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Abstract—Capacity and buffer sizes are critical design pa-
rameters in schedulers which multiplex many flows. Previous
studies show that in an asymptotic regime, when the number
of traffic flows N goes to infinity, the choice of scheduling
algorithm does not have a big impact on performance. We raise
the question whether or not the choice of scheduling algorithm
impacts the capacity and buffer sizing for moderate values of N
(e.g., few hundred). For Markov-modulated On-Off sources and
for finite N , we show that the choice of scheduling is influential
on (1) buffer overflow probability, (2) capacity provisioning, and
(3) the viability of network decomposition in a non-asymptotic
regime. This conclusion is drawn based on numerical examples
and by a comparison of the scaling properties of different
scheduling algorithms. In particular, we show that the per-flow
capacity converges to the per-flow long-term average rate of the

arrivals with convergence speeds ranging from O

(√
logN
N

)
to

O
(

1
N

)
depending on the scheduling algorithm. This speed of

convergences of the required capacities for different schedulers
(to meet a target buffer overflow probability) is perceptible even
for moderate values of N in our numerical examples.

I. INTRODUCTION

Capacity and buffer provisioning in a scheduler which mul-
tiplexes multiple traffic flows with stringent service demands
is known to be challenging. In this joint design problem, buffer
size can be decreased at the cost of increasing the capacity.
Recently, several arguments have been made in favour of
small buffer sizes at packet switches: First, when the number
of flows is large, adding small buffers usually satisfies the
buffer overflow probability constraints [16]. Secondly, small
buffers enable fast memory technologies such as SRAM or all-
optical buffering [7]. Finally, small buffers may mitigate traffic
burstiness. For instance, the polynomially decreasing overflow
probability of self-similar traffic turns to exponentially de-
creasing buffer overflow in schedulers with small buffers [15],
[16].

Capacity and buffer provisioning to meet a target loss
probability, have been studied extensively in a many sources
asymptotic when the number of i.i.d. flows N tends to infinity.
Using large deviation theory, it has been shown that the
steady state of the total backlog B exceeding a threshold b
is asymptotically described by P{B > b} ≈ e−NI( bN ), where
I is called the asymptotic rate function taking different forms
depending on the input traffic and buffer sizes [1], [19]. For
instance, for a given utilization and a large class of On-Off
sources, asymptotic rate function for small buffers takes the
form I( bN ) ≈ K1 + K2

√
b
N for some positive constants K1

and K2 [16]. Albeit a single flow FIFO queue is assumed for
most of the asymptotic backlog analyses, it is shown that the
asymptotic results can be extended to general work-conserving
schedulers [8], [22]. This suggests that for sufficiently large N ,
capacity and buffer provisioning can be carried out regardless
of the scheduling algorithm used in the switches.

The role of scheduling on the buffer/capacity provisioning
for a target buffer overflow probability for finite values of N
has not been fully investigated. For a general work-conserving
scheduler and a class of Markov-modulated sources [6], it
is shown in [5] that O(1) buffers are sufficient to satisfy a
target overflow probability. In a multi-flow FIFO scheduler
and Markov-modulated On-Off sources, an O( 1

N ) per-flow
capacity is shown to be sufficient to guarantee a probabilistic
end-to-end delay bound [5].

Networks where buffers are small enough to limit traffic
distortion, but sufficiently large to result in small loss proba-
bility justify a decomposition analysis, where each node in the
network can be analyzed without regards to other nodes in the
network. The viability of network decomposition is considered
in asymptotic [8], [17], [20], [22] and numerically in non-
asymptotic regimes [5], [6].

In this paper we aim to investigate whether or not scheduling
information is a key factor for the network analysis for finite
values of N . We use the non-asymptotic probabilistic backlog
bound from [10] for the class of ∆-schedulers to compute
the required capacity to satisfy a target overflow probability
in a scheduler with a given small non-zero buffer size. We
show that a per-flow buffer size can be as small as O( 1

N ),
which justifies talking about a tiny buffer regime. We employ
Network Calculus in our derivations [2], [3], [11]. In this
paper, we study the impact of resource provisioning and
performance analysis for finite N :
• We investigate how the per-flow backlog and output

scale with the total number of flows for each choice of
scheduling algorithm.

• We quantify the required capacity to satisfy a predefined
overflow probability when the buffer size is arbitrarily
small. We show that the scheduling algorithm determines
the speed of the convergence of per-flow capacity to the
long-term per-flow average rate.

• We study the viability of network decomposition in a
non-asymptotic regime for different schedulers. Using nu-
merical examples, we show that network decomposition
might be valid even in a non-asymptotic regime for some



(a) Scenario I (A two-node network). (b) Scenario II (Removing the up-
stream node from Scenario I).

Fig. 1: System model and network decomposition.

schedulers including FIFO.
The rest of the paper is organized as follows. In the next

section, we introduce our system model. In Sec. III we study
the impact of scheduling on the backlog bounds from [10]
for a ∆-scheduler as the number of flows increases. Then,
for a fixed and arbitrarily small buffer size, we formulate an
optimization problem to derive the required capacity which
satisfies a target overflow probability and explore the scaling
of the per-flow capacity as a function of N . Sec. IV is devoted
to network decomposition of a network of ∆-schedulers. We
present numerical results in Sec. V and we conclude the paper
in Sec. VI.

II. SYSTEM MODEL

Fig. 1 illustrates the models we will consider in this paper.
Fig. 1a (Scenario I) demonstrates a two-node network sce-
nario. The upstream node is fed by N input flows (n0 i.i.d.
through flows A0 and nuc (= N − n0) i.i.d. cross flows Auc )
and has a total capacity Nc, where c is referred to as the
per-flow capacity. After being served at the upstream node,
the departures of the through flows from the upstream node
Du

0 enter the downstream node with total capacity Cd. The
downstream node multiplexes the through flows with ndc i.i.d.
cross flows Adc . In Fig. 1b (Scenario II), the upstream node
is removed, and the through flows A0 enter the downstream
node directly and are multiplexed by cross flows Adc . We do
not assume independence between through and cross flows.

If the arrivals at a certain time exceed the capacity of the
link, the exceeding arrivals are stored in a buffer to be served
later. The buffer content at any time t is called the backlog B at
that time. We assume that the buffer at each node is partitioned
to separate through and cross flows arrivals. We denote by Bu0
(Bu) and BdI (BdII), respectively, the backlog of the through
flows (total flows) at the upstream node and the total backlog
at the downstream node in Scenario I (Scenario II).

In a finite buffer queue, network resources are provisioned
so that the losses occur rarely, i.e., by choosing large enough
buffer/capacity. One of the main target design constraints is
overflow probability defined as the likelihood that at a given
time instant the input traffic finds the buffer full. As many
other papers in the literature, we use the probability that the
virtual backlog in an infinite buffer queue exceeds a threshold
equal to the buffer size. Computing the latter probability is

less challenging than the overflow probability and is an upper
bound on the overflow probability and is shown to be very
close to the buffer overflow especially if N is not small [9].
The backlog in an infinite buffer queue at any time t ≥ 0 is
the difference between the cumulative arrival A and departure
processes D, i.e., B(t) = A(t)−D(t).

We study the impact of scheduling on capacity provisioning
in a single node in Sec. III, where the upstream node in
Scenario I is used as the model for the single node scenario.
We examine network decomposition (in Sec. IV) by investi-
gating whether or not the backlog in the downstream node of
Scenario I is affected by the upstream node or it has similar
statistical properties to those in the single node depicted in
Scenario II.

We use a continuous time fluid flow model, where A(t)
represents the total arrival from a process A in time interval
[0, t) and A(s, t) = A(t) − A(s). For any arrival process A,
we define the long-term average rate ā as

ā = lim
t→∞

A(t)

t
.

The per-flow long-term average rate of arrivals in the upstream
link is defined as āu =

nuc ā
u
c+n0ā0
N , where ā0 and āuc are,

respectively, the long-term average rates of the through and
cross flows at that node. The per-flow link capacity must
satisfy c ≥ āu as stability condition. The utilization is defined
as the ratio between the long-term average rate of the arrivals
to the link capacity, e.g., the utilization of the upstream node
is computed as

Uu =
Nāu

Nc
=
āu

c
.

We use the stochastic network calculus for the analyses
which employs envelopes to describe the probabilistic upper
bounds at each time interval. A non-decreasing function G is
a statistical envelope [4] for process A with bounding function
ε for all s, t with 0 ≤ s ≤ t, if

P{A(s, t) > G(t− s;σ)} ≤ ε(σ) , (1)

for any σ ≥ 0, and 0 ≤ ε(σ) ≤ 1. A statistical envelope
can be inferred immediately from the definition of a large
class of traffic sources known as the Exponential Bounded
Burstiness (EBB) traffic arrivals [21]. An arrival process A



is an EBB traffic with parameters (M,ρ, α), represented by
A ∼ (M,ρ, α), if it satisfies that for any σ ≥ 0 and any s ≤ t

P{A(s, t) > ρ(t− s) + σ} ≤Me−ασ . (2)

A statistical sample path envelope G is a stricter envelope
than the statistical envelope and is a non-decreasing function
that satisfies the following at any time t [10]:

P
{

sup
s≤t
{A(s, t)− G(t− s;σ)} > 0

}
≤ ε(σ) , (3)

for any σ ≥ 0, and 0 ≤ ε(σ) ≤ 1. If A ∼ (M,ρ, α) then,
for any γ > 0 the following is a statistical envelope satisfying
Eq. (3)

G(t;σ) = (ρ+ γ)t+ σ; ε(σ) = Me

(
1 +

ρ

γ

)
e−ασ . (4)

We assume that n0 is fixed and does not scale with N . This
is a common assumption in most of the papers on network
decomposition [5], [6], [8], [22]. In this paper, we assume
that each traffic flow is a Markov-modulated On-Off (MMOO)
source which is a common model for voice traffic [18]. An
MMOO flow can be modelled by a two-state Markov chain
with states On and Off. In the On state, traffic is generated
with rate P , and no traffic is generated in the Off state. The
sojourn time between On to Off and Off to On transitions are
exponentially distributed with rates λ and µ, respectively. The
average cycle time to return to the same state is T ∗ = λ+µ

λµ .
If A is an MMOO process with parameters, λ, µ, and P then,
for any α ≥ 0, t ≥ 0:

sup
s≥0

E
[
eαA(s,t+s)

]
≤ eαr(α)t , (5)

with

r(α) =
1

2α
(Pα− λ− µ+

√
(Pα− µ+ λ)2 + 4µλ) . (6)

Note that r(α) satisfying Eq. (5) is a special case of effective
bandwidth [12] for process A. r(α) is non-decreasing in α
and satisfies

∀α ≥ 0 : r(0) = ā ≤ r(α) ≤ r(∞) = P , (7)

where ā = Pµ
λ+µ is the average rate of A. Traffic sources

which satisfy Eq. (5) and in particular, MMOO sources are
also used in the papers studying network decomposition in a
non-asymptotic regime [5], [6].

Suppose that A is the aggregate of n independent flows
each satisfying Eq. (5) with parameter r. Then applying the
Chernoff bound shows that A is an EBB arrival in terms of
Eq. (2) with (1, nr(α), α). For simplicity of notation, we will
use ρ(α) = nr(α) and we drop α frequently in the paper.

We assume that the scheduling algorithm in the upstream
node is a ∆-scheduler [14]. For any ordered pair of input
flows (i, j), there exists a constant ∆i,j that determines the
precedence between the arrivals from flow i and j. More
specifically, if an arrival flow i arrives to a ∆-scheduler at
time t, the arrivals from flow j have higher precedence if
and only if they arrive at or before t + ∆i,j (Fig. 2). By the

Ai

Aj
t

t+ ∆i,j

C

∆-scheduler

Fig. 2: ∆-scheduler algorithm.

above definition, first in first out (FIFO), static priority (SP),
and earliest deadline first (EDF) are examples of ∆-schedulers
with
• FIFO: ∆i,j = 0 for any pair of flows i, j

• SP:
{

∆i,j = +∞ if j has higher priority than i
∆i,j = −∞ if i has higher priority than j

• EDF: ∆i,j = d∗i − d∗j for any i, j ∈ N
where d∗j for any j ∈ N in EDF is the a priori delay bound for
flow j. We note that if the scheduling information is not avail-
able, performance bounds must be obtained by considering the
scheduling algorithm which leads to the worst-case bounds
among all work-conserving schedulers. This benchmark is
referred to as blind multiplexing (BMux) and is equivalent
to a two-class SP scheduler which gives the lower priority to
that specific flow.

III. SCALING PROPERTIES OF BACKLOG AND CAPACITY

In this section we study the impact of the choice of
scheduler on the backlog and capacity dimensioning at the
upstream node depicted in Fig. 1a. Since we do not consider
the downstream node in this section, we sometimes drop
the superscript u to simplify notation. We use the following
theorem from [10] which computes a per-flow backlog bound
for EBB traffic sources in a ∆-scheduler.

Theorem 1 (Backlog bound for ∆-schedulers [10]):
Suppose that EBB through flows with aggregate parameters
(M0, ρ0, α0) satisfying Eq. (2) are multiplexed with EBB
cross flows with aggregate parameters (Mc, ρc, αc) in a
∆-scheduler with parameter ∆0,c = ∆ and capacity C.
Define a vector σ = (σ0, σc) with arbitrary positive elements.
For any 0 ≤ γ ≤ C−ρc−ρ0

2 , define the following parameters

θ∗ = min

(
σc

C − ρc − γ
,

[σc + (ρc + γ)∆]+
C

)
, (8)

b(σ) = σ0 + (ρ0 + γ)θ∗ , (9)

ε(σ) = M0e
(

1 +
ρ0

γ

)
e−α0σ0 +Mce

(
1 +

ρc
γ

)
e−αcσc .

(10)

Then, the backlog of through flows B0 at any time t ≥ 0
satisfies

P{B0(t) > b(σ)} ≤ ε(σ) . (11)

The above theorem can be used for our system model
in which through and cross flows are EBB processes,
respectively, with A0 ∼ (1, n0r0(α0), α0) and Auc ∼
(1, ncrc(αc), αc) for any non-negative α0 and αc. To capture
the scaling of the backlog behaviour of the through flows, we



use the deterministic peak-rate envelope n0P0 for the through
flows as a special case of the statistical sample path envelopes.
To be more precise, we replace G0(t) = (ρ0 + γ)t + σ and
ε0(σ) = M0e(1 + ρ0

γ )e−α0σ in Eq. (4), respectively, with
G0(t) = n0P0 and ε0 = 0. This eliminates the first term in
Eqs. (9)-(10) which correspond to the through flows statistical
envelope bounding function and replaces ρ0 +γ0 with n0P0 in
Eq. (9). The resulting backlog bound exhibits an exponential
decay rate in N for any N ≥ n0(P0−āc)

c−āc (as shown below).
Corollary 1: Suppose that any through and cross flow

source in the upstream node in Fig. 1a satisfies Eq. (5), each
through flow has a peak rate P0, and N ≥ n0(P0−āc)

c−āc . Then,
there exist constants αb > 0 and K such that for any σ ≥ 0

P{Bu0 (t) > σ} ≤ Ke−Nαbσ , (12)

where K = O(N) if ∆ ≥ 0 and K = O(Ne−Nβ) for some
constant β if ∆ < 0.

Proof: We consider Bu0 , separately, for ∆ ≥ 0 and ∆ < 0.
In both cases, the parameters are chosen such that b(σ) from
Eq. (9) (with the above replacements) is upper bounded by a
fixed σ, where ε in Eq. (10) is shown to decay by e−Nαbσ .
• ∆ ≥ 0: With the condition on N in the corollary
statement, we can always choose αc small enough so that
c ≥ n0(P0−rc(αc))

N + rc(αc). For any fixed σ ≥ 0, setting the
parameters in Eq. (9) as follows, guarantees that b ≤ σ

αb =
αc(Nc− ρc(αc)− γc)

Nn0P0
; σc =

Nαbσ

αc
. (13)

Replacing the above parameters in Eq. (11), yields

P{Bu0 (t) > σ} ≤ e
(

1 +
ρc
γc

)
e−Nαbσ . (14)

Since αb = O(1) (from Eq. (13)) and ρc = (N − n0)rc,
Eq. (12) holds with K = e

(
1 + ρc

γc

)
= O(N).

• ∆ < 0: In this case, θ∗ from Eq. (8) is always evalu-
ated to the second term. Choose αc small enough so that
c ≥ n0(P0−rc(αc))

N + rc(αc). For any fixed σ ≥ 0, selecting
parameters in Eq. (9) as follows guarantees that b < σ

αb =
αcc

n0P0
; σc =

Nαbσ

αc
− (ρc + γc)∆ . (15)

By replacing these choices of parameters in Eqs. (8)-(11), we
have

P{Bu0 (t) > σ} ≤ e
(

1 +
ρc
γc

)
eαc(ρc+γc)∆e−Nαbσ (16)

which implies that Eq. (12) holds with K = O(Ne−Nβ) and
β = −N−n0

N αcāc∆ = Θ(1).
Corollary 1 shows that the decay rate of the backlog of the

through flows varies with the choice of scheduling algorithms.
It also indicates that for a predefined overflow probability, the
buffer size can be as small as O( 1

N ) suggesting that a tiny
buffer is enough for large values of N .

A. Capacity provisioning for ∆-schedulers

Suppose that the through flows in the upstream node in
Fig. 1a have a target overflow probability ε∗. Using Theorem 1,
we can quantify the required capacity for a given buffer size B.
The per-flow capacity must satisfy the stability condition, i.e.,
Nc ≥ ρ0+ρc+2γ. Hence, we can set c = 1

N (ρ0+ρc+2γ+X)
for some positive slack variable X ≥ 0. Equating b in Eq. (9)
to B and solving the result for c, gives us another constraint on
c with free parameters α0, αc, γ. Combining both conditions
on c and enforcing the target overflow probability constraint,
we can write

c =
1

N
inf

α0,αc,γ,X
{ρ0 + ρc + 2γ +X} (17)

s.t. X ≥ 0 (18)

ε∗ ≥ e
(

1 +
ρ0

γ

)
e−α0σ0 + e

(
1 +

ρc
γ

)
e−αcσc (19)

X + ρ0 + ρc + 2γ ≥ ρ0(α0) + γ

B − σ0
× (20)

min
(
σc +

(B − σ0)(ρc(αc) + γ)

ρ0(α0) + γ
, [σc + (ρc(αc) + γ)∆]+

)
.

The above optimization problem can be used as follows to
find how the required capacity to meet a target buffer overflow
probability scales with N .

Corollary 2 (Per-flow capacity scaling properties): The
per-flow capacity from Eq. (17) for MMOO input flows
satisfies

c− āu = J(N) , (21)

where J(N) = O

(√
logN
N

)
if ∆ ≥ 0 and J(N) =

O
(

logN
N

)
if ∆ < 0.

Corollary 2 shows that if N is sufficiently large, for any
arbitrarily small buffer size, a target overflow probability can
be satisfied even when the utilization is large.

Proof: Replace the left-hand side of Eq. (20) with Nc to
get

c ≥ 1

N

ρ0(α0) + γ

B − σ0
× (22)

min
(
σc +

(B − σ0)(ρc(αc) + γ)

ρ0(α0) + γ
, [σc + (ρc(αc) + γ)∆]+

)
.

In addition, turn the inequality in Eq. (19) into an equality and
split ε∗ equally between the terms of the right-hand side of
that equation to get

σ0 =
1

α0
log

(
2e(1 + ρ0

γ )

ε∗

)
; σc =

1

αc
log

(
2e(1 + ρc

γ )

ε∗

)
.

(23)

Using the Taylor expansion of the rate r for an MMOO
process from Eq. (6) for α � 1 and since rc(0) = āc, we
have rc(αc) = āc +O(αc), or equivalently

ρc(αc) = (N − n0)(āc +O(αc)) . (24)



Combining the above equation with Eq. (17), we get

c− āu = O
(αc(N − n0)

N

)
+
n0(r0(α0)− ā0) + 2γ +X

N
,

(25)

where the last term is O( 1
N ) noting that X ≥ 0 can be chosen

to be a constant with respect to N and limN→∞
n0

N = 0. If

αc = Θ

(√
logN
N

)
, we find from Eqs. (23)-(24), that σc, ρc =

O(
√
N logN). Thus, there is a choice of αc which can satisfy

Eq. (22), and for such an αc, we have c− āu = O

(√
logN
N

)
from Eq. (25) .

If ∆ < 0 then, choose σc = −(N − n0)āc∆ and find αc
from Eq. (23) which is αc = O( logN

N ). This choice of σc
relaxes the constraint in Eq. (22) by setting the second term
in the minimum to zero. Combining all of the above results
and from Eq. (25), we have c− āu = O

(
logN
N

)
.

A tighter bound on the capacity than that in Corollary 2 for
∆ < 0 can be obtained asymptotically, when N is sufficiently
large. Set αc to a constant (w.r.t. N ) to have σc = O(logN)
from Eq. (23). The second term in the minimum of Eq. (22) is
zero for large enough N and from Eq. (25) we have c− āu =
O( 1

N ).

IV. NON-ASYMPTOTIC NETWORK DECOMPOSITION FOR
∆-SCHEDULERS

In the previous section, we studied the role of scheduling
algorithms in capacity provisioning for a target buffer overflow
probability. In this section, we investigate how the viability
of network decomposition can be affected by the choice
of scheduling algorithms. Network decomposition (if valid)
simplifies network analysis by eliminating the other nodes
and analyzing each node in isolation (Fig. 1). The viability of
network decomposition can be justified by showing that the
random processes governing a multi-node network converge
to those in a single node network when the number of flows
N is large. In the literature, two types of convergence are
considered:
1- Convergence of Du

0 to A0: The upstream node can be
disregarded in the backlog analysis of the downstream node
if the statistical properties of Du

0 and A0 are similar. Wischik
[20] provides conditions under which the output traffic Du

0

satisfies the same moment generating function as the input A0.
In a FIFO link which is fed by two classes of arrivals, through
and cross flows, each consisting of independent, identical
leaky-bucket arrivals, the random burstiness of the output of
the through flows converges to the input deterministic leaky-
bucket burstiness of the aggregate through flows [22]. Finally,
for MMOO traffic flows, the EBB characteristics of the output
process in an isolated FIFO queue is shown to converge to
those of the input process exponentially fast in N [5], [6].
2- Convergence of BdI to BdII: The convergence of the backlog
process BdI in the two node scenario in Fig. 1a to the backlog
process BdII in the single node scenario in Fig. 1b can be used
to show that upstream nodes have only a negligible impact.

This provides an even stronger argument for decomposition
than the convergence of Du

0 to A0. Almost sure convergence is
proved for regulated traffic and in probability for non-regulated
traffic in [8]. In a non-asymptotic regime, the convergence of
BdI to BdII is shown numerically even for moderate values of
N in [5], [6]. Finally, it is shown that the loss ratio at the
downstream in Scenario I converges to that of Scenario II
when N →∞ [17].

We will consider both convergence criteria in our analysis
of ∆-schedulers.

A. Output characterization

We use backlog characterization from Corollary 1 to formu-
late an envelope for the departures Du

0 from the downstream
node in Scenario I in Fig. 1a.

Theorem 2 (Output EBB characterization): Consider
the upstream node in Fig. 1a. With the assumptions in
Corollary 1, the aggregate departures of through flows Du

0

is an EBB process with Du
0 ∼ (Mout

0 , ρ0, α
out
0 ), where

αout0 =
(

1
α0

+ 1
Nαb

)−1

and

Mout
0 =

[
M0

(
1 +

α0

Nαb

)] Nαb
α0+Nαb

[
K

(
1 +

Nαb
α0

)] α0
α0+Nαb

.

(26)

Proof: The departures of through flows from the upstream
node Du

0 in a time interval [s, t) satisfies

Du
0 (s, t) ≤ Au0 (s, t) +Bu0 (s) . (27)

Using Eq. (27), we can write

P{Du
0 (s, t) > ρ0(t− s) + σ}

≤ P{Au0 (s, t) +Bu0 (s) > ρ0(t− s) + σ} (28)

≤ inf
σ0+σb=σ

{
P{Au0 (s, t) > ρ0(t− s) + σ0}

+ P{Bu0 (s) > σb}
}

(29)

≤ inf
σ0+σb=σ

{M0e
−α0σ0 +Ke−Nαbσb} (30)

= Mout
0 e−α

out
0 σ , (31)

where Eq. (27) is used in the second line. The event in Eq. (28)
is a subset of the union of the events in Eq. (29). Combining
this with the union bound yields Eq. (29). The next line applies
the EBB characterizations of Au0 and the backlog probabilistic
bound from Corollary 1, and the last line uses Lemma 3 in
[4].

Replacing K from Corollary 1 to the above theorem shows
that if N → ∞, the EBB parameters of the aggregate
through flows is unchanged as it passes through the node,
i.e., limN→∞Du

0 ∼ (M0, ρ0, α0). This result relaxes the
assumption on the independence between the through and
cross flows in [5], [6] and the statistical independence of the
through flows in any time window with the backlog status at
the start of that time window in [6].



B. Non-asymptotic downstream node buffer overflow

As shown in [8], to guarantee the convergence of BdI to
BdII as N increases, it is sufficient to show that a sample path
backlog bound for Bu0 decays to zero. To construct a sample
path for Bu0 , we use the following lemma:

Lemma 1: Suppose that the upstream through flows in
Fig. 1a has a peak-rate n0P0 and there is a non-decreasing
function εb such that at any time t and for any σ > 0,

P{Bu0 (t) > σ} ≤ εb(σ) , (32)

then, for any τs and T ≥ 0,

P
{

sup
0≤t≤T

{Bu0 (t)} > σ
}
≤
⌈ T
τs

⌉
εb(σ − n0P0τs) . (33)

Proof: We discretize time by letting τs be a time unit. The
difference between the backlog of through flows at a given
time instant t and at the most recent discrete time slot cannot
be larger than the total arrivals of the through flows (at the
upstream node) in an interval of size τs. Thus, by defining
TZ =

{
0, τs, 2τs, . . . ,

(⌈
T
τs

⌉
−1
)
τs
}

, we have

sup
0≤t≤T

{Bu0 (t)} ≤ max
s∈TZ

(
Bu0 (s) +A0(s, s+ τs)

)
≤ max
s∈TZ

(
Bu0 (s)

)
+ n0P0τs . (34)

With this result, we can write

P
{

sup
0≤t≤T

{Bu0 (t)} > σ
}
≤ P

{
max
s∈TZ

(
Bu0 (s)

)
> σ − n0P0τs

}
≤
∑
s∈TZ

P
{
Bu0 (s) > σ − n0P0τs}

=
⌈ T
τs

⌉
εb(σ − n0P0τs) ,

where the second line uses Boole’s inequality and the last line
uses the fact that TZ has

⌈
T
τs

⌉
elements.

If T in Eq. (33) is a busy period bound, Lemma 1 provides
a sample path backlog bound. A busy period of a work-
conserving link refers to a time duration in which the backlog
is non-zero. A busy period bound is formulated in [13] as
follows. Suppose that process A is the arrival traffic to a link
with capacity C and D is the corresponding departure process.
Fix time t and define x̂t to be the start of the busy period
containing t. That is

x̂t = sup{s ≤ t | A(s) ≤ D(s)} . (35)

If t− x̂t ≤ T for any t then, T is a deterministic busy period
bound which reduces the Reich’s backlog equation to

B(t) = sup
0≤s≤T

{A(t− s, t)− Cs} . (36)

If G is a statistical sample path envelope for A with bounding
function ε then, a probabilistic busy period bound is given by

T (σ) = inf{s | G(s;σ) ≤ Cs} (37)

in the sense that for any t ≥ 0

P{t− x̂t > T (σ)} ≤ ε(σ) . (38)

We use the above method to compute probabilistic busy
periods on the downstream node for both scenarios in Fig. 1.

We first study Scenario II. Assume that through and cross
flows at the downstream node are EBB with parameters
(1, ρII

0 , α
II
0 ) and (1, ρII

c , α
II
c ). Here, we have simplified notation

by setting ρII
0 = n0r0(αII

0 ) and ρII
c = ncrc(α

II
c ). Inserting

the EBB sample path envelopes from Eq. (4) in Eq. (37), a
probabilistic busy period bound can be obtained. If αII

c , αII
0 ,

and γII are chosen such that Cd > ρII
0 +ρII

c and γII ≤ Cd−ρII
c−ρ

II
0

2
then, for any σ ≥ 0

TII(σ) =
σ

Cd − ρII
c − ρII

0 − 2γII (39)

is a probabilistic busy period bound for the node in Scenario II
in the sense of Eq. (38) with bounding function

εTII(σ) = e
(

2 +
ρII

0

γII +
ρII
c

γII

)
e−α

II
dσ , (40)

where αII
d = ( 1

αII
c

+ 1
αII

0
)−1.

To compute a busy period bound at the downstream node in
Scenario I, we apply the upstream departure characterization
from Theorem 2. Multiplexing the resulting departure process
with EBB cross flows at the downstream node with parameters
(1, ndcr

I
c(α

I
c), α

I
c), a busy period bound for Scenario I at the

upstream network can be obtained similar to that of TII(σ).
Then, for any γI ≤ Cd−ρI

0−ρ
I
c

2 ,

TI(σ) =
σ

Cd − ρI
0 − ρI

c − 2γI (41)

is a busy period bound in the sense of Eq. (38) with bounding
function

εTI(σ) = e
(

1 +Mout
0 +Mout

0

ρI
0

γI +
ρI
c

γI

)
e−α

I
dσ , (42)

where αI
d = ( 1

αI
c

+ 1
αout0

)−1. Since Mout
0 = O(1), we have

εTI(σ) = O(e−α
I
dσ) and εTII(σ) = O(e−α

II
dσ). The above

bounds are used in the next section to compare BdI with BdII.

C. Almost sure network decomposition

We studied the network decomposition in the sense of the
convergence of Du

0 to A0 in Theorem 2. In this section,
we study the network decomposition in the sense of the
convergence of BdI to BdII. The following theorem shows that
BdI converges to BdII almost surely in the number of flows
N for all ∆-schedulers. The rate of convergence is faster for
negative values of ∆ (compare L(σ) for ∆ ≥ 0 and ∆ < 0
in Theorem 3). In the specific case of FIFO (∆ = 0) and
for traffic sources with bounded peak-rate satisfying Eq. (5),
the following theorem strengthens the results of [5], [8] from
convergence in probability to almost sure convergence.

Theorem 3 (a.s. convergence of BdI to BdII): Consider the
scenarios depicted in Fig. 1 and keep the assumptions in
Corollary 1. Then, there exists a constant α > 0 and a non-
negative function L such that for any σ ≥ 0

P{|BdI (t)−BdII(t)| > σ} ≤ L(σ)e−Nασ , (43)



where L(σ) = O(N2) if ∆ ≥ 0 and L(σ) = O(N2e−Nβ) for
some constant β if ∆ < 0.

Proof: Denote by Adc the cross flows at the downstream
node. Suppose that TI and TII are, respectively, the probabilis-
tic busy period bounds computed from Eqs. (41) and (39) and
define Tmax = max{TI, TII}. Then, for any σ, τs ≥ 0:

P{|BdI (t)−BdII(t)| > σ}

≤ P
{∣∣ sup

0≤u≤Tmax
{A0(t− u, t) +Adc(t− u, t)− Cdu}

− sup
0≤u≤Tmax

{Du
0 (t− u, t) +Adc(t− u, t)− Cdu}

∣∣ > σ
}

+ P{t− x̂I
t > Tmax}+ P{t− x̂II

t > Tmax} (44)

≤ P
{

sup
0≤u≤Tmax

{A0(t− u, t)−Du
0 (t− u, t)} > σ

}
+ P{t− x̂I

t > Tmax}+ P{t− x̂II
t > Tmax} (45)

≤ P
{

sup
0≤u≤Tmax

{Bu0 (t− u)−Bu0 (t)} > σ
}

(46)

+ P{t− x̂I
t > TI(Nσ)}+ P{t− x̂II

t > TII(Nσ)}

≤ P
{

sup
0≤u≤Tmax

{Bu0 (t− u)} > σ
}

(47)

+ P{t− x̂I
t > TI(Nσ)}+ P{t− x̂II

t > TII(Nσ)}

≤
⌈Tmax

τs

⌉
εb(σ − n0P0τs) + εTI(Nσ) + εTII(Nσ) , (48)

where x̂I
t and x̂II

t are the starts of the busy periods containing
t at the downstream node, respectively, in Scenarios I and
II. For the first inequality, we use Eq. (36) and the fact that
P (X) ≤ P (X|Y ) + P (Y ′) for any events X and Y , and
P (Y ′) = 1 − P (Y ). Eq. (45) uses the fact that sup |X| −
sup |Y | ≤ sup |X − Y | for any X and Y . The last line is
an application of Lemma 1 and the busy period bounds. εb
is formulated in Eq. (14) for ∆ ≥ 0, and in Eq. (16) for
∆ < 0. Moreover, εTI and εTII are formulated, respectively, in
Eqs. (42) and (40).

Proper choices of the parameters in Eq. (48) completes the
proof as follows. The last two terms are O(e−Nαminσ), where
αmin = min(αI, αII). Set τs = Tmax

N1+υ for some υ > 0 to ensure
that n0P0τs decays to zero as N increases. Inserting these
choices in Eq. (48) shows that for any υ > 0 Eq. (43) holds
with L(σ) = O(N2+υ) if ∆ ≥ 0 and L(σ) = O(N2+υe−Nβ)
for some constant β if ∆ < 0. The theorem is then proved by
noting that υ can be arbitrarily close to zero.

The above results imply that in addition to statistical mul-
tiplexing, the choice of scheduling algorithm is an impor-
tant factor affecting the viability of network decomposition.
Although a network can be decomposed in a many sources
asymptotic regime for any work-conserving scheduler as also
shown in [8] and [22], the viability of decomposition for
moderate values of N is a matter of the scheduling algorithm.

V. NUMERICAL EXAMPLES

In this section we examine our analytical results in nu-
merical examples for scenarios in Fig. 1. Each through and
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Fig. 3: Comparison of the output envelopes in a FIFO or BMux link
with n0 = 1, 10 through flows, N = 100, 1000 Mbps, U = 90%,
and ε∗ = 10−6. Each flow is an MMOO process with P = 1.5 Mbps
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scheduler with n0 = 1, 10 through flows, C = 100 Mbps, U = 90%
(N = 600), and ε∗ = 10−6. Each flow is an MMOO process with
P = 1.5 Mbps and T ∗ = 10 ms.

cross flow is an MMOO source with parameters λ = 1ms−1,
µ = 0.11ms−1 which has an average rate of ā = 0.15
Mbps, and an average cycle time of T ∗ = 10 ms. The
violation probabilities of the bounds in all examples are set
to ε∗ = 10−6. We do not evaluate the free parameters to those
from the previous sections. Instead we numerically optimize
our formulations over the free parameters α and γ.

A. Output characterization

We first present our work for a single node. We consider
the upstream node in Fig. 1a. In Fig. 3, we compare the output
bound from Eq. (29) with the existing output envelopes in [5],
[6]. Note that our model does not require the independence
assumption between through and cross flows in [5], [6]. In
addition, the FIFO output envelope in [6] is obtained by further
assuming that the through flows arrivals in any time window
are independent of the backlog at the start of that time window.
The traffic mix of through and cross traffic is set by fixing the
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d by computing an upper bound on
the relative difference between them as a function of N with n0 = 1,
U = 90%, and ε∗ = 10−6. Each flow is an MMOO process with
P = 1.5 Mbps and T ∗ = 10 ms.

ratio n0

N = 1
100 . In particular, we use parameters (n0 = 1, N =

100) and (n0 = 10, N = 1000). We find a statistical envelope
(Eq. (1)) for the departures of through flows by taking the
point-wise minimum of multiple EBB characterizations using
different values of α. We compare the output envelopes from
Eq. (30) with those from [5] and [6].

The graph shows that even though our model has fewer
independence assumptions, our output envelopes are still
comparable and in fact, often tighter than those in [5], [6].
In particular, only the corresponding envelope to the FIFO
scheduler from [6] is smaller than our FIFO envelope for all
time intervals.

In Fig. 4 we compare the input/output envelopes by fixing
C = 100 Mbps and U = 90% (N = 600) and computing
the input and output envelopes for n0 = 1 and n0 = 10 for
different schedulers. The plot shows that for a set of schedulers
including FIFO, the output envelope is comparable to the
input envelope even for the moderate value of N (= 600)
used in this example. However, for some other schedulers
(∆ ≥ 100) the output envelope is much larger than the
input envelope, suggesting that for moderate values of N , the
network decomposition might be valid for some schedulers
and invalid for some others.

B. Decomposing a network of ∆-schedulers

In this example, we examine our analytical results on
network decomposition by comparing the downstream backlog
statistics in the downstream node in Scenario I with the
backlog statistics in Scenario II in Fig. 1. We set the per-
flow capacity such that the utilization at both upstream and
downstream nodes are fixed to 90% independent of N .

We compare BI
d with BII

d by computing the probabilistic
bound on BI

d from Theorem 1 and the probabilistic upper
bound on |BII

d − BI
d| from Eq. (48). We plot the normalized

difference |B
II
d−B

I
d|

BII
d

in Fig. 5.
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We use Eqs. (39)-(42) to compute Tmax =
max{TI(Nσ), TII(Nσ)}. We set εTI , εTII = ε∗

N2+2 and⌈
Tmax

τs

⌉
εb(σ − n0P0τs) to N2ε∗

N2+2 , where εb is formulated

in Eq. (11) and τs = Tmax
N2 . Then, the backlog bound from

Eq. (9) with Nσ0 = σc
N = σ and α0

N2 = αc = α is an upper
bound on |BII

d − BI
d|. We use Eq. (11) to obtain the upper

bound on BII
d .

Fig. 5 shows that if N is not sufficiently large, scheduling
algorithm is a key factor on the accuracy of estimating BI

d

by BII
d . For instance, when n0 = 1, for a set of schedulers

(∆ ≤ 10) including FIFO, the normalized error of estimating
BI
d by BII

d ( |B
II
d−B

I
d|

BII
d

) is less than 10% when N is only few
hundred while, this is happening for BMux when N is as large
as 104.



C. Capacity provisioning

In Fig. 6 we compute the required per-flow capacity for
the upstream node in Fig. 1a to satisfy a target overflow
probability ε∗ using the optimization problem in Eq. (17).
We have also included the per-flow peak-rate and average
rate as benchmark values for the per-flow capacity. We fix
the through flows buffer threshold to b0 = 1.5 Kbits which
is equal to the traffic generated in 1 ms from each flow in
the On state. Then, for the choices of n0 = 1 and n0 = 10,
we compute the required per-flow capacity c as a function
of N . Fig. 6 exhibits the considerable impact of scheduling
on the rate of convergence of the per-flow capacity to the
average rate. For some schedulers including FIFO (∆ ≤ 0)
the convergence happens when N is as small as few hundred,
suggesting that a utilization close to 1 is achievable for those
schedulers for moderate values of N and small buffer sizes.
However, for some other schedulers (∆ ≥ 10) this happens
only when N is much larger. By increasing the ratio of the
through flows in the traffic mix, the required per-flow capacity
increases substantially.

In Fig. 7 we let N = 100 and N = 1000 and compute
the required per-flow capacity for through flow buffer sizes
ranging from 0.15 Kbit to 15 Kbit. As shown in the figure,
the required per-flow capacity decreases with a much faster
pace (as buffer size increases) for small buffer sizes compared
to large buffers. This plot shows that the impact of adding a
small buffer on the buffer overflow decrease is substantially
affected by the scheduling algorithm.

VI. CONCLUSIONS

Recent studies showed that the capacity and buffer provi-
sioning in a scheduler in a many sources asymptotic regime is
insensitive to the scheduling algorithm. In this paper, we have
investigated the impact of scheduling on capacity provisioning
when the buffer size is small. Using a non-asymptotic per-
flow backlog bound formulation which applies to a large set
of schedulers (∆-schedulers) and assuming MMOO traffic
sources, we showed that the scheduling algorithm determines
the decay rate of the buffer overflow probability substantially
for moderate values of N . Then, by fixing the buffer threshold
to an arbitrary small value, we derived the required per-flow
capacity which can satisfy a predefined overflow probability.
We showed that the difference between the per-flow capacity

and per-flow long-term average rate ranges from O

(√
logN
N

)
to O

(
logN
N

)
(and even O( 1

N ) when N is large enough)
depending on the scheduling algorithm. Combining the ob-
servations from the numerical examples and the comparison
of the scaling properties for different schedulers indicates that
for moderate values of N , having the scheduling information
is a key factor in capacity provisioning.

We have also considered the viability of network decom-
position in a non-asymptotic regime for different schedulers.
Numerical results show that for a class of schedulers including
FIFO, the convergence can happen even when N is as small as

few hundred. We analytically showed that the queue statistics
of the downstream node in a two-node scenario converge
to those of the simplified scenario when the upstream node
is removed. The mode of convergence is almost sure for
all schedulers, but the rate of convergence depends on the
scheduling algorithm.
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