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Abstract
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deployment that avoids these difficulties. In this study, we address the problem of
the topological synthesis of a service overlay network, where endsystems and nodes
of the overlay network (provider nodes) are connected through ISPs that supports
bandwidth reservations. We express the topology design problem as an optimization
problem. Even though the design problem is related to the (in general NP-hard)
quadratic assignment problem, we are able to show that relatively simple heuristic
algorithms can deliver results that are sometimes close to the optimal solution.
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1 Introduction

Supporting Quality-of-Service (QoS) in the Internet remains a challenging
task, albeit various efforts in the last decade to enhance the basic best effort
service. An important reason for the lack of QoS deployment is the Internet’s
own structure, which is based on a large number of independently operated
networks (autonomous systems or ASs) [1], where peering points provide the
connection of separate autonomous systems of the Internet into one cooper-
ating infrastructure [2]. The economics of peering make the provisioning of
end-to-end QoS unlikely. Whereas most peering agreements are bilateral con-
tracts between ASs at peering points, end-to-end QoS is a cooperative effort
of all ASs on an end-to-end path of a flow with service guarantees. Although
an ISP (Internet Service Providers) may have an interest in providing QoS
guarantees within its own AS, there is a lack of incentives to support similar
service guarantees to customers of remote autonomous systems [3].

To overcome these issues, overlay networks have been considered as a higher
level mechanism that can support new services to users on top of the network-
layer infrastructure without requiring changes to the infrastructure or its the
business practices [4]. Using overlay networks, network services have been pro-
posed that address the needs of applications for fault-tolerance [5], multicast
communication [6], security [7], file sharing [8] and QoS [3].

We consider a framework where a value-added overlay network that sits on top
of an infrastructure of ISPs, called QoS Provider Network or simply provider
network, supports end-to-end QoS guarantees to a collection of subscribers.
The provider network consists of provider nodes and a set of subscribers, called
endsystems. Each provider node and endsystem gains access to the Internet
using one or more ISPs (see Figure 1). The provider nodes are connected to
each other and endsystems are connected to a provider node by ISPs. Two
provider nodes can establish a link in the provider network if they are both
connected to the same ISP. Likewise, an endsystem can access a given provider
node if both are connected to the same ISP. In Figure 2, we illustrate the
relationship of endsystems, provider nodes, and ISPs. As a network that is
based on services provided by ISPs, the provider network buys services, such as
guaranteed bandwidth, from different ISPs and, according to pre-established
agreements, provides bandwidth guarantees to endsystems. The endsystems
are connected to the provider nodes through ISPs and these connections are
administered by the provider network. Endsystems purchase QoS services from
the provider network, which in turn purchases bandwidth guarantees from each
ISP for traffic between provider nodes, as well as for traffic between provider
nodes and endsystems.

Given the connectivity of provider nodes and endsystems to a set of ISPs,
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Fig. 1. Endsystems and provider nodes.

as shown in Figure 2, the problem of designing a provider network topology
consists of assigning each endsystem to one provider node, and in assigning
pairs of provider nodes connected to a common ISP, such that all endsystems
can exchange traffic over a path of provider nodes. As an example, in Figure 3,
we present a feasible provider network topology that corresponds to the set of
endsystems and provider nodes of Figure 2.

In this paper, we present a methodology that can guide the topological design
of a provider overlay network. To our knowledge, the problem of devising
good topologies for service overlay networks has not been studied before. The
purpose of this work is to design a provider network which minimizes the cost
of the provider network for interconnection of provider nodes and access of
endsystems. We formulate the provider network topology as the solution to
an optimization problem. We show that this optimization problem has linear
and quadratic terms. Since such problems are, in general, solvable only for
small instances or for special cases, we investigate the use of heuristics, such
as simulated annealing, to find good solutions to the problem [9]. In addition,
we are able to show that, in some special cases, optimum solutions can be
obtained even for larger networks.

Overlay Networks have received a great deal of attention lately, since they fa-
cilitate the implementation and deployment of new services. Several models for
application-layer overlays have emerged, generally aimed at providing services
tailored to specific applications, such as multicasting, content delivery or peer-
to-peer file sharing [10,11,6]. However, a review of the related work indicates
that topological design questions have been given only little attention. A ser-
vice overlay network (SON) provides generic overlay services that can be used
for a variety of applications [5,4]. Service overlay networks were proposed as
a means to provide value-added services, including end-to-end QoS, based on
user requests [1]. The architecture is based on services gateways connected by
the underlying network domain with bandwidth guarantees. The design goal of
a SON is to provision adequate bandwidth to support end-to-end QoS services
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Fig. 2. Relationships between provider nodes, endsystems, and ISPs. An endsystem
and provider node or two provider nodes can have a link in the provider network if
they have access to a common ISP.

and satisfy traffic demands while minimizing the bandwidth cost to the SON
provider. The cost issues are related to bandwidth costs and penalty costs.
The latter is incurred when a QoS violation occurs. The authors assumed the
existence of a SON topology and of routes between SON nodes and do not ad-
dress the topological design aspects. The OverQoS approach [3] also proposes
a value-added service based on ISP infrastructure that is aimed at statistical
guarantees. Here, the overlay network provides enhanced services that bound
the loss rate experienced by overlay traffic, without specific consideration to
cost and topological aspects. QUEST [12] is another overlay network that has
been proposed to address QoS provisioning, as well as other services. For ex-
ample, QUEST addresses the management of QoS provisioning for composed
services based on individual service requests. QUEST also assumes that a di-
rected graph representing a service overlay network topology is given. There
is a large body of works on structured overlays, e.g., [13–15], which build an
overlay network as a graph that implements an abstract data structure, e.g., a
tree, a hypercube or a distributed hash table. Structured overlays are popular
choices for file sharing and multicasting overlay networks. However, the objec-
tives and design issues of structured overlays are very different from those of
the overlay networks considered here. A commercial service overlay network
that is closely related to our work is Internap [16]. The main difference to our
work is that access for endsystems is provided by the provider network, and
not by the ISPs. We note that our topology design approach can be extended
to apply to the assumptions made by the Internap overlay network.

The problem formulation in this paper makes a number of assumptions that
govern the relationship between customers, the provider network, and ISPs.
Arguably a strong assumption is that the cost of sending traffic with band-
width guarantees across an ISP is proportional to the amount of reserved
bandwidth. These and other assumptions can be relaxed, e.g., by considering
flat-rate pricing, which, however, may result in a different problem formula-
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Fig. 3. Solution to the topology of the provider network.

tion. The contribution of this paper is that it poses the topological design
of service overlay networks as a research problem, and, for a specific pricing
structure, shows that appropriate algorithms can construct effective solutions
with relatively small computational overhead.

The remainder of this paper is structured as follows. In Section 2 we formu-
late the parameters of the topology design problem and state the topology
synthesis as a solution to an optimization problem. In Section 3 we consider
conditions under which the optimization problem can be easily solved. In Sec-
tion 4 we present heuristic algorithms that can solve the optimization prob-
lem for general networks. We also show how grouping of geographically close
endsystems into clusters can further reduce the effort of designing the topology
of the provider network. In Section 5 we validate our methods in numerical
experiments. We present brief conclusions in Section 6.

2 Formulation of the Topology Design Problem

In this section we formulate the topology design for a provider network in
terms of the solution to an optimization problem. The input to the problem
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is the connectivity between endsystems, provider nodes, and ISPs as shown in
Figure 2. With this data, we generate a provider network topology, as shown in
Figure 3, such that the resulting topology minimizes a given cost metric. The
cost metric is chosen to reflect the cost to the provider network. We consider
a network with M endsystems and N provider nodes. We refer to the ith
endsystem as ESi and to the jth provider node as PNj. The basic notation
is presented in Table 1.

In the provider network considered here, each endsystem is connected to ex-
actly one provider node. An endsystem accesses a provider node using an ISP
that is connected to both the endsystem and the provider node. There is a
constant cost αij for reserving a unit of bandwidth (e.g., a Mbps) from endsys-
tem ESi to provider node PNj. This cost is referred to as access cost. If there
is no ISP to which both ESi and PNj are connected to, then ESi cannot be
assigned to PNj, and we set the access cost to αij =∞. If the same ESi and
PNj can be connected by more than one ISP, then αij represents a connection
through the ISP with minimal cost. Hence, αij implies the selection of an ISP
to connect ESi to PNj.

Provider nodes are connected to each other through ISPs. We say that there
is a transport link between two provider nodes, if both provider nodes have
at least one common ISP. The cost to reserve a unit of bandwidth from PNi

to PNj is lij. We refer to this cost as the transport cost. If PNi and PNj are
not connected to the same ISP, we set lij = ∞. If two provider nodes can be
connected by more than one ISP, then lij is the cost through the ISP that
incurs the least cost.

The provider network reserves bandwidth on access links and transport links
for the traffic between endsystems. We assume that the amount of bandwidth
reserved for the traffic between endsystems is given by a reservation matrix
Ω = {ωij}, where ωij is the bandwidth that is reserved for the traffic from
ESi to ESj, and we have ωii = 0. Clearly, it is desirable to keep the reserved
bandwidth close to the actual traffic rate. Thus, the reservation matrix can
be estimated based on measurements or predictions. The reservation matrix
can vary over time. However, changes to the reservation matrix require to
recalculate the provider network topology. We let Ωi =

∑M
j=1 ωij denote the

total bandwidth reserved for traffic generated at ESi.

To obtain a provider network topology as shown in Figure 3, we must solve
two problems. First, for each endsystem we must select a provider node that
carries the traffic between the endsystem and the provider network. Second, we
must select transport links between provider nodes so that the provider nodes
can relay the traffic between the endsystems. The total cost of the provider
network is the cost of the access links and the transport links of the resulting
topology, weighted by the amount of reserved bandwidth on the links. The
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Table 1
Basic notation.

ESi Endsystem i

PNj Provider node j

M Number of endsystems

N Number of provider nodes

yij 0-1 decision variable that indicates if ESi is assigned to PNj

αij Access cost (per unit of reserved bandwidth) for traffic from ESi to
PNj

lij Transport cost (per unit of reserved bandwidth) for traffic on the
transport link between PNi and PNj

bij Cost of least-cost route (per unit of reserved bandwidth) for traffic
between PNi and PNj

ωij Reserved bandwidth for traffic from ESi to ESj

Ωi Reserved bandwidth from ESi to all other endsystems

objective is to determine a provider network topology such that the total cost
is minimized.

The construction of the provider network topology is done in three steps. In
the first step, we only consider provider nodes and their transport links, and
determine a route between each pair of provider nodes, such that the total
transport cost is minimized. These routes are determined independent of the
assignments of endsystems to provider nodes and independent of the amount
of bandwidth reserved on a route. Given two provider nodes PNn and PNm,
the transport cost between the provider nodes is minimized if traffic is sent on
the least-cost path connecting the two provider nodes. Hence, a transport link
with cost lij is part of the topology of the provider network if the link is on the
least-cost route between some pair of provider nodes [17]. Let us denote by
rnm the least-cost route between PNn and PNm, and let us write ‘(ij) ∈ rnm’
if the transport link between PNi and PNj is part of this route. The cost of
the least-cost route per unit of reserved bandwidth between PNn and PNm,
denoted by bnm, is given by bnm =

∑
(ij)∈rnm

lij.

In the second step, we determine how to connect endsystems to provider nodes.
Given that, once this determination is made, traffic between endsystems is
taking the least-cost route in the transport network, we have fully determined
the transport network. For an illustration we refer to Figure 3. Suppose that
we have determined that ES1 will be connected to PN2 and that ES4 will
be connected to PN3. Then the total access and transport costs incurred by
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traffic between ES1 and ES4 is given by ω14α12 + ω14b23 + ω14α43. Assuming
that the least-cost route between PN2 and PN3 is PN2 → PN4 → PN3,
we have b23 = l24 + l43. To express the assignment of endsystems to provider
nodes as an optimization problem, we now introduce 0-1 decision variables
yij. We set yij = 1 if ESi is assigned to PNj, and yij = 0 otherwise. Now we
can state the total cost of the provider network as an objective function. The
formulation of the optimization problem is as follows:

Minimize
M∑

i=1

N∑

k=1

Ωiαikyik +
M∑

i=1

N∑

j=1

M∑

k=1

N∑

l=1

yijyklωikbjl

+
M∑

j=1

N∑

l=1

Ωjαjlyjl

subject to
N∑

j=1

yij = 1 for i = 1, . . . , M (1)

The first term in the objective function expresses the total access cost of traffic
entering the provider network. The second term expresses the transport cost
between provider nodes. The third term expresses the total access cost for
traffic leaving the provider network. The side condition ensures that each
endsystem is assigned to exactly one provider node.

The optimization problem in Eqn. (1) is a variant of the well-known quadratic
assignment problem (QAP) [18]. In this problem, which is known to be NP-
hard, one assigns one item to a resource such that each item is assigned to
exactly one resource and each resource has exactly one item assigned to it.
In our context, items correspond to endsystems and resources correspond to
provider nodes. The difference of our problem to the QAP is that more than
one endsystem can be connected to a provider node. Also, it is possible that
a provider node has no endsystem assigned to it.

In the third and final step we construct the provider network topology based
on the outcome of the optimization. We eliminate all provider nodes that have
no endsystem assigned to them and that are not on a least-cost route between
two provider nodes that are connected to endsystems. When a provider node
is excluded, so are all the transport links incident to the node. In Figure 3, we
show a provider network topology in which PN1 has no endsystem assigned
to it. If PN1 is not on the least-cost path between any of the other provider
nodes, it will be eliminated from the provider network topology. Assuming
that PN1 is part of the least-cost path from PN3 to PN7, but not part of any
other least-cost path, the transport link between PN1 and PN2 is excluded.

The complexity of the overall entire topology construction is dominated by
the assignment of endsystems to provider nodes, resulting in a complexity of
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O(NM). In the next section we show that the assignment of endsystems to
provider nodes can be computed efficiently in certain special cases, where the
access cost and the transport cost can be related according to a triangular
inequality.

3 Endsystem-node Assignment as a Matrix-combination Problem

We now express the optimization problem as an equivalent matrix-combination
problem. As we will see, this representation expresses the combinatorial struc-
ture of the problem better than the formulation given in Eqn. (1). By viewing
transport and access costs in matrix form, we can easily identify conditions
under which a provider network topology calculation does not require the
solution of an NP-hard quadratic assignment problem.

Let us view the parameters of the provider network topology in terms of matri-
ces. Let matrices Ω = {ωij}, B = {bij} and α = {αij} represent, respectively,
the bandwidth requirements, the transport cost and the access cost. Let u

be a mapping of i ∈ {1, .., M} such that u(i) = j, where j ∈ {1, .., N}. In
terms of Eqn. (1), we have u(i) = l if and only if yil = 1. Note that a vector
u = (u(1), u(2), . . . , u(M)), with u(i) ≤ N for i = 1, .., M gives a feasible as-
signment of endsystems to provider nodes. If for some ESi we have αik =∞,
then u(i) = k is not part of any feasible solution.

Now consider the following algebraic manipulation of the terms for the access
cost in Eqn. (1):

M∑

i=1

N∑

k=1

Ωiαikyik =
M∑

i=1

Ωi

N∑

k=1

αikyik (2)

=
M∑

i=1

M∑

j=1

ωij

N∑

k=1

αikyik (3)

=
M∑

i=1

M∑

j=1

ωij

N∑

k=1

αikyik(
N∑

l=1

yjl) (4)

=
M∑

i=1

M∑

j=1

ωij(
N∑

k=1

N∑

l=1

αikyikyjl) (5)

Equality in Eqn. (2) follows since Ωi does not depend on k. Using Ωi =
∑M

j=1 ωij

gives Eqn. (3). The side condition
∑N

l=1 yjl = 1 in Eqn. (3) leads to Eqn. (4).
Finally, by readjusting terms we arrive at Eqn. (5).

With Eqn. (5), we can rewrite the optimization problem for the topology of
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the provider network from Eqn. (1) as follows:

Minimize
M∑

i=1

M∑

j=1

ωij

N∑

k=1

N∑

l=1

(αik + bkl + αjl)yikyjl

subject to
N∑

j=1

yij = 1 for i = 1, .., M (6)

We know that for a given value of i and j, there is a value of k and l such
that yikyjl = 1. Let us assume that u(i) and u(j) are such that yiu(i)yju(j) = 1.
Then, with the constraints that exactly one provider node is assigned to each
endsystem, we must have yikyjl = 0 for k 6= u(i) and l 6= u(j). Hence, the
objective function in Eqn. (6) can be rewritten as

Z(u) =
M∑

i=1

M∑

j=1

ωij(αiu(i) + bu(i)u(j) + αju(j)) . (7)

It is easily verified that the function Z(u) is the objective function for the
original problem. A minimization over all vectors u without side conditions
yields a solution to the topology design problem. Note that the side conditions
in the original problem are implicitly given via the definition of the u(i)’s.

In general, the reformulated optimization in Eqn. (7) is no simpler than the
original problem. However, there are special cases when the relationship be-
tween matrices B and α, representing, respectively, the transport and access
cost, leads to a problem with only linear complexity.

Let us choose vi such that αivi
is the smallest value among the αij, i.e., αivi

=
minj{αij}. Then, the complexity of solving the optimization problem can be
reduced if the following conditions hold:

(C1) bij ≤ bik + bkj for all i, j, k ≤ N .
(C2) αij ≥ αivi

+ bvij for all i ≤ M and j, vi ≤ N .

In our setting, condition (C1) always holds since the elements in matrix B are
based on the calculation of least-cost paths. Hence, the triangular inequality
is enforced by construction. Condition (C2) is satisfied if the cost structure
is such that the access cost outweighs the transport cost. In such a scenario,
the access cost of endsystem ESi is minimized by assigning it to the provider
node with lowest cost, namely PNvi

.

Let us now evaluate the objective function Z(uI), where uI is the mapping in
which u(i) = vi for all i. To simplify notation, we will refer to u(i) as ui.

Lemma 1 The objective function Z(u) is minimized for the mapping u(i) =
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vi, if the matrices α and B are such that conditions (C1) and (C2) are satisfied,
where αivi

= minj{αij}.

Proof. We can write the objective function as follows: Z(u) = ω11(α1u1
+

bu1u1
+ α1u1

) + . . . + ω1M(α1u1
+ bu1uM

+ αMuM
) + . . . + ωM1(αMuM

+ buM u1
+

α1u1
) + . . .+ ωMM(bMuM

+αuMuM
+ bMuM

). Using condition (C2) and the fact
that bii = 0 for all i, we get that Z(u) ≥ ω11(2α1v1

+2bv1u1
)+ω12(α1v1

+α2v2
+

bv1u1
+ bv2u2

+ bu1u2
) + . . . + ωMM(2αMvM

+ 2bvM uM
). After some manipulation

using condition (C1), this give us Z(u) ≥ ω11(2α1v1
+2bv1u1

)+ . . .+ω12(α1v1
+

α2v2
+ bv1v2

) + . . . + ωMM(2αMvM
+ 2bvM uM

). As Z(uI) = ω11(2α1v1
) + . . . +

ω12(α1v1
+ α2v2

+ bv1v2) + . . . + ωMM(2αMvM
), we see that Z(u) ≥ Z(uI), for

any u. This proves our claim. 2

4 Heuristic Solution Approaches

If the network does not satisfy conditions (C1) and (C2) given in the previous
section, the computational effort to solve the optimization problem precludes
the use of exact solution methods in large networks. We expect that practical
provider network topologies must be solved for thousands of endsystems and
provider nodes. However, exact solutions of the quadratic assignment prob-
lems can been obtained only for problem sizes with at most 30 endsystems
and provider nodes [9]. Thus, to solve the provider network design problem
for larger networks, we resort to heuristic methods. There is a large set of
heuristic algorithms for solving combinatorial problems such as our quadratic
assignment problem. These include the construction method, improvements
method, Tabu search algorithms, simulated annealing and genetic algorithms
[9]. These methods use an initial solution and iteratively attempt to improve
the solution by performing a local search. The solutions found by these heuris-
tics may be a suboptimal local minimum. We select simulated annealing as
our heuristic algorithm, since it has been shown to perform well for quadratic
assignment problems [19,20]. We also discuss a simple heuristic that performs
the assignment based solely on the access costs, and refer to this method as
the greedy strategy. Finally, we show how to further reduce the complexity
of the topology design problem by grouping geographically close endsystems
into clusters, and by assigning all endsystems in a cluster to the same provider
node.

4.1 Simulated Annealing

Simulated annealing draws an analogy between problems from statistical physics
and combinatorial problems. Particularly, simulated annealing emulates the
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crystallization process of cooling metal, the annealing process, in a thermal
equilibrium [21]. The procedure considers a system in thermal equilibrium at
some energy level Ek and temperature t. Then, a random perturbation is ap-
plied to the system and the corresponding change in the energy is evaluated.
If the new energy level Ej is less than Ek, the perturbation is accepted and
the system evolves to a new state. If the energy level increases, the system

evolves to a new state with a probability that is proportional to e
Ei−Ek

t . Af-
ter a reasonable large number of states have been generated and evaluated,
the temperature is decreased and new states are generated. As the tempera-
ture decreases, the probability of accepting a perturbation that increases the
energy of the current state also decreases. The algorithm terminates when
further perturbations do not decrease the energy level.

In Figure 4, we present the simulated annealing algorithm to the provider
network topology problem. The temperature t, with initial value t0, is a pa-
rameter that controls the evolution of the algorithm. The initial value t0 is
set to a high value (in our case, 100) and an initial solution, denoted by S0.
We refer to Sbest, Scur and Snew as variables that represent the best solution,
the current solution and the new solution obtained in the current iteration,
respectively. We refer to the values of the objective functions for the initial,
new, best and current solutions as Z0, Znew, Zbest and Zcur, respectively. From
the current solution Scur we obtain a new solution Snew by performing a local
random search through SEARCH(Scur). The local search changes the cur-
rent solution by randomly assigning a new provider node to one randomly
chosen endsystem. Given the constraints of the topology design problem, if
the endsystem cannot be assigned to the chosen provider node, a new search
is performed. Assuming the change is such that the endsystem ESk is cho-
sen and assigned to provider node PNl, we can change the objective function
through the expression ∆(Znew, Zcur) =

∑M
j=1,j 6=k ωkj(αkl+bluj

−αkuk
−bukuj

)+
∑M

i=1,i6=k ωik(αkl+buil−αkuk
−buiuk

). A new solution is accepted if ∆(Znew, Zcur)
is negative. In such a case, we also check if the best solution Zbest can be im-
proved. If ∆(Znew, Zcur) is non-negative, the new solution is accepted with a
probability that decreases with the temperature t. A uniformly distributed
random number Rand(0, 1) is generated to decide whether the new solution
given by Znew = Zcur + ∆(Znew, Zcur) is accepted.

The process to decrease the temperature uses a so-called geometric schedule,
in which the temperature decreases in a geometric progression (t = rc · t with
0 < rc < 1). We adopted a value of 0.9 for rc. At each temperature level,
a fixed number of solutions are evaluated. The number of solutions evalu-
ated at a temperature level is referred to as repetition factor, and denoted
by Repmax. This repetition factor should be sufficiently large so that good
solutions are found at each temperature level. The process continues until we
reach a temperature where no further improvements to the objective function
can be found. At this points, the algorithm terminates and yields the solution
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Simulated Annealing Algorithm (S0, Z0, t0) ;
begin
Sbest ← Scur ← S0

Zbest ← Zcur ← Z0

t = t0
repeat
for i = 1 to Repmax do
Snew ← SEARCH(Scur)
if ∆(Zcur, Znew) < 0
Snew ← Scur

if Znew < Zbest

Sbest ← Snew

Zbest ← Znew

endif
else
if e−∆(Znew ,Zcur)/t > Rand(0, 1)
Snew ← Scur

endif
endif

endfor
t← rc · t

until no changes in the objective function
return Sbest, Zbest

end

Fig. 4. Simulated Annealing.

Sbest and the value of the objective function Zbest.

4.2 Greedy Algorithm

Motivated by the special case in Section 3, we now present a simple algorithm
for assigning endsystems to provider nodes, referred to as greedy assignment or
greedy algorithm. Here, we simply assign each endsystem to the provider node
with lowest access cost, thereby ignoring the transport cost when performing
the assignment. Using the notation from Section 3, if we choose vi such that
the access cost αivi

is the smallest access cost, that is, αivi
= minj{αij}, then

the greedy algorithm assigns to endsystem i the provider node vi.

The greedy strategy can be computed with linear complexity. The algorithm
performs well when the access cost per unit of reserved bandwidth is larger
than the transport cost. Under the special case considered in Section 3, when
conditions (C1) and (C2) hold, the greedy assignment yields the optimal so-
lution. Note that, with condition (C2), the lowest cost from endsystem ESi to
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Fig. 5. Illustration of region assignment: (a) position of endsystems and centroids,
(b) assignment of endsystems to closest centroid, and (c) resulting assignment of
regions.

any provider node PNj is attained when ESi is assigned to PNvi
. The optimal-

ity of the assignment follows from the fact that if ESi and ESk were assigned
to PNui

and PNuk
respectively, the path cost from ESi to ESk would be

αiui
+buiuk

+αkuk
. By condition (C2), αiui

≥ αivi
+bviui

and αkuk
≥ αkvk

+bvkuk

and by condition (C1), bviui
+ buiuk

+ bvkuk
≥ bvivk

. Thus, the path from ESi

to ESk has minimal cost if ESi and ESk are assigned to provider nodes using
the greedy strategy.

Our numerical data will show that, even if condition (C2) does not hold for
all provider nodes, that is αik ≤ αivi

+ bvik for some k, the solution provided
by the greedy algorithm can still provide good results.

4.3 Clustering Algorithm for Endsystems

We can further reduce the complexity of the endsystems assignment by clus-
tering endsystems into groups, and assign complete groups of endsystems to
provider nodes. We will refer to a cluster of endsystems as a region. All endsys-
tems in the same region will be assigned the same provider node. Thus, instead
of solving the optimization problem for all endsystems, we solve the topology
problem by assigning regions to provider nodes. Our clustering algorithm ex-
ploits the geographical location of endsystems in the sense that endsystems
that are geographically close are likely to be assigned to the same region. We
assume that each endsystem ESi has Cartesian coordinates (ri, si), derived,
for example, from the longitude and latitude information of the endsystem.
The clustering algorithm also accounts for the bandwidth reserved for the
endsystems. Endsystems with a large amount of reserved bandwidth are given
more consideration when clusters are formed.
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Table 2
Additional notation for Clustering.

R Number of regions

Ri Region i

xij 0-1 decision variable that indicates if Gi is assigned to PNj

cij Access cost (per unit of reserved bandwidth) of assigning Gi to PNj

aij Reserved bandwidth for traffic from Gi to Gj

Ai Reserved bandwidth for the traffic from Gi to all other regions

We use a k-means clustering algorithm [22] to assign endsystems into regions.
The algorithm takes a number of M endsystems, with position (ri, si) for ESi

and reservation matrix Ωi for each endsystem ESi and the number of de-
sired regions, R. As output, the algorithm generates R cluster centers, called
centroids, and an assignment of endsystems to each centroid. Initially, the
algorithm randomly chooses initial positions for the R centroids. Then, the
algorithm assigns to each endsystem the closest centroid, resulting in an ini-
tial cluster assignment. For this assignment, the algorithm computes for each
cluster a new position of the centroid. If Rk is the set of endsystems assigned
to the kth centroid, then the new position of the centroid (rk, sk) is calculated
as follows:

rk =

∑
i : ESi∈Rk

ri · Ωi∑
i : ESi∈Rk

Ωi

sk =

∑
i : ESi∈Rk

si · Ωi∑
i : ESi∈Rk

Ωi

The new position of a centroid is weighted by the amount of reserved band-
width generated by the endsystems assigned to this centroid. After establishing
the new centroid position, we re-associate each endsystem with a region, by
again assigning to each endsystem the closest centroid. Then, we recalculate
the position of each centroid as before. This re-association is repeated until
the algorithm converges. At this time, we have established a membership for
each endsystem and a centroid for each cluster. In Figure 5 we graphically
illustrate the clustering process.

After the assignment of endsystems to regions we can formulate a revised
optimization problem for the topology design. The revised problem assigns
regions to a provider node, where the access cost of a region is determined
from the access costs of the endsystems assigned to the region. We use 0-
1 decision variables xij to indicate if region Ri is assigned to provider node
PNj. The total reserved bandwidth from region Ri to PNj takes into account
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the access cost of the endsystem in that region and is be given by

cij =

∑
k : ESk∈Ri

αkjΩk∑
k : ESk∈Ri

Ωk

The bandwidth reserved for the traffic from region Ri to region Rj is referred
to as aij, where aij =

∑
k : ESk∈Ri

∑
l : ESl∈Rj

ωkl. The total reserved bandwidth

from Ri is given by Ai =
∑R

j=1 aij. With this notation, which is summarized
in Table 2, we can express the optimization problem for regions as follows:

Minimize
R∑

i=1

N∑

k=1

Aicikxik +
R∑

i=1

N∑

j=1

R∑

k=1

N∑

l=1

xijxklaikbjl

+
R∑

j=1

N∑

l=1

Ajcjlxjl

subject to
N∑

j=1

xij = 1 for i = 1, . . . , R (8)

This assignment problem has complexity O(RN). If the access and transport
costs have a relationship as discussed in Section 3, then the problem can be
solved with linear complexity. Otherwise, the heuristic algorithms presented
earlier in this section can be used to find approximate solutions.

5 Numerical Evaluation

In this section we evaluate the approaches for creating topologies for service
overlay networks. In the evaluation, we attempt to answer the following ques-
tions:

• How closely do the presented heuristic algorithms, i.e., simulated annealing
and the greedy algorithm approximate the optimal solution?
• What is the cost sensitivity of the algorithms with respect to the number

of provider nodes?
• What is the impact of the clustering algorithm on the cost of the service

overlay network?

For our evaluation we generate a network of provider nodes using the Geor-
gia Tech Internetwork Topology Model (GT-ITM) [23]. We produce a random
graph choosing the ‘Pure Random’ model that represents the connectivity be-
tween provider nodes. (Note that we do not use GT-ITM to simulate the un-
derlying Internet topology.) An edge in the graph indicates that two provider
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Table 3
Evaluation of simulated annealing for small networks (M = N = 9).

Repetition Average Number of

factor deviation optimal

Repmax from minimum solutions found

(in Percent) (Total is 100)

10 6.59% 1

20 4.44% 3

30 1.41% 4

40 0.02% 7

50 0.02% 9

nodes share a common ISP. The Pure Random model inserts an edge with
probability P , where P is an input parameter, called the edge probability. The
transport cost between two provider nodes, lij for provider nodes PNi and
PNj, is drawn from a uniform distribution in the range [5, 50] (for some arbi-
trary cost metric), and lij = ∞ if GT-ITM does not insert an edge between
provider nodes PNi and PNj. Unless stated otherwise, the access cost αij of
endsystems ESi to provider node PNj is also drawn from a uniform distribu-
tion in the range [5, 50]. We assume that each endsystem can be connected to
one or more provider nodes. In our numerical experiments each endsystem can
access a randomly selected sample of pα · 100% of the provider nodes, where
0 ≤ pα ≤ 1 is a parameter. The reservation matrix has coefficients ωij that are
uniformly distributed in the range [10, 20] Mbps. When we show the total cost
of a provider network generated in this fashion, we present the average value
of 100 cost calculations, where in each calculation we reassign the access costs
according to the given uniform distribution. In our experiments, we consider
networks with up to N = 100 provider nodes and up to M = 100 endsystems.

5.1 Evaluation of the Heuristics Algorithms

First we will evaluate the performance of the simulated annealing heuristic and
the greedy algorithms by comparing them to the results of the exact solution of
Eqn. (1). For smaller networks, we can solve Eqn. (1), e.g., using branch-and-
bound methods or similar techniques. If the network is large, we can determine
an exact solution only for the special cases discussed in Section 3.

We compare the minimum cost according to Eqn. (1) with the results obtained
by simulated annealing for a small network with M = 9 endsystems and
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Fig. 6. Repetition factor required by simulated annealing to get within 1% of the
optimal solution.

N = 9 provider nodes, where the networks are generated as described above.
For this size, the optimal solution can be computed reasonably quickly. For
this experiment, we set pα = 1 and P = 0.5.

In Table 3, we compare simulated annealing with the optimal solution. The
results for simulated annealing are shown for different values of the repetition
factor Repmax. The first column of Table 3 gives the value of the repetition
factor. The second column gives the average deviation of simulated annealing
results from the optimal solution, averaged over 100 repetitions of the exper-
iment. The third column depicts how often, among the 100 repetitions, the
simulated annealing algorithm found the optimal solution. The results indicate
that for a repetition factor larger than 40, simulated annealing gets very close
to the optimal solution, and even finds the minimum value of the objective
function in some cases.

Next, we consider larger networks. Here, a comparison with the optimal so-
lution is possible only when conditions (C1) and (C2) from Section 3 are
satisfied. For this experiment we generate networks with between 10 and 100
provider nodes and endsystems (with M = N). We again use parameters
pα = 1 and P = 0.5. To enforce that access nodes obey condition (C2), we
select the access cost different from our description above. For each endsys-
tem ESi, we randomly select one provider node PNvi

and draw the value αivi

randomly from the interval [5, 50]. Then, for all other provider nodes, we set
αij = αivi

+ bvij, thereby enforcing that condition (C2) holds.

For these networks, we now compare the simulated annealing algorithm with
the optimal solution (Recall, that the greedy algorithm from Subsection 4.B
is guaranteed to find the optimal solution when (C2) holds.) We present the
comparison in terms of the repetition factor Repmax needed to get within
1% of the optimal cost value. The results are shown in Figure 6. The figure
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Fig. 7. Comparison of the topology cost of heuristic algorithms (Edge probability
set to P = 0.1).
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Fig. 8. Comparison of the topology cost of heuristic algorithms (Edge probability
set to P = 0.5).

shows that the simulated annealing algorithm is able to get within 1% of the
minimum in all cases. The size of the repetition factor needed to get close to
the optimum increases linearly with the size of the network. We remark that
it has been pointed out elsewhere [19] that QAP solutions exhibit the same
linearity of the repetition factor. As QAP and our topology design problem
have structural similarities, we expect to observe the same scaling properties.

5.2 Comparing the Performance of the Heuristic Algorithms

Next, we consider networks where condition (C2) does not hold, and where
obtaining the topology with minimum cost is not possible. Here, we compare
the cost of the overlay topology computed by the simulated annealing and the
greedy algorithms. As a benchmark, we also include the results of a random
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Fig. 9. Comparison of the topology cost of heuristic algorithms (Edge probability
set to P = 0.9).

assignment of endsystems to provider nodes. The random assignment can be
seen as a lower bound for any assignment strategy.

We vary the number of endsystems and provider nodes between 10 and 100,
where we set M = N . The networks are generated as described at the begin-
ning of this section. We show results for networks where the edge probabilities
are given by P = 0.1, 0.5 or 0.9. Further, we select pα = 0.9; thus, each endsys-
tem has finite access costs to 90% of the provider nodes. The access costs are
selected as follows. For each endsystem ESi, we randomly select one provider
node PNvi

and select αivi
randomly from the interval [5, 50]. Then, for all other

provider nodes j 6= vi we randomly select values αij (for i = 1, 2, , . . . , M),
also from the interval [5, 50], where we enforce that αivi

≤ αij ≤ αivi
+ bvij

holds. Enforcing the additional condition makes sure that condition (C2) never
holds.

The results are shown in Figures 7, 8, and 9. We depict cost values that are
normalized by the results obtained with the greedy algorithm. We call this
normalized cost the relative topology cost. Thus, the greedy algorithm always
has a relative topology cost equal to one. A value of two indicates that the
cost of the topology is twice of that obtained by the greedy algorithm.

The results in Figures 7–9 show that simulated annealing and the greedy
algorithm provide similar results for P = 0.5 and P = 0.9, but simulated
annealing outperforms the greedy algorithm by a factor of 1.5 for P = 0.1.
Overall, the results of simulated annealing are generally better than the greedy
algorithm. We observe that the gain provided by our heuristic algorithms over
a random assignment is generally in the order of a factor of two. The results
are not sensitive to the size of the network. We note that the good performance
of the greedy algorithm is surprising, since, by design, the greedy heuristic is
not expected to perform well if condition (C2) does not hold.
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Fig. 10. Relation between topology cost and number of provider nodes for pα = 0.9.
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Fig. 11. Relation between topology cost and number of provider nodes for pα = 0.5.

5.3 Impact of the Number of Provider Nodes

Next, we use the simulated annealing algorithm to investigate some properties
of the provider network. In particular, we investigate the relationship of the
cost of the provider network to the number of provider nodes. To that end,
we consider a network with 100 endsystems and a varying number of provider
nodes, in the range 10 to 100. The network of provider nodes is generated as
described in the beginning of this section: the reservation matrix has coeffi-
cients that are uniformly distributed in the range [10,20] and the access costs
are given by a uniform distribution in the range [5,50].

The results are presented in Figure 10 and Figure 11. Each data point repre-
sents 100 repetitions of the simulated annealing algorithm. The relative topol-
ogy cost is the cost relative to the cost obtained for a topology with 10 provider
nodes. In Figure 10 we select pα = 0.9 and in Figure 11, pα = 0.5. The provider
nodes have edge probability of P = 0.1, P = 0.5 and P = 0.9. The results
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Fig. 12. Relation between topology cost and number of regions.

indicate that the topology cost is sensitive to the number of provider nodes,
showing a tendency to decrease with increasing number of provider nodes.
This is explained by the fact that increasing the number of provider nodes has
little impact on the transport cost. On the other hand, increasing the number
of nodes enlarges the assignment base for endsystems. With more provider
nodes to choose from, the endsystem assignment may be able to achieve a
smaller access cost, thereby decreasing the total cost of the topology.

5.4 Impact of Clustering

Here we use the simulated annealing algorithm to evaluate the effect of clus-
tering on the cost of the provider network. The objective of the clustering
algorithm, presented in Subsection 4.3, is to simplify the construction of the
provider network by substituting the individual assignment of endsystems to
provider nodes by a collective assignment of endsystems, that are part of the
same region.

In this experiment, we employ a network of 100 endsystems and 10 provider
nodes. We use the GT-ITM to generate the location of 100 endsystems and
a network with 10 provider nodes. The costs of access links are uniformly
distributed in the range [5,50] and the reservation matrix has uniformly dis-
tributed coefficients in the range [10,20]. We vary the number of regions from
10 to 100 and calculate the cost of the provider network in each region.

We present the results in Figure 12, where we plot the relative topology cost
versus the number of regions. The topology cost is presented relative to the
cost of the provider network without clustering. We observe that the cost tends
to decrease as we increase the number of regions (and decrease the amount of
clustering). The results seem to corroborate the idea that clustering increases
the cost, but since the cost does not increase significantly, we conclude that
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clustering may be a viable strategy.

6 Conclusions

This paper addressed the problem of designing a network topology for a service
overlay network, which offers value-added services to customers, and which
purchases links with bandwidth guarantees from a number of ISPs. Under the
assumptions made in this paper, we showed that the general problem of design-
ing a topology for the service overlay network is NP-hard. In some cases, when
the cost structure of the underlying network satisfies specified conditions, we
showed that the topology design problem may have only linear complexity.
We presented a number of heuristic algorithms that can construct a topol-
ogy even if an exact solution is not feasible. The presented numerical results
demonstrated that in cases where a comparison with an optimal topology is
feasible, the heuristic algorithms are reasonably accurate. The numerical data
showed that a very simple greedy algorithm provides good results.

The results presented in this paper depend on a number of assumptions on
the underlying network. Particularly, we assume that the cost of purchasing
bandwidth guarantees from an ISP is proportional to the amount of reserved
bandwidth. A different cost structure may give different results and may re-
quire a different solution approach.
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