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Abstract—A statistical network service which allows a cer- network links and increase the achievable link utilization.
tain fraction of traffic to not meet its QoS guarantees can ex- The key assumption that leads to the definition of statis-
tract additional capacity from a network by exploiting sta-  tica| services is that traffic arrivals are viewed as random
tistical properties of traffic. Here we consider a statistical rocesses. With this assumption a statistical service can
service which assumes statistical independence of flows, but.p ) o . .

improve upon a deterministic service by (1) taking advan-

does not make any assumptions on the statistics of traffic o i
sources, other than that they are regulated, e.g., by a leaky 129€ Of knowledge about the statistics of traffic sources,

bucket. Under these conditions, we present functions, so-and (2) by taking advantage of the statistical independence
called local effective envelopesd global effective envelopgs of flows.
which are, with high certainty, upper bounds of multiplexed

. . Since it is often not feasible to obtain a reliable statis-
traffic. We show that these envelopes can be used to Obtalntical characterization of traffic sources, recent research on
bounds on the amount of traffic on a link that can be provi- ’

sioned with statistical Q0S. A key advantage of our bounds statistical QoS has attempted to exploit statistical multi-
is that they can be applied with a variety of scheduling algo- Plexing without assuming a specific source model. Start-
rithms. In fact, we show that one can reuse existing admis- ing with the seminal work in [8], researchers have inves-
sion control functions that are available for scheduling algo- tigated the statistical multiplexing gain by only assum-
rithms with a deterministic service. We present numerical jng that flows are statistically independent, and that traffic
g;ﬁggg’;lg?:nﬁecgsr?ﬁ:{i;?]ebzuargrt:]eitrtgg xmso\grltzn?ﬁ:igl from each flow is constrained by a deterministic regulator,

. . o e.g., by a leaky bucket [5], [8], [7], [9], [10], [12], [16],
envelope approach to those achieved with existing methods. [17], [19], [20], [21]. Henceforth, we will refer to traffic
Key Words: Statistical Multiplexing, Statistical Servicewhich satisfies these assumptionsezgilated adversarial
Scheduling, Quality-of-Service. traffic.

|. INTRODUCTION In this paper we attempt to provide new insights into

Perf _ S K ith the problem of determining the multiplexing gain of sta-
grp rmance gga_rantees n Qo' 'ngtwor §are either ﬁ?ﬁcally independent, regulated, but otherwise arbitrary

terministic or statistical. Adeterministic servicguaran- traffic flows at a network link. We introduce the notion

tees that all packets from a flow satisfy given Worst-ca%? effective envelopesvhich are, with high certainty, up-

ehnd—to—endkdezlay bounds and no dpacket; lar.e dropPe‘?aé’P bounds on the aggregate traffic of regulated flows. We
the r\detworr] [h'],h[4]’ |[8]’ I[l‘:’]' g etermlnlstlchserV|ceu$e effective envelopes to devise admission control tests
provides the highest level of QoS guarantees, howeveglt , qavistical service for a large class of scheduling algo-

leaves a significant portion of network resources on the Mhms. We show that with effective envelopes, admission

erage ur_1u§ed [22]'_ o _ control for a statistical service can be done in a similar
A statistical servicenakes probabilistic service guarang, qpion as with deterministic envelopes for a deterministic
tees, for example, of the form: service [2], [4] . In fact, we show that one can reuse admis-
Pr[Delay > X] <e or Pr[Loss| <ce. sion control conditions derived for various packet schedul-

ing algorithms in the context of a deterministic service,

By allowing a fraction of traffic to violate its QoS guaran—e_g” [4], [15], [23]. Note that only few results are available

tees, one can improve the statistical multiplexing gain 84 statistical multiplexing of adversarial traffic, which can

This work is supported in part by the National Science Foundatigonsider scheduling algorithms other than a simple multi-
through grants NCR-9624106 (CAREER), ANI-9730103, and DMSsjexer [7], [12].
9971493, and by the New York State Center for Advanced Technology
in Telecommunications (CATT). Related work, which, due to space constraints, cannot



flow 1 R A. Traffic Arrivals
(T
. . @_. Traffic arrivals to the link come from a set of flows

flow At t+T which is partitioned intd;) classe€’,, each containing\V, '
flows. (Each flow may itself be an aggregate of the traffic
(unregulated) Regulators (regL_JIated) ) Buffer f | . | .
arrivals arrivals with Scheduler rom multiple SGSSlOI’IS.)
. . The traffic arrivals from flowj in an interval[t;, t2) are
Fig. 1. Regulators and Scheduler at a Link. denoted asl; (1, ). We assume that a traffic flow is char-

acterized by a family of random variablds(¢,, t) which
be fully discussed, are all attempts to consolidate the getharacterized as follows:

terministic network calculus [4] with statistical multiplex-(a1) Additivity. For anyt; < ¢ < t3, we have
ing (e.q., [2], [6], [10], [11], [12], [14]). In addition, of Aj(tr,to) + Aj(ta,t3) = Aj(tr,t3).
particular relevance to this paper are all previous resulf§2) subadditive Bounds. Traffic Aj is regulated by a
on statistical multiplexing gain with adversarial regulategeterministic subadditive envelopt as
traffic, as cited above.

The results derived in this paper only apply to a single ~ A;(t,t +7) < A5(1)  VE>0,¥r>0. (1)

node. Since traffic from multiple flows passing through

the same sequence of congested nodes may become c&ﬁ@— Stationarity. The A; are stationary random vari-

H !
lated, the assumption of statistical independence of ﬂo\%}gles, Le.yt,t' >0

may not h_oId in such a setting. Only few results are cur- PriA;j(tt+7) <] = PriA;(t ¢ +7) <], (2)

rently available on end-to-end QoS guarantees for adver-

sarial regulated traffic [7], [20], [21]. In other words, all time shifts ofi; are equally probable.
The remaining sections of this paper are structured @) Independence.The A; and A; are stochastically in-

follows. In Section Il we specify our assumptions on th@ependent for all # ;.

traffic and define the effective envelopes. In Section I{A5) Homogeneity within a Class. Flows in the same

we derive sufficient schedulability conditions for a generalass have identical deterministic envelopes and identical

class of packet schedulers, which can be used for a delay bounds. Sad; = A% andd;, = d; if i andj are

terministic and (two types of) statistical QoS guaranteds.the same class. Henceforth, we denoteipyhe delay

In Section IV, we use large deviations results to deri@gound associated with traffic from clags By A¢, we

bounds for effective envelopes. In Section V we compa@ienote the arrivals from clasg that is, Ac, (t,t + 7) =

the statistical multiplexing gain attainable with the effec®_;cc, 4;(t,t + 7).

tive envelopes approach to those obtained with other metfemarks:

ods ([8], [12], [19]). In Section VI we present conclusions We want to point out that the above assumptions are

of our work. quite general. The class of subadditive deterministic traf-

fic envelopes is the most general class of traffic regulators

[4], [2]. The assumptions on the randomness of flows are

also quite general. Note that, different from [9], [10], we

We consider traffic arrivals to a single link with transd© Not require ergodicity.
mission rateC. As shown in Figure 1, the arrivals frome The traffic regulators most commonly used in practice
each flow are policed by a regulator, and then inserted it 1€aky bucketsvith a peak rate enforcer. Here, traffic
a buffer. A scheduler determines the order in which tra! flow j is characterized by three parametefy, o, p;)
fic in the buffer is transmitted. In the following, we view?Vith & deterministic envelope given by
traffic mainly as continuous-time fluid-flow traffic. Note, "

. . . ) L At = min{P; : ; >
however, that our discussion applies, without restrictions, j(7) = min{F;7, 0; + p;7} vrz0, ()

to discrete-time or discrete-size (packetized) views of trgfmere Pj > p, is the peak traffic ratep; is the average

fic arrivals. traffic rate, ands; is a burst size parameter. We will use
QoS guarantees for a floyvare specified in terms of this type of regulators in our numerical examples in Sec-

a delay boundi;. A QoS violation occurs if traffic from tion V.

flow j experiences a delay exceediig (We assume that. A consequence of subadditivity of the! is that the limit

delays consist only of waiting time in the buffer and trang, := lim, ., A3(7)/7 exists, and that it provides an up-

mission time.) per bound for the longterm arrival rate fer;. We will

Il. TRAFFIC ARRIVALS AND ENVELOPE FUNCTIONS



assume without loss of generality, that forall intervals of length3, if it holds for one specific intervalg.
When applied to scheduling, we will selegtsuch that it

lim M = pj. (4) has at least the length of the longest busy petiod.
TTree T Assuming that one has obtained local or global effec-
B. Definition of Effective Envelopes tive envelopes separately for each traffic class, the follow-
We next defindocal effective envelopeandglobal ef- ir;g lemma helps to obtain bounds for the traffic from all
classes.

fective envelopesvhich are, with high certainty, upper
bounds on aggregate traffic from a given clgss The
envelopes will be defined for a set of flowswith ar-
rival functions A; and aggregate traffielc(¢,t + 7) =

Lemma 1: Given a set of flows that is partitioned into
Q classeg’,, with arrival functionsAcq. LetGc, and He,
be local and global effective envelopes for clgssThen

, the following inequalities hold. Correction:
Zjec Aj (t,t+7). 7-20-99
Definition 1: A local effective envelopdor Ac(t,t+7) (@) If 22, Ge,(7:¢) <, then, for allz,
is a functionge( - ; ¢) that satisfies for alt > 0 and allt Pr [Zq Ac,(t,t+7) > x} <Q-e.

(b) 1>, He, (7, B;¢) < x(r) forall 7, then
Pr|Ac(t,t < ; >1—c. 5

r{ c(t,t+7) _.gc(mﬂ z1-¢ ®  p Br: 5,6, 8) > x(n)] < Qe
In other words, éocal_effectlve enveloperovides _a_bound The rather simple proof of the lemma can be found in
for the aggregate arrivaldc (¢, ¢ + ) for any specifid’lo-  [1]. Our derivations in Section IV will make it clear that

cal)) time interval of lengthr. Under _the statio_narity as-for = small enough, neitheyc, nor Hc, are very sensitive
sumption (A3), Eqgn. (5) holds for all timesprovided that \yith respect tos, so that the bounds for andQ - = are

it on!y holds for one value = t,. _ comparable.

It is easy to see that there exists a smallest local effec-
tive envelope, since the minimum of two local effective IIl. DETERMINISTIC AND STATISTICAL
envelopes is again such an envelope. Note, however, that SCHEDULABILITY CONDITIONS

local effective envelopes are in general not subadditive in

7, but satisfy the weaker property In this section, we present three schedulability condi-

tions for a general class of work-conserving scheduling al-
Ge(Ti + 72,61 + 22) < Ge(mi,21) + Gelma,e2) . (6) 9orithms. The first condition, expressed in terms of deter-
ministic envelopes, ensures deterministic guarantees. The
A local effective envelop&j:(7;<) is a bound for the second and third conditions, which use the local and global
traffic arrivals in an arbitrary, but fixed interval of length effective envelopes, respectively, yield statistical guaran-
Global effective envelopes, to be defined next, are bourtdes. All three schedulability conditions will be derived
for the arrivals in all subinterval,t + 7) of a larger in- from the same expression for the delay of a traffic arrival in
terval. an arbitrary work-conserving scheduler (Egn. (14) in Sec-
For the definition of global effective envelopes, we takion IlI-A).
advantage of the notion of empirical envelopes, as used inn our discussions, we will not take into considera-
[2], [22]. Consider a time intervalg of length 3. The tion that packet transmissions on a link cannot be pre-
empirical envelope&( - ; 3) of a collectionC of flows is empted. This assumption is reasonable when packet trans-

the maximum traffic in subintervals @f as follows: mission times are short. For the specific scheduling al-
gorithms considered in this paper, accounting for non-
Ee(r;0) = . tiug’g Ac(t,t+ 7). @) preemptiveness of packets does not introduce principal

T T)lpg

difficulties, however, it requires additional notation (see
Definition 2: A global effective envelopdor an inter- [15]). Also, to keep notation minimal, we assume that the
val I3 of length 3 is a subadditive functiort{¢( - ;3) transmission rate of the link is normalized, thaCls= 1.
which satisfies
A. Schedulability
Pri&e(r;B) < He(r;B,e), VOST< Bl 21—c¢. Suppose a (tagged) arrival from a flowin class ¢
8) (j € C,) arrives to a work-conserving scheduler at titne

The attribute ‘global” is justified SmCé{C( ' ;6’5) IS a !For arrival functions4; and regulators with deterministic envelopes

bound for traffic for all intervals of lengthr < /3 in I5. A3, the longest busy period in a work-conserving scheduler is given by:
Now, due to stationarity of thel;, Eqn. (8) holds forll inf{r >0; 3., Aj(r) < 7}.



Without loss of generality we assume that the scheduler is FIFO: 7, =0
empty at timed. We will derive a condition that must hold -7 ,p>q
so that the arrival does not violate its delay boufpd SP: =40 ,P=q
Let us used?!(t1, t) to denote the traffic arrivals in the dy p<q
time interval[t,, t2) which will be served before a clags EDF: Tp = max{—7,dy, — dp}
arrival at timet. Let Ag;f(tl, t2) denote the traffic arrivals
from flows incp which contribute tmq,t(th t2) With Eqn (13), the arrival from CIaSﬁ at timet does

Suppose that — 7 is the last time before when the Not have a violation ifi, is selected such that
scheduler does not contain traffic that will be transmitted
before the tagged arrival from clagsThat is,

g o sup{ZAcp(t—%,t—{—Tp)—%} <dy. (14)
#=inf{z > 0| AP (t —2,t) < 2} . 9) Tl

So, in the time intervalt — 7, ¢) the scheduler is contin- N€Xt, we show how Eqn. (14) can be used to derive
uously transmitting traffic which will be served before th&chedulability conditions for deterministic and statistical
tagged arrival. (Note thatis a function oft andq. Tokeep S€rvices, using deterministic envelopes, local effective en-
notation simple, we do not make the dependence explic?f%'oloes_’ and global effective envelopes. For a determinis-
Given 7, the tagged clasg-arrival at timet will leave UC Service, the delay bound, must be chosen such that

the scheduler at time—+ § if § > 0 is such that Eqn. (14) is never violated. For a statistical serviggjs
chosen such that a violation of Eqn. (14) is a rare event.

6 = inf {Tout | Aq’t(t — 7A',t + Tout) < T+ Tout} . (10)
B. Schedulability with Deterministic Envelopes

Hence, the tagged clagsarrival does not violate its delay
boundd, if and only if Exploiting the property of deterministic envelopes in

Eqgn. (1), we can relax Eqgn. (14) to

VE Iroue < dg  {AYN(t— 7ot + Towr) < F 4 Tout} -
(11)
o o supd DY AT 7)o <dy. (15)
Then, the traffic arrival does not have a deadline violation 7 » jeC,
if d, is selected such that
Since, 7, + 7 is not dependent on we have obtained a
sufficient schedulability condition for an arbitrary traffic
arrival. We refer the reader [15] to verify that for FIFO
In general, Eqn. (12) is a sufficient condition for meeting@nd EDF scheduling algorithms the condition in Eqgn. (15)
delay bound. For FIFO and EDF schedulers, the conditi@also necessary, in the sense that if it is violated, then
is also necessary [157. there exist arrival patterns conforming with}; leading to

For a specific work-conserving scheduling algorithmieadline violations for clasg For SP scheduling, the con-
let 7, (with —7 < 7, < d,, ) denote the smallest valuesdition is necessary only if the deterministic envelopes are
for which concave functions.

sup {AP'(t — 7.t +dy) — 7} < d, . (12)

Ac,(t —7,t+7) > ALt — %t +d,) . (13 Next we present bounds on the Iikeliho'od of a violation
’ of Egn. (14), using local and global effective envelopes.

Remark: For most work-conserving schedulers one can Schedulabil ith Local Effective Envel
easily find7, such that equality holds in Eqn. (13). Fot- Schedulability with Local Effective Envelopes

example, for FIFO, SPand EDF schedulers, we have:  wjith Eqn. (14), the probability that the tagged arrival
2A FIFO scheduler transmits traffic in the order of arrival timeJ.rom timet experiences a deadline violation is less than

An EDF (Earliest-Deadline-First) scheduler tags traffic with a deadlitk dq iS selected such that
which is set to the arrival time plus the delay bouhd and transmits
traffic in the order of deadlines.

2An SP (Static Priority) sche_duler ass_igns eacr_l class a priority leved,. | gy {Z Ae (t —Ft+ 7—.p) _ 72} < dq] >1—c¢.
(we assume that a lower class index indicates a higher priority), and has | > P
one FIFO queue for traffic arrivals from each class. SP always transmits P

traffic from the highest priority FIFO queue which has a backlog. (16)



Let us, for the moment, make the convenient assumptitire schedulerd; of length at mos{3, which starts at time

that < t — 7 and which ends at a time after the tagged arrival
has departed.
Pr |sup ZAC (t—7t47) =7 <dg| = Using the properties of the empirical envelofie, as
# > g defined in Section Il, we have that, for alhnd7,+7 > 0,  correction:
7-20-99
sup Pr Z Ac,(t —7,t4+7) —7 < dq] .(17) Ee, (Tp +738) > Ac, (t — 7,t + 7). (20)
i P

_ _ . _Thus, we can only have a deadline violation if
Assuming that equality holds in Egn. (17), we can re-write

Eqgn. (16) as

37 {Z@(fﬁ%;ﬁ) —%} >d, . (21)
S Ae,(t—tt+7,) — 7 <d, 8
p

>1—c.

sup Pr
T With Lemma 1(b), the probability that an arrival from
(18) classg experiences a deadline violation in the interyal

Remark:The assumption in Eqn. (17) requires further ju§§ <&, if dy is selected such that

tification, since, in general, the right hand side is larger
than the left hand side. On the other hand, several works gy, ZHC (7p+7:58,6/Q) =7 p <d,. (22)
on statistical QoS have used Eqn. (17) with equality [3], * » :

[11],[12], [13], [14], and, in several cases, have supported
the assumption with numerical examples. Note that the nature of the statistical guarantees derived

with local effective envelopes (in Subsection I1I-C) and
that G, (r, =) < « implies Pr [Acp (t,t+7) > x] < e wit_h glqbal effective envelopes (in Subsection 11I-D) are
Then, with Lemma 1(a) and assuming that Eqn. (17) holfuite dlﬁgrept. Local effective envelopes are (under_t'he
with equality, we have that a clagsarrival has a deadline 2SSumption in Eqn. (17)) concerned with the probability

violation with probability< = if d, is selected such that that a particular traffic arrival results in a deadline viola-
1 tion. Global effective envelopes address the probability

that a deadline violation occurs for some arrival in a cer-
sup Z Ge,(Tp +7,¢/Q) —7 p <dy.  (19) tain time interval. Clearly, a service which guarantees the
4 p latter is more stringent, and will lead to more conservative

With Eqn. (19) we have found an expression for the propgdmission control. S
we want to point to the structural similarities of

bility that an arbitrary traffic arrival results in a violation of Lastly,

delay bounds. This condition can be viewed as a genéf3 conditions in Egs. (15), (19), and (22). Thus, schedu-

formulation of the schedulability conditions for statistical@Pility conditions which have been derived for a deter-
QoS from [11], [12], [14]. ministic service can be reused, without modification, for a

. istical service if effective envel re available.
The drawback of the condition in Eqgn. (19) is its depens-tat stical service if effective envelopes are available

dence on the assumption in Eqn. (17). Empirical evidence
from numerical examples, including those presented in this
paper, as well as numerical evidence from previous work|In this section we will construct the local and global ef-
which employed this assumption [3], [12], suggests thigctive envelopes: and#. for the aggregate traffic from

Eqn. (19) is not overly optimistic. However, it should b& set of flows as described in (A1)-(A5). Throughout this

noted that the bound in Eqgn. (19) is not a rigorous one. section, we will work only with flows from a single class.
So, we will drop the indexq’; andC and N, respectively,

D. Schedulability with Global Effective Envelopes will denote the set of flows and the number of flows. We

We next use global effective envelopes to express tfignote byA*(r) the common deterministic envelope for
probability of a deadline violation in a time interval. Wehe flowsinC, and byA¢(t.t + 7) the aggregate traffic.
will see that this bound, while more pessimistic, can be Our derivations proceed in the following steps:
made rigorous. Step 1. We compute bounds for the moments of the in-
Consider again the traffic arrival from clagsvhich oc- dividual flows A;(¢,¢ + 7). Since the flows are inde-
curs at timet. The arrival timet lies in a busy period of pendent, this directly leads to bounds for the moments of

Recall from the definition of the local effective envelop

IV. CONSTRUCTION OFEFFECTIVE ENVELOPES



Ac(t,t+71)4 where we have used the bound on the second moment to-
Step 2. We use the Chernoff bound to determine a locgether with the assumption that[A¢ (¢, ¢ + 7)] = pr.
effective envelopg: directly from our bounds on the mo- An application of the Central Limit Theorem, will now
ments. yield a bound which is equivalent to Knightly’s bound on
Step 3. We use a geometric argument to constrét therate variancein [12].

from any local effective envelopg&:. Specifically, we will Using first the Central Limit Theorem and then the

provide bounds of the following nature: bound on the variance in Eqn.(29), we see thatfof p7  correciion:
7-20-99

Ge(rse) < Helr; Bre) < Ge(r'se') . (23) PrlAc(t,t+7) > Nax]
wherer’/T > 1 ande'/e < 1 depend ons. We claim that ~1-® <M> (30)

for ¢ sufficiently small and3 not too larges’ /7 =~ 1, and S

resulting global effective envelope is reasonably close to z—pr
the local effective envelope. <1-0 (\/N 3 ) ,» (31)

A. Moment bounds

where ® is the cumulative normal distribution. Herg,
The moment generating functions of the distributions @ihd §, respectively, are the square roots of the left hand

Ac and theA; are defined as follows: and right hand sides of Egn. (29).

To find G¢ so that

Me(s,7) = B[00 (oa) e

Mj(s,7) = B[00 (25) Pr{Ac(0,7) > Ge(rie)] < <, (32)

Due to the stochastic independence of the flows, we GRB setpr [Ac(

: t,t + 7) > Nz| =~ =in Egn. (31) and solve
write:

for Nx. This gives us an (approximate) local effective en-
N velope as
Mec(s,7) = HM]‘(S,T). (26)
i A7)
Thus, to obtain a bound oh/¢(s, 7), it is sufficient to Ge(r;<) ~ Npr +2VNpr
bound the moment-generating function of a single flow
A;(t,t+ 7). The following lemma provides such a boundyhere» ~ |log (27e)| is defined byl — &(z) = =.

We refer to [1] for a proof. ]
Lemma 2: Assume thak(t,  + ) satisfies Conditions B-2 Using the Chemoff Bound _
(A1), (A2), and (A3). Then, While the estimate in Eqn. (33) is asymptotically cor-
rect, for finite values ofV it is only an approximation. To
M(s,r) < 1+ (eSA*(T) - 1) . (27) obtain arigorous upper bound & [A¢(0,7) > Na], re-

A*(7) call the Chernoff bound for a random varial{¢18]:

Combining Egn. (26) with (27) of Lemma 2 yields the PrlY > y] < e~V E[e*Y] Ve >0 (34)
bound T N

N
Mec(s,7) < (1 + Af(:_) (eSA*(T) — 1)) . (28)
Pr{Ac(0,7) > Na] < eV Me(s, 7) (35)
B.1 Using the Central Limit Theorem

B. Local Effective Envelopes i N
<[ (e -n)) e
T
The bound in Egn (28) can be strengthened to bounds

for individual moments. A case of particular interest is thgere, Eqn. (35) simply used the Chernoff bound, and
bound for the variance Eqn. (36) used Eqgn. (28). Since we have a choice for se-
. lecting s in Egn. (36), we want to make the bound as small
Var [Acg’t +7)] < Npr(A°(1) — o), (29 a5 possible. Far < A*(r), the right hand side is minimal
=32 =:32 whens is chosen so that

In particular, forAc, this gives

“Note that the moment generating function for arrival functidnss * _
. . : sA*(7) x A*(1)—pr

also computed in [2]. However, different from [2], our arrivals are e = — (37)
regulated by deterministic functions;. pT A*(T) —x



Substituting this value of into Eqn. (36) yields Interval of length ly

A
v

Pr[Ac(0,7) > Nz

RPN T N R NS
pr\Tm (A(T) —pT) A0 : : o ! ! —°
< . N N N N N N .
[T G e o T
: : : : : T : :
Again, our goal is to findjc satisfying Eqn. (32). Using : " "

the bound in Eqgn. (38) and enforcing tltgt(7; <) is never

larger thanV A*(7) we may set
Fig. 2. Embedding Intervals.

Ge(1;2) = Nmin(x, A*(7)) (39)
Lemma 3: Let > 2 be a positive integer,z an interval
wherez is set to be the smallest number satisfying the igf |ength, ¢ € I3,and0 < 7 < 3. Then

equality
Pr[B(z,t,7)] < Pr[Bg(z,7)] <

_z * lfﬁ
(%) m (‘25(:)):?) " < /N (40) < @PT[B(,%,@T’)] ’ (43)

g
It can be verified that fofV sufficiently large, this bound with 7'/7 = (k + 1)/k.

matches closely the CLT bound of Eqn. (33). Proof: By stationarity, we may assume that = [0, 3]
andt = 0. The left inequality holds by definition, since
Remark: For deterministic envelopes with a peakB(x,OjT) C Bg(x,7). To see the inequality on the
rate constraintd*(r) < Pr, both expressions fofc in ight, lett; = ir/k (i = O0,...,[8k/7]), and con-
Eqn. (39) and Eqn. (33) describe lines, with slopes whigfyer the intervalgt;, t;,x41] of length 7/ = %T for
depend orp, P, N, ande. In other words, the arrivals; — 1 (3 — 7)k/r] (all but possibly the last are
Ac(t,t + 7) satisfy, with probability at least — =, again  gypintervals of0, 3].) See Figure 2 for an illustration of
a rate constraint. The new rate differs from the mean ra{gs construction. Clearly, every subinterval of lengtin
N p by an error of ordex/N (for fixed values op, P, and I is contained in at least one of the intervals of length

£). The claim now follows with stationarity. |

C. From Local to Global Effective Envelopes Lemma 3 provides a bound on arrivals in all subintervals

We use the results from the previous subsection to cdH-/€ngth7 in 7. One of its implications is that for every
struct a global effective envelopé. for A¢. The first step Value of,
is a geometric estimate f@- for a particular value of in E+1
terms of the local effective envelope. The second step fixes k
the value of the global effective envelope for a finite col-

, . : . where&¢ is the empirical envelope, ang: is any local
lection of valuesr;. Finally, we obtain the entire envelope ¢ P pe, and y

by extrapolation effective envelope.
y P o _ We next assign a finite number of values for
Let us define two events:

He( -3 3,¢): Pick a collection of values; andk; (i =
B(:U, t, 7') = {Ac(t,t + 7-) > Nx} . (41) 1,... ,n) and define
By(e,7) = {&c(rif)zNa}.  (42) Hel(mi B2) = Gelrlse!) | (45)

where
-1
> . (46)

Pr|&c(T;8) > Ge( mie)| < —<, (44)

for an arbitrary intervall; of length 3. The event
B(x,t, ) occurs if the arrivals in the specific time inter- n .

; _ , k41 ) Bk;
val [t,t + 7] exceedNz, while Bz(z,7) occurs if there i =T and ¢ =« Z p
is some interval of lengthr in the intervallz where the i=1

arrivals exceedvVz. To justify this construction, note that by Eqn. (44) we have

With Egn. (38), we have a bound for the probability of n
eventsB(x,t, 7). The following bound forBs(z, ) in Pr [32' : Ee(m;8) > gc(ri’,s’)} < Z %a’ (47)
terms of B(x, ¢,7) will be used to construcHc(-; 3, <) =1

from Ge(+; ¢). < s_. (48)



To get values for the global effective envelope on intes- Peak Rate: Peak rate allocation, provides deterministic
vals (7;—1,7;) and [0, 1), we first extrapolate, using theQoS guarantees, but, is an inefficient method for achieving
bound A* and monotonicity, and then enforce subadditivQoS.

ity. More precisely, we set « Deterministic: We use admission control tests for deter-
ministic QoS from Eqn. (15). The admissible traffic varies
He(r B,e) = inf > F6:). (49)  with the scheduling algorithm.
o « Average Rate: Average rate allocation only guarantees
wheref is an auxiliary function defined by finiteness of delays and average throughput.
We will evaluate the two methods for provisioning sta-
min{He(ri-1;3,¢) + A" (T —7i—1), tistical QoS which are presented in this paper.
f(r) = He(misB,2)y 7€ [ri1,mi),i=2,...,n  Local Effective Envelope: Here we use Eqn. (18) to
min {A*(7), Hc(;68,2)} 7 €[0,7) determine admissibility. We will evaluate the quality of

(50)  the following two bounds, derived in Section IV:
In other words,H. is the largest subadditive function Local Effect'lve Enyelope (CB) Uses the bound from
) Eqgn. (40), obtained with the Chernoff bound.
which does not exceefl. .
) . . . ., . — Local Effective Envelope (CLT) Uses the bound
Since there exists no universal “best” global effectiv. . . -
o . . . _from Eqgn. (33), obtained with the Central Limit Theorem.
envelope, it is clearly impossible to make an optim . o .
) . . Recall from our discussion in Section IV that tloeal ef-
choice for the values of; andk;. It is, however, possi- . .
) : fective envelope (CLTiesults are equivalent to the rate-
ble to make good choices, which lead to global effective . . .
. . . variance envelope method described in [12].
envelopes that approximate the given local effective enve- .
. . « Global Effective Envelope: We use Eqgn. (22) to deter-
lope well, at least when is sufficiently small. . o . .
. mine admissibility. The global effective envelope is con-
In our numerical results, we use

structed by first finding? (see Footnote 1), and choosing

ki=k, 7i=~'7 (i=1,...,n), (51) anumberr, which is small compared to the delay bounds.
We determine the parametersk, andr; according to (51)
wherer, is a small number, and we choose and (52). We then apply Eqn. (45) for each of theand
1 T complete the process by the extrapolation in Egs. (49) and
y=1+ Tl k=z (z + \/ﬁg) ; (52) (50). (In Eqgn. (45), we use the local effective envelope

_ ' (CB) rather than the corresponding CLT bound, since the
wherez is defined byl — ®(z) = = ands by Eqn. (29). latter would yield only approximate bounds.)

The choice of the; in Eqn. (51) guarantees that We compare our results with the effective bandwidth ap-
ka1 proach for regulated adversarial traffic from the literature:
He(riBe) < Ge(——77¢), (53) . Effective Bandwidth [8], [16], [19]:° The effective
bandwidth approach assigns to each flow a fixed capac-
for all 7 € [r,, 5], where, by Eqn. (46), ity, the effective bandwidthand assumes that each flow is
_ serviced at a rate which corresponds to the effective band-
ro_ Ty —1) .
£ = ——> €. (54) width.

Bl The delay bounds will be indirectly derived from the buffer
In [1] we provide a justification for the choice éfand size. We set the delay bounitto d = B/C, whereB is
~ in Eqgn. (52) for peak-rate constrained traffic with largthe buffer size at the scheduler a@dis the transmission
burst sizes. This is done with a heuristic optimizatiorate of the link.
which applies the CLT approximation from Eqn. (33).  In our examples, we include the following results on effec-
tive bandwidth:
— EB-EMW: This is the result from the classical paper
In this section, we evaluate the effective envelope apy Elwalid/Mitra/Wentworth (Egn. (39) in [8]).
proach, using the schedulability conditions from Sec— EB-RRR: We use Egn. (9) from [19] by Ra-
tion Il and the bounds derived in Section IV. The key criagopal/Reisslein/Ross which presents an improvement to
teria for evaluation is the amount of traffic on a link whiclthe EB-EMW result.

can be prOVISloned with Q_O_S guarantees.. L 5The cited works calculate effective bandwidth for regulated adver-
As benchmarks for statistical QoS provisioning We CORayial sources. The complete literature on effective bandwidth is much

sider the following non-statistical methods: more extensive.

V. EVALUATION



In all our experiments, we consider traffic regulator€LT are only approximate, and may be too optimistic, es-
which are obtained from peak rate controlled leaky buckecially for small number of flows. Figure 3 also shows
ets with deterministic envelopes as given in Eqn.83h that local and global effective envelopes converge as the
all experiments, we consider a link wifh= 45 Mbps, and number of flowsV is increased.

we consider two traffic classes. The traffic parameters of a o .
flow in one of the classes are as follows: B. Example 2: Admissible Region for Homogeneous

Flows

Class| Peak Ratg Mean Rate| Burst Size In thi | : ; h ber of fl d
P (Mbps) | p (Mbps) | o (bits) n this example, we investigate the number of flows ad-

mitted by various admission control methods for guaran-
; ég 812 igggg teeing QoS at a link with a FIFO scheduler. We assume
i i that flows are homogeneous, that is, all flows belong to a

To parameters are selected so as to match, at least appf¥dle class. Again, the probability of a violation of QoS
imately, the examples presented in [8], [19]. guarantees is set to= 107 _

We will present three sets of examples. In the first ex- We compare the admissible regions of the local and
ample, we compare the deterministic envelopes with OgL_obaI effec'tlve envelopes, to those of the effective band-
bounds for the local and global effective envelopes for sét¥dth techniques (both EB-EMW and EB-RRR), and to a
of homogeneous sources. In the second example, we c8if{erministic QoS guarantees.
pare the maximum number of admissible flows in a FIFQ e compare these results with those obtained from a
scheduler for a given delay bountland delay-violation discrete event simulation. For the simulation, we assume
probability =. In the third example, we investigate thdhat the arrivals from a source have a pattern which is said
case of heterogeneous traffic with different QoS requir: have adversarial patterns for peak-rate controlled leaky

ments, and we compare the admissible regions for diffé#ckets [19]. If the parameters of a flow are given by
ent scheduling algorithms (SP, EDF). (P, p, o), the adversarial pattern transmits at the peak rate

P for a durationo /(P — p), and then continues sending
A. Example 1: Comparison of Envelope Functions  traffic at ratep for a durationdC/((C' — p) - 2). Then, the
_ source shuts off, waits for a duratier/ p and then repeats
In the first example, we study the shape of local anfly nattern. The starting time of a pattern of the flows are
global effective envelopes for homogeneous sets of flowgitormly and independently chosen over the length of its

as functions of the lengths of time intervals. The enveIOpﬁériod. We refer to [1] for a detailed discussion of the sim-
are compared to the deterministic envelogé(r) = | ations

min{ P;7, 05 + p;, 7}, 10 the peak rate functiof; 7, and Figures 4(a) and (b) depict the number of admitted flows
to the average rate functign 7. In ourgraphs, we plot the as a function of the delay bound. The figures show that
amount of traffic per flow for the various envelopes (€.Gy methods for statistical QoS admit many more connec-

we presend ;. G;(7;¢)/N). tions than a deterministic admission control test. In both

Figures 3(a) and 3(b) show the results for multiplexggigres; the effective envelopes (both CLT and CB) are
flows from Class 1 and Class 2, respectively. Wesset ¢|gest to the simulation results. (Once again, we point

-6 L
107" for all envelopes. By depicting the amount of trafy ; that the results using the local effective (CLT) bounds
fic per flow for different numbers of flows\ denotes the 5q jgentical to the rate-variance results presented in [12].)

number of flows), we can observe how the statistical Mote  however, that results obtained with local effective

tiplexing gain increases with the number of flows. envelopes are approximate and are not guaranteed to be
The first observation to be made is that the local apghner hounds on the admissible regions.

global effective envelopes are much smaller than the detomparing the results from effective envelopes to the

terministic envelope or the peak rate. Another observatigfective bandwidth results, we observe that the effective
is that, for a fixed number of flowd’, the global effective gnyelope methods admits more connections than the effec-
envelope is larger than the local effective envelopes, ag¢k pandwidth methods if delay bounds are large.

the local effective envelope bound is smaller when usingThe gifference of the admissible regions in Figure 4(a)
CLT (central limit theorem), as compared to CB (Chemoff, tose in Figure 4(b) illustrate the high degree to which
bound). Note, however, that bounds for the envelopes Wiy, ize of the admissible region is dependent on the traffic

5Most of the methods listed here can work with more complex re arameters. The lower burst sizes of flows in Class 2 lead

ulators. However, since peak-rate enforced leaky buckets are wid Igrger admissibl.e.re.gions fgr al_l methods. _SpeCifiC?”yf
used in practice, they serve as good benchmarks. notice that deterministic QoS in Figure 4(b) yields similar
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Fig. 3. Example 1: Comparison of Envelope Functions for< 100 ms, ¢ = 10~%, and for Number of FlowsV =
100, 1000, 10000.
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Fig. 4. Example 2: Admissible Number of Connections at a FIFO Scheduler for Homogeneous Flows as a Function of Delay
Bounds € = 107%,0 < d < 100 ms).

results to the statistical methods, if the delay bounds amed Class-2 flows that can be supported simultaneously on
large. the 45 Mbps link.
o ] The result are shown in Figure 5. The plot depicts the
C. Example 3: Admissible Region for Heterogeneoygimissible region for SP and EDF scheduling, using the
Traffic results for the (two types of) local effective envelopes, ef-
Here we investigate an example with different scheddpctive envelopes, and deterministic envelopes. We also
ing algorithms and with heterogeneous traffic arrivals. include the admissible regions for the effective bandwidth
As scheduling algorithms, we consider Static Priorit§Pproaches (EB-EMW and EB-RRR). Note, however, that
(SP) and Earliest-Deadline-First (EDF). For a determiniie shown effective bandwidth methods assume a simple
tic service, EDF is optimal, in the sense that the admis8tultiplexer (with virtual buffer partitioning) and do not ac-
ble regions with EDF scheduling is maximal [15]. To ougount for different scheduling algorithms.
knowledge, results for a statistical service (with adversar-The results in Figure 5 show that the difference between
ial traffic), have not been reported for EDF. SP and EDF schedulers is small in all cases. The effective
In this example, we multiplex a number of flows fronenvelope is, again, more conservative than the local effec-
Class 1 and from Class 2 on 45 Mbps. We fix the deldlye envelope method. Finally, Figure 5 illustrates that with
bounds, such that the delay bound for Class-1 flows is refgterogeneous flows and the effective bandwidth methods
tively long, d; = 100 ms, and the delay bound for Class-AEB-EMW, EB-RRR) may not perform as well as methods
flows is relatively shortd, = 10 ms. For any particular which consider scheduling algorithms.
method, we determine the maximum number of Class-1We also performed a simulation for the EDF scheduling
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Fig. 5. Example 3: Admissible Region of Multiplexing Class 110]

and Class 2 Flows wite = 10~% andd; = 100 ms and
do =10 ms.

algorithm. For the simulations, we used a source moqgi]
which was shown to be adversarial for a simple multiplexer
with buffer and bandwidth partitioning [19]. We do not
know or claim that this source model is also adversariﬁg]
for EDF scheduling. However, with this choice, the simu-
lations give the same results as an average rate allocation.

[13]
VI. CONCLUSIONS

We have presented new results on evaluating the stafig

tical multiplexing gain for packet scheduling algorithms.

A useful property of our approach is that it separates t
consideration of the service definition (deterministic, sta-

e
15]

tistical), the scheduling algorithm (FIFO, SP, EDF), and
the mathematical methodology (Central Limit Theorenii6]
Chernoff Bound). Thus, our work may be useful to re-
searchers who want to determine the statistical multiplex-
ing gain for other traffic regulators, scheduling algorithmg; 7
or large deviation results. As direction for future work,

the admission control methodology presented in this paper
needs to be extended to a network environment. 18
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