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Abstract— This paper establishes a link between two
principal tools for the analysis of network traffic, namely,
effective bandwidth and network calculus. It is shown that
a general version of effective bandwidth can be expressed
within the framework of a probabilistic version of the
network calculus, where both arrivals and service are
specified in terms of probabilistic bounds. By formulating
well-known effective bandwidth expressions in terms of
probabilistic envelope functions, the developed network
calculus can be applied to a wide range of traffic types,
including traffic that has self-similar characteristics. As
applications, probabilistic lower bounds are presented on
the service given by three different scheduling algorithms:
Static Priority (SP), Earliest Deadline First (EDF), and
Generalized Processor Sharing (GPS). Numerical examples
show the impact of specific traffic models and scheduling
algorithms on the multiplexing gain in a network.

I. INTRODUCTION

To exploit statistical multiplexing gain of traffic
sources in a network, service provisioning requires a
framework for the stochastic analysis of network traffic
and commonly-used scheduling algorithms. Probably the
most influential framework for service provisioning is
the effective bandwidth (see [14], [15] and references
therein), which describes the minimum bandwidth re-
quired to provide an expected service for a given amount
of traffic. The effective bandwidth of a flow determines
a bandwidth somewhere between the average and peak
rate of the flow. Effective bandwidth expressions have
been derived for many traffic types including those with
self-similarity [14].

An alternative method to determine resource require-
ments of traffic flows in a packet network is the network
calculus, which takes an envelope approach to describe
arrivals and services in a network. Starting with Cruz’s
seminal work [12] the deterministic network calculus has
evolved to an elegant framework for worst-case analysis
in a network. Probabilistic extensions of the network
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calculus, commonly referred to as statistical network
calculus.

The contribution of this paper is the complete integra-
tion of the effective bandwidth theory into the statistical
network calculus. As a result of this paper, it is feasi-
ble to analyze link scheduling algorithms that are not
easily tractable with an effective bandwidth approach,
for network traffic types that could previously not be
analyzed in a network calculus context. The connections
between network calculus and effective bandwidth were
first investigated by Chang [8]. This paper continues to
explore this relationship, and exploits recent advances
in the statistical network calculus to analyze effective
bandwidth in a multi-node network.

The network calculus in this paper provides bounds
on backlog, delay, and burstiness, from very general
description of arrival and service. Specific arrival and
service models are inserted at a late stage in the analysis.
The advantage of this approach is that it permits us to
study the impact of varying scheduling algorithms and
arrival models on the multiplexing gain in a network in
a single framework. While an analysis that is tailored
to specific arrival and service models can lead to tighter
bounds, such a direct analysis generally only applies to
a single node and is not easily extended to a multi-node
setting. A recent paper showed that, in some cases, a
network calculus analysis can reproduce bounds obtained
with a direct statistical analysis [11].

Extending the deterministic network calculus to a
probabilistic setting has shown to be challenging, in
particular with respect to a multi-node analysis. In this
paper we argue that the availability of a maximum
relevant time scale, that is, a bound on the maximum
time period at which system events are correlated, is
an enabling factor for a statistical calculus analysis.
There are numerous scenarios where such time scales
can be provided. For example, sometimes it is feasible
to provide a priori bounds on the busy period at nodes,
limits on the maximum buffer lengths at links, or a
maximum lifetime of traffic. The analysis in this paper
exploits the availability of such time scale bounds, and
discusses conditions under which time scale bounds can
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be derived. Finding a multi-node calculus that dispenses
with these time scale bounds remains an open question.

The remaining sections are structured as follows. In
Section II, we present the statistical network calculus
that is used to accommodate effective bandwidth ex-
pressions. In Section III, we explore the relationship
between effective bandwidth and effective envelopes.
This enables us to construct effective envelopes for all
traffic models for which effective bandwidth results are
available. Specifically, we consider regulated arrivals,
a memoryless On-Off traffic model, and a Fractional
Brownian Motion traffic model. In Section IV, we derive
probabilistic lower bounds on the service offered by the
scheduling algorithms SP, EDF, and GPS, in terms of
effective service curves. In Section V, we apply the
network calculus in a set of examples, and compare
the multiplexing gain achievable with the traffic models
and scheduling algorithms used in this paper. We present
brief conclusions in Section VI.

II. A NETWORK CALCULUS WITH TIME SCALE

BOUNDS

In this section we derive a network calculus that
exploits the availability of time scale bounds. Before
motivating the need for such bounds, we first introduce
necessary notation, and review results from the deter-
ministic and statistical network calculus.

A. Deterministic and Statistical Network Calculus

We consider a discrete time model, where time slots
are numbered 0, 1, 2, . . .. Arrivals to a network node and
departures from a network node in the time interval [0, t]
are denoted by nonnegative, nondecreasing functions
A(t) and D(t), respectively, with D(t) ≤ A(t). The
backlog is given by B(t) = A(t) − D(t), and the delay
is given by W (t) = inf{d ≥ 0 | A(t − d) ≤ D(t)}. If
A(t) and D(t) are represented as curves, B(t) and W (t),
respectively, are the vertical and horizontal differences
between the curves.

We use subscripts to distinguish arrivals and depar-
tures from different flows or different classes of flows,
e.g., Ai(t) denotes the arrivals from flow i, and AC(t) =∑

i∈C Ai(t) denotes the arrivals from a collection C of
flows. We use the same convention for the departures,
the backlog, and the delay. When we refer to a network
with multiple nodes, we use superscripts to distinguish
between different nodes, i.e., we use Ah

i (t) to denote
the arrivals to the h-th node on the route of flow i, and

Node
1

Node
2

Node
H...

S1 S2 SH

Anet=A1 D1=A2 D2 AH DH=Dnet

Fig. 1. Traffic of a flow through a set of H nodes. The arrivals and
departures from the network are given by random processes Anet and
Dnet. The arrivals and departures from the h-th node are described
by Ah and Dh, with A1 = Anet , Ah = Dh−1 for h = 2, . . . , H ,
and Dnet = DH .

Anet
i (t) = A1

i (t) to denote the arrivals of flow i to the
first node on its route. In Figure 1 we show the route of
a flow that passes through H nodes, where Anet = A1

and Dnet = DH denote the arrivals and departures from
the network, and where Ah = Dh−1 for h = 2, . . . , H .
To simplify notation, we drop subscripts and superscripts
whenever possible. We assume that the network is started
at time 0 and that all network queues are empty at this
time, i.e., Ai(0) = Di(0) = 0 for all i. Under this as-
sumption, the backlog B(t) increases stochastically with
t, in the sense that Pr(B(t + 1) > b) ≥ Pr(B(t) > b)
for all t and all b ≥ 0, and converges to the steady-state
backlog distribution as t → ∞ (see Lemma 9.1.4 of [9]).
Thus a stochastic bound on B(t) that does not depend
on t provides a bound on the steady-state distribution
of the backlog. The corresponding statements hold for
the distribution for delays and the departures over time
intervals of a given length.

The min-plus algebra formulation of the network
calculus [1], [5], [9], defines, for given functions f and
g, the convolution operator ∗ and deconvolution operator
� by

f ∗ g(t) = inf
τ∈[0,t]

{f(t − τ) + g(τ)} ,

f � g(t) = sup
τ≥0

{f(t + τ) − g(τ)} .

These operators are used to express service guarantees
and performance guarantees.

B. Overview of the Network Calculus

In the deterministic network calculus in [1], [5], [9],
service guarantees to a flow at a node are expressed in
terms of service curves. A (minimum) service curve for
a flow is a nonnegative nondecreasing function S which
specifies a lower bound on the service given to the flow
such that, for all t ≥ 0,

D(t) ≥ A ∗ S(t) . (1)

When the arrivals are bounded by an arrival envelope
A∗, such that A(t + τ) − A(t) ≤ A∗(τ) for all t, τ ≥
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0, the guarantee given by the service curve in Eqn. (1)
implies worst-case bounds for output burstiness, backlog
and delay. According to [1], [5], [9], an envelope for the
departures from a node offering a service curve S is
given by A∗�S, the backlog is bounded by A∗�S(0),
and the delay at the node, W (t), is bounded by d, if d

satisfies supτ≥0{A∗(τ − d) − S(τ)} ≤ 0.
If service curves are available at all nodes on the path

of a flow through a network, these single-node bounds
can be easily extended to end-to-end bounds. Suppose
a flow is assigned a service curve Sh on the h-th node
on its route (h = 1, . . . , H). Then the service given by
the network as a whole can be expressed in terms of a
network service curve Snet as

Snet = S1 ∗ S2 ∗ . . . ∗ SH . (2)

With a network service curve, bounds for the output
burstiness, backlog and delay for the entire network
follow directly from the single-node results.

A drawback of the deterministic network calculus is
that the consideration of worst-case scenarios ignores the
effects of statistical multiplexing, and, therefore, gener-
ally leads to an overestimation of the actual resource
requirements of multiplexed traffic sources. This has
motivated the search for a statistical network calculus,
which extends the deterministic calculus to a probabilis-
tic setting with the goal to exploit statistical multiplexing
gain. Here, traffic arrivals and departures in the interval
[0, t] are viewed as random processes that satisfy certain
assumptions, and the arrival and departure functions
A(t) and D(t) represent sample paths. In this paper,
we assume that arrivals at the network entrance satisfy
stationary bounds, in the sense that, for any τ > 0, the
arrivals Anet

i from any flow i to the network satisfy

lim
x→∞ sup

t≥0
Pr

{
Anet

i (t + τ) − Anet
i (t) > x

}
= 0 .

We also assume that the arrivals Anet
i and Anet

j from
different flows i �= j are stochastically independent.

The assumptions are made only at the network en-
trance when traffic is arriving to the first node on its
route. No such assumptions are made after traffic has
entered the network. The stationary bounds are needed
so that we can make statements that do not depend on
specific instances of time and extend to the steady-state.
Assuming independence of traffic sources at the network
entrance allows us to exploit statistical multiplexing gain.

We next describe the probabilistic framework used in
this paper. We follow the framework for a statistical

calculus presented in [4] and [7]. For traffic arrivals,
we use a probabilistic measure called effective envelopes
[4]. An effective envelope for an arrival process A is
defined as a non-negative function G ε such that for all t

and τ

Pr
{
A(t + τ) − A(t) ≤ Gε(τ)

}
> 1 − ε . (3)

Simply put, an effective envelope provides a stationary
bound for an arrival process. Effective envelopes can be
obtained for individual flows, as well as for multiplexed
arrivals (see Section III below). To characterize the
available service to a flow or a collection of flows we
use effective service curves [7] which can be seen as
a probabilistic measure of the available service. Given
an arrival process A, an effective service curve is a
nonnegative nondecreasing function S ε that satisfies for
all t ≥ 0,

Pr
{

D(t) ≥ A ∗ Sε(t)
}
≥ 1 − ε . (4)

By letting ε → 0 in Eqs. (3) and (4), we recover the
arrival envelopes and service curves of the deterministic
calculus with probability one.

Studies that attempt to construct a statistical network
calculus using the min-plus algebra formulation with
convolution and deconvolution operators are found in
[2], [7]. The challenge in this approach is to construct a
probabilistic network service curve that can be expressed
as the convolution of per-node service curves, analogous
to Eqn. (2). This was pointed out in [7] for a network as
shown in Figure 1, with H = 2 nodes, and is repeated
here. An effective service curve S 2,ε in the sense of
Eqn. (4) at the second node guarantees that, for any
given time t, the departures from this node are with high
probability bounded below by

D2(t) ≥ inf
τ∈[0,t]

{
A2(t − τ) + S2,ε(τ)

}
. (5)

Suppose that the infimum in Eqn. (5) is assumed at some
value τ̂ ≤ t. Since the departures from the first node
are random, even if the arrivals to the first node satisfy
the deterministic bound A∗, τ̂ is a random variable. An
effective service curve S1,ε at the first node guarantees
that for any arbitrary but fixed time x, the arrivals
A2(x) = D1(x) to the second node are with high
probability bounded below by

D1(x) ≥ A1 ∗ S1,ε(x) . (6)

Since τ̂ is a random variable, we cannot simply evaluate
Eqn. (6) for x = t − τ̂ and use the resulting bound in



4

Eqn. (5). (This is different in the deterministic calculus,
where deterministic service curves make guarantees that
hold for all values of x.) The problem can be resolved if
a time scale bound Tmax is available, which limits the
range over which the infimum is taken as follows:

A2 ∗ S2,ε(t) = inf
τ∈[0,Tmax]

{
A2(t − τ) + S2,ε(τ)

}
.

C. Network Calculus for Probabilistically Bounded Ar-
rivals and Service

We now present a network calculus that exploits the
availability of appropriate time scale limits. The time
scale limit is introduced by assuming that service curves
Sεs satisfy the additional requirement that there exists a
time scale T such that for all t ≥ 0,

Pr
{

D(t) ≥ inf
τ≤T

{A(t − τ) + Sε(τ)}
}
≥ 1 − ε . (7)

Here, T bounds the range of the convolution in Eqn. (4).
Since, by assumption, S ε(τ) is nondecreasing in τ and
A(t − τ) = 0 for τ > t, the infimum is always attained
for some τ ≤ t. Hence, Eqn. (7) implies Eqn. (4). This
assumption solves the problem of convolving multiple
service curves, as discussed in the previous subsection.
It turns out that in many networks, in particular, in
networks with workconserving schedulers, a time scale
bound can be established from probabilistic bounds of
the busy period or from constraints of buffer sizes. This
will be addressed in Subsection II-D. In general, the
value of T depends on the arrival process as well as
on the service curve.

The following theorem establishes statistical bounds
for delay and backlog in terms of min-plus algebra
operations on effective envelopes and effective service
curves. Note that we distinguish two violation probabili-
ties: εg is the probability that arrivals violate the effective
envelope, and εs is the probability that the service
violates the effective service curve or the condition in
Eqn. (7).

Theorem 1: Assume that Gεg is an effective envelope
for the arrivals A to a node, and that S εs is an effective
service curve satisfying Eqn. (7) with some T < ∞.
Define ε to be

ε = εs + Tεg . (8)

Then the following hold:

1) Output Traffic Envelope: The function G εg �Sεs

is an effective envelope for the output traffic from
the node.

2) Backlog Bound: Gεg � Sεs(0) is a probabilistic
bound on the backlog, in the sense that, for all
t ≥ 0, Pr

{
B(t) ≤ Gεg � Sεs(0)

}
≥ 1 − ε.

3) Delay Bound: If d ≥ 0 satisfies
supτ≤T

{
Gεg (τ − d) − Sεs(τ)

}
≤ 0, then d is a

probabilistic delay bound, in the sense that, for all
t ≥ 0, Pr

{
W (t) ≤ d

}
≥ 1 − ε.

By setting εs = εg = 0, we recover the correspond-
ing statements of the deterministic network calculus.
Similarly, when only εg = 0, the time scale bound T

disappears from Eqn. (8) and one can take T → ∞.
Thus, the statistical calculus from [7], which deals with
deterministic arrivals (where εg = 0) and effective ser-
vice curves Sεs , is also recovered by the above theorem.

Proof. We only prove that G εg � Sεs is an effective
envelope for the output traffic. The proofs of the other
parts of the theorem are similar [16]. Fix t, τ ≥ 0.

Pr
{

D(t + τ ) − D(t) ≤ Gεg � Sεs(τ )
}

≥ Pr
{

D(t + τ ) − D(t) ≤ sup
x≤T

{Gεg (τ + x) − Sεs(x)}
}

≥ Pr

{
∃x ≤ T :

(
A(t + τ ) − A(t − x) ≤ Gεg (τ + x)
and D(t) ≥ A(t − x) + Sεs(x)

)}

≥ Pr

{ ∀x1 ≤ T : A(t + τ ) − A(t − x1) ≤ Gεg (τ + x1)
and ∃x2 ≤ T : D(t) ≥ A(t − x2) + Sεs(x2)

}

≥ 1 −
(
εs + Tεg

)
.

First, we have expanded the deconvolution operator and
reduced the range of the supremum. Then, we replaced
D(t + τ) by A(t + τ), and added the condition that
D(t) ≥ A(t − x) + Sεs(x). In the next step, we further
restricted the event, by demanding that the first condition
in the previous line holds for all values of x. Finally, we
apply the assumption in Eqn. (7), and the definition of
Gεg . Adding the violation probabilities of the two events
and using Boole’s inequality yields the result. �

Next we derive an expression for a probabilistic ver-
sion of a network service curve. Consider the path of
a flow through a network, as illustrated in Figure 1. At
each node h = 1, . . . , H , the arrivals are allotted an
effective service curve, Sh,εs . Similar to Eqn. (7), we
assume that

Pr
{

Dh(t) ≥ inf
τ≤T h

{Ah(t − τ) + Sh,εs(τ)}
}
≥ 1 − εs

(9)
for some numbers T 1, . . . , T H < ∞. For notational
convenience, we assume that the violation probabilities
εs are identical at each node. This assumption is easily
relaxed.
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Theorem 2: Effective Network Service Curve. As-
sume that the service offered at each node h = 1, . . . , H

on the path of a flow through a network is given by a
service curve Sh,εs satisfying Eqn. (9). Then an effective
network service curve Snet,ε for the flow is given by

Snet,ε = S1,εs ∗ S2,εs ∗ . . . ∗ SH,εs , (10)

with violation probability bounded above by

ε = εs

H∑
h=1

(
1 + (h − 1)T h

)
. (11)

The convolution expression in Eqn. (10) has the same
form as the corresponding expression in a deterministic
setting seen in Eqn. (2), and the deterministic statement
is recovered with probability one by letting ε → 0. On
the other hand, the violation probability ε in Eqn. (11)
increases at each hop by εsT

h. Clearly, it is important
to control the time scale bound T h.
Proof. We start the proof with a deterministic argument
for a sample path. Fix t ≥ 0, and suppose that, for a
particular sample path, we have⎧⎪⎪⎨

⎪⎪⎩

If h < H : ∀τ ≤ ∑H
k=h+1 T k : Dh(t − τ )

≥ infxh≤Th{Ah(t − τ − xh) + Sh,εs(xh)} ,
If h = H :

DH(t) ≥ infxH≤TH {AH(t − xH) + SH,εs(xH)} ,
(12)

Since the arrivals at each node are given by the
departures from the previous node, that is, Ah = Dh−1

for h = 2, . . . , H , we see by repeatedly inserting the
first line of Eqn. (12) into the second line of Eqn. (12)
that

DH(t) ≥ inf
xk≤Tk, k=h,...,H

{
Ak(t − (xk + . . . + xH))

+

H∑
k=h

Sk,εs(xk)
}

. (13)

Setting h = 1 in Eqn. (13), and using the definitions of
Anet, Dnet, and Snet,ε, we obtain

Dnet(t) ≥ Anet ∗ Snet,ε(t). (14)

We conclude proof of the theorem by

Pr
{

Dnet(t) ≥ Anet ∗ Snet,ε(t)
}

≥ Pr
{

Eqn. (12) holds
}

(15)

≥ 1 − εs ·
H∑

h=1

(
1 +

H∑
k=h+1

T k
)

. (16)

In Eqn. (15) we have used that Eqn. (12) implies
Eqn. (14). In Eqn. (16), we have applied Eqn. (9) and
added the violation probabilities of Eqn. (12) over all
possible values of h = 1, . . . , H . Exchanging the order
of summation completes the proof. �

D. Derivation of Time Scale Bounds

We turn to the time scale T which is required in order
to apply Theorems 1 and 2. At any given node, we need
to bound T from information on the capacity of the node,
the properties of the scheduler, and the incoming traffic.

Consider for a moment the corresponding problem
in the deterministic calculus. Suppose a node offers a
service curve S to a flow, and that the arrivals from the
flow are deterministically bounded by an arrival envelope
A∗. If the long-term arrival rate is strictly smaller than
the long-term service rate guaranteed by S, then

T = sup{τ ≥ 0 | A∗(τ) > S(τ)} < ∞ . (17)

A short computation shows that

A ∗ S(t) = inf
τ≤T

{A(t − τ, t) + S(τ)} ,

which, together with the definition of S in Eqn. (1) yields
the deterministic statement corresponding to Eqn. (7)
with ε = 0. This argument applies to any node along
the path of a flow through a network, since the long-
term rate of arrivals from the flow to downstream nodes
cannot exceed the long-term rate of arrivals from the
flow to the ingress node.

In the statistical setting, we restrict the discussion to
workconserving schedulers, where the time scale T is
bounded by the length of the busy period of the scheduler
at time t. To see this, let AC(t), DC(t), and BC(t) denote
the aggregate arrivals, the departures, and the backlog of
a set C of flows arriving at the scheduler. By definition,
the busy period for a given time t ≥ 0 is the maximal
time interval containing t during which the backlog from
the flows in C remains positive. The beginning of the
busy period of t is the last idle time before t, given by

t = max{τ ≤ t : BC(τ) = 0} . (18)

The assumption that the queues are empty at time t =
0 guarantees that 0 ≤ t ≤ t. Since a workconserving
scheduler that operates at a constant rate C satisfies

DC(t) ≥ AC(t) + C(t − t)

by definition, to obtain the desired time scale bound in
Eqn. (7) it suffices to prove that

Pr
{
t − t ≤ T

} ≥ 1 − ε . (19)

The following lemma establishes such a busy period
bound for a scheduler that operates at a constant rate C.
We will show in Section IV that the service available to
a single flow at many different types of workconserving
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schedulers can be similarly described by a service curve
satisfying Eqn. (7).

Lemma 1: Assume that the aggregate arrivals AC to a
workconserving scheduler with a constant rate C satisfy

∞∑
τ=1

sup
t≥0

Pr {AC(t + τ) − AC(t) > Cτ} < ∞ . (20)

For a given ε ∈ (0, 1) choose T large enough so that

∞∑
τ=T+1

sup
t≥0

Pr {AC(t + τ) − AC(t) > Cτ} ≤ ε . (21)

Then T is a probabilistic bound on the busy period that
satisfies Eqn. (19).
Proof. Fix t > 0, and assume that t < t. Since
BC(τ) > 0 for t < τ ≤ t, we have by definition of the
workconserving scheduler that DC(t)−DC(t) ≥ C(t−t).
Since DC(t) < AC(t), and DC(t) = AC(t) by definition
of t, this implies AC(t) − AC(t) > C(t− t) . It follows
that

Pr
{
t − t > T

}
≤ Pr

{∃τ > T : AC(t) − AC(t − τ) > Cτ
}

≤
∞∑

τ=T+1

Pr
{
AC(t) − AC(t − τ) > Cτ

}
(22)

≤ ε ,

where we have used Boole’s inequality in the second
line and the choice of T in the third line. �

The lemma is easily extended from constant-rate
workconserving systems to output links that offer a (de-
terministic) strict service curve, which is a nonnegative
function S(τ) such that for every t2 ≥ t1 ≥ 0 and every
sample path, DC(t2) − DC(t1) ≥ S(t2 − t1) whenever
BC(t) > 0 for t ∈ [t1, t2]. This includes, in particular,
latency-rate service curves [22] with S = K(t − L) for
a rate K and a latency L.

The assumption in Eqn. (20) amounts to two require-
ments. First, the average rate of the incoming traffic
should lie strictly below the rate C of the scheduler. This
is a standard stability condition; if it is violated, stability
of the backlog process is not guaranteed. Secondly, the
probability that the arrivals exceed this average rate by
a large amount should satisfy a suitable tail estimate.
Such tail estimates hold for many commonly used traffic
descriptions, including the models in [8], [21], [24].
This includes some long-range dependent processes but
can fail for heavy-tailed arrival models. Examples are
discussed in Section III-A.

Inserting Lemma 1 into Theorem 1 immediately pro-
vides bounds on output, delay, and backlog for a single
node in terms of the arrivals and the available service
at that node. Using Lemma 1 in Theorem 2 for the
construction of a statistical network service curve is less
straightforward. The difficulty is that Theorem 2 requires
bounds on the time scales T h at each node h = 1, . . . , H

on the path of a flow. In principle, such arrival bounds
can be obtained by iterating the input-output relation of
Theorem 1. However, this approach leads to bounds on
the violation probabilities that grow exponentially in the
number of nodes.

In the numerical examples, we use the instead the
following strategy. We assume that any packet whose
delay at a node exceeds a certain delay threshold d∗ is
dropped. For the arrivals to the network, we construct a
function Gnet,ε

C for the arrivals to the network satisfying

Pr
(
Anet

C (t + τ) − Anet
C (t) > Gnet,ε

C (τ)
) ≤ 2ε

π(1 + τ2)
.

(23)
This definition is analogous to the definition of the
effective envelope in Eqn. (3), with ε replaced by
(2ε)/(π(1 + τ2)). We define corresponding bounds at
downstream nodes by

Gh,ε
C (τ) = Gnet,ε

C (τ + (h − 1)d∗) . (24)

At the h-th node on the path of the flow, we set

T h = sup{τ ≥ 0 | Gh,ε

C (τ) > Cτ} , (25)

in analogy with Eqn. (17). This choice of T h satisfies
Eqn. (21), because

∞∑
τ=Th+1

sup
t≥0

Pr {AC(t + τ ) − AC(t) > Cτ}

≤
∞∑

τ=Th+1

sup
t≥0

Pr
{

Ah
C(t + τ ) − Ah

C(t) > Gh,ε
C (τ )

}

≤ 2ε

π

∞∑
τ=0

(1 + τ 2)−1 ≤ ε . (26)

By Lemma 1, T h provides the desired time scale bound
at the h-th node. Finally, we use Theorems 1 and 2 to
verify that d∗ is large enough so that the loss rate due
to this dropping policy is a small fraction of the traffic
rate.

The above assumption on an a priori delay threshold
d∗ is analogous to an assumption in [3] that all traffic
exceeding a certain delay bound is dropped. Bounds
for T h can also be obtained from a priori bounds on
the backlog, e.g., as done in [23]. Such bounds on the
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backlog naturally result from finite buffer sizes in a
network. Alternatively, a priori bounds on delay, backlog,
and the length of busy periods can be obtained from
the deterministic calculus. Generally, it suffices to derive
loose bounds on T h, because the violation probabilities
provided in Eqn. (8) and Eqn. (11) depend only linearly
on the values of T h, while effective envelopes Gε, the
bound Gnet,ε

, and consequently the time scale bound T ,
typically deteriorate very slowly as ε → 0.

III. EFFECTIVE ENVELOPES AND EFFECTIVE

BANDWIDTH

We now reconcile two methods for probabilistic traffic
characterization, effective envelopes and effective band-
width, and explore the relationship between them. Using
the general definition from [14], the effective bandwidth
of an arrival process A is defined as

α(s, τ) = sup
t≥0

{
1
sτ

log E[es(A(t+τ)−A(t))]
}

, (27)

for all s, τ ∈ (0,∞). The parameter τ is called the time
parameter and indicates the length of a time interval. The
parameter s is called the space parameter and contains
information about the distribution of the arrivals. Near
s = 0, the effective bandwidth is dominated by the mean
rate of the traffic, while near s = ∞, it is primarily
influenced by the peak rate of the traffic. Thus, the
space parameter s can be seen as relating to a violation
probability ε (see Lemma 2).

A crucial result in the effective bandwidth theory
concerns the large buffer asymptotics for links with FIFO
scheduling, i.e., as long as the effective bandwidth of
a set of flows is below the capacity of the link, the
probability of a packet loss due to a buffer overflow
decays exponentially fast as a function of the buffer size.
This frequently cited result, however, is an asymptotic
approximation for large buffer sizes, and has shown to be
inaccurate if arriving traffic is bursty [10]. A network cal-
culus approach with effective bandwidth works explicitly
with finite buffer sizes. Such non-asymptotic bounds
have been presented by Chang [8], [9] for a class of
linear envelope processes with parameters

(
σ(s), ρ(s)

)
,

characterized by

1
s

log
(
E

[
esA(t,t+τ)

]) ≤ σ(s) + ρ(s)τ . (28)

If ρ(s) < C for these processes, Chang [8] bounds the
tail probability of the backlog behavior by Pr

(
B >

x
) ≤ β(s)e−sx, where the constant β(s) is explicitly

given as β(s) = esτ(s)
(
1 − es(ρ(s)−C)

)−1
. Chang uses

these and other results on envelope processes to draw
analogies to the deterministic network calculus [12].
Chang [8] also shows that the output at a link with
FIFO scheduling is again a linear envelope processes.
In principle, this property can be iteratively applied to
obtain delay and backlog bounds for a network with mul-
tiple nodes. In practice, however, the bounds obtained
with such an iterative procedure deteriorate quickly in
the number of nodes. (Closely related results, without
referring to effective bandwidth, are obtained by Yaron
and Sidi for traffic with exponentially bounded burstiness
[24]).

We extend the results established by Chang in several
directions. First, we do not assume a specific class of
arrival models, but consider all arrival models for which
effective bandwidth expressions are available. Second,
applying the results of Section II, we can obtain an
effective network service curve which yields end-to-end
backlog and delay bounds over multiple nodes. Lastly,
as shown in Section IV we can apply our analysis to
more complex scheduling algorithms.

A. Relating Effective Bandwidth and Effective Envelopes

The choice of the term ‘effective envelope’ as in-
troduced in [4] suggests a connection to the notion of
effective bandwidth, but without making that connec-
tion explicit. The following lemma establishes a formal
relationship between the two concepts, and thus, links
the effective bandwidth theory to the statistical network
calculus.

Lemma 2: Given an arrival process A with effective
bandwidth α(s, τ), an effective envelope is given by

Gε(τ) = inf
s>0

{
τα(s, τ) − log ε

s

}
. (29)

Conversely, if, for each ε ∈ (0, 1), the function G ε is
an effective envelope for the arrival process, then its
effective bandwidth is bounded by

α(s, τ) ≤ 1
sτ

log
(∫ 1

0

esGε(τ)dε

)
. (30)

We emphasize that the effective envelope is a more gen-
eral concept than effective bandwidth, in the sense that
each effective bandwidth expression can be immediately
expressed in terms of an effective envelope, whereas
there may not be an effective bandwidth corresponding
to a given effective envelope. Even when the effective
bandwidth α(s, τ) is infinite for some values of s and τ ,
and the corresponding construction in Lemma 2 is not
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applicable, it may be feasible to specify a finite effective
envelope Gε(τ) according to Eqn. (3) for all values of ε

and τ .

Proof. To prove the first statement, fix t, τ ≥ 0. By the
Chernoff bound [19],1 we have for any x and any s ≥ 0

Pr
{
A(t + τ) − A(t) ≥ x

}
≤ es(−x+τα(s,τ)) . (31)

Setting the right hand side equal to ε and solving for x,
we see that, for any choice of s > 0, the function

xε,s(τ) = τα(s, τ) − log ε

s

is an effective envelope for A, with violation probability
bounded by ε. (The superscripts are added to show the
dependence of x on ε and s.) Minimizing over s proves
the claim.

For the second statement, fix t, τ ≥ 0, and let

F t,τ (x) = Pr
{
A(t + τ) − A(t) ≤ x

}
(32)

be the probability distribution function of A(t+τ)−A(t).
For any s > 0, we can write the moment-generating
function of A(t + τ) − A(t) in the form

E
[
es(A(t+τ)−A(t))

]
=

∫ ∞

0

esxdF t,τ (x) . (33)

By using a suitable approximation, we may assume
without loss of generality that F t,τ is continuous and
strictly increasing for x ≥ 0. Let Gt,τ be the inverse
function of 1 − F t,τ . Since

Pr
{
A(t + τ) − A(t) > Gt,τ (ε)

}
= ε , (34)

we must have Gt,τ (ε) ≤ Gε(τ) by the definition of the
effective envelope. Performing the change of variables
1 − F t,τ (x) = ε, i.e., x = Gt,τ (ε) in the integral and
using that Gt,τ (ε) ≤ Gε(τ), we obtain

E

[
es

(
A(t+τ)−A(t)

)]
≤

∫ 1

0

esGε(τ)dε . (35)

By the definition of effective bandwidth, this implies the
claim in Eqn. (30). �

We next use the lemma to obtain effective envelopes
for regulated arrivals, memoryless on-off traffic, and
FBM.

1For a random variable X, the Chernoff bound is given by Pr
{

X ≥
x
}

< e−sxE
[
esX

]
.

B. Regulated Arrivals

The regulated arrival model is a suitable description
when the amount of traffic that enters the network is
limited at the network ingress, e.g., by a leaky bucket.
More formally, let A∗ be a nondecreasing, nonnegative,
subadditive function. We say that an arrival process A is
regulated by A∗ if

∀t, τ ≥ 0 : A(t + τ) − A(t) ≤ A∗(τ) (36)

holds for every sample path. The peak rate and the
average rate of regulated traffic, denoted by P and ρ,
are defined as P = A∗(1) and ρ = limt→∞

A∗(t)
t .

Consider a collection C of flows, where A∗
i , Pi and ρi

are the arrival envelope, the peak rate, and the average
rate of flow i ∈ C. Clearly, the aggregate of the flows AC
is bounded by A∗

C =
∑

i∈C A∗
i , with peak and average

rates of PC =
∑

i∈C Pi and ρC =
∑

i∈C ρi. We assume
that each flow i ∈ C satisfies the stationary bound

E
[
Ai(t + τ) − Ai(t)

] ≤ ρiτ , (37)

and that the arrivals from different flows are independent.
The effective bandwidth for such a collection of flows
AC satisfies [14]

αC(s, t) ≤ 1

st

∑
i∈C

log

(
1 +

ρit

A∗
i (t)

(esA∗
i (t) − 1)

)
. (38)

By Lemma 2, the corresponding effective envelope is
given by

Gε
C(t) = inf

s>0

{∑
i∈C

1

s
log

(
1+

ρit

A∗
i (t)

(
esA∗

i (t)−1
))− log ε

s

}
.

(39)

This effective envelope satisfies ρCt ≤ Gε
C(t) ≤ A∗

C(t)
for all t ≥ 0.

C. Memoryless On-Off traffic

On-Off traffic models are frequently used to model
the behavior of (unregulated) compressed voice sources.
We consider a variant of On-Off traffic with independent
increments. We describe an On-Off traffic source as a
two-state memoryless process. In the ‘On’ state, traffic
is produced at the peak rate P , and in the ‘Off’ state, no
traffic is produced, with an overall average traffic rate
ρ < P . For a collection C of independent flows with
peak rates Pi and average rates ρi (i ∈ C), the effective
bandwidth for the aggregate traffic of the flows in C is
given by [14]

αC(s, t) =
1
s

∑
i∈C

log
(

1 +
ρi

Pi

(
ePis − 1

))
. (40)
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Lemma 2 gives the corresponding effective envelope as

Gε
C(t) = inf

s>0

{ t

s

∑
i∈C

log
(
1+

ρi

Pi

(
ePis − 1

))− log ε

s

}
.

(41)

D. Fractional Brownian Motion (FBM) traffic

As pointed out in [18], the self-similarity properties
of measured traffic data can be modeled by processes of
the form

A(t) = ρt + βZt , (42)

where Zt is a normalized fractional Brownian motion
with Hurst parameter H > 1

2 , ρ > 0 is the mean
traffic rate, and β2 is the variance of A(1). By defi-
nition, {Zt}t∈R is a Gaussian process with stationary
increments which is characterized by its starting point
Z0 = 0, expected values E[Zt] = 0, and variances
E[Z2

t ] = |t|2H for all t.
Following [18], we will refer to Eqn. (42) as the

Fractional Brownian Motion (FBM) traffic model. Note
that the sum of the arrivals from a collection C of
independent FBM sources with common Hurst parameter
is again of type FBM. where the mean traffic rate is
given by ρC =

∑
i∈C ρi, and the variance β2 is given by

β2
C =

∑
i∈C β2

i . FBM traffic is of interest because the
statistical analysis of actual network traffic has shown
to be self-similar, that is, traffic exhibits long range
dependence [13].

The effective bandwidth for fractional Brownian traffic
has been derived as [14]

αC(s, t) = ρC +
1
2
β2
Cst2H−1 . (43)

By Lemma 2, this results in an effective envelope of

Gε
C(t) = ρCt +

√
−2 log ε βCtH . (44)

IV. EFFECTIVE SERVICE CURVES FOR SCHEDULING

ALGORITHMS

We next present probabilistic lower bounds on the ser-
vice guaranteed to a class of flows in terms of effective
service curves. We derive effective service curves at a
node for a set of well-known scheduling algorithms.

From here on, we assume that each flow belongs to
one of Q classes. We denote the arrivals from all flows
in class q by Aq , and the arrivals to the collection C of
all flows in all classes q = 1, . . . , Q by AC . We make
similar conventions for departures and backlogs. We use
Gεg

q to denote an effective envelope for the arrivals from
class q. We consider a workconserving link with rate C,

and three scheduling algorithms: Static Priorities (SP),
Earliest Deadline First (EDF), and Generalized Processor
Sharing (GPS). We begin with a brief description of the
three schedulers.

1) In an SP scheduler, every class is assigned a
priority index, where a lower priority index indi-
cates a higher priority. An SP scheduler selects for
transmission the earliest arrival from the highest
priority class with a nonzero backlog.

2) In an EDF scheduler, every class q is associated
with a delay index dq . A class-q packet arriving at t

is assigned the deadline t+dq, and the EDF sched-
uler always selects the packet with the smallest
deadline for service. Note that, in a probabilistic
context, actual delays may violate the delay index
and departures may miss their deadlines.

3) In a GPS scheduler, every class q is assigned a
weight index φq and is guaranteed to receive at
least a share φq∑

p φp
of the available capacity. If any

class uses less than its share, the extra bandwidth
is proportionally shared by all other classes.

For these schedulers, we now present effective service
curves for each traffic class q. The effective service
curves consider the ‘leftover’ bandwidth which is not
used by other traffic classes p �= q. A similar construction
was used in the statistical service envelopes from [20].
A major difference between statistical service envelopes
and our effective service curves is that the latter are non-
random functions. This makes the analysis of effective
service curves more tractable. In [17] such leftover
service curves were used to derive lower bounds on
the service for an individual flow when the scheduling
algorithms are not known ([6], Chp. 1.4 and Chp. 6.2).

Lemma 3: Consider the arrivals from Q classes to
a workconserving scheduler with capacity C. For each
class q = 1, . . . , Q, let Gεg

q be an effective envelope
for the arrivals Aq from flows in class q. Let T be a
busy period bound for the aggregate AC that satisfies
Eqn. (19) with some εb < 1. Assume the scheduling
algorithm employed is either SP, EDF, or GPS. In the
case of GPS, assume additionally that the functions G εp

p

are concave. Define functions S εs
q as follows:2

SP: Sεs
q (t) =

[
Ct − ∑

p<q Gεg
p (t)

]
+

,

εs = εb + (q − 1)Tεg.

EDF: Sεs
q (t) =

[
Ct − ∑

p�=q Gεg
p (t − [dp − dq]+)

]
+

,

2We use the notation [x]+ = max(x, 0) to denote the positive part
of x.
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εs = εb + (Q − 1)Tεg.

GPS: Sεs
q (t) = λq

(
Ct +

∑
p�=q

[
λpCt − Gεg

p (t)
]
+

)
,

εs = εb + (Q − 1)Tεg, where λp = φp/
∑

φr is
the guaranteed share of class p.

Then, in each case Sεs
q is an effective service curve for

class q, satisfying

Pr
{

Dq(t) ≥ inf
τ≤T

{Aq(t − τ) + Sεs
q (τ)}

}
≥ 1 − εs .

(45)

By setting all violation probabilities εb, εg = 0 in
Lemma 3, we can recover a deterministic (worst-case)
statement on the lower bound of the service seen by
a service class. The assumption that the scheduler is
workconserving is used to establish that the service
curves Sεs

q are nonnegative. The lemma easily extends
to schedulers offering a strict deterministic service curve
S, which need not be constant-rate (see the remark after
Lemma 1). In that case, the term Ct should be replaced
by S(t) in the conclusions. Given a service curve S

satisfying only Eqn. (1), the leftover service curve for
class q in the case of an SP scheduler is given by
S(t) − ∑

p<q Gεg
p (t), which is likely to be negative for

small values of t. The corresponding formulas hold for
EDF and GPS schedulers.

Proof. Here, we only show that Eqn. (45) holds for the
SP and EDF scheduling algorithms. We refer to [16] for
the proof of GPS scheduling.

1. SP scheduling: Denote the arrivals from flows of
priority at least q by A≤q , and the arrivals from flows of
priority higher than q by A<q , and correspondingly for
departures and backlogs. Fix t ≥ 0, and let

t≤q = max
{
x ≤ t : B≤q(x) = 0

}
(46)

be the beginning of the busy period containing t from the
perspective of class q. If the class-q backlog Bq(t) = 0,
there is nothing to show. If Bq(t) > 0, then we have by
the properties of the SP scheduler that

Dq(t) = Dq(t≤q) +
(
D≤q(t) − D≤q(t≤q)

)
−(

D<q(t) − D<q(t≤q)
)

(47)

≥ Aq(t≤q) +
[
C(t − t≤q) −

(
A<q(t) − A<q(t≤q)

)]
+

.(48)

In Eqn. (48), we have used that Dp(t≤q) = Ap(t≤q)
for all p ≤ q, that D(t) − D(t≤q) ≥ C(t − t≤q) by
the properties of the workconserving scheduler, and that

Dp(t) ≤ Ap(t) for all p. It follows that

Pr
{

Dq(t) ≥ inf
τ≤T

(
Aq(t − τ ) + Sεs

q (τ )
)}

≥ Pr
{

t − t≤q ≤ T and Dq(t) ≥ Aq(t≤q)

+
[
C(t − t≤q) −

∑
p<q

Gεg
p (t − t≤q)

]
+

}
(49)

≥ Pr
{

t − t≤q ≤ T and

A<q(t) − A<q(t≤q) ≤
∑
p<q

Gεg
p (t − t≤q)

}
(50)

≥ Pr
{

t − t ≤ T and

∀p < q, ∀τ ≤ T : Ap(t) − Ap(t − τ ) ≤ Gεg
p (τ )

}
(51)

≥ 1 −
(
εb + (q − 1)Tεg

)
, (52)

where t is the beginning of the busy period of the
scheduler. In Eqn. (49), we have set τ = t − t≤q and
inserted the definition of S εs

q , and in Eqn. (50), we have
used Eqn. (48). In Eqn. (51), we have restricted the event
and used that t ≤ t≤q , and in the last line, we have
applied the definitions of T and G εg

p . This proves the
claim for SP.

2. EDF scheduling: Fix t ≥ 0, and let t be the begin-
ning of the busy period containing time t. If B q(t) > 0,
then according to the EDF scheduling algorithm, class-
p packets which arrive after t + dq − dp will not be
served by time t. Since the system is workconserving,
this implies

Dq(t) = Dq(t) +
(
DC(t) − DC(t)

) −
∑
p �=q

(
Dp(t) − Dp(t)

)

≥ Aq(t) +
[
C(t − t) −

∑
p �=q

(
Ap(t − (dp − dq)+) − Ap(t)

)]
+

.

We argue as in Eqs. (49)-(52) that

Pr
{

Dq(t) ≥ inf
τ≤T

(
Aq(t − τ ) + Sεs

q (τ )
)}

≥ Pr
{

t − t ≤ T and ∀p �= q, ∀τ ≤ T :

Ap(t) − Ap(t − τ ) ≤ Gεg
p (τ )

}
(53)

≥ 1 −
(
εb + (Q − 1)Tεg

)
. � (54)

V. NUMERICAL EXAMPLES

In this section, we present numerical examples to illus-
trate the multiplexing gain for the different traffic models
(Regulated, On-Off, Fractional Brownian Motion) and
scheduling algorithms (SP, EDF, GPS) considered in this
paper.

For each of the three traffic models, we consider two
types of flows. The parameters are given in Table I.
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REGULATED TRAFFIC ON-OFF TRAFFIC FBM TRAFFIC

Type P ρ σ P ρ ρ β H
(Mbps) (Mbps) σ (bits) (Mbps) (Mbps) (Mbps) (Mbps)

1 1.5 0.15 95400 1.5 0.15 0.15 4.5 0.78
2 6.0 0.15 10345 6.0 0.15 0.15 0.94 0.78

TABLE I

SOURCE TRAFFIC PARAMETERS.
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Fig. 2. Example 1: Per-flow effective envelopes Gε
N (t)/N for Type-1 flows (with ε = 10−9).
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Fig. 3. Example 1: Per-flow effective envelopes Gε
N (t)/N for Type-2 flows (with ε = 10−9).

Since we are working in a discrete time domain, we
need to select a time unit, which we set to 1 ms. For
regulated traffic, we select a peak-rate constrained leaky
bucket with arrival envelope A∗(t) = min (Pt , σ + ρt),
with parameters as in [4]. The parameters of the other
traffic sources are selected to match the average rate
(ρ = 0.15 Mbps). For FBM traffic, we set the Hurst
parameter to H = 0.78 as suggested in [18], and select
β = 4.5.

A. Example 1: Comparison of Effective Envelopes

In the first example, we evaluate the effective en-
velopes for Regulated traffic, On-Off traffic, and FBM
traffic. We evaluate the effective envelope normalized
by the number of flows as Gε

N (t)/N , where Gε
N (t)

is the effective envelope for N homogeneous flows.
Figures 2 and 3 show the per flow effective envelopes
with ε = 10−9 for Type-1 and Type-2 flows, respectively.
For comparison, we also include the average rate of
the sources. For regulated traffic we also include the

deterministic envelopes min (Pt , σ + ρt), and for On-
Off traffic we include the peak rate.

We make the following observations. The effective
envelopes capture a significant amount of statistical
multiplexing gain for each of the considered traffic types,
the multiplexing gain increases sharply with the number
of flows N . The effective envelope for FBM traffic is
larger than for the other source models. This is due to
our selection of the parameters H and β.

B. Example 2: Number of Admissible Flows

Next we consider three scheduling algorithms (SP,
EDF, and GPS) and multiplex Type-1 and Type-2 flows
on a link with 100 Mbps capacity. The evaluation focuses
on the service given to flows from Type 1. We assume
that Type-1 flows must satisfy a probabilistic delay
bound of 100 ms. Given a certain number of Type-2
flows on the 100 Mbps link, we determine the maximum
number of Type-1 flows that can be added to the link
without violating their probabilistic delay bounds using
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the results from Lemma 3. Such an admission control
decision is greedy, in the sense that it entirely ignores
the delay requirements of other flow types. For example,
using Lemma 3 for admission control of Type-1 flows
ignores the delay requirements of Type-2 flows.
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Fig. 4. Example 2: Number of admissible Type-1 flows as a function
of the number of Type-2 flows (C = 100 Mbps) for different schedulers
and traffic models with ε = 10−6, d1 = 100 ms, φ1 = 0.25, φ2 =
0.75.
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Fig. 5. Example 2: Number of admissible Type-1 flows as a function
of the number of Type-2 flows (C = 100 Mbps) for FBM traffic with
different choices of β with ε = 10−6, d1 = 100 ms, φ1 = 0.25,
φ2 = 0.75.
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Fig. 6. Example 3: A network with four nodes and with cross traffic.

The parameters of the scheduling algorithms are the
priority indices for SP, the delay indices for EDF, and
the weights for GPS. For SP, Type-1 flows have a higher
priority index, and, therefore, a lower priority, than Type-
2 flows. For EDF, the delay index of Type-1 flows is
d1 = 100 ms and that of Type-2 flows is d2 = 10 ms. For

GPS, we set the weights to φ1 = 0.25 and φ2 = 0.75.
As in the previous examples, we consider three traffic
models: regulated traffic, On-Off traffic, and FBM traffic.
The source traffic parameters are as shown in Table I.
For comparison, we also include the number of flows
that can be accommodated on the link with an average
rate allocation and a peak rate allocation.

Figure 4 depicts the number of Type-1 flows that
can be admitted without violating the probabilistic delay
bounds, as a function of the number of Type-2 flows
already in the system. We observe that the choice of the
traffic model has a significant impact on the number of
admitted Type-1 flows. The number of Type-1 flows that
can be admitted with FBM traffic is much smaller than
with the other traffic models. We also observe in the
figure, that the selection of the scheduling algorithm has
only a limited impact.

C. Example 3: Multiple Nodes with Cross Traffic.

In this example, we consider a network with four
nodes, as shown in Figure 6. We assume that all links
have the same capacity of C = 100 Mbps. There are N1

Type-1 flows that pass through all four nodes. At each
node, there is cross traffic from N2 Type-2 flows. We
assume N1 = N2.
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Fig. 8. Example 3: Probabilistic bounds for the total queueing delay
experienced by Type-1 traffic when leaving Node 1 (solid line), Node
2 (dashed line), Node 3 (dotted line), and Node 4 (dotted-dashed line)
with violation probability ε = 10−6. The x-axis corresponds to N1 +
N2, the number of Type-1 and Type-2 flows, where we assume N1 =
N2.

First, we demonstrate how our bounds of the busy
period grow as the number of flows increases and how
the busy period varies at different nodes. We calculate the
probabilistic busy period bounds at the first and the last
node for violation probabilities ε = 10−3, 10−6, 10−9

using the approach outlined in Subsection II-D. We
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Fig. 7. Example 3: Probabilistic Busy Period Bounds for ε = 10−3 (solid line), ε = 10−6 (dashed line), and ε = 10−9 (dotted line).
The x-axis corresponds to N1 + N2, the number of Type-1 and Type-2 flows, where we assume N1 = N2. The thick dotted-dashed line is a
deterministic busy period bound for regulated traffic.

use the formula for the effective envelope given in
Eqn. (29), with ε replaced by ε/(π(1 + τ 2)) to con-

struct for each class q = 1, 2 a function Gnet,ε/2

q sat-

isfying Pr
{
Anet(t) − Anet(t − τ) > Gnet,ε/2

q (τ)
}

≤
ε/(π(1+τ2)), as required in Eqn. (23). At the h-th node

on the route of the through flows, we set G h,ε/2

1 (τ) =
Gnet,ε/2

1 (τ + (h− 1)d∗), see Eqn. (24). For regulated
traffic, we choose the threshold d∗ comparable to the
worst-case delay bound experienced by the Type-1 traffic
at Node 1, as provided by the deterministic calculus. For
On-Off and FBM traffic, we choose d∗ comparable to
the delay bound of Type-1 traffic at Node 1, as provided
by Theorem 1 with ε = 10−15. We assume that any
packet experiencing a delay exceeding d∗ per node is
dropped before entering the next node. Since all nodes
are ingress nodes for the Type-2 flows, we can use
the same bound Gh,ε/2

2 (τ) = Gnet,ε/2

2 (τ) at each node,

where Gε/2

2 is the function computed above. We obtain
bounds on the busy periods T h by using Eqn. (25) with
Gh,ε

C = Gh,ε/2

1 +G1,ε/2

2 . Finally, we use Theorems 1 and 2
to check that the loss rate due to the dropping threshold
never exceeds a fraction of 10−15 of the traffic rate.

Figure 7 shows the probabilistic busy period bounds at
each node for the three different traffic models, where the
number of flows is varied from 60 to 600. Note that 600
flows corresponds to a utilization of 90%. As a reference
point, we also plot the exact value for the worst-case
busy period of the regulated traffic (plotted as thick
dotted-dashed line). While regulated traffic permits to
determine the worst-case busy period, such deterministic
bounds are not available for On-Off and FBM traffic.
We observe that the probabilistic busy period bounds
for downstream nodes are larger than that for upstream

nodes and that the probabilistic busy period bounds
for FBM traffic are significantly larger than those for
Regulated or On-Off traffic at each node.

Next, we exhibit the queueing delay experienced by
Type-1 traffic in the network described in Figure 6. For
the SP scheduling algorithm, as in Example 2, Type-
1 flows have a higher priority index, and, therefore,
a lower priority, than Type-2 flows. Figure 8 depicts
the probabilistic bounds of the total queueing delay
experienced by Type-1 traffic when leaving Node h,
h = 1, 2, 3, 4, with the violation probability 10−6 in
the network with SP scheduling. The total queueing
delay experienced by Type-1 traffic when leaving Node
h includes the queueing delay experienced by Type-
1 traffic at Node h, Node h − 1, and down to Node
1. As expected, the probabilistic bounds for the total
queueing delay experienced by Type-1 traffic increase
when the path traveled by Type-1 traffic increases. As
a reference point, we also plot the worst case queueing
delay experienced by Regulated traffic. From Figure 8,
for Regulated traffic, we observe that the probabilistic
bounds for the total queueing delay are dramatically
smaller than the worst case queueing delay. Note that
the probabilistic bounds for FBM traffic are larger than
those for Regulated or On-Off traffic. For EDF and
GPS scheduling algorithms, the end-to-end delay bounds
experienced by Type-1 traffic in the same network with
the violation probability 10−6 are similar to those in
Figure 8 and omitted.

VI. CONCLUSIONS

We have presented a statistical network calculus for
determining delays and backlog where both arrivals and
service are described in terms of probabilistic bounds.
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We presented bounds on the queueing behavior in terms
of the min-plus algebra, and integrated the concept of
effective bandwidth into the envelope-based approach of
the statistical network calculus. We derived backlog and
delay bounds for several traffic models (regulated, On-
Off, FBM), and scheduling algorithms (SP, EDF, GPS).
An important assumption for the derived calculus is
the existence of a time-scale bound at each node that
decorrelates arrivals and departures. For a single node,
such a bound can often be obtained from an estimate
on the busy period. For multiple nodes, as seen in
Example 3, we require additional assumptions, e.g., that
traffic exceeding a maximum delay be dropped. While
such an assumption can often be justified, a goal of future
work is to determine when and how to dispense with
such assumptions.

REFERENCES

[1] R. Agrawal, R. L. Cruz, C. Okino, and R. Rajan. Performance
bounds for flow control protocols. IEEE/ACM Transactions on
Networking, 7(3):310–323, June 1999.

[2] S. Ayyorgun and R. Cruz. A service-curve model with loss and a
multiplexing problem. In Proc. of ICDCS 2004, pages 756–765,
Tokyo, March 1994.

[3] S. Ayyorgun and W. Feng. A probabilistic definition of burstiness
characterization: A systematic approach. Technical Report LA-
UR-03-3668, Los Alamos National Laboratory, May 2003.

[4] R. R. Boorstyn, A. Burchard, J. Liebeherr, and C. Ootta-
makorn. Statistical service assurances for traffic scheduling
algorithms. IEEE Journal on Selected Areas in Communications,
18(12):2651–2664, December 2000.

[5] J. Y. Le Boudec. Application of network calculus to guaran-
teed service networks. IEEE/ACM Transactions on Information
Theory, 44(3):1087–1097, May 1998.

[6] J.-Y. Le Boudec and P. Thiran. Network calculus. Springer
Verlag, Lecture Notes in Computer Science, LNCS 2050, 2001.

[7] A. Burchard, J. Liebeherr, and S. D. Patek. A calculus for end-to-
end statistical service guarantees (revised). Technical Report CS-
2001-19, University of Virginia, Computer Science Department,
May 2002. Available from http://www.cs.virginia.edu/˜jorg/cs-
01-19.pdf.

[8] C. S. Chang. Stability, queue length, and delay of deterministic
and stochastic queueing networks. IEEE Transactions on Auto-
matic Control, 39(5):913–931, May 1994.

[9] C. S. Chang. Performance guarantees in comunication networks.
Springer, 2000.

[10] G. Choudhury, D. Lucantoni, and W. Whitt. Squeezing the most
out of ATM. IEEE Transactions on Communications, 44(2):203–
217, February 1996.

[11] F. Ciucu, A. Burchard, and J. Liebeherr. A network service curve
approach for the stochastic analysis of networks. In Proc. of ACM
Sigmetrics’05, pages 279–290, 2005.

[12] R. Cruz. A calculus for network delay, parts I and II. IEEE
Transactions on Information Theory, 37(1):114–141, Jan. 1991.

[13] A. Erramilli, O. Narayan, and W. Willinger. Experimental queue-
ing analysis with long-range dependent packet traffic. IEEE/ACM
Transactions on Networking, 4(2):209–223, April 1996.

[14] F. Kelly. Notes on effective bandwidths. In Stochastic Networks:
Theory and Applications. Oxford University Press, 1996.

[15] E. Knightly and N. Shroff. Admission control for statistical QoS:
Theory and practice. IEEE Network, 13(2):20–29, March 1999.

[16] C. Li, A. Burchard, and J. Liebeherr. A network calculus with
effective bandwidth. Technical Report CS-2003-20, University
of Virginia, Computer Science Department, November 2003.

[17] J. Liebeherr, A. Burchard, and S. D. Patek. Statistical per-flow
service bounds in a network with aggregate provisioning. In
Proceedings of IEEE Infocom 2003, San Francisco, May 2003.

[18] I. Norros. On the use of fractional brownian motion in the theory
of connectionless networks. IEEE Journal on Selected Areas in
Communications, 13(6):953–962, August 1995.

[19] A. Papoulis. Probability, Random Variables, and Stochastic
Processes (3rd ed). New York: McGraw-Hill, 1991.

[20] J. Qiu and E. Knightly. Inter-class resource sharing using
statistical service envelopes. In Proceedings of IEEE INFOCOM
’99, New York, NY, March 1999.

[21] D. Starobinski and M. Sidi. Stochastically bounded burstiness
for communication networks. IEEE Transactions on Information
Theory, 46(1):206–212, January 2000.

[22] D. Stiliadis and A. Varma. Latency-rate servers: a general
model for analysis of traffic scheduling algorithms. IEEE/ACM
Transactions on Networking, 6(5):611–624, 1998.

[23] M. Vojnovic and J.-Y. Le Boudec. Bounds for independent
regulated inputs multiplexed in a service curve network element.
IEEE Transactions on Communications, 51(5):735–740, May
2003.

[24] O. Yaron and M. Sidi. Performance and stability of commu-
nication networks via robust exponential bounds. IEEE/ACM
Transactions on Networking, 1(3):372–385, June 1993.

PLACE
PHOTO
HERE

Chengzhi Li (S’97, M‘99) received the Ph.D.
degree in computer engineering from Texas
A&M University, College Station, in 1999.
From 1999 to 2001, he was a Postdoctoral
Fellow at Rice University, Houston, TX.
From 2001 to 2003, he was a Research
Scientist at the University of Virginia, Char-
lottesville. He is currently a visiting Assis-
tant Professor at the University of Texas at
Arlington.

PLACE
PHOTO
HERE

Almut Burchard received the Ph.D. degree
in Mathematics from the Georgia Insitute of
Technology in 1994. She was on the faculty
of the Department of Mathematics at Prince-
ton University (1994-1998) and the Univer-
sity of Virginia (1994-2005). Since Fall 2005,
she is an Associate Professor of Mathematics
at the University of Toronto.

PLACE
PHOTO
HERE

Jörg Liebeherr (S’88, M’92, SM’03) re-
ceived the Ph.D. degree in Computer Science
from the Georgia Institute of Technology in
1991. He was on the faculty of the Depart-
ment of Computer Science at the University
of Virginia from 1992–2005. Since Fall 2005,
he is with the University of Toronto as Pro-
fessor of Electrical and Computer Engineer-
ing and Nortel Chair of Network Architecture
and Services.


