)

S, 0.7Mbps
R1, 0.7Mbps
R2, 0.7Mbps

(b) SCXML-based, send rate = 0.7Mbps

Figure 6.24: Sequence number versus time for Hop-to-Hop Acknowledgement for the
SCXML-based implementation

show the receiver throughput as a function of time in Figure 6.25 for both the Java-

based implementation and in Figure 6.26 for the SCXML-based implementations. The

throughput is displayed on the y-axis of the figures and is calculated according to the

formula presented in Table 6.1. The first data point for throughput is calculated at the

received time of the 500th message. The time is represented on the x-axis.

In Figure 6.25(a), we see that at a send rate of 4.0 Mbps for the Java-based im-

plementation, the throughput at the intermediate node-1 (Receiver 1 R1) starts at 4.0

Mbps and decreases steadily to a steady-state value of approximately 1.8 Mbps. From

our analysis of the single-hop scenario, we know this means node-1 cannot sustain a send

rate of 4.0 Mbps. At a send rate of 1.8 Mbps, the throughput is equal to the send rate.

For the SCXML-based implementation shown in Figure 6.26(a), we see the send rate

of 1.0 Mbps is sustainable to a degree (the stead-state value dos not deviate significantly

from 1.0 Mbps) but there are some fluctuations in the throughput. We determined that

a lower send rate of 0.7 Mbps is more sustainable for the SCXML-based implementation.

This is illustrated by Figure 6.26(b) where the steady-state throughput measured at both

receivers matches the send rate of 0.7 Mbps.



Chapter 6. Evaluation 199

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  5  10  15  20  25  30  35  40

Th
ro

ug
hp

ut
 S

lid
in

g 
W

in
do

w 
50

0 
M

es
sa

ge
s 

(K
bp

s)

Time (s)

R1, 4.0Mbps
R2, 4.0Mbps

(a) Java-based, send rate = 4.0Mbps

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0  5  10  15  20  25  30  35  40  45  50

Th
ro

ug
hp

ut
 S

lid
in

g 
W

in
do

w 
50

0 
M

es
sa

ge
s 

(K
bp

s)

Time (s)

R1, 1.8Mbps
R2, 1.8Mbps

(b) Java-based, send rate = 1.8Mbps

Figure 6.25: Throughput versus time for Hop-to-Hop Acknowledgement for the Java-
based implementation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  10  20  30  40  50  60  70  80  90

Th
ro

ug
hp

ut
 S

lid
in

g 
W

in
do

w 
50

0 
M

es
sa

ge
s 

(K
bp

s)

Time (s)

R1, 1.0Mbps
R2, 1.0Mbps

(a) SCXML-based, send rate = 1.0Mbps

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  20  40  60  80  100  120

Th
ro

ug
hp

ut
 S

lid
in

g 
W

in
do

w 
50

0 
M

es
sa

ge
s 

(K
bp

s)

Time (s)

R1, 0.7Mbps
R2, 0.7Mbps

(b) SCXML-based, send rate = 0.7Mbps

Figure 6.26: Throughput versus time for Hop-to-Hop Acknowledgement for the SCXML-
based implementation



Chapter 6. Evaluation 200

6.4.1.1 Bottleneck Analysis of Java-based Implementation

We now determine the performance bottlenecks for Hop-to-Hop Acknowledgement service

in the multi-hop setting by profiling the per message processing time (Tmsg) as described

in Table 6.1. The bottleneck analysis is based on the same set of experiments detailed in

Section 6.4.1.

First we examine the Java-based implementation. In Figure 6.27 the MessageStore per

message processing time for the Java-based implementation of Hop-to-Hop Acknowledge-

ment is shown for send rates of 4.0 Mbps (subfigures (a),(c),(e)) and 1.8 Mbps (subfigures

(b),(d),(f). The first row is for node-1 (Sender S), the second is for node-2 (Receiver 1

R1), and the third row is for node-3 (Receiver 2 R2). The red data points represent data

messages and the green data points represent control messages (in this service they are

acknowledgement messages). We notice that only node-3 does not process any control

messages as it does not need to receive acknowledgement as it is a leaf node in our setup.

By comparing the results to Figure 6.6, we see that the processing time for each

MessageStore message at node-1 (Sender S) and node-2 (Receiver 1 R1) in the two-

hop scenario is almost identical to that of node-1 (Sender S) in the single-hop scenario.

Whereas the processing time at node-3 (Receiver 2 R2) for the two-hop scenario is similar

to that of node-2 (Receiver R) in the single-hop scenario. We know from our analysis for

single-hop scenarios that the Java-based implementations bottlenecked by the number of

stored FSMs in MessageStore. For the two-hop scenario for Hop-to-Hop Acknowledge-

ment, acknowledgement messages are received at node-1 (Sender S) and node-2 (Receiver

1 R1), but no at node-3(Receiver 2 R2). We also know from our previous analysis that

if a node does not receive acknowledgements, the messages are processed faster. Node-3

does not need to maintain a FSM in its MessageStore because it does not have to wait

for an acknowledgement from a downstream node.

In the two-hop scenario, node-2 (Receiver 1 R1) is the intermediate node between

the sender and receiver, hence it 1) receives data messages from the sender (node-1),



Chapter 6. Evaluation 201

2) sends acknowledgement back to the sender (node-1), 3) forwards the message to its

downstream node (node-3), and 4) waits and processes acknowledgements from its down-

stream node (node-3). This means the intermediate node-2 performs the most computa-

tional tasks. From this we can explain why the system could not sustain the 4.0 Mbps

sustainable single-hop rate. In multi-hop scenarios, the performance of the Java-based

implementation of Hop-to-Hop Acknowledgement is determined by the performance of

the intermediate nodes between the sender and last receiver(s). This sustainable rate is

determined previously to be approximately 1.8 Mbps.

6.4.1.2 Bottleneck Analysis of SCXML-based Implementation

Next, we examine the SCXML-based implementation. In Figure 6.28 the MessageStore

per message processing time for the SCXML-based implementation of Hop-to-Hop Ac-

knowledgement is shown for send rates of 1.0Mbps (subplots (a),(c),(e)) and 0.7Mbps

(subplots (b),(d),(f). The first row is for node-1 (Sender S), the second is for node-2

(Receiver 1 R1), and the third row is for node-3 (Receiver 2 R2). The red data points

represent data messages and the green data points represent control messages (in this

service they are acknowledgement messages).

By comparing the results to Figure 6.11, we see that the processing time for each

MessageStore message at all nodes in the two-hop scenario is almost identical to that of

in the single-hop scenario. Recall our analysis for single-hop scenarios that the SCXML-

based implementations is bottlenecked by the processing time of the SCXML engine.

Hence we can see that the message processing times are not impacted significantly by

the number of hops or the send rate. However, as previously explained in Section 6.4.1.1,

the intermediate node-2 performs more computational tasks than the other two nodes

due to the semantics of Hop-to-Hop Acknowledgement. Hence, the sustainable rate for

single-hop scenario 1.0 Mbps may cause fluctuations in the throughput of the system

in multi-hop scenarios as seen by Figure 6.26. Unlike the Java-based implementation,



Chapter 6. Evaluation 202

 0.1

 1

 10

 100

 1000

 0  5  10  15  20  25  30  35  40

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 4.0Mbps
control messages, 4.0Mbps

(a) Sender (S), send rate = 4.0Mbps

 0.1

 1

 10

 100

 1000

 0  5  10  15  20  25  30  35  40  45  50

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1.8Mbps
control messages, 1.8Mbps

(b) Sender (S), send rate = 1.8Mbps

 0.1

 1

 10

 100

 1000

 0  5  10  15  20  25  30  35  40

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 4.0Mbps
control messages, 4.0Mbps

(c) Receiver 1 (R1), send rate = 4.0Mbps

 0.1

 1

 10

 100

 1000

 0  5  10  15  20  25  30  35  40  45  50

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1.8Mbps
control messages, 1.8Mbps

(d) Receiver 1 (R1), send rate = 1.8Mbps

 0.1

 1

 10

 100

 1000

 0  5  10  15  20  25

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 4.0Mbps

(e) Receiver 2 (R2), send rate = 4.0Mbps

 0.1

 1

 10

 100

 1000

 0  5  10  15  20  25  30  35  40  45  50

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1.8Mbps

(f) Receiver 2 (R2), send rate = 1.8Mbps

Figure 6.27: MessageStore per message processing time versus time for Hop-to-Hop Ac-
knowledgement for the Java-based implementation



Chapter 6. Evaluation 203

a smaller reduction in send rate from 1.0 Mbps to 0.7 Mbps (30% reduction) results in

stable throughput.



Chapter 6. Evaluation 204

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1.0Mbps
control messages, 1.0Mbps

(a) Sender (S), send rate = 1.0Mbps

 0.1

 1

 10

 100

 1000

 0  20  40  60  80  100  120

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 0.7Mbps
control messages, 0.7Mbps

(b) Sender (S), send rate = 0.7Mbps

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1.0Mbps
control messages, 1.0Mbps

(c) Receiver 1 (R1), send rate = 1.0Mbps

 0.1

 1

 10

 100

 1000

 0  20  40  60  80  100  120

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 0.7Mbps
control messages, 0.7Mbps

(d) Receiver 1 (R1), send rate = 0.7Mbps

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1.0Mbps

(e) Receiver 2 (R2), send rate = 1.0Mbps

 0.1

 1

 10

 100

 1000

 0  20  40  60  80  100  120

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 0.7Mbps

(f) Receiver 2 (R2), send rate = 0.7Mbps

Figure 6.28: MessageStore per message processing time versus time for Hop-to-Hop ac-
knowledgement for the SCXML-based implementation



Chapter 6. Evaluation 205

6.4.1.3 Sustainable Throughput and Delay

This set of experiments are performed to more precisely determine the sustainable per-

formance of the Java-based and SCXML-based implementation (with warm-start) in

a two-hop transfer of 10,000 overlay messages with 1,024 bytes payloads from node-1

(Sender S) to node-2 (Receiver 1 R1) and node-3 (Receiver 2 R2) using multicast and

he Hop-to-Hop Acknowledgment service. We vary the send rate close to the estimated

sustainable send rate from Section 6.4.1 (1.8 Mbps for the Java-based implementation

and 0.7 Mbps for the SCXML-based implementation).

In Figures 6.29 and 6.30, we plot the average throughput and average per message

delay. The average delay plot illustrates that the sustainable performance is 1.9 Mbps for

Java-based Hop-to-Hop Acknowledgement and 0.7 Mbps for SCXML-based Hop-to-Hop

Acknowledgement.

 0

 500

 1000

 1500

 2000

 2500

 1.7  1.8  1.9  2

Av
er

ag
e 

Th
ro

ug
hp

ut
 (K

bp
s)

Send Rate (Mbps)

R1, min-max
R1, average
R2, min-max
R2, average

(a) Java-based

 0

 200

 400

 600

 800

 1000

 1200

 0.6  0.7  0.8  0.9

Av
er

ag
e 

Th
ro

ug
hp

ut
 (K

bp
s)

Send Rate (Mbps)

R1, min-max
R1, average
R2, min-max
R2, average

(b) SCXML-based, with warm-start

Figure 6.29: Average throughput versus time for Hop-to-Hop Acknowledgement

In Figures 6.29 and 6.30, we plot the average throughput and average per message

delay with error-bars indicating the minimum and maximum value. The average delay

in Figures 6.30 illustrates that the sustainable performance is approximately 1.9 Mbps

for the Java-based implementation and around 0.7 Mbps for the SCXML-based imple-

mentation. At rate higher than stated, the average delays increase sharply.



Chapter 6. Evaluation 206

 0

 50

 100

 150

 200

 250

 1.7  1.8  1.9  2

Av
er

ag
e 

De
la

y 
(m

s)

Send Rate (Mbps)

R1, average
R2, average

(a) Java-based

 0

 50

 100

 150

 200

 250

 0.6  0.7  0.8  0.9

Av
er

ag
e 

De
la

y 
(m

s)

Send Rate (Mbps)

R1, average
R2, average

(b) SCXML-based, with warm-start

Figure 6.30: Average per message delay versus time for Hop-to-Hop Acknowledgement.



Chapter 6. Evaluation 207

6.4.2 Five-Hop Transfer for Java-based Implementation (at send

rate of 1.8 Mbps) and SCXML-Based Implementation (at

send rate of 0.7 Mbps) Performance

In this set of experiments we send 10,000 overlay messages of 1,024 bytes payloads from

node-1 Sender S to Receiver (R1, R2, R3, R4, and R5) corresponding to node-2 to node-6

in a five-hop transfer for the Java-based implementation and the SCXML-based imple-

mentation (with warm-start). We set the sending rate close to the estimated sustainable

sending rate from Section 6.4.1.3 (1.8 Mbps for Java-based implementation and 0.7 Mbps

for the SCXML-based implementation) to determine the sustainable performance for a

five-hop message transfer.

 0

 500

 1000

 1500

 2000

 2500

 1  2  3  4  5

Av
er

ag
e 

Th
ro

ug
hp

ut
 (K

bp
s)

Receiver

1.9Mbps Send Rate, min-max
1.9Mbps Send Rate, average
1.8Mbps Send Rate, min-max
1.8Mbps Send Rate, average

(a) Average throughput

 0

 2

 4

 6

 8

 10

 12

 1  2  3  4  5

Av
er

ag
e 

De
la

y 
(m

s)

Receiver

1.9Mbps Send Rate, average
1.8Mbps Send Rate, average

(b) Average per message delay

Figure 6.31: Average throughput and average delay for each receiver for Hop-to-Hop
Acknowledgement using the Java-based implementation

In Figures 6.31 we plot the average throughput and average per message delay for

each of the receivers for the Java-based implementation. Figure 6.32, we plot the average

throughput and average per message delay for each of the receivers for the SCXML-based

implementation.

In both implementations, we can see that the two-hop sustainable transfer rate is



Chapter 6. Evaluation 208

 0

 500

 1000

 1500

 2000

 2500

 1  2  3  4  5

Av
er

ag
e 

Th
ro

ug
hp

ut
 (K

bp
s)

Receiver

0.7Mbps Send Rate, min-max
0.7Mbps Send Rate, average
0.6Mbps Send Rate, min-max
0.6Mbps Send Rate, average

(a) Average throughput

 0

 10

 20

 30

 40

 50

 60

 1  2  3  4  5

Av
er

ag
e 

De
la

y 
(m

s)

Receiver

0.7Mbps Send Rate, average
0.6Mbps Send Rate, average

(b) Average per message delay

Figure 6.32: Average throughput and average delay for each receiver for Hop-to-Hop
Acknowledgement using the SCXML-based implementation

also sustainable for the five-hop scenario. Hence the sustainable rate for the two-hop

scenario extends to multi-hop scenarios. With the Hop-to-Hop Acknowledgement service,

any intermediate nodes only need to process messages from their immediate neighbours.

Therefore, the number of hops does not have an effect on the sustainable performance

beyond two-hops. Note that the last node (node-6, Receiver 5 R5) in this setup generally

has a lower per average message delay since there is less processing at the terminating/leaf

node, as this node does not need to wait for acknowledgement messages as previously

discussed.



Chapter 6. Evaluation 209

6.5 End-to-End Acknowledgment in Single-Hop Net-

work

6.5.1 Java-based Implementation and SCXML-Based Implemen-

tation Performance at send rate of 100 Mbps, 10 Mbps,

and 1 Mbps

In the previous sections we examined the performance of the Hop-to-Hop Acknowledge-

ment service. We now apply the same experimental methodology to a different service,

End-to-End Acknowledgement. Recall from Section 3.1.2.2, that unlike the Hop-to-Hop

Acknowledgement service where acknowledgements are sent immediately to the upstream

node upon receiving a data message, acknowledgements in the End-to-End Acknowl-

edgement service are sent back to the source, where intermediate nodes aggregate all

acknowledgement messages from downstream nodes.

For the SCXML-based implementation of End-to-End Acknowledgement, we always

use the “warm-start” mechanism. The single-hop experiments are as described in Section

6.3.1 where a single-hop transfer of 10,000 overlay messages with 1,024 bytes payloads

from node-1 (Sender S) to node-2 (Receiver R) at sending rates of 100 Mbps, 10 Mbps,

and 1 Mbps.

Figure 6.33 shows the overlay data message sequence numbers (seq) as a function of

the time for the Java-based ((a),(c),(e)) and the SCXML-based ((b),(d),(f)) implemen-

tations at send rates of 100 Mbps, 10 Mbps, and 1 Mbps. The red data points in the

figures are the sent times of each sequence number of data messages at the Sender S

measured in milliseconds. The green data points represent the received times of each

sequence number of data messages at the Receiver R measured in milliseconds.

Figure 6.33(a),(c),(e) and Figure 6.34(a) for End-to-End Acknowledgement service

look similar to Figure 6.3(a),(c),(e) and Figure 6.4(a) for Hop-to-Hop Acknowledgement



Chapter 6. Evaluation 210

 0

 2000

 4000

 6000

 8000

 10000

 0  2  4  6  8  10  12  14  16  18

M
es

sa
ge

 S
eq

ue
nc

e 
Nu

m
be

r

Time (s)

S, 100Mbps
R, 100Mbps

(a) Java-based, send rate = 100 Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  5  10  15  20  25  30  35  40  45  50

M
es

sa
ge

 S
eq

ue
nc

e 
Nu

m
be

r

Time (s)

S, 100Mbps
R, 100Mbps

(b) SCXML-based, send rate = 100 Mbps, with
warm-start

 0

 2000

 4000

 6000

 8000

 10000

 0  2  4  6  8  10  12  14  16  18

M
es

sa
ge

 S
eq

ue
nc

e 
Nu

m
be

r

Time (s)

S, 10Mbps
R, 10Mbps

(c) Java-based, send rate = 10 Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  5  10  15  20  25  30  35  40  45  50

M
es

sa
ge

 S
eq

ue
nc

e 
Nu

m
be

r

Time (s)

S, 10Mbps
R, 10Mbps

(d) SCXML-based, send rate = 10 Mbps, with
warm-start

 0

 2000

 4000

 6000

 8000

 10000

 0  10  20  30  40  50  60  70  80  90

M
es

sa
ge

 S
eq

ue
nc

e 
Nu

m
be

r

Time (s)

S, 1Mbps
R, 1Mbps

(e) Java-based, send rate = 1 Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  10  20  30  40  50  60  70  80  90

M
es

sa
ge

 S
eq

ue
nc

e 
Nu

m
be

r

Time (s)

S, 1Mbps
R, 1Mbps

(f) SCXML-based, send rate = 1 Mbps, with warm-
start

Figure 6.33: Sequence number versus time for End-to-End Acknowledgement



Chapter 6. Evaluation 211

service (Java-based implementation). Figure 6.33(b),(d),(f) and Figure 6.34(b) for End-

to-End Acknowledgement service look similar to Figure 6.16(a),(b),(c) and Figure 6.17(a)

for Hop-to-Hop Acknowledgement service (SCXML-based implementation with warm-

start). The performance characteristic for both services are very similar. End-to-End

Acknowledgement service also cannot sustain send rates of 100 Mbps and 10 Mbps.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0  2000  4000  6000  8000  10000

P
e

r 
M

e
s
s
a

g
e

 D
e

la
y
 (

m
s
)

Sequence Number (Per Message)

R, 100Mbps
R, 10Mbps

R, 1Mbps

(a) Java-based

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0  2000  4000  6000  8000  10000

Pe
r M

es
sa

ge
 D

el
ay

 (m
s)

Sequence Number (Per Message)

R, 100Mbps
R, 10Mbps

R, 1Mbps

(b) SCXML-based, with warm-start

Figure 6.34: Per message delay versus time for End-to-End Acknowledgement

Figure 6.34 shows the per message delay as a function of the sequence number for

data messages for the Java-based and the SCXML-based implementations. The delay

is the total delay from when the message is sent at the sender to when it received by

the application at the receiver measured in milliseconds. The red, green, and blue data

points represent sending rates of 100 Mbps, 10 Mbps, and 1 Mbps respectively.



Chapter 6. Evaluation 212

Figure 6.35 show receiver throughput as a function of time for the Java-based ((a),(c),(e))

and the SCXML-based ((b),(d),(f)) implementations with send rates of 100 Mbps, 10

Mbps, and 1 Mbps. The first data point for throughput is calculated at the received time

of the 500th message. Time is represented on the x-axis.

The throughput plots also show nearly identical trends as for Hop-to-Hop Acknowl-

edgement service (Figure 6.5(a),(c),(e) for Java-based implementation and Figure 6.18(a),(b),(c)

for the SCXML-based implementation with warm-start). From the throughput plots, we

can approximate the sustainable rate of 4.0 Mbps for the Java-based implementation and

1.0 Mbps for the SCXML-based implementation for the End-to-End Acknowledgement

service. These are approximately the same values determined for Hop-to-Hop Acknowl-

edgement service in Section 6.3.1.



Chapter 6. Evaluation 213

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0  2  4  6  8  10  12  14  16  18

Th
ro

ug
hp

ut
 S

lid
in

g 
W

in
do

w 
50

0 
M

es
sa

ge
s 

(K
bp

s)

Time (s)

R, 100Mbps

(a) Java-based, send rate = 100Mbps

 0

 500

 1000

 1500

 2000

 2500

 0  5  10  15  20  25  30  35  40  45  50

Th
ro

ug
hp

ut
 S

lid
in

g 
W

in
do

w 
50

0 
M

es
sa

ge
s 

(K
bp

s)

Time (s)

R, 100Mbps

(b) SCXML-based, send rate = 100Mbps, with
warm-start

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  2  4  6  8  10  12  14  16  18

Th
ro

ug
hp

ut
 S

lid
in

g 
W

in
do

w 
50

0 
M

es
sa

ge
s 

(K
bp

s)

Time (s)

R, 10Mbps

(c) Java-based, send rate = 10Mbps

 0

 500

 1000

 1500

 2000

 2500

 0  5  10  15  20  25  30  35  40  45  50

Th
ro

ug
hp

ut
 S

lid
in

g 
W

in
do

w 
50

0 
M

es
sa

ge
s 

(K
bp

s)

Time (s)

R, 10Mbps

(d) SCXML-based, send rate = 10Mbps, with warm-
start

 0

 200

 400

 600

 800

 1000

 1200

 0  10  20  30  40  50  60  70  80  90

Th
ro

ug
hp

ut
 S

lid
in

g 
W

in
do

w 
50

0 
M

es
sa

ge
s 

(K
bp

s)

Time (s)

R, 1Mbps

(e) Java-based, send rate = 1Mbps

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  10  20  30  40  50  60  70  80  90

Th
ro

ug
hp

ut
 S

lid
in

g 
W

in
do

w 
50

0 
M

es
sa

ge
s 

(K
bp

s)

Time (s)

R, 1Mbps

(f) SCXML-based, send rate = 1Mbps, with warm-
start

Figure 6.35: Throughput versus time for End-to-End Acknowledgement



Chapter 6. Evaluation 214

6.5.2 Bottleneck Analysis of Java-based Implementation

Just like Hop-to-Hop Acknowledgement, we now determine the performance bottlenecks

for End-to-End Acknowledgement service by profiling 1) the per message processing

time (Tmsg), 2) the MessageStore buffers (Ldata and Lcontrol) and 3) the number of stored

FSMs (NFSM) in the MessageStore. The bottleneck analysis is based on the same set of

experiments detailed in Section 6.5.1.

First we examine the Java-based implementation. In Figure 6.36 the MessageStore

per message processing time for the Java-based implementation of End-to-End Acknowl-

edgement is shown for send rates of 100 Mbps, 10 Mbps, and 1 Mbps. The figures in

the left column (Figure 6.36(a),(c),(e)) show processing times at the Sender (S) and

the figures in the right column(Figure 6.36(b),(d),(f)) show the processing times at the

Receiver (R). The red data points represent data messages and the green data points

represent control messages (acknowledgement messages). The receiver does not process

any control messages.

We observe just like Hop-to-Hop Acknowledgement service, in End-to-End Acknowl-

edgement service the control messages take less time to process than data messages. On

average, it takes MessageStore, at steady-state, approximately 0.5 ms - 1 ms to process a

control message and 1.5 ms - 2 ms to process a data messages. Again, processing of data

messages at the sender take more time than at the receiver since the sender also receives

control messages. The processing times for unsustainable send rates (10 Mbps and 100

Mbps) is also longer than for the sustainable send rate (1 Mbps). The general pattern in

these figure exhibit that the MessageStore processing time starts at approximately 0.1

ms and steadily increases to the steady-state value around the 10s mark for both the

receiver and senders. This correlates directly to the higher initial throughput seen in

Figure 6.35(a),(c) and the receiver reaching the steady-state throughput at 10 s.

For the Java-based implementation, Figure 6.36 look nearly identical to that of the

Hop-to-Hop Acknowledgement service (FIgure 6.6). This is expected, as the performance



Chapter 6. Evaluation 215

 0.1

 1

 10

 100

 1000

 0  5  10  15  20  25  30  35  40

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 100Mbps
control messages, 100Mbps

(a) Sender (S), send rate = 100Mbps

 0.1

 1

 10

 100

 1000

 0  2  4  6  8  10  12  14  16  18

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 100Mbps

(b) Receiver (R), send rate = 100Mbps

 0.1

 1

 10

 100

 1000

 0  5  10  15  20  25  30  35  40  45

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 10Mbps
control messages, 10Mbps

(c) Sender (S), send rate = 10Mbps

 0.1

 1

 10

 100

 1000

 0  2  4  6  8  10  12  14  16  18

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 10Mbps

(d) Receiver (R), send rate = 10Mbps

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1Mbps
control messages, 1Mbps

(e) Sender (S), send rate = 1Mbps

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1Mbps

(f) Receiver (R), send rate = 1Mbps

Figure 6.36: MessageStore per message processing time versus time for End-to-End Ac-
knowledgement of the Java-based implementation



Chapter 6. Evaluation 216

should not depend on the individual services.



Chapter 6. Evaluation 217

In Figure 6.37 we present the size of the MessageStore buffers (Ldata and Lcontrol)

and the number of stored FSMs (NFSM) in the MessageStore as a function of time. The

figures on the left column (Figure 6.7(a),(c),(e)) show the Sender (S) and the figures

on the right column (Figure 6.7(b),(d),(f)) show the Receiver (R). The red data points

represent the number of stored FSMs (NFSM) in the MessageStore’s hash table. The

green data points represent the number of backlogged messages in the MessageStore

data message buffer (Ldata). The blue data points represent the number of backlogged

messages in the MessageStore control message buffer (Lcontrol).

These plots show that at send rates of 100 Mbps and 10 Mbps, a large backlog of data

messages is built up at both the sender and and the receiver. At a rate of 100 Mbps,

almost all of 10,000 data messages are buffered before being processed since MessageStore

cannot process messages at that rate. A the lower rate of 10 Mbps less than 50% of the

data messages are buffered. At a rate of 1 Mbps, there is no backlog of data messages at

the sender or receiver. For control messages only received at the sender, the plots show

a large backlog of messages in the buffer for unsustainable send rate of 100 Mbps and

10 Mbps and no backlog of messages at a send rate of 1Mbps. The rate at which the

messages are being dequeued from the MessageStore data and control message buffers

and is approximately bounded to an upper value of approximately 200 messages per

second.

From the red data points, the number of stored FSMs (NFSM) in the MessageStore,

there appears to be a correlation between the number of stored FSMs (Figure 6.37) and

the processing time for each message (Figure 6.36) for both the sender and receiver. The

processing time increase with increasing number of stored FSMs. For the senders, the

number of stored FSMs reaches a maximum at around 10 s seen in Figures 6.37(a),(c),(e)

and achieves steady-state thereafter. This is reflected in the message processing times,

for both data and control messages, seen in Figures 6.36(a),(c),(e). For the receivers, the

number of stored FSMs reaches a maximum at around 1 s seen in Figure 6.37(b),(d),(f)



Chapter 6. Evaluation 218

 0

 2000

 4000

 6000

 8000

 10000

 0  5  10  15  20  25  30  35  40

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 100Mbps
MessageStore Data Message Buffer, 100Mbps

MessageStore Control Message Buffer, 100Mbps

(a) Sender (S), send rate = 100Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  2  4  6  8  10  12  14  16  18

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 100Mbps
MessageStore Data Message Buffer, 100Mbps

MessageStore Control Message Buffer, 100Mbps

(b) Receiver (R), send rate = 100Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  5  10  15  20  25  30  35  40  45

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 10Mbps
MessageStore Data Message Buffer, 10Mbps

MessageStore Control Message Buffer, 10Mbps

(c) Sender (S), send rate = 10Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  2  4  6  8  10  12  14  16  18

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 10Mbps
MessageStore Data Message Buffer, 10Mbps

MessageStore Control Message Buffer, 10Mbps

(d) Receiver (R), send rate = 10Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  10  20  30  40  50  60  70  80  90

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 1Mbps
MessageStore Data Message Buffer, 1Mbps

MessageStore Control Message Buffer, 1Mbps

(e) Sender (S), send rate = 1Mbps

 0

 2000

 4000

 6000

 8000

 10000

 0  10  20  30  40  50  60  70  80  90

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 1Mbps
MessageStore Data Message Buffer, 1Mbps

MessageStore Control Message Buffer, 1Mbps

(f) Receiver (R), send rate = 1Mbps

Figure 6.37: Backlog of messages buffered in MessageStore for data and control message,
and the number of stored FSMs in MessageStore versus time for End-to-End Acknowl-
edgement for the Java-based implementation



Chapter 6. Evaluation 219

and achieves steady-state thereafter. At the senders, the FSMs gets removed when ac-

knowledgement messages corresponding to the data messages are received. The FSMs

then reaches its final state and are removed after a timer expires (TimeoutDelete), this

timer is set at 10 s as described in Section 6.2.2. Hence, steady-state is reached at around

10s.

This trend is also reflected in the message processing times of data messages, seen in

Figures 6.36(b),(d),(f) where the processing time steadily increases until around the 1 s-

1.5 s mark where steady-state is reached. The receivers do not wait for acknowledgement

messages and terminates as soon as the FSMs reaches its final state. Hence steady-state

is reached much earlier. Steady-state is not reached immediately since there is a large

per message delay initially as shown in Figure 6.34.

From the nearly identical performance behaviour of Hop-to-Hop Acknowledgement

service (Section 6.3.2.1) and End-to-End Acknowledgement service, we conclude that

the primary performance overhead for the Java-based implementation is the number of

stored FSMs in the MessageStore.



Chapter 6. Evaluation 220

6.5.3 Bottleneck Analysis of SCXML-based Implementation

In this section we analyze the bottlenecks in the performance of the SCXML-based im-

plementation of End-to-End Acknowledgement. We profile 1) the per message processing

time (Tmsg), 2) lthe MessageStore buffers (Ldata and Lcontrol) and 3) the number of stored

FSMs (NFSM) in the MessageStore. The bottleneck analysis is based on the same set of

experiments detailed in Section 6.5.1.

In Figure 6.38 the MessageStore per message processing time for the SCXML-based

implementation of End-to-End Acknowledgement is shown for send rate of 100 Mbps, 10

Mbps, and 1 Mbps. The figures on the left column (Figure 6.38(a),(c),(e)) show process-

ing times at the Sender (S) and the figures on the right column (Figure 6.38(b),(d),(f))

show the processing times at the Receiver (R). The red data points represent data

messages and the green data points represent control messages.

For the same reason as the Java-based implementation, the sender takes longer to

process messages. Control messages also take less time to process than data messages.

It takes the sender (Figures 6.38(a),(c),(e)) approximately 2.5 ms to process control

messages and approximately 5 ms to process data messages. It takes the receiver (Figures

6.38(b),(d),(f)) approximately 5 ms to process data messages. At all send rates, the

sender finishes processing messages at around 80 s indicating the sustainable processing

rate is around 1 Mbps at the sender.

Independent of the sending rate, the first message takes approximately 50 ms to

process. All these trends are nearly identical to those seen in the Hop-to-Hop Acknowl-

edgement service with warm-start (Figure 6.15).

In Figure 6.39 we present the size of the MessageStore buffers (Ldata and Lcontrol)

and the number of stored FSMs (NFSM) in the MessageStore as a function of time. The

figures on the left column (Figure 6.13(a),(c),(e)) show the Sender (S) and the figures

on the right column (Figure 6.13(b),(d),(f)) show the Receiver (R). The red data points

represent the number of stored FSMs (NFSM) in the MessageStore’s hash table. The



Chapter 6. Evaluation 221

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 100Mbps
control messages, 100Mbps

(a) Sender (S), send rate = 100Mbps, with warm-
start

 0.1

 1

 10

 100

 1000

 0  5  10  15  20  25  30  35  40  45  50

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 100Mbps

(b) Receiver (R), send rate = 100Mbps, with warm-
start

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 10Mbps
control messages, 10Mbps

(c) Sender (S), send rate = 10Mbps, with warm-start

 0.1

 1

 10

 100

 1000

 0  5  10  15  20  25  30  35  40  45  50

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 10Mbps

(d) Receiver (R), send rate = 10Mbps, with warm-
start

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

P
ro

c
e

s
s
in

g
 T

im
e

 (
m

s
)

Time (s)

data messages, 1Mbps
control messages, 1Mbps

(e) Sender (S), send rate = 1Mbps, with warm-start

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90

Pr
oc

es
sin

g 
Ti

m
e 

(m
s)

Time (s)

data messages, 1Mbps

(f) Receiver (R), send rate = 1Mbps, with warm-
start

Figure 6.38: MessageStore per message processing time versus time for End-to-End Ac-
knowledgement for the SCXML-based implementation



Chapter 6. Evaluation 222

 0

 2000

 4000

 6000

 8000

 10000

 0  10  20  30  40  50  60  70  80

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 100Mbps
MessageStore Data Message Buffer, 100Mbps

MessageStore Control Message Buffer, 100Mbps

(a) Sender (S), send rate = 100Mbps, with warm-
start

 0

 2000

 4000

 6000

 8000

 10000

 0  5  10  15  20  25  30  35  40  45  50

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 100Mbps
MessageStore Data Message Buffer, 100Mbps

MessageStore Control Message Buffer, 100Mbps

(b) Receiver (R), send rate = 100Mbps, with warm-
start

 0

 2000

 4000

 6000

 8000

 10000

 0  10  20  30  40  50  60  70  80

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 10Mbps
MessageStore Data Message Buffer, 10Mbps

MessageStore Control Message Buffer, 10Mbps

(c) Sender (S), send rate = 10Mbps, with warm-start

 0

 2000

 4000

 6000

 8000

 10000

 0  5  10  15  20  25  30  35  40  45  50

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 10Mbps
MessageStore Data Message Buffer, 10Mbps

MessageStore Control Message Buffer, 10Mbps

(d) Receiver (R), send rate = 10Mbps, with warm-
start

 0

 2000

 4000

 6000

 8000

 10000

 0  10  20  30  40  50  60  70  80  90

N
u

m
b

e
r 

o
f 

M
e

s
s
a

g
e

s

Time (s)

Stored FSMs, 1Mbps
MessageStore Data Message Buffer, 1Mbps

MessageStore Control Message Buffer, 1Mbps

(e) Sender (S), send rate = 1Mbps, with warm-start

 0

 2000

 4000

 6000

 8000

 10000

 0  10  20  30  40  50  60  70  80  90

Nu
m

be
r o

f M
es

sa
ge

s

Time (s)

Stored FSMs, 1Mbps
MessageStore Data Message Buffer, 1Mbps

MessageStore Control Message Buffer, 1Mbps

(f) Receiver (R), send rate = 1Mbps, with warm-
start

Figure 6.39: Backlog of messages buffered in MessageStore for data and control message,
and the number of stored FSMs in MessageStore versus time for End-to-End Acknowl-
edgement for the SCXML-based implementation



Chapter 6. Evaluation 223

green data points represent the number of backlogged messages in the MessageStore

data message buffer (Ldata). The blue data points represent the number of backlogged

messages in the MessageStore control message buffer (Lcontrol).

As with the Java-based implementation, these plots show that at send rates of 100

Mbps and 10 Mbps, nearly all data messages are backlogged at the MessageStore buffers

at both the sender and and the receiver. At a rate of 1 Mbps, there is no backlog of

data messages at the sender or receiver. The size of the backlog for the SCXML-based

implementation at each time instant is larger than those seen in the Java-based imple-

mentation (Figure 6.37) since the SCXML-based implementation takes longer to process

a message. The rate at which the messages are being dequeued from the MessageStore

data and control message buffers appears bounded to an upper value of approximately

115 messages per second when using the SCXML-based implementation.

The number of stored FSMs does not appear to affect the MessageStore processing

time for messages. We know from out analysis of SCXML-based implementation for

Hop-to-Hop Acknowledgement service (Section 6.3.3) that the performance is dominated

by the SCXML engine processing. The bottleneck here, again, is the SCXML engine

execution.



Chapter 6. Evaluation 224

6.5.4 Sustainable Throughput and Delay

Th next set of experiments are performed to more precisely determine the sustainable

performance of the Java-based implementation and SCXML-based implementation (with

warm-start) in a single-hop transfer of 10,000 overlay messages with 1,024 bytes payloads

from node-1 (Sender S) to node-2 (Receiver R) using the End-to-End Acknowledgment

service. We vary the send rate close to the estimated sustainable send rate from Section

6.5.1 (approximately 4.0 Mbps for Java-based implementation and approximately 1.0

Mbps for SCXML-based implementation).

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 4  4.1  4.2  4.3  4.4  4.5

Av
er

ag
e 

Th
ro

ug
hp

ut
 (K

bp
s)

Send Rate (Mbps)

R, min-max
R, average

(a) Java-based

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1  1.1  1.2  1.3  1.4  1.5

Av
er

ag
e 

Th
ro

ug
hp

ut
 (K

bp
s)

Send Rate (Mbps)

R, min-max
R, average

(b) SCXML-based, with warm-start

Figure 6.40: Average throughput versus time for End-to-End Acknowledgement

In Figures 6.40 and Figure 6.41, we plot the average throughput and average per

message delay for the same set of experiments over all data messages with error-bars in-

dicating the minimum and maximum value. The average delay in Figures 6.41 illustrates

that the sustainable performance is around 4.0 Mbps for the Java-based implementation

and around 1.0 Mbps for the SCXML-based implementation. At higher rates, the aver-

age delays increase sharply. With higher send rates, more variability in the throughput

(indicated by the greater range of the minimum and maximum throughput values) is

seem for both implementations.



Chapter 6. Evaluation 225

 0

 50

 100

 150

 200

 250

 300

 350

 4  4.1  4.2  4.3  4.4  4.5

Av
er

ag
e 

De
la

y 
(m

s)

Send Rate (Mbps)

R, average

(a) Java-based

 0

 50

 100

 150

 200

 250

 300

 350

 1  1.1  1.2  1.3  1.4  1.5

Av
er

ag
e 

De
la

y 
(m

s)

Send Rate (Mbps)

R, average

(b) SCXML-based, with warm-start

Figure 6.41: Average per message delay versus time for End-to-End Acknowledgement

These performance results are again nearly identical to the Hop-to-Hop Acknowledge-

ment found in Section 6.3.5.



Chapter 6. Evaluation 226

6.6 End-to-End Acknowledgment in Multi-Hop Net-

work

In this set of experiments, we study and compare the performance of the Java-based

and the SCXML-based implementations of the End-to-End Acknowledgement service in

a multi-hop scenario.

6.6.1 Two-Hop Transfer for Java-based Implementation (at send

rate of 4.0 Mbps) and SCXML-Based Implementation (at

send rate of 1.0 Mbps) Performance

In this set of experiments we send 10,000 messages of 1024 bytes from node-1 Sender

(S) to Receiver (R1) and Receiver (R2) corresponding to node-2 and node-3 in a two-

hop transfer using the Java-based implementation and the SCXML-based implementation

(with warm-start). We initially varied the sending rate close to the estimated sustainable

sending rate for single-hop from Section 6.5.4 (4.0 Mbps for Java-based implementation

and 1.0 Mbps for SCXML-based implementation). We found these rates are not sustain-

able for the two-hop scenario.

In Figure 6.42 and Figure 6.43, we plot the average throughput and average per mes-

sage delay. For the Java-based implementation, we send messages at rates of 2.0 Mbps

,1.0 Mbps, 0.9 Mbps, and 0.7 Mbps. For the SCXML-based implementation, we send mes-

sages at rates of 0.6 Mbps, 0.7 Mbps, 0.8 Mbps, and 0.9 Mbps. The plots show that the

sustainable performance for the Java-based implementation is approximately 0.9 Mbps

and the sustainable performance for the SCXML-based implementation is approximately

0.7Mbps.

Compared with the Hop-to-Hop Acknowledgment service which sustained a send rate

of approximately 1.9Mbps for the Java-based implementation (Section 6.4.1.3), the End-



Chapter 6. Evaluation 227

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0.8  0.9  1  1.1  1.2  1.3  1.4  1.5  1.6  1.7  1.8  1.9  2

Av
er

ag
e 

Th
ro

ug
hp

ut
 (K

bp
s)

Send Rate (Mbps)

R1, min-max
R1, average
R2, min-max
R2, average

(a) Java-based

 0

 200

 400

 600

 800

 1000

 1200

 0.6  0.7  0.8  0.9

Av
er

ag
e 

Th
ro

ug
hp

ut
 (K

bp
s)

Send Rate (Mbps)

R1, min-max
R1, average
R2, min-max
R2, average

(b) SCXML-based, with warm-start

Figure 6.42: Average throughput versus time for End-to-End Acknowledgement

 0

 500

 1000

 1500

 2000

 2500

 0.8  0.9  1  1.1  1.2  1.3  1.4  1.5  1.6  1.7  1.8  1.9  2

Av
er

ag
e 

De
la

y 
(m

s)

Send Rate (Mbps)

R1, average
R2, average

(a) Java-based

 0

 50

 100

 150

 200

 250

 300

 0.6  0.7  0.8  0.9

Av
er

ag
e 

De
la

y 
(m

s)

Send Rate (Mbps)

R1, average
R2, average

(b) SCXML-based, with warm-start

Figure 6.43: Average per message delay versus time for End-to-End Acknowledgement



Chapter 6. Evaluation 228

to-End Acknowledgment service showed a significant drop in the sustainable rate for the

two-hop scenario. This phenomenon can be explained due to the semantics of End-to-

End Acknowledgement service. We have previous determined that the performance of

the Java-based implementation is bottlenecked by the number of stored FSMs in Mes-

sageStore. Unlike Hop-to-Hop Acknowledgement where the acknowledgement messages

are from the downstream node single-hop, in End-to-End Acknowledgment service must

wait for all downstream node(s) to send an aggregated acknowledgment. Thus any node

that has downstream node(s) must store a FSM until an aggregated acknowledgment

message is received. This results in more FSMs stored in a node using the End-to-End

Acknowledgement service compared to the Hop-to-Hop Acknowledgement service if it

has more than one downstream node.

For example, assume we multicast data messages in a n node daisy-chain topology

(N1, N2, ..., Ni, ..., Nn−1, Nn) where N1 is the sender, Ni is an intermediate node. In the

Hop-to-Hop Acknowledgement service, node Ni stores and wants for an acknowledgement

message to come from its downstream node Ni+1. If the time it waits for this acknowl-

edgment is t then the FSM is stored for t + TimeoutDelete until it gets removed. This

time is independent of how many downstream nodes node Ni has. In contrast, in the

End-to-End Acknowledgement service, node Ni stores and wants for an aggregated ac-

knowledgement message to come from its downstream node Ni+1, and node Ni+1 stores

and wants for an aggregated acknowledgement message to come from its downstream

node Ni+2, etc. Thus if the time a node waits for this acknowledgment is t then the

FSM is stored for t×m+ TimeoutDelete until it gets removed; where m is the number of

downstream nodes.

We can see that for a single-hop scenario involving only two nodes, both the Hop-

to-Hop Acknowledgement service and the End-to-End Acknowledgement service show

similar results. However for multi-hop scenarios, the performance of a node using the

Java-based implementation of End-to-End Acknowledgment service depends on the num-



Chapter 6. Evaluation 229

ber of nodes downstream. More downstream nodes result in a longer waiting time for

an aggregated acknowledgement which increases the number of stored FSMs in Message-

Store. This results in longer per message processing times.

Evidently this effect is not present for the SCXML-based implementation since the

principle bottleneck for sustainable performance is the SCXML engine execution, and

not the number of stored FSMs in MessageStore.



Chapter 6. Evaluation 230

6.6.2 Five-Hop Transfer for Java-based Implementation (at send

rate of 0.8 Mbps) and SCXML-Based Implementation (at

send rate of 0.7 Mbps) Performance

In this set of experiments we send 10,000 overlay messages of 1,024 bytes payloads from

node-1 Sender S to Receiver (R1, R2, R3, R4, and R5) corresponding to node-2 to

node-6 in a five-hop transfer for the Java-based implementation and the SCXML-based

implementation (with warm-start). We set the sending rate close to the estimated sus-

tainable sending rate from Section 6.6.1 (0.8 Mbps for Java-based implementation, and

0.7 Mbps for SCXML-based implementation) to determine the sustainable performance

for five-hop message transfer.

 0

 500

 1000

 1500

 2000

 2500

 1  2  3  4  5

Av
er

ag
e 

Th
ro

ug
hp

ut
 (K

bp
s)

Receiver

0.8Mbps Send Rate, min-max
0.8Mbps Send Rate, average

(a) Average throughput

 0

 5

 10

 15

 20

 25

 30

 35

 1  2  3  4  5

A
v
e

ra
g

e
 D

e
la

y
 (

m
s
)

Receiver

0.8Mbps Send Rate, average

(b) Average per message delay

Figure 6.44: Average throughput and average delay for each receiver for End-to-End
Acknowledgement using the Java-based implementation

In Figures 6.44 we plot the average throughput and average per message delay for

each of the receivers for the Java-based implementation. Figure 6.45, we plot the average

throughput and average per message delay for each of the receivers for the SCXML-based

implementation. We can see that the two-hop sustainable transfer rate is also sustainable

for the five-hop scenario.



Chapter 6. Evaluation 231

 0

 500

 1000

 1500

 2000

 2500

 1  2  3  4  5

Av
er

ag
e 

Th
ro

ug
hp

ut
 (K

bp
s)

Receiver

0.7Mbps Send Rate, min-max
0.7Mbps Send Rate, average

(a) Average throughput

 0

 10

 20

 30

 40

 50

 60

 1  2  3  4  5

Av
er

ag
e 

De
la

y 
(m

s)

Receiver

0.7Mbps Send Rate, average

(b) Average per message delay

Figure 6.45: Average throughput and average delay for each receiver for End-to-End
Acknowledgement using the SCXML-based implementation

However, as explained earlier, the delay experienced at each node is dependent on

the number of downstream nodes for the Java-based implementation. This added delay

is significant for the Java-based implementation. Here we see that the average delay

for the Java-based implementation shows that upstream nodes experience longer delays

compared to downstream nodes (Figures 6.44(b)). For the SCXML-based implementation

this effect is not significant and we observe constant delays across all receivers (R1, R2,

R3, R4, and R5) as seen in Figures 6.45(b)).

Note that the terminating/leaf node will always have lower per message processing

time since it never needs to wait for an acknowledgement message.



Chapter 6. Evaluation 232

6.7 Memory Usage

In this section, we profile the real-time heap memory usage of our system for the two

services, Hop-to-Hop Acknowledgement and End-to-End Acknowledgment. In these ex-

periments we set the Java memory parameters as follows:

• -Xms 0241: initial Java heap size of 1024MB

• -Xmx 0241: maximum Java heap size of 1024MB

We did not tune the garbage collector and used default Java garbage collection.

6.7.1 Hop-to-Hop Acknowledgement Service in Single-Hop Net-

work

First we profile the heap memory usage for the Hop-to-Hop Acknowledgement service

using the Java-based implementation and the SCXML-based implementation with warm-

start. The experiments consist of a single-hop transfer of 10,000 overlay messages with

1,024 bytes payloads from node-1 (Sender S) to node-2 (Receiver R). We performance

the experiment at sending rates of 100 Mbps, 10 Mbps, and 1 Mbps.

Figure 6.46 shows the heap memory usage as a function of the time at the Sender

S ((a)) and the Receiver R ((b)) with send rates of 100 Mbps, 10 Mbps, and 1 Mbps.

The time is represented on the x-axis. Similar to previous plots, the time represent the

received times of each sequence number of data messages at the Receiver R. The y-

axis show the amount of free memory in the Java Virtual Machine. The heap memory

is measured directly with embedded profiling code using the Java runtime class. The

method call used is:

runtime.totalMemory() - runtime.freeMemory()



Chapter 6. Evaluation 233

The red, green, and blue data points show the heap memory usage at send rates

of 100 Mbps, 10 Mbps, and 1 Mbps, respectively. From Figure 6.46 we see that the

memory profile is consistent with most Java applications. The drops in the memory

usage are caused by the Java garbage collector that periodically frees the used memory.

Here the Java garbage collection appears to be executed whenever memory usage reaches

approximately 125MB. Depending on the send rate, this value is reached at different

times. Evidently a faster send rate will result this value being reached faster as Java

objects are created at a higher rate. We can approximate the rate which memory is

allocated by examining the slope in Figure 6.46(a). For example, at a sustainable send

rate 1 Mbps (blue data points), the Sender S have an slope measured to be approximately

100MB
40s

= 2.5MB/s. A send rate of 1Mbps means that we are approximately sending 125

messages per second since each message is 1 KB and 1 Mbps send rate means 125 KB

per second. This results in a memory usage of approximately 20 KB/message processed

at the Sender S. Similarly, the memory usage rate at the Receiver R for a send rate

of 1Mbps can be calculated to be approximately 16 KB/message. This is as expected

since we have previously determined that the sender needs to wait for acknowledgement

messages from the receiver resulting in more finite-state machine processing.

Next we profile the heap memory usage for the SCXML-based implementation. Figure

6.47 shows the heap memory usage as a function of the time at the Sender S ((a)) and

the Receiver R ((b)) with send rates of 100 Mbps, 10 Mbps, and 1 Mbps. The red,

green, and blue data points show the heap memory usage at send rates of 100 Mbps,

10 Mbps, and 1 Mbps, respectively. From Figure 6.47 we see that the memory profile

is increasing and does not drop. Closer investigation reveals that the garbage collection

is functioning correctly. The “oscillations” that occur frequently in the data points are

caused by the Java garbage collector. Note that the difference between the upper values

and lower values in the data at any time is approximately 125MB. This is is because the

Java garbage collector is clearing objects off the heap memory when its memory usage



Chapter 6. Evaluation 234

 0

 50

 100

 150

 200

 0  10  20  30  40  50  60  70  80  90

He
ap

 M
em

or
y 

Us
ag

e 
(M

by
te

s)

Time (s)

100Mbps
10Mbps

1Mbps

(a) Sender (S)

 0

 50

 100

 150

 200

 0  10  20  30  40  50  60  70  80  90

H
e

a
p

 M
e

m
o

ry
 U

s
a

g
e

 (
M

b
y
te

s
)

Time (s)

100Mbps
10Mbps

1Mbps

(b) Receiver (R)

Figure 6.46: Heap memory usage versus time for Hop-to-Hop Acknowledgement for the
Java-based implementation

exceeds 125MB just like in the Java-based implementation.

 0

 200

 400

 600

 800

 1000

 0  10  20  30  40  50  60  70  80  90

H
e

a
p

 M
e

m
o

ry
 U

s
a

g
e

 (
M

b
y
te

s
)

Time (s)

100Mbps
10Mbps

1Mbps

(a) Sender (S), with warm-start

 0

 200

 400

 600

 800

 1000

 0  10  20  30  40  50  60  70  80  90

H
e

a
p

 M
e

m
o

ry
 U

s
a

g
e

 (
M

b
y
te

s
)

Time (s)

100Mbps
10Mbps

1Mbps

(b) Receiver (R), with warm-start

Figure 6.47: Heap memory usage versus time for Hop-to-Hop Acknowledgement for the
SCXML-based implementation

The growth in memory is caused by an area of memory that the Java garbage collec-

tor does not clear unless the JVM is about to run out of memory. The SCXML-based

implementation use Java Reflection which uses the Java Classloader. By using Java Re-

flection we store those reflective classes in the permanent generation area of the memory



Chapter 6. Evaluation 235

which is a part of the heap. The Java documentation [13] defines permanent generation

as: ”The permanent generation is used to hold reflective data of the VM itself such as

class objects and method objects. These reflective objects are allocated directly into the

permanent generation, and it is sized independently from the other generations.” These

reflective classes, being in permanent generation, will not be garbage-collected unless the

JVM is running out of memory. Note that the permanent generation will never cause a

java.lang.OutOfMemoryError (memory leak) since these classes are soft references. As

described by Java [13]: “Soft reference objects, which are cleared at the discretion of the

garbage collector in response to memory demand. Soft references are most often used

to implement memory-sensitive caches. ... All soft references to softly-reachable objects

are guaranteed to have been cleared before the virtual machine throws an OutOfMem-

oryError. Otherwise no constraints are placed upon the time at which a soft reference

will be cleared or the order in which a set of such references to different objects will

be cleared. Virtual machine implementations are, however, encouraged to bias against

clearing recently-created or recently-used soft references.”

Since we specified out initial and max heap memory size to be 1024 MB, the permanent

generation area of the memory is allowed to grow until it reaches 1024MB, which then

will be cleared by the Java garbage collector. We verified this by running the same

experiment with different initial and max heap memory sizes and found that the garbage

collector will only clear the permanent generation area of memory once the set maximum

heap size is reached by our system. Below we show an example of the Sender S for the

same experiment as that of Figure 6.47 but with a initial and max heap size set at 512

MB.

From Figure 6.48 we clearly see that the memory is cleared by the Java garbage

collector once it exceeds 512 MB at approximately 45 s.

Now, we can use the same approach we used in the analysis of the Java-based imple-

mentation to approximate the rate of memory usage for the SCXML-based implementa-



Chapter 6. Evaluation 236

Figure 6.48: Heap memory usage versus time for Hop-to-Hop Acknowledgement for the
SCXML-based Implementation (Sender (S), with warm-start, with initial and max heap
size of 512MB)

tion.

For example in Figure 6.47(a), at a sustainable send rate 1 Mbps (blue data points),

the Sender S have an slope measured to be approximately 950MB
85s

= 11.2MB/s. A send

rate of 1 Mbps means that we are approximately sending 125 messages per second since

each message is 1 KB and 1 Mbps send rate means 125 KB per second. This results in

a memory usage of approximately 89 KB/message processed at the Sender S. Similarly,

the memory usage rate at the Receiver R for a send rate of 1 Mbps can be calculated to

be approximately 54 KB/message. Again the receiver uses less memory.



Chapter 6. Evaluation 237

6.7.2 End-to-End Acknowledgement Service in Single-Hop Net-

work

Next we profile the heap memory usage for End-to-End Acknowledgement for the Java-

based implementation and SCXML-based implementation with warm-start. The exper-

iments also consist of a single-hop transfer of 10,000 overlay messages with 1,024 bytes

payloads from node-1 (Sender S) to node-2 (Receiver R). We performance the experiment

at sending rates of 100 Mbps, 10 Mbps, and 1 Mbps.

Figure 6.49 shows the heap memory usage as a function of the time at the Sender S

((a)) and the Receiver R ((b)) with send rates of 100 Mbps, 10 Mbps, and 1 Mbps for

the Java-based implementation in the same manner as Figure 6.46. Figure 6.50 shows

the heap memory usage as a function of the time at the Sender S ((a)) and the Receiver

R ((b)) with send rates of 100 Mbps, 10 Mbps, and 1 Mbps for the SCXML-based

implementation in the same manner as Figure 6.47.

 0

 50

 100

 150

 200

 0  10  20  30  40  50  60  70  80  90

He
ap

 M
em

or
y 

Us
ag

e 
(M

by
te

s)

Time (s)

100Mbps
10Mbps

1Mbps

(a) Sender (S)

 0

 50

 100

 150

 200

 0  10  20  30  40  50  60  70  80  90

He
ap

 M
em

or
y 

Us
ag

e 
(M

by
te

s)

Time (s)

100Mbps
10Mbps

1Mbps

(b) Receiver (R)

Figure 6.49: Heap memory usage versus time for Hop-to-Hop Acknowledgement for the
Java-based implementation

Both of these figures show nearly identical memory usage characteristics as the Hop-

to-Hop Acknowledgment service. This is as expected since our system’s bottlenecks does

not vary with different services.



Chapter 6. Evaluation 238

 0

 200

 400

 600

 800

 1000

 0  10  20  30  40  50  60  70  80  90

He
ap

 M
em

or
y 

Us
ag

e 
(M

by
te

s)

Time (s)

100Mbps
10Mbps

1Mbps

(a) Sender (S), with warm-start

 0

 200

 400

 600

 800

 1000

 0  10  20  30  40  50  60  70  80  90

He
ap

 M
em

or
y 

Us
ag

e 
(M

by
te

s)

Time (s)

100Mbps
10Mbps

1Mbps

(b) Receiver (R), with warm-start

Figure 6.50: Heap memory usage versus time for End-to-End Acknowledgement for the
SCXML-based implementation



Chapter 7

Conclusions and Future Work

In the past decade significant research on overlay networks has focused on the control-

plane of overlay networks rather than the data-plane. We propose a way to efficiently

extend the data-plane in the form of data delivery services. We believe our work aids in

the building of a more flexible architecture for overlay networking that supports innova-

tion in data delivery.

7.1 Conclusions

In this thesis, we presented a mechanism for network applications to deploy customizable

data delivery services into an overlay middleware system. Our mechanism allows custom

data delivery service to be declared as executable specifications and dynamically deployed

and executed on other overlay nodes by simply delivering messages marked with a service

identifier.

We designed an approach to specify data delivery services as finite-state machines

expressed using the XML markup language for state-machines, SCXML. These finite-

state machines respond to two network events: message arrivals and timer expirations.

We used first-order logic to describe complex events which are composited of multiple

message arrivals and/or timer expirations events.

239



Chapter 7. Conclusions and Future Work 240

We also proposed a set of network primitives that are common to data delivery ser-

vices. Although this set of network primitives may not be exhaustive we showed that

it is sufficient to describe actions performed by complex data delivery services such as

“Hop-to-Hop Acknowledgement” and “End-to-End Acknowledgement”.

We developed a software prototype which can use a generic finite-state machine execu-

tion engine (Apache Commons SCXML) to execute the executable specifications of data

delivery services in overlay middleware. We presented experiments that showed that our

approach can sustain between 25% - 35% of the maximum throughput of a hard-coded

data delivery service.

We proposed two mechanism to improve the performance of our implementation: 1)

a preallocation of finite-state machines and 2) a “warm-starting” of the generic finite-

state machine execution engine during initialization of the overlay node. It was found that

these mechanism reduce per message delays but did not affect the sustainable throughput

of our system.

We believe that the developed approach to describe, execute, and deploy custom

data delivery services enables a flexible and more robust approach for developing and

deploying new data delivery semantics. Our research may enable a new perspective in

the design of networking software and protocols for the future of overlay networking.



Chapter 7. Conclusions and Future Work 241

7.2 Future Work

This thesis offers opportunities to be extended and continued in the following directions:

1. Expressiveness of Services: We provided a method for describing data delivery

services in terms of a specification using first-order logic and a set of network prim-

itives. We argued that the network primitives are sufficient to realize a wide variety

of services of varying complexity. It remains to be investigated which services our

approach can and cannot specify. We believe that congestion control algorithms at

the application-layer can be specified using our approach. More work is needed to

provide evidence that determine the limitations of our approach.

2. Extension to Other Network Layers: Our prototype addresses data delivery

services in the application-layer. However, our methodology can be extended to

other network layers. For example, transport protocols can be naturally described

as a finite-state machine and could be expressed as an executable specification.

Extension of this approach and its performance implications on other network layers

remains to be investigated.

3. Implications to Software Design: In a broader sense, our approach is not lim-

ited to network services. One can envision that other softwares derived from a

finite-state machine can also be expressed as an executable specification. For ex-

ample, it may be feasible to design a flexible layer residing just above the hardware

that executes all software programs from executable specifications. In this case, an

operating system may be defined as an executable specification.

4. Formal Verification of Services: One advantage of describing a service in terms

as a finite-state machine is that they can be formally verified using finite-state

automata verification tools. We used a simple XML schema to validate the markup

and data of our executable specifications. However, our scheme did not verify the



Chapter 7. Conclusions and Future Work 242

behaviour of the services (no infinite-loops in the finite-state machine, the finite-

state machine does not attempt to flood the network, etc.). It is worthwhile to

design a method to formally verify executable specifications before their deployment

and execution. If this can be done, the executable specification is executed within

a “sandbox”.

5. Flexible Deployment Mechanisms: Currently, if overlay nodes receive a mes-

sage marked with a service identifier that it does not have the executable specifi-

cation for, it attempts to download the executable specification from the Services

Server. This centralized approach can have scalability issues and robustness issues

if the Services Server cannot sustain the rate of request and/or if the services server

goes down. It is possible to design more sophisticated decentralized strategies to

deploy executable specifications. However, due to the large size of these executable

specifications, it is not clear whether a decentralized strategy is efficient. This

remains to be examined.

6. Performance Improvements: The biggest factor that limits our the performance

of our prototype appear to be XML parsing and processing. It is feasible to redesign

the system to not use XML (using proprietary format and processing technologies).

However, we feel that the XML standard along with available XML parsing and pro-

cessing technologies makes XML attractive. As better XML technologies becomes

available, they can be leveraged to improve the performance of our system.

7. Memory-Constrained Systems: From our experiments we showed that our flex-

ible approach requires significantly more memory compared to hard-coded Java

classes of services. The impact of this on memory constrained devices such as

mobile phones, PDAs, may need to be investigated.



Bibliography

[1] http://commons.apache.org/scxml/.

[2] http://graphml.graphdrawing.org/.

[3] http://graphviz.org/.

[4] http://linux.die.net/man/1/ttcp.

[5] http://schemas.microsoft.com/vs/2009/dgml/.

[6] http://www.comm.utoronto.ca/hypercast/.

[7] http://www.comm.utoronto.ca/hypercast/design.html.

[8] http://www.comm.utoronto.ca/hypercast/design/messageformatsv5.pdf.

[9] http://www.emulab.net.

[10] http://www.fim.uni-passau.de/en/fim/faculty/chairs/theoretische-

informatik/projects.html.

[11] http://www.gupro.de/gxl/.

[12] http://www.ntp.org.

[13] http://www.oracle.com/technetwork/java/gc-tuning-5-138395.html.

[14] http://www.saxonica.com/welcome/welcome.xml.

243



Bibliography 244

[15] http://www.w3.org/dom/.

[16] http://www.w3.org/tr/2005/wd-scxml-20050705/.

[17] http://www.w3.org/xml/.

[18] http://www.w3schools.com/schema/default.asp.

[19] http://www.w3schools.com/xpath/default.asp.

[20] http://www.w3schools.com/xquery/default.asp.

[21] www.bittorrent.com.

[22] D. S. Alexander, W. A. Arbaugh, M. W. Hicks, P. Kakkar, A. D. Keromytis, J. T.

Moore, C. A. Gunter, S. M. Nettles, and J. M. Smith. The switchware active network

architecture. IEEE Network: The Magazine of Global Internetworking, 12(3):29–36,

May 1998.

[23] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris. The case for

resilient overlay networks. In Proceedings of the Eighth Workshop on Hot Topics

in Operating Systems, HOTOS ’01, page 152, Washington, DC, USA, 2001. IEEE

Computer Society.

[24] D. P. Anderson. Automated protocol implementation with rtag. IEEE Transactions

on Software Engineering, 14:291– 300, Mar. 1988.

[25] J. Barwise. An introduction to first-order logic. Handbook of Mathematical Logic.

Studies in Logic and the Foundations of Mathematics, Amsterdam: North-Holland,

2nd edition, 1982.

[26] G. Berry. Proof, language, and interaction. chapter The foundations of Esterel,

pages 425–454. MIT Press, Cambridge, MA, USA, 2000.



Bibliography 245

[27] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura. An architecture for active

networking. In Proceedings of the IFIP TC6 seventh international conference on

High performance netwoking VII, HPN ’97, pages 265–279, London, UK, UK, 1997.

Chapman & Hall, Ltd.

[28] P.G. Bridges, G.T. Wong, M. Hiltunen, R.D. Schlichting, and M.J. Barrick. A config-

urable and extensible transport protocol. IEEE/ACM Transactions on Networking,

15(6):1254 –1265, Dec. 2007.

[29] K. L. Calvert, J. Griffioen, and S. Wen. Lightweight network support for scalable

end-to-end services. In Proceedings of the 2002 conference on Applications, tech-

nologies, architectures, and protocols for computer communications, SIGCOMM ’02,

pages 265–278, New York, NY, USA, 2002. ACM.

[30] C. Castelluccia, W. Dabbous, and S. O’Malley. Generating efficient protocol code

from an abstract specification. IEEE/ACM Transactions on Networking, 5:514–524,

Aug. 1997.

[31] Y. Chu, S.G. Rao, S. Seshan, and H. Zhang. A case for end system multicast. IEEE

Journal on Selected Areas in Communications, 20(8):1456 – 1471, 2002.

[32] D.C. Feldmeier, A.J. McAuley, J.M. Smith, D.S. Bakin, W.S. Marcus, and T.M.

Raleigh. Protocol boosters. IEEE Journal on Selected Areas in Communications,

16(3):437 –444, Apr. 1998.

[33] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles. Plan: a packet

language for active networks. ICFP ’98 Proceedings of the third ACM SIGPLAN

international conference on Functional programming, 34(1):86–93, 1998.

[34] N. C. Hutchinson and L. L. Peterson. The x-kernel: An architecture for implement-

ing network protocols. IEEE Transactions on Software Engineering, 17(1):64–76,

1991.



Bibliography 246

[35] B. Li, J. Guo, and M. Wang. ioverlay: a lightweight middleware infrastructure for

overlay application implementations. In Proceedings of the 5th ACM/IFIP/USENIX

international conference on Middleware, Middleware ’04, pages 135–154, New York,

NY, USA, 2004. Springer-Verlag New York, Inc.

[36] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica.

Implementing declarative overlays. SOSP ’05 Proceedings of the twentieth ACM

symposium on Operating systems principles, 39(5):75–90, 2005.

[37] S. W. O’Malley and L. L. Peterson. A dynamic network architecture. ACM Trans-

actions on Computer Systems, 10(2):110 – 143, May 1992.

[38] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I. Stoica,

and H. Yu. Opendht: a public dht service and its uses. SIGCOMM ’05 Proceedings

of the 2005 conference on Applications, technologies, architectures, and protocols for

computer communications, 35(4):73–84, 2005.

[39] A. Rodriguez, C. Killian, S. Bhat, D. Kostić, and A. Vahdat. Macedon: methodology

for automatically creating, evaluating, and designing overlay networks. In Proceed-

ings of the 1st conference on Symposium on Networked Systems Design and Imple-

mentation - Volume 1, NSDI’04, pages 20–20, Berkeley, CA, USA, 2004. USENIX

Association.

[40] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location,

and routing for large-scale peer-to-peer systems. In Proceedings of the IFIP/ACM

International Conference on Distributed Systems Platforms Heidelberg, Middleware

’01, pages 329–350, London, UK, UK, 2001. Springer-Verlag.

[41] S. R. Srinivasan, J. W. Lee, E. Liu, M. Kester, H. Schulzrinne, V. Hilt, S. Seethara-

man, and A. Khan. Netserv: dynamically deploying in-network services. In Proceed-



Bibliography 247

ings of the 2009 workshop on Re-architecting the internet, ReArch ’09, pages 37–42,

New York, NY, USA, 2009. ACM.

[42] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,

and H. Balakrishnan. Chord: a scalable peer-to-peer lookup protocol for internet

applications. IEEE/ACM Transactions on Networking, 11(1):17–32, 2003.

[43] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J. Minden.

A survey of active network research. Comm. Mag., 35(1):80–86, 1997.

[44] D. L. Tennenhouse and D. J. Wetherall. Towards an active network architecture.

ACM SIGCOMM Computer Communication Review, 37(5):81–94, 2007.

[45] K. J. Turner. Using Formal Description Techniques: An Introduction to Estelle,

Lotos, and SDL. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1993.

[46] M. Valipour. Cross-substrate advertisement: Building overlay cross-substrate ad-

vertisement: Building overlay networks for heterogeneous environments. Master’s

thesis, University of Toronto, 2010.

[47] S. T. Vuong, A. C. Lau, and R. I. Chan. Semiautomatic implementation of protocols

using an estelle-c compiler. IEEE Transactions on Software Engineering, 14(3):384–

393, 1988.

[48] D. J. Wetherall. Service introduction in an active network. PhD thesis, Mas-

sachusetts Institute of Technology, 1999. AAI0800686.

[49] D. J. Wetherall and D. L. Tennenhouse. The active ip option. In Proceedings of the

7th workshop on ACM SIGOPS European workshop: Systems support for worldwide

applications, EW 7, pages 33–40, New York, NY, USA, 1996. ACM.

[50] J. Zander and R. Forchheimer. Softnet - an approach to high level packet commu-

nications. In Proceedings of the AMRAD Conference, 1983.



Bibliography 248

[51] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz.

Tapestry: a resilient global-scale overlay for service deployment. IEEE Journal on

Selected Areas in Communications, 22(1):41–53, 2006.


