
1

Enhancing Class-Based Service Architectures
with Adaptive Rate Allocation and Dropping

Mechanisms
Nicolas Christin, Member, IEEE, Jörg Liebeherr, Senior Member, IEEE, and Tarek Abdelzaher, Member, IEEE

Abstract—Class-based service differentiation can be realized without re-
source reservation, admission control and traffic policing. However, the
resulting service guarantees are only relative, in the sense that guarantees
given to a flow class at any time are expressed with reference to the service
given to other flow classes. While it is, in principle, not feasible to provision
for absolute guarantees (i.e., to assure lower bounds on service metrics at
all times) without admission control and/or traffic policing, we will show
in this paper that such a service can be reasonably well emulated using
adaptive rate allocation and dropping mechanisms at the link schedulers of
routers. We name the resulting type of guarantees best-effort bounds. We
propose mechanisms for link schedulers of routers that achieve these and
other guarantees by adjusting the drop rates and the service rate allocations
of traffic classes to current load conditions. The mechanisms are rooted in
control theory and employ adaptive feedback loops. We demonstrate that
these mechanisms can realize many recently proposed approaches to class-
based service differentiation. The effectiveness of the proposed mechanisms
are evaluated in measurement experiments of a kernel-level implementa-
tion in FreeBSD PC-routers with multiple 100 Mbps Ethernet interfaces,
complemented with simulations of larger scale networks.

Keywords— Service Differentiation, Buffer Management, Scheduling,
Feedback Control, Best-Effort Bounds.

I. INTRODUCTION

Service architectures for packet networks can be distin-
guished according to two criteria. The first criterion is whether
guarantees are expressed for individual traffic flows (per-flow
guarantees), or for aggregates of flows with the same service
requirements (per-class guarantees). With a per-flow architec-
ture, a router must inspect each incoming packet to determine
to which flow the packet belongs and match the packet with
per-flow guarantees (classification). Generally, the classification
overhead increases linearly with the number of flows present in
the network. With per-class guarantees, flows are grouped in
traffic classes. Each packet entering the network is marked with
the traffic class to which it belongs, and routers in the network
classify and transmit packets according to the service guaran-
tees offered to traffic classes. Since there are usually only a few
traffic classes in the network, the overhead incurred with per-
class guarantees is smaller than that of per-flow guarantees. As
a disadvantage, per-class service guarantees do not immediately
translate into per-flow guarantees.

The second criterion to distinguish service architectures is
whether guarantees are expressed with reference to guarantees
given to other flows or classes (relative guarantees), or if guar-

N. Christin is with Carnegie Mellon University, Information Networking In-
stitute and CyLab Japan. E-mail: nicolasc@cmu.edu.

J. Liebeherr is with the Department of Electrical and Computer Engineering,
University of Toronto. E-mail: jorg@comm.utoronto.ca.

T. Abdelzaher is with the Department of Computer Science, University of
Illinois at Urbana-Champaign.

This work is supported in part by the National Science Foundation through
grants ANI-9730103 and ANI-0085955. Most of the work was done while all
three authors were with the Department of Computer Science, University of
Virginia. Portions of this paper appeared in a preliminary form in [1] and in [2].

antees are expressed as absolute bounds (absolute guarantees).
As an example, an absolute guarantee can be of the form “De-
lay of flow i never exceeds 4 ms.” Relative service guarantees
are weaker than absolute guarantees, and can be further divided
into qualitative guarantees and proportional guarantees. Quali-
tative guarantees specify a service differentiation of classes, but
without quantifying the differentiation, as in “Class-2 delay is
less than class-1 delay.” Proportional guarantees quantify the
differentiation between traffic classes in terms of ratios of the
service metrics, as in “Class-1 delay is half of class-2 delay,”
but without specifying lower or upper bounds on the ratios.

The main advantage of absolute guarantees is that they pro-
vide lower bounds on the service received by a flow or a class of
traffic. However, absolute guarantees impose a need to dedicate
resources to traffic. This involves mechanisms to control the
amount of traffic that enters the network, via admission control
and traffic policing. Resource reservation schemes have been
proposed for flow-based and class-based guarantees, where re-
source reservations are handled by a signaling protocol [3], a
dedicated server [4], resource provisioning [5], or manual con-
figuration [4]. Relative guarantees, on the other hand, do not
require resource reservations, and, therefore, do not need admis-
sion control or traffic policing. Relative guarantees can be pro-
vided by appropriate scheduling and buffer management mech-
anisms at routers.

This paper is concerned with improving the capabilities of
class-based service architectures for the Internet. The class-
based service architecture proposed by the Internet Engineering
Task Force, called Differentiated Services or DiffServ [6], con-
sists of two services. The Expedited Forwarding (EF, [7]) ser-
vice provides absolute delay guarantees to predefined amounts
of traffic, and requires traffic policing, admission control, and
resource reservations. The Assured Forwarding (AF, [8]) ser-
vice enforces isolation between classes, and qualitative loss
differentiation between different drop precedence levels within
each class. The Proportional Service Differentiation architec-
ture [9, 10] showed how to strengthen Assured Forwarding by
adding proportional guarantees on delays and loss rates. Re-
cently, several research efforts have explored how to further en-
hance class-based services. Specifically, attempts have been
made to support some level of absolute guarantees, yet with-
out requiring resource reservation, admission control, or traffic
policing [6, 11, 12, 13]. Clearly, without asserting control over
the amount of traffic injected in the network (through admis-
sion control and policing) it is not feasible to guarantee absolute
guarantees at all times. On the other hand, if one permits routers
to selectively drop traffic, one can provide absolute guarantees
to the traffic that is not dropped. The Alternative Best-Effort

2

(ABE, [11]) is an example of such a service. ABE supports dif-
ferentiation for two traffic classes, where the first class obtains
an absolute delay bound, and the second class is given a better
loss rate than the first class, but has no delay guarantees. To
meet these guarantees, ABE is permitted to drop any amount of
traffic from the first class.

In this paper, we generalize the enhancements to class-based
service differentiation proposed in the literature [6,11,12,13] by
introducing the notion of best-effort bounds. We refer to a ser-
vice with best-effort bounds as a service that emulates absolute
guarantees in a network without admission control and polic-
ing. The difference between absolute guarantees and best-effort
bounds is that the former assumes a network with admission
control and policing. By limiting the number of flows via ad-
mission control and by limiting the amount of traffic per flow via
policing, such a network can deliver absolute guarantees at all
times. In contrast, a network with best-effort bounds achieves
absolute guarantees by dropping traffic or changing its traffic
rate allocation. In situations when this is not feasible, a best-
effort bound may be violated for some time. Best-effort bounds
can be verified by comparing them to absolute guarantees in a
reference network with admission control and policing. If the
reference network can support a set of absolute guarantees for
a certain amount of traffic, then the same network without ad-
mission control should be able to satisfy the corresponding best-
effort bounds.

Best-effort bounds are much weaker than the corresponding
absolute guarantees. On the other hand, best-effort bounds en-
hance the existing framework of feasible class-based guaran-
tees without introducing a need for mechanisms to control the
amount of traffic entering the network. Given that a service with
absolute guarantees at all times requires admission control and
policing, best-effort bounds are possibly the closest approxima-
tion of such a service in a network without these mechanisms.
As we will show in this paper, even in times of high traffic load,
appropriate adaptive rate allocation and dropping mechanisms
can enforce a wide range of best-effort bounds and provide pro-
portional service differentiation at the same time, thereby gen-
eralizing the service differentiation offered by any of the previ-
ously proposed class-based services.

The main challenge for realizing best-effort bounds is to find
mechanisms for routers that can meet a wide range of bounds
for a large number of classes by selectively dropping traffic and
by adjusting the traffic rate allocated to a class. The main contri-
bution of this paper is that we propose and evaluate such mech-
anisms which can meet a broad range of best-effort bounds as
well as proportional guarantees on delay, loss, and throughput.
The mechanisms employ adaptive feedback loops at link sched-
ulers of routers, which adjust the drop rates and the service rate
allocations of traffic classes to current load conditions. To our
knowledge, the feasibility of using packet-level feedback loops
at high data rates for the purpose of service differentiation has
not been demonstrated. We evaluate the effectiveness of our
adaptive rate allocation and dropping mechanisms in a kernel-
level software implementation in FreeBSD PC routers. This
implementation is currently being disseminated as part of the
ALTQ [14] and KAME [15] packages.

The remainder of this paper is organized as follows. In Sec-

tion II, we expand our discussion of the related work. In Sec-
tion III, we present a formal description of the proposed ser-
vice. In Sections IV and V, we discuss the mechanisms that
enforce the desired differentiation of loss, delay and throughput
for classes by adjusting the service rate allocation to classes and
by selectively dropping traffic. We apply linear feedback con-
trol theory for the design of these mechanisms. In Section VI,
we present an implementation of the mechanisms in FreeBSD
PC-routers. We evaluate our implementation in Section VII and
present brief conclusions in Section VIII.

II. RELATED WORK

Proportional service differentiation, originally proposed by
Dovrolis et al. [16], is perhaps the best known effort to en-
hance class-based services with relative guarantees. In the pro-
portional service differentiation architecture, relative differenti-
ation of losses and delays experienced by traffic classes, as in
“Class-2 delay ≥ class-3 delay,” is guaranteed under any traffic
load. Furthermore, proportional differentiation of loss and de-
lay, as in “Class-2 loss / Class-3 loss = 2,” is enforced whenever
feasible.

Most mechanisms for proportional service differentiation use
independent algorithms for delay and loss differentiation. Pro-
portional differentiation of delays can be implemented with ap-
propriate scheduling algorithms. Priority-based scheduling al-
gorithms such as Waiting-Time Priority, Hybrid Proportional
Delay [10], Local-Optimal Proportional Differentiation [17], or
Mean-Delay Proportional [18] can enforce proportional delay
differentiation by dynamically adjusting the priority of a given
class as a function of the waiting-time experienced by packets
from that class. Alternatively, rate-based schedulers such as the
Proportional Queue Control Mechanism [19], or Backlog Pro-
portional Rate [16] can be used to provide proportional delay
differentiation, by dynamically changing the service rates allo-
cated to classes. A slightly different approach pursued by the
Weighted-Earliest-Due-Date scheduler of [20] provides propor-
tional differentiation in terms of probabilities of a deadline vio-
lation.

Proportional loss differentiation can be implemented by
buffer management algorithms that choose which class to drop
from in order to reach steady-state proportional loss differ-
entiation [9]. Enhancements to the mechanisms discussed in
[9] can provide proportional loss differentiation over arbitrary
timescales [21].

More recent works have attempted to expand the range of
traffic conditions under which proportional service differentia-
tion can be enforced, by combining the scheduling and dropping
decisions in a single algorithm [13, 22]. For instance, in [22],
packet drops and packet transmissions are viewed as transitions
in a state diagram, where states represent the experienced level
of delay and loss differentiation. Packet scheduling and drop-
ping is performed to reach states that match the desired propor-
tional delay and loss differentiation.

The service proposed in [13] further enhances class-based ser-
vice differentiation by providing limited support for absolute
bounds on loss and delay. To that effect, the authors of [13]
present a Joint Buffer Management and Scheduling algorithm
(JoBS), which expresses the scheduling and dropping decisions

3

as the solution to an optimization problem, whose constraints
are defined by the service guarantees, and the objective function
aims at minimizing packet losses and changes in the rate allo-
cation. The drawback of JoBS is that solving a non-linear opti-
mization problem, even if approximated by a heuristic method
[13], can incur a significant computational overhead when per-
formed on a per-packet basis.

There are many other service proposals (e.g., ABE) that have
explored the design space of class-based architectures and we
refer the reader to [1] for a more comprehensive discussion.
For instance, the Dynamic Core Provisioning service [12] sup-
ports absolute delay bounds, and qualitative loss and throughput
differentiation, but no proportional differentiation. The mech-
anisms used in [12] enforce service guarantees by dynamically
adjusting scheduler service weights and packet dropping thresh-
olds in core routers. Traffic aggregates are dimensioned at the
network ingress by a distributed admission control mechanism
that uses knowledge of the entire traffic present in the network.
Since, in practice, full knowledge of the traffic traversing a net-
work is generally not available, the algorithm needs to be ap-
proximated when deployed in a large network.

The majority of related work focuses on particular scheduling
and dropping algorithms and investigates the degree to which
class-based service guarantees can be enhanced with the pro-
posed algorithms. The work presented in this paper takes a dif-
ferent approach. We first state the desired service guarantees (a
superset of the guarantees of all works cited above), then formu-
late requirements on rate allocation and dropping mechanisms,
and, eventually, arrive at mechanisms that satisfy the specified
requirements.

III. CLASS-BASED SERVICE WITH ADAPTIVE RATE
ALLOCATION AND DROPPING

In this section, we describe a service that, in the absence of
admission control, traffic policing, signaling or resource reser-
vation, offers both best-effort bounds and proportional differ-
entiation to traffic classes. The proposed service gives, on a
per-hop basis, best-effort bounds and proportional service guar-
antees to traffic classes. All guarantees can be expressed for loss
rates, delays, or throughput, and are assumed to be configured
on routers by a network operator.
Example: As an example for a mix of guarantees
for three traffic classes, one could specify the follow-
ing best-effort bounds for a network interface of a router:

(G1) “Class-1 delay ≤ 2 ms,”
(G2) “Class-2 loss rate ≤ 1%,”
(G3) “Class-3 service rate ≥ 1 Mbps,”

and the following proportional guarantees:
(G4) “Class-2 delay/class-1 delay ≈ 4,”
(G5) “Class-3 loss rate/class-2 loss rate ≈ 2.”
(G6) “Class-1 throughput/class-3 throughput ≈ 2.”

Guarantee (G1) states that class-1 packets do not experience a
delay greater than two milliseconds, (G2) ensures that the loss
rate of class 2 never exceeds 1%, and (G3) states that the ag-
gregate throughput of all flows in class 3 should be at least
1 Mbps. (G4) expresses that class-2 packets experience delays
roughly twice as large as class-1 packets, (G5) states that class-
3 packets experience twice the loss rate of class-2 packets, and

finally, (G6) indicates that the aggregate throughput of all flows
in class 1 should be twice as large as the aggregate throughput
of all flows in class 3. When all best-effort bounds cannot be
enforced simultaneously, the best effort bounds are relaxed in
some order. Here, we specify that the best effort bounds should
be relaxed in the order (G1), (G2) and (G3). Thus, if necessary,
guarantee (G1) can be violated in order to meet guarantee (G2),
and both (G1) and (G2) can be violated to satisfy (G3). (G3)
will be violated last. Note that, as long as the available link
bandwidth is at least 1 Mbps, (G3) can be satisfied at all times.

With these guarantees, we can emulate Assured Forwarding,
by assigning each AF drop level to a separate traffic class. Fur-
ther, we can implement ABE by selecting a delay bound for one
class, and proportional differentiation yielding lower loss rates
to another class. More generally, it can be argued that delay,
loss, and throughput differentiation can be used to express guar-
antees on other service metrics, such as traffic burstiness [23].

We next give a formal description of the service, and outline
a solution for an algorithm that realizes the service.

A. Service Provisioning

The provisioning of per-class service differentiation in our
proposed service is expressed in terms of the backlog behav-
ior at a single transmission queue of the output link of a router.
The discussion draws inspiration from Cruz’s network calculus
[24, 25]. We will refer to Fig. 1 for an illustration.

We assume that all traffic that arrives to the transmission
queue of the output link of a router is marked to belong to one
of N classes. We use a convention whereby a class with a lower
index receives a better service. We consider a discrete, event-
driven time model, where events are traffic arrivals. We use t(n)
to denote the time of the n-th event in the current busy period,1

and ∆t(n) to denote the time elapsed between the n-th and
(n + 1)-th events. We use ai(n) and li(n), respectively, to de-
note the class-i arrivals and the amount of class-i traffic dropped
(lost) at the n-th event. We use ri(n) to denote the service rate
allocated to class-i at the time of the n-th event. The service rate
of class i is a fraction of the output link capacity, and can vary
over time. The service rate of class i is set to zero if there is no
backlog of class-i traffic in the transmission queue. For the time
being, we assume a fluid-flow service, that is, the output link
is viewed as simultaneously serving traffic from several classes.
Such a fluid-flow interpretation is idealistic, since traffic is ac-
tually sent in discrete sized packets. In Section VI, we discuss
how the fluid-flow interpretation is realized in a packet network.

Service differentiation will be enforced over the duration of a
busy period. An advantage of enforcing service differentiation
over short time intervals is that the output link can react quickly
to changes of the traffic load. Further, providing differentia-
tion only within a busy period requires little state information,
and, therefore, keeps the implementation overhead limited. As
a possible disadvantage, at times of low load, when busy peri-
ods are short, providing service differentiation only with infor-
mation on the current busy period can be unreliable. However,
when busy periods are short, the transmission queue is gener-

1The beginning of the current busy period is defined as the last time when the
transmission queue at the output link was empty.

4

time

Bi(n)

A

Output curve

Input curve

Arrival curve
i

Rin

Rout
Dropped

t(n1) t(n2) t(n)

C
la

ss
−

 i
T

ra
ffi

c

Di(n)

i

i

Fig. 1. Delay and backlog at the transmission queue of an output link. Ai

is the arrival curve, Rin
i is the input curve and Rout

i is the output curve.

ally underloaded, and all service classes receive a high-grade
service.

Let t(0) define the beginning of the busy period. The arrival
curve for class i at the n-th event, Ai(n), is the total traffic that
has arrived to the transmission queue of an output link at a router
since the beginning of the current busy period, that is

Ai(n) =
n∑

k=0

ai(k) .

The input curve, Rin
i (n), is the traffic that has been entered into

the transmission queue at the n-th event,

Rin
i (n) = Ai(n)−

n∑
k=0

li(k) .

The output curve is the traffic that has been transmitted since the
beginning of the current busy period, that is

Rout
i (n) =

n−1∑
k=0

ri(k)∆t(k) . (1)

In Fig. 1, we illustrate the concepts of arrival curve, input curve,
and output curve for class-i traffic. At any time t(n), the service
rate is the slope of the output curve. In the figure, the service
rate is adjusted at times t(n1), t(n2) and t(n).

As illustrated in Fig. 1, for event n, the vertical and horizontal
distance between the input and output curves, respectively, de-
note the class-i backlog Bi(n) and the class-i delay Di(n). For
the n-th event, we have

Bi(n) = Rin
i (n)−Rout

i (n) ,

and

Di(n) = t(n)− t
(
sup{k < n | Rin

i (k) ≤ Rout
i (n)}

)
. (2)

Eqn. (2) characterizes the delay of the class-i traffic that departs
at the n-th event.

We define the loss rate to be the ratio of dropped traffic to the
arrivals. That is

pi(n) =
Ai(n)−Rin

i (n)
Ai(n)

. (3)

Since, from the definition of Ai(n) and Rin
i (n), the pi(n) are

computed only over the current busy period, they correspond

to long-term loss rates only if busy periods are long. We jus-
tify our choice with the observation that traffic is dropped only
at times of congestion, i.e., when the link is overloaded, and,
hence, when the busy period is long.

We use the above metrics to express best-effort bounds and
proportional differentiation of delay, loss, and throughput. A
best-effort delay bound on class i for all events n with Bi(n) >
0 is specified as

Di(n) ≤ di , (4)

where di is the desired upper bound on the delay of class i. Sim-
ilarly, a best-effort loss rate bound for class i is defined by

pi(n) ≤ Li . (5)

A best-effort throughput bound for class i is specified as

ri(n) ≥ µi . (6)

Proportional differentiation on delay, loss, and throughput, re-
spectively, is defined, for all n such that Bi(n) > 0 and
Bi+1(n) > 0, as

Di+1(n)
Di(n)

= αdel
i , (7)

pi+1(n)
pi(n)

= αloss
i , (8)

and
ri+1(n)
ri(n)

= αtput
i , (9)

where αdel
i > 1, αloss

i > 1, and αtput
i > 1 are constants that

quantify the desired proportional differentiation.
We make the following important remarks about the guaran-

tees:
• Without additional assumptions about the per-class backlogs,
offering proportional guarantees simultaneously for delay and
throughput may result in an infeasible set of service guarantees.
As an example, from the relationship between backlog, delay,
and throughput of a given class, it is easy to see that “Class-
2 delay/class-1 delay = 2” and “Class-2 throughput/class-1
throughput = 2” is feasible only if the backlog of class 2 is four
times as large as the backlog of class 1. To avoid infeasible sets
of proportional service guarantees, there should be at most one
proportional guarantee between two classes with consecutive in-
dices. For instance, between class 1 and class 2, there should not
be a both a proportional throughput guarantee and a proportional
delay guarantee.
• Even if the above constraints on proportional differentiation
are respected, a set of proportional service differentiation guar-
antees could be infeasible under certain traffic conditions, as
shown in [26]. Therefore, we allow some slack, generally, a few
percent of the current values, in the ratios of loss rates, delays
and throughputs to be enforced.
• Since we do not assume admission control or traffic policing,
it may not be feasible to enforce all best-effort bounds at all
times if the traffic volume in the network is too high. When all
best-effort bounds cannot be satisfied, we allow some bounds to
be temporarily relaxed according to a specified relaxation order.
For instance, the implementation that we discuss in Section VI

5

C
la

ss
−

i T
ra

ffi
c

timet(n)

di

di−D i (n)

B

D

i

i

(n)

(n)

R in
i

Rout
i

rmin
i (n)slope =

Fig. 2. Determining service rates for delay bounds.

adopts a relaxation order that gives loss guarantees priority over
delay or rate guarantees, and best-effort bounds priority over
proportional differentiation. We emphasize that, while a relax-
ation order on the service guarantees is needed, the mechanisms
we propose in this paper are, unless otherwise noted, indepen-
dent of the specific relaxation order chosen.

B. Rate Allocation and Drop Decisions

We now sketch a solution for realizing the service differenti-
ation specified in Eqs. (4)–(8) at the output link of a router with
capacity C and buffer size B. We assume per-class buffering of
incoming traffic, and each class is transmitted in a First-Come-
First-Served manner. The service rates ri(n) and the amount
of dropped traffic li(n) are adjusted at each event n so that the
constraints defined by Eqs. (4)–(8) are met. If not all constraints
in Eqs. (4)–(8) can be met at the n-th event, then some service
differentiation parameters need to be temporarily relaxed. We
assume that the order in which differentiation parameters are re-
laxed is given.

The best-effort delay bound on class i, di, imposes a mini-
mum required service rate in the sense that all backlogged class-
i traffic at the n-th event will be transmitted within its delay
bound di if

ri(n) ≥ Bi(n)
di −Di(n)

, (10)

for all n. This condition can be verified by inspection of Fig. 2.
In the figure, a thick line is used to denote the input curve, a thin
line represents the output curve, and t(n) is the present time.
The delay of the traffic in transmission at t(n) is Di(n). Be-
cause all traffic backlogged at time t(n) arrived in a single burst,
the amount of time remaining to transmit the traffic at the tail
of the queue within the best-effort delay bound di is given by
di −Di(n). Hence, the output curve at time t(n) + di −Di(n)
should have at least a value of Rout

i (n)+Bi(n) so that all traffic
backlogged at t(n) meets its delay bound di. So, the minimum
service rate, rmin

i (n), required to meet di is given by the slope
Bi(n)/(di −Di(n)).

If the condition of Eqn. (10) holds for any n, the delay bound
di is never exceeded. If class i has, in addition, a throughput
bound µi, the expression for the minimum rate needed by class i
at the n-th event becomes2

rmin
i (n) = max

{
Bi(n)

di −Di(n)
, µi · χBi(n)>0

}
. (11)

2We define χexpr = 1 if expr is true and χexpr = 0 otherwise.

So, the service rate can take any value ri(n) such that
rmin
i (n) ≤ ri(n) ≤ C −

∑
j 6=i rmin

j (n), subject to the con-
straint

∑
i ri(n) ≤ C. Given this range of feasible values, ri(n)

can be selected to satisfy proportional delay and throughput dif-
ferentiation.

We view the computation of ri(n) in terms of the recursion

ri(n) = ri(n− 1) + ∆ri(n) , (12)

where ∆ri(n) is selected such that the constraints of pro-
portional delay and throughput differentiation are satisfied at
event n. From Eqs. (1) and (2), the delay Di(n) at the n-th
event is a function of ri(k) with k < n. By monitoring Di(n)
we can determine the deviation from the desired proportional
differentiation due to past service rate allocations, and infer the
adjustment ∆ri(n) = f(Di(n)) needed to attenuate this devia-
tion.

If, at the n-th event, no feasible service rate allocation for re-
alizing all desired delay and throughput differentiation exists,
or if there is a buffer overflow, traffic must be dropped, either
from a new arrival or from the current backlog. Loss differen-
tiation determines which class(es) suffer(s) traffic drops at the
n-th event.

To enforce loss differentiation, we rewrite the loss rate, as a
difference equation. We use Ai(n) = Ai(n − 1) + ai(n), and
Rin

i (n) = Rin
i (n − 1) + ai(n) − li(n) in Eqn. (3), and obtain,

after simplification, pi(n) = (Ai(n−1)−Rin
i (n−1))/Ai(n)+

li(n)/Ai(n), which, using Eqn. (3), allows us to express pi(n)
as a function of pi(n− 1):

pi(n) = pi(n− 1)
Ai(n− 1)

Ai(n)
+

li(n)
Ai(n)

. (13)

From Eqn. (13), we can determine how the loss rate of class i
evolves if traffic is dropped from class i at the n-th event. Thus,
we can determine the set of classes that can suffer drops with-
out exceeding best-effort loss bounds. In this set, we choose
the class whose loss rate differs by the largest amount from the
objective of Eqn. (7).

The recursive expressions for service rates and the loss rates
from Eqs. (12) and (13) can be used to characterize the ser-
vice rate allocation and dropping decisions as feedback control
problems. In the next sections, we will describe two feedback
problems: one for delay and rate differentiation (delay feed-
back loop), and one for loss differentiation (loss feedback loop).
In Section VI, we describe the interaction of the two feedback
problems.

IV. THE DELAY FEEDBACK LOOP

In this section, we present feedback loops that enforce the de-
sired delay and rate differentiation given by Eqs. (4), (6), and
(7). We have one feedback loop for each class with propor-
tional delay and/or rate differentiation. In the feedback loop for
class i, we characterize changes to service rate ∆ri(n) by ap-
proximating the non-linear effects of the service rate adjustment
on the delays by a linear system, and derive a stability condi-
tion for the linearized control loop, similar to a technique used
in [27,28,29,30]. While the stability condition derived does not
ensure that the non-linear control loop converges, the stability

6

condition gives useful guidelines for selecting the configuration
parameters of the loop.

An alternative to using a linear approximation of the non-
linear system under consideration is to directly apply non-linear
control techniques to derive the stability conditions. Non-linear
control techniques, e.g., adaptive control [31], resort to algo-
rithms such as gradient estimators. However, the practicality
of a gradient estimator implementation to be executed for each
packet arrival is questionable. Furthermore, adaptive control
theory is used to dynamically estimate unknown parameters that
remain constant over time, whereas all quantities in the feedback
loops we are studying vary over time. This implies that some
approximations have to be made to use adaptive control theory.
The necessary approximations, e.g., assuming that the backlog
remains constant over a very short time interval, are similar to
the approximations we will use to linearize the feedback loops,
so that there is no immediate advantage of using adaptive control
in the design of our algorithm.

A. Expressing the Objective of Proportional Delay and Rate
Differentiation

Let us assume for now that all classes are offered proportional
delay differentiation, and that we do not have any proportional
throughput differentiation. Later, these assumptions will be re-
laxed. The set of constraints given by Eqn. (7) leads to the fol-
lowing system of equations:

D2(n) = αdel
1 ·D1(n) ,

...

DN (n) =
(∏N−1

j=1 αdel
j

)
D1(n) .

(14)

Let mi =
∏i−1

j=1 αdel
j for i > 1, and m1 = 1. We define a

weighted delay of class i at the n-th event, denoted by D∗
i (n),

as

D∗
i (n) =

 N∏
k=1, k 6=i

mk

 Di(n) . (15)

The weighted delay D∗
i (n) is the delay of class i at the n-

th event, multiplied by a scaling factor expressing the propor-
tional delay differentiation desired. By multiplying each line of
Eqn. (14) with

∏
j 6=i mj , we see that the desired proportional

delay differentiation is achieved for all classes if, for all i, j and
n, we have D∗

i (n) = D∗
j (n), or, equivalently, for all i and n,

D∗
i (n) = D

∗
(n), where

D
∗
(n) :=

1
N

∑
i

D∗
i (n) . (16)

We set D
∗
(n) to be the set point common to all delay feed-

back loops. The feedback loop for class i reduces the difference
|D∗ −D∗

i (n)| of class i from the common set point D
∗
(n).

When some classes are not offered proportional delay differ-
entiation we extend the above analysis as follows. If propor-
tional delay differentiation is requested for some, but not for all
classes, constraints as in Eqn. (14) can be defined for each group
of classes with contiguous indices. Then, the feedback loops are
constructed independently for each group.

We include proportional throughput differentiation in our
analysis as follows. If we assume that no traffic is ever dropped
to satisfy proportional delay or rate guarantees, we can express
proportional throughput differentiation between two classes in
terms of proportional delay differentiation. Indeed, from the re-
lationship between delay, backlog and rate, we have

ri+1(n)
ri(n)

=
Bi+1(n)
Di+1(n)

Di(n)
Bi(n)

,

which, from the proportional throughput guarantee defined in
Eqn. (9), reduces to (Bi+1(n) · Di(n))/(Bi(n) · Di+1(n)) =
αtput

i , which we can rearrange as

Di+1(n)
Di(n)

=
1

αtput
i

Bi+1(n)
Bi(n)

.

Recall that we have imposed that no pair of classes can be sub-
ject to both proportional delay and throughput differentiation.
Thus, we can express the proportional throughput guarantee as
a proportional delay guarantee αdel

i , with

αdel
i =

1
αtput

i

Bi+1(n)
Bi(n)

.

In other words, proportional throughput differentiation can be
viewed as proportional delay differentiation where the desired
ratio of delays αdel

i varies over time. We will argue in the stabil-
ity analysis of the delay feedback loops that we can neglect the
time-dependency of this ratio over short time intervals such as
the current busy period. Thus, for the sake of simplicity, we will
only consider proportional delay differentiation in the remainder
of this paper, and we will consider that proportional throughput
differentiation can always be obtained through proportional de-
lay differentiation.

B. Service Rate Adjustment

Next, we determine how to adjust the service rate to achieve
the desired delay differentiation. Let ei(n), referred to as error,
denote the deviation of the weighted delay of class i from the
set point, i.e.,

ei(n) = D
∗
(n)−D∗

i (n) . (17)

Note that the sum of the errors is always zero, that is, for all n,∑
i ei(n) = ND

∗
(n) −

∑
i D∗

i (n) = 0. If proportional delay
differentiation is achieved, we have ei(n) = 0 for all classes.
We use the error ei(n) to compute the service rate adjustment
∆ri(n) needed for class i to satisfy the proportional delay differ-
entiation constraints. From Eqn. (17), we note that if ei(n) < 0,
D∗

i (n) > D
∗
(n), class i delays are too high with respect to

the desired proportional delay differentiation. Therefore, ri(n)
must be increased. Conversely, ei(n) > 0 indicates that class i
delays are too low, and ri(n) must be decreased. Hence, the rate
adjustment ∆ri(n) is a decreasing function of the error ei(n),
written as ∆ri(n) = f(ei(n)), where f(.) is a monotonically
decreasing function. We choose

∆ri(n) = K(n) · ei(n) , (18)

where K(n) < 0 is called the controller. An advantage of this
controller is that only a single multiplication is needed to obtain

7

the rate adjustment. Another advantage is that, at any n, we have∑
i

∆ri(n) = K(n)
∑

i

ei(n) = 0 . (19)

From Eqn. (19), the controller imposes a work-conserving sys-
tem, as long as the initial condition

∑
i ri(0) = C is satisfied.

Note that systems that are not work-conserving, i.e., where the
link may be idle even if there is a positive backlog, may be un-
desirable for networks that need to achieve a high resource uti-
lization.

We next linearize the delay feedback loop to obtain a condi-
tion on K(n) to ensure that the delay feedback loops are sta-
ble, in the sense that they attenuate the errors ei(n) over time.
We later derive an additional condition on K(n) so that the rate
adjustments ∆ri(n) do not create a violation of the best-effort
delay and throughput bounds.

C. Linearization of the Delay Feedback Loop

The non-linearities in the delay feedback loop primarily result
from the non-linear relationship between the service rate adjust-
ments ∆ri and the delays Di. We introduce a set of assumptions
needed to linearize the delay feedback loops, before discussing
the linearized relationship between ∆ri and Di.
Assumptions. We use four assumptions, labeled (A1)–(A4), to
linearize the control loop.
(A1) Consider a virtual time axis, where the event numbers, n,
are equidistant sampling times. We assume that the skew be-
tween virtual time and real time can be neglected. Since events
are traffic arrivals from any class, the assumption holds when the
aggregate traffic arrival rate is almost constant. Over a busy pe-
riod, if the aggregate arrival rate remains below the link capacity
for too long, the queue becomes empty and the busy period ends.
So, the assumption is accurate unless the considered output link
is constantly overloaded and subject to a highly variable load.
(A2) We assume that, for any class i, the delay of class-i traffic
does not vary significantly between events n and (n + 1), i.e.,

Di(n + 1) ≈ Di(n).

This assumption is accurate when class i remains backlogged
between events n and (n+1), and changes to the service rate ri

between n and (n + 1) remain modest, i.e., ∆r(n) is relatively
small. This assumption may not hold when the time elapsed
between the n-th and (n + 1)-th event is large, i.e., when the
arrival rate of traffic from all classes is low. However, a low
aggregate arrival rate generally results in the current busy period
ending quickly.
(A3) We assume that the backlog of class-i traffic Bi(n) does
not vary significantly over the time Di(n) spent by class-i traf-
fic in the transmission queue. The assumption is accurate when
the delays Di are small and traffic arrivals are relatively smooth.
The assumption is not accurate when traffic arrivals are ex-
tremely bursty over very short time intervals.
(A4) We assume that the service rate ri is not subject to large
variations over short intervals of time. The assumption is likely
to hold unless the proportional coefficient K(n) is chosen very
large. The assumption may not be accurate when the backlog of
class-i frequently oscillates between zero and a positive value,
because ri is reset every time class-i is not backlogged.

Clearly, the above assumptions are idealistic, and stability under
these assumptions does not guarantee stability of the actual de-
lay feedback loops. However, the numerical data in Section VII
suggests that the loops converge adequately well.
Relating delays Di to rate adjustments ∆ri. We next describe
the effect of the rate adjustment ∆ri on the delay Di under
(A1)–(A4). To that effect, we relate ∆ri to the average rate ri

experienced by the class-i traffic over the time this class-i traffic
was backlogged. Then, we relate ri to Di.

Let us define τi(n) as:

Di(n) = t(n)− t(n− τi(n)) .

In other words, τi(n) denotes the number of events that occurred
over the time interval during which the class-i traffic leaving at
t(n) was backlogged. From (A1) and (A2), we can write

τi(n) ≈ τi(n + 1) ,

and will, from now on, use τi to refer to both τi(n) and τi(n+1).
We relate ri to Bi and Di as follows. By definition of τi and

Di, traffic leaving at t(n) entered the queue at time t(n−τi) and
spent Di(n) in the queue. Thus, the average service rate ri(n)
received by the traffic leaving at t(n) is given by:

ri(n) =
Bi(n− τi)

Di(n)
. (20)

From Eqn. (20), ri(n) is the average class-i service rate aver-
aged over [t(n−τi), t(n)), whereas, by definition, ri(n) denotes
the class-i service rate over [t(n), t(n + 1)). We use this obser-
vation and (A1) to express ri as a function of ri, as follows:

ri(n + 1) =
(τi − 1)ri(n) + ri(n)

τi
. (21)

Let us now define

∆ri(n + 1) = ri(n + 1)− ri(n) . (22)

Combining Eqs. (21) and (22), we get

∆ri(n + 1) =
(τi − 1)∆ri(n) + ∆ri(n)

τi
. (23)

Eqn. (23) describes the relationship between a change in the ser-
vice rate and a change in the average rate.

We now derive the relationship between ∆ri(n) and a change
in the delay of class i, denoted as ∆Di(n), and defined by

∆Di(n + 1) = Di(n + 1)−Di(n) .

Since we have, from Eqn. (20), Di(n) = Bi(n− τi)/ri(n), and
Di(n + 1) = Bi(n + 1− τi)/ri(n + 1), we get

∆Di(n + 1) =
Bi(n + 1− τi)

ri(n + 1)
− Bi(n− τi)

ri(n)
. (24)

Eqn. (24) is not linear in ri. We use (A4) to linearize Eqn. (24),
by means of a first order Taylor series expansion around ri(n).
(A4) indeed implies that ∆ri(n + 1) � ri(n), which, using

8

Bi(n + 1 − τi) ≈ Bi(n − τi) obtained from (A3), allows to
rewrite Eqn. (24) as

∆Di(n + 1) = −Bi(n− τi)
ri

2(n)
∆ri(n + 1) + ωi(n) , (25)

where ωi(n) is the error in the evaluation of ∆Di(n + 1) re-
sulting from (A1)–(A4). Then, the relationship between delay
variations and the delay is given by

Di(n + 1) =
n+1∑
k=0

∆Di(k) , (26)

Di(n + 1) is used to compute D∗
i (n + 1), using Eqn. (15).

Finally, from Eqs. (16) and (17), the error at the (n+1)-th event,
ei(n + 1), is obtained from D∗

i (n + 1). This completes the
description of the linearized delay feedback loop. We now turn
to the derivation of a stability condition on the linearized delay
feedback loop.

D. Stability Condition on the Linearized Delay Feedback Loop

We derive the stability condition of the linearized delay feed-
back loop using a two-step process. We first express the de-
lay feedback loop in the frequency domain, using z-transforms,
and then apply a standard stability argument to the frequency-
domain expression of feedback loop to obtain bounds on K(n)
that ensure stability of the linearized feedback loop.
Frequency-domain expression for the feedback loop. We ex-
press the delay feedback loop in the frequency domain using us-
ing z-transforms of Eqs. (15)–(26). We denote the z-transform
of a function f(n) by Z[f(n)], defined as

Z[f(n)] =
+∞∑
n=0

f(n)z−n .

Eqs. (15) and (17) are unchanged when using z-transforms. As-
sumptions (A2)–(A4) enable us to approximate K(n) by a con-
stant over the time a given packet is backlogged, and to assume
that Eqn. (18) remains unchanged when using z-transforms.
Likewise, per (A3) and (A4), Bi(n− τi) and ri(n) are assumed
constant over the time a given packet is backlogged, so that
we can assume that Eqn. (25) is also unchanged when using
z-transforms. Eqn. (23) yields

Z[∆ri(n + 1)] = (τi − 1) · Z[∆ri(n)]
τi

+
Z[∆ri(n)]

τi
,

which, using the property that, for any continuous function f ,
Z[f(n)] = 1

z Z[f(n + 1)], implies, after reordering, that

Z[∆ri(n + 1)] =
z

zτi − τi + 1
Z[∆ri(n)] .

Because Di(n) = 0 for any n ≤ 0, ∆Di(0) = 0. So, the
z-transform of Eqn. (26) is

Z[Di(n + 1)] =
z

z − 1
Z[∆Di(n + 1)] .

Also, the relationship between D∗
i (n) and D∗

i (n + 1) in the fre-
quency domain is given by

Z[D∗
i (n)] =

1
z
Z[D∗

i (n + 1)] .

Figure 3 illustrates the frequency-domain expression of the
delay feedback loop. In the figure, each block maps an input
variable to an output variable by multiplying the input variable
by the contents of the block. For instance, the first block maps
Z[ei(n)] to Z[∆ri(n)] by multiplying Z[ei(n)] by K(n). The
product of all individual blocks is called the loop gain.

We notice that in the class-i delay feedback loop of Figure 3,
some quantities (e.g., τi, Bi, ri) are time-dependent. Therefore,
the loop gain is time-dependent. Classical linear control theory
[32], on the other hand, generally requires the loop gain to be
time invariant to obtain stability conditions. However, stability
can still be achieved with a time-dependent loop gain, if the loop
gain is not increasing unboundedly over time [31].
Stability analysis. We obtain stability bounds on K(n) from a
standard control theory result [32]. Denoting the loop gain by
G(z), the loop is stable if and only if the roots of the character-
istic equation 1 + G(z) = 0 have a module less than one. We
obtain an expression for G(z) by taking the product of all blocks
in Figure 3,

G(z) = −1
z

z

z − 1

(∏
j 6=i mj

)
Bi(n− τi)K(n)

ri
2(n)

z

zτi − τi + 1
.

The negative sign comes from the expression of ei(n), where
D∗

i (n) is subtracted from D
∗
(n). We use (A4) to further sim-

plify the expression for G(z). Under (A4), ∆ri(n + 1) ≈
∆ri(n), which enables us to approximate the gain of the block
z/(zτi +1−τi) by 1. With this approximation, we obtain a new
loop gain

G′(z) = − 1
z − 1

(∏
j 6=i mj

)
Bi(n− τi)K(n)

ri
2(n)

.

The characteristic equation of the approximate system,
1 + G′(z) = 0, has exactly one root, ẑ = 1 +((∏

j 6=i mj

)
Bi(n− τi)K(n)

)
/ri

2(n). The stability condi-
tion, |ẑ| < 1, implies

1 +

(∏
j 6=i mj

)
Bi(n− τi)K(n)

ri
2(n)

≥ −1 (27)

1 +

(∏
j 6=i mj

)
Bi(n− τi)K(n)

ri
2(n)

≤ 1 . (28)

All quantities in Eqn. (28), with the exception of K(n), are pos-
itive. Hence, the condition described by Eqn. (28) reduces to
K(n) ≤ 0. Eqn. (27) becomes, after reordering,

K(n) ≥ −2 · ri
2(n)(∏

j 6=i mj

)
Bi(n− τi)

. (29)

Since, with Eqn. (20), we can write ri
2(n)/Bi(n−τi) = Bi(n−

τi)/Di(n)2 , Eqn. (29) can be expressed as

K(n) ≥ −2 · Bi(n− τi)(∏
j 6=i mj

)
D2

i (n)
. (30)

9

Σ K(n) z
zτi−τi+1

−Bi(n−τ i)

ri
2(n)

1
z

Σ
Z[e i (n)] Z[∆ri(n)] Z[∆ri(n+1)] Z[∆Di(n+1)] Z[Di(n+1)] Z[Di

*(n+1)]

Z[Di
*(n)]

Z[D*(n)]

Z[ω i(n)]

−
+

+
+

Π j=i m j
z

z−1

Fig. 3. The class-i delay feedback loop. This model uses z-transforms of the relationships derived in Section IV-B.

The condition given by Eqn. (30) requires to keep a history of
the backlogs. The need to maintain a backlog history can be
alleviated, using (A2) and writing Bi(n − τi) ≈ Bi(n), which
allows us to simplify Eqn. (30). Combining with K(n) ≤ 0, we
obtain the following expression for the stability condition for the
class-i delay feedback loop:

−2 · Bi(n)∏
j 6=i mj ·D2

i (n)
≤ K(n) ≤ 0 .

Since K(n) must be common to all classes for Eqn. (19) to hold,
we finally get

−2 ·min
i

{
Bi(n)∏

j 6=i mj ·D2
i (n)

}
≤ K(n) ≤ 0 . (31)

The condition in Eqn. (31) ensures that the linearized delay feed-
back loops will not engage in divergent oscillations. We can-
not be certain that the assumptions made to linearize the delay
feedback loops hold in practice, and cannot claim that Eqn. (31)
ensures stability of the (non-linear) delay feedback loops. How-
ever, we can use Eqn. (31) as a design guideline for K(n).

E. Including the Absolute Delay and Rate Constraints

The condition on K(n) we obtained in Eqn. (31) is needed
to enforce proportional differentiation. So far, we have not con-
sidered the best-effort delay and rate bounds in the construc-
tion of the delay feedback loops. These best-effort delay and
rate bounds are viewed as a saturation constraint on the rate
adjustment, and yield a second condition on K(n). To sat-
isfy the constraints ri(n) ≥ rmin

i (n), we may need to clip
∆ri(n) when the new rate is below the minimum. This, how-
ever, may violate the work-conserving property resulting from
Eqn. (19). To respect the saturation constraint, K(n) has to sat-
isfy ri(n− 1) + K(n)ei(n) ≥ rmin

i (n). Applying that K(n) to
all control loops implies

K(n) ≥ max
i

(
rmin
i (n)− ri(n− 1)

ei(n)

)
. (32)

If maxi((rmin
i (n) − ri(n − 1))/ei(n)) > 0, we cannot sat-

isfy both Eqn. (32) and K(n) ≤ 0, required by Eqn. (31). In
other words, we cannot satisfy best-effort delay and throughput
bounds and proportional delay differentiation at the same time.
In such a case, we relax either Eqn. (31) or Eqn. (32) accord-
ing to a given relaxation order. For instance, giving best-effort
bounds higher precedence than proportional differentiation re-
sults in relaxing Eqn. (31) and satisfying Eqn. (32).

V. THE LOSS FEEDBACK LOOP

We now describe the feedback loop which controls the traffic
dropped from class i to satisfy proportional loss differentiation
within the limits imposed by the best-effort loss bounds. As be-
fore, we first assume that all classes are offered proportional loss
differentiation. We relax this assumption in the same manner as
we relaxed the assumption that all classes are offered propor-
tional delay differentiation in Section IV-A.

Traffic must be dropped at the n-th event either if there is a
buffer overflow or if best-effort delay bounds cannot be satis-
fied given the current backlog. For any class k, we can express
the class-k backlog at the n-th event, Bk(n), in function of the
arrivals ak(n), the losses lk(n) and the service rate rk(n) as

Bk(n) = Bk(n−1)+ak(n)− lk(n)−∆t(n−1)rk(n) . (33)

With a buffer size B, to prevent buffer overflows at the n-th
event, we need

∑
k Bk(n) ≤ B, which, using Eqn. (33) and the

work-conserving property
∑

k rk(n) = C, becomes

N∑
k=1

(
Bk(n− 1) + ak(n)− lk(n)

)
−∆t(n− 1)C ≤ B . (34)

We must ensure that
∑

k rmin
k (n) ≤ C to be able to provide

delay and throughput bounds. Using the definition of rmin
k (n)

given by Eqn. (11), and Eqn. (33), we obtain the following con-
dition:∑N

k=1 max{Bk(n−1)−rk(n−1)∆t(n−1)+ak(n)−lk(n)
dk−Dk(n) ,

µk · χBk(n)>0} ≤ C .
(35)

If either of Eqs. (34) or (35) is violated, traffic is dropped to
enforce proportional loss differentiation. To describe how pro-
portional loss differentiation is enforced, let us define a weighted
loss rate as

p∗i (n) =

 N∏
j=1, j 6=i

m′
j

 pi(n) ,

where m′
i =

∏i−1
j=1 αloss

j for i > 1 and m′
1 = 1. With this

definition, Eqn. (8) reduces to, for all i, j, and n, p∗i (n) = p∗j (n),
which is equivalent to p∗i (n) = p̄∗(n), where

p̄∗(n) =
1
N

∑
i

p∗i (n) .

We set p̄∗(n), as the set point for the loss feedback loop, and use
p̄∗(n) to compute an error

e′i(n) = p̄∗(n)− p∗i (n) .

10

The desired proportional loss differentiation is achieved when
e′i(n) = 0 for all i. The loss feedback loops decrease the errors
e′i(n) by increasing p∗i (n) for classes that have e′i(n) > 0 as
follows. Let 〈i1, i2, . . . , iR〉 be an ordering of the class indices
from all backlogged classes, that is, Bik

(n) > 0 for 1 ≤ k ≤ R,
such that e′is

(n) ≥ e′ir
(n) if is < ir. Traffic is dropped in the

order of 〈i1, i2, . . . , iR〉.
Best-effort loss rate bounds impose an upper bound, l∗i (n), on

the traffic that can be dropped at event n from class i. The value
of l∗i (n) is determined from Eqs. (5) and (13) as

l∗i (n) = Ai(n)Li − pi(n− 1)Ai(n− 1) .

If the conditions in Eqs. (34) and (35) are violated, traffic is
dropped from class i1 until the conditions are satisfied, or until
the maximum amount of traffic l∗i1(n) has been dropped. Then
traffic is dropped from class i2, and so forth. Suppose that the
conditions in Eqs. (34) and (35) are satisfied for the first time if
l∗j (n) traffic is dropped from classes j = i1, i2, . . . , ik̂−1, and
x̂(n) ≤ l∗

k̂
(n) traffic is dropped from class ik̂, then we obtain:

li(n) =

l∗i (n) if i = i1, i2, . . . , ik̂−1 ,
x̂(n) if i = ik̂ ,
0 otherwise .

(36)

If lk(n) = l∗k(n) for all k = i1, i2, . . . , iR, we have the choice
between dropping more traffic, thereby relaxing a best-effort
loss bound, or ignoring condition (35), thereby relaxing a best-
effort delay or rate bound. A predetermined precedence order
is used to choose which bound is relaxed. For instance, in the
implementation discussed in Section VI, loss bounds take prece-
dence over delay and rate bounds, and condition (35) is relaxed.

The loss feedback loop never increases the maximum error
e′i(n), if e′i(n) > 0, and more than one class is backlogged.
Thus, the errors remain bounded and the algorithm presented
will not engage in divergent oscillations around the target value
p∗(n). Additionally, the loss feedback loop and the delay feed-
back loops are independent of each other. Indeed, since we al-
ways drop traffic from the tail of each per-class buffer, losses
do not have any effect on the delays of traffic admitted into the
transmission queue.

VI. IMPLEMENTATION

We implemented the feedback loops presented in Sections IV
and V in PC-routers running the FreeBSD 4.3 [33] operating
system, using the altq-3.0 package [14]. altq allows pro-
grammers to modify the operations of the transmission queue in
the IP layer of the FreeBSD kernel. Our implementation [34]
has been included in altq-3.1, and in KAME [15]. For a
detailed discussion of the implementation issues, we refer the
reader to [35]. In this section, we only discuss the operations
performed when a packet is entered into the transmission queue
of an IP router (packet enqueuing) and when a packet is selected
for transmission (packet dequeuing).

We use the DiffServ codepoint (DSCP, [36]) in the header of
a packet to identify the class index of an IP packet. The DSCP
field is set by the edge router; in our implementation, this is
the first router traversed by a packet. We chose the follow-
ing precedence order for relaxing constraints: Best-effort loss

rate bounds have higher precedence than delay and throughput
bounds, which have in turn higher precedence than proportional
differentiation.

A. Packet Enqueuing

The enqueue procedure are the operations executed in the
IP layer when a packet is entered into the transmission queue
of an output link. Since, in FreeBSD 4.x, the FreeBSD kernel
is single-threaded, the execution of the enqueue procedure is
strictly sequential.

The enqueue procedure performs the dropping decisions
and the service rate allocation. We avoid floating point opera-
tions in the kernel of the operating system, by expressing delays
as machine clock cycles, service rates as bytes per clock cycle
(multiplied by a scaling factor of 232), and loss rates as fractions
of 232. Then, 64-bit (unsigned) integers provide a sufficient de-
gree of accuracy.

In our modified enqueue procedure, the transmission queue
of an output link has one FIFO queue for each class, imple-
mented as a linked list. We limit the total number of packets
that can be queued to B = 200. Whenever a packet is entered
into the FIFO queue of its class, the arrival time of the packet
is recorded, and the waiting times of the packets at the head of
each FIFO queue are updated.

The enqueue procedure uses the loss feedback loop de-
scribed in Section V to determine if and how much traffic needs
to be dropped from each class. In our implementation, the algo-
rithm of Section V is run twice. The first time, buffer overflows
are resolved by ignoring condition (35); The second time, po-
tential violations of delay and throughput bounds are resolved
by ignoring condition (34).

Next, the enqueue procedure computes new values for
rmin
i (n) from Eqn. (11), and determines new service rates, us-

ing Eqs. (12) and (18), with the constraints on K(n) given
in Eqs. (31) and (32). If no feasible value for K(n) exists,
Eqn. (31) is ignored, thereby giving delay bounds precedence
over proportional delay (and throughput) differentiation.

B. Packet Dequeuing

The dequeue procedure selects one packet from the backlog
for transmission. In our implementation, dequeue selects one
of the traffic classes, and picks the packet at the head of the FIFO
queue for this class.

The dequeue procedure uses a rate-based scheduling al-
gorithm to adapt the transmission rates ri(n) from a fluid-
flow view to a packet-level environment. Such an adaptation
can be performed using well-known rate-based scheduling al-
gorithm techniques, e.g., Virtual Clock [37] or PGPS [38].
These scheduling algorithms translate a rate allocation, into vir-
tual deadlines of individual packets. In our implementation,
we use a modified Deficit Round Robin [39] scheduling algo-
rithm. Let Xmiti(n) denote the number of bytes of class-i
traffic that have been transmitted in the current busy period,
the scheduler selects a packet from class i for transmission if
i = arg maxk {Rout

k (n)−Xmitk(n)}. In other words, the
dequeue procedure selects the class whose service is the most
behind its allocated service rate.

11

Class Service Guarantees
di Li µi αdel

i αloss
i

1 8 ms 1 % – – –
2 – – 35 Mbps 2 2
3 – – – 2 2
4 – – – N/A N/A

(a) Desired service differentiation.

Class No. of Type
flows Protocol Traffic

1 12 UDP On-off
2 12 TCP Greedy/On-off
3 12 TCP Greedy/On-off
4 12 TCP Greedy/On-off

(b) Traffic mix.

TABLE I
TESTBED MEASUREMENTS: EXPERIMENTAL PARAMETERS.

VII. EXPERIMENTAL EVALUATION

In this section, we present experimental measurements of our
FreeBSD implementation described in Section VI in a testbed of
PC-routers, which we complement with larger scale simulation
experiments. We point out that [1] contains additional experi-
ments.

A. Testbed Measurements

We first demonstrate that the mechanisms we propose can
be implemented at relatively high-speeds, and achieve the de-
sired service differentiation for a mix of best-effort bounds
and proportional differentiation. We consider TCP and UDP
traffic competing at a single bottleneck link of capacity C =
100 Mbps, governed by a router interface with a buffer size
set to B = 200 packets. The router and the sources of traffic
are Dell PowerEdge 1550 servers with 1 GHz Intel Pentium-
III processors and 256 MB of RAM. The system software is
FreeBSD 4.3 and altq-3.0. The router is equipped with mul-
tiple 100 Mbps-Ethernet interfaces.

We consider four traffic classes and we provide the service
differentiation described in Table I(a). The traffic mix, the num-
ber of flows per class, and the characterization of the flows for
each source is as shown in Table I(b). Class 1 traffic consists of
on-off UDP flows, and the other classes consist of TCP (Reno)
flows. Traffic is generated using netperf v2.1pl3 [40]. We
configure the TCP sources to be greedy during time intervals
[0s, 10s], [20s, 30s] and [40s, 50s]. In the remaining time in-
tervals (10s, 20s), (30s, 40s), and (50s, 60s), the TCP sources
send chunks of 8KB of data and pause for 175 ms between the
transmission of each chunk. All sources start transmitting pack-
ets with a fixed size of 1024 bytes at time t = 0, until the end
of the experiments at t = 60 seconds. The bottleneck link is
shared by both data packets and TCP acknowledgments com-
ing back from the destinations. We plot the offered load at the
router in Fig. 4. When all sources are simultaneously transmit-
ting, congestion control at the TCP sources maintains the total
load at a level of about 99% of the link capacity. As soon as
TCP sources act as on-off sources, the load suddenly drops to
about 30% of the link capacity.

In Fig. 5, we present our measurements of the service re-
ceived at the bottleneck link. All datapoints correspond to mov-
ing averages over sliding windows of size 0.5 seconds, except in
Fig. 5(b), which presents the delays of each class-1 packet.

O
ff

er
ed

 lo
ad

 in
 %

 o
f

lin
k

ca
pa

ci
ty

20

40

60

80

100

120

140

10 200
Time (s)

30 40 50 60
0

Fig. 4. Testbed measurements: Offered load. The graph shows the offered
load at the bottleneck link.

5
Class 3/Class 2

Time (s)
30 40 50 6020100

R
at

io
 o

f
D

el
ay

s

0

1

2

3

4
Class 4/Class 3

(a) Ratios of Delays.

Class 1Delay Bound

4

14

0 10 20 30 40 50 60

2

Time (s)

D
el

ay
 (

m
s) 10

0

8

6

12

(b) Class-1 Delays (individual).

Class 3

Class 2

Class 4

10

50

40

50 60403020100
Time (s)

D
el

ay
 (

m
s)

30

20

0

(c) Classes 2, 3 and 4 Delays.
(avg. over a sliding window of 0.5 s.)

5
Class 3/Class 2

Time (s)
30 40 50 6020100

R
at

io
 o

f
L

os
s

R
at

es

0

1

2

3

4
Class 4/Class 3

(d) Ratios of Loss Rates.

2.5

10 20 30 40 50 60
Time (s)

L
os

s
R

at
e

(%
)

Class 1
Class 2
Class 3
Class 4

0

0.5

1

1.5

2

0

(e) Loss Rates.

Total

Class 1

Class 3 Class 2
Class 4

T
hr

ou
gh

pu
t (

M
b/

s)

100

0 10 20 30 40 50 60
Time (s)

60

40

20

0

80

(f) Throughput.

Fig. 5. Testbed measurements: Service differentiation at bottleneck link.
The graphs show the service obtained by each class at the bottleneck link.

In Fig. 5(a), we present the ratios of the delays of classes 4
and 3, and the delays of classes 3 and 2. We observe that
when the load is high, in time intervals [0s, 10s], [20s, 30s],
and [40s, 50s], the target value of αdel

2 = αdel
3 = 2 is achieved.

When the load is low, we observe oscillations in the ratios of
delays, but all classes get low delays, as shown in Figs. 5(b) and
5(c), and one can argue that there is no need for differentiation
since all classes receive a high-grade service. We also see that,
at times t = 0, t = 20 and t = 40, when the load increases
abruptly over a short period of time, the delay differentiation is
realized almost immediately. This confirms that the algorithm
quickly reacts to rapid increases in the offered load.

In Fig. 5(b), we show the delay of class-1 packets. The best-
effort delay bound of d1 = 8 ms is satisfied for most (> 99%)
of the packets, despite the precedence order we chose for our
best-effort bounds, i.e, in case of an infeasible set of differenti-
ation constraints, delay bounds are relaxed in favor of loss rate
bounds. No class-1 packet ever experiences a delay higher than
10 ms at either Router 1 or 2. Fig. 5(c) indicates that delay val-
ues of other classes are in the range 10-50 ms.

12

Router
1

B−1 C−1

100 100TCP−1

UDP−4

TCP−3

TCP−2
100

100

100

100

45 4545

100

100

100

100

B−10 C−10

100 100

A−1 A−10

100 100

100 100100 100 100 100

Router
4

Router
3

Router
2

TCP−1

UDP−4

TCP−3

TCP−2

B−1 C−1B−10 C−10A−1 A−10

Sources

Sinks

Fig. 6. Simulation: Network topology. The labels of the links denote the links
capacities in Mbps.

Fig. 5(d) presents plots of the ratios of loss rates averaged
over a sliding window of size 0.5 s, and show that proportional
loss differentiation is realized, with the desired factor αloss

2 =
αloss

3 = 2, whenever there are packet losses. Fig. 5(e) shows the
loss rate experienced by class-1 traffic, and we see that, even at
times of packet drops, the loss rate of class 1 remains below the
loss guarantee of 1%. Loss rates of other classes are below 1%,
which indicates that traffic is dropped mostly to satisfy the delay
bound on Class 1.

We graph the throughput experienced by each class and by
the traffic aggregate in Fig. 5(f). The figure illustrates that the
throughput guarantee µ2 = 35 Mbps is met, that no class experi-
ences starvation, and that our implementation in PC-routers with
a 1 GHz processor can fully utilize the capacity of a 100 Mbps
link when needed.

Finally, we measure the number of CPU cycles consumed by
the enqueue and dequeue procedures at the bottleneck link,
by reading the timestamp counter register of the Pentium pro-
cessor. We compute the average and standard deviation of the
number of cycles over 500,000 packet transmissions. In the fol-
lowing table, we compare measurements for a set of four classes
with differentiation parameters given in Table I(a), to a system
of four classes without any guarantees:

Guaran- Enqueue Dequeue
tees Avg. Std. Dev. Avg. Std. Dev.
with 11323 3140 1057 316
without 2573 668 1078 343

The table shows that the overhead for the enqueue opera-
tion, which implements the feedback algorithms, is significant.
At the same time, a back-of-the-envelope estimation (ignoring
other tasks the router may have to perform in the background)
indicates that a 1 GHz PC can enqueue and dequeue more than
80,000 packets per second. Considering that the average size of
an IP packet on the Internet is P ≈ 450 bytes [42], this results
in a maximum throughput of about 290 Mbps. We refer to [1]
for a more detailed evaluation of the overhead associated to our
proposed algorithms.

B. Simulation of Multiple Bottlenecks Links

We complement our testbed measurements by simulating a
network with multiple hops and propagation delays. To that ef-
fect, we implemented our closed-loop algorithm in the ns-2 net-
work simulator [41]. This implementation has been included in
the standard ns-2 distribution, since ns-2.26.

Class Service Guarantees
di Li αdel

i αloss
i

1 2 ms 0.5 % – –
2 – – 4 2
3 – – 4 2
4 – – N/A N/A

(a) Desired service differentiation.

Flow Class Type
Proto. Traffic On Off

TCP-1 1 TCP Greedy N/A N/A
TCP-2 2 TCP Greedy N/A N/A
TCP-3 3 TCP Greedy N/A N/A
UDP-4 4 UDP Pareto on-off 10 ms 10 ms

A-1 1 TCP Exp. on-off 650 pkts 200 ms
A-2, A-3 2 TCP Exp. on-off 650 pkts 200 ms

A-4 to A-6 3 TCP Exp. on-off 650 pkts 200 ms
A-7 to A-10 4 UDP Pareto on-off 26 ms 100 ms

(b) Traffic mix.

TABLE II
SIMULATION: EXPERIMENTAL PARAMETERS.

We simulate a network with a topology as shown in Fig. 6.
We have four routers, each with a maximum buffer size of
500 packets, connected by three 45 Mbps links, and sources and
sinks connected to the routers by independent 100 Mbps links.
Each 45 Mbps link has a propagation delay of 3 ms, and each
100 Mbps link has a propagation delay of 1 ms. There are four
classes of traffic. The service guarantees are given in Table II(a)
and the composition of the traffic mix is given in Table II(b).
Traffic consists of a mix of TCP (Reno) and UDP flows. TCP
flows are either greedy, to model long file transfers, or on-off
flows with exponentially distributed on and off periods, to model
short, successive file transfers (e.g., HTTP requests). UDP flows
are on-off flows using a Pareto distribution for the on and off pe-
riods, with a shape parameter α = 1.9.

Cross-traffic flows (denoted by A-1, . . ., C-10) start transmit-
ting at time t = 0 s. The flows TCP-1, TCP-2, TCP-3 and
UDP-4 start transmitting at time t = 10 s. All flows consists
of packets with a fixed size of 500 bytes, and the experiment
lasts 70 seconds of simulated time. The aggregate load at the
bottlenecks is roughly constant and equal to the capacity of the
bottleneck links, but the introduction of new flows at t = 10 s
significantly changes the contribution of each class to the traf-
fic mix, and is likely to result in violations of Assumption (A3).
Hence the proposed simulation should allow us to test the sensi-
tivity of our approach to its design assumptions.

From Tables II(a) and (b), Classes 1, 2 and 3 only consist
of TCP traffic, and Class 4 only consists of UDP traffic. Ini-
tially Class 1 contributes 10% of the aggregate cross-traffic,
Class 2 contributes 20%, Class 3 contributes 30% and Class-4
contributes 40 %.

We graph the per-class queuing delays and per-class loss rates
at each of the first three routers in Fig. 7, starting at time t =
0 s. Given that the aggregate arrival rate at Router 4 is always
less than the total output capacity of Router 4, Router 4 never
experiences any backlog, and the queuing delays and loss rates
are constantly equal to zero. With the exception of Fig. 7(d), (e)
and (f), where we plot individual packet delays, each point on
Fig. 7 represents an average over a sliding window of size 0.5 s.
Fig. 7 shows that the proposed algorithm manages to enforce all

13

R
at

io
 o

f
D

el
ay

s

 2
 4
 6
 8

 10

 0 10 20 30 40 50 60 70
Simulation Time (s)

Class 3/Class 2
Class 4/Class 3

 0

(a) Router 1 - Ratios of Delays.

 6

 10

 0 10 20 30 40 50 60 70
Simulation Time (s)

Class 3/Class 2
Class 4/Class 3

R
at

io
 o

f
D

el
ay

s

 0
 2
 4

 8

(b) Router 2 - Ratios of Delays.

 8

 0 10 20 30 40 50 60 70
Simulation Time (s)

Class 3/Class 2
Class 4/Class 3

R
at

io
 o

f
D

el
ay

s

 0
 2
 4
 6

 10

(c) Router 3 - Ratios of Delays.

D
el

ay
 (

m
s)

 1

 2

 3

 0 10 20 30 40 50 60 70
Simulation Time (s)

 0

(d) Router 1 - Class 1 Delays.
Simulation Time (s)

 1

 2

 3

 0 10 20 30 40 50 60 70

D
el

ay
 (

m
s)

 0

(e) Router 2 - Class 1 Delays.
Simulation Time (s)

 1

 2

 3

 0 10 20 30 40 50 60 70

D
el

ay
 (

m
s)

 0

(f) Router 3 - Class 1 Delays.

Class 4/Class 3

 1
 2
 3
 4
 5

 0 10 20 30 40 50 60 70
Simulation Time (s)

R
at

io
 o

f
L

os
s

R
at

es Class 3/Class 2

 0

(g) Router 1 - Ratios of Loss Rates.

Class 4/Class 3

 1
 2
 3
 4
 5

 0 10 20 30 40 50 60 70
Simulation Time (s)

R
at

io
 o

f
L

os
s

R
at

es Class 3/Class 2

 0

(h) Router 2 - Ratios of Loss Rates.

Class 4/Class 3

 1
 2
 3
 4
 5

 0 10 20 30 40 50 60 70
Simulation Time (s)

R
at

io
 o

f
L

os
s

R
at

es Class 3/Class 2

 0

(i) Router 3 - Ratios of Loss Rates.

L
os

s
R

at
e

(%
)

 0.2
 0.4
 0.6
 0.8

 1

 0 10 20 30 40 50 60 70
Simulation Time (s)

 0

(j) Router 1 - Class 1 Loss Rates.

L
os

s
R

at
e

(%
)

 0.2
 0.4
 0.6
 0.8

 1

 0 10 20 30 40 50 60 70
Simulation Time (s)

 0

(k) Router 2 - Class 1 Loss Rates.

L
os

s
R

at
e

(%
)

 0.2
 0.4
 0.6
 0.8

 1

 0 10 20 30 40 50 60 70
Simulation Time (s)

 0

(l) Router 3 - Class 1 Loss Rates.

Fig. 7. Multiple node simulation. The graphs show the delays and loss rates encountered at each router by Class 1 traffic, and the ratios of delays and the ratios
of loss rates for Classes 2, 3 and 4 at each router. The absolute constraints and the target ratios are indicated by straight dashed lines.

proposed service guarantees at each router, with only a couple
of transient violations of the absolute delay bound on Class 1 at
Router 1, and that the algorithm seems to respond appropriately
to transient changes such as the introduction of additional traffic
at time t = 10 s.

VIII. CONCLUSIONS

This paper suggests improvements to the type of service guar-
antees that can be given in a class-based service architecture
without resource reservation. We introduce the concept of best-
effort bounds, defined as guarantees that emulate absolute guar-
antees in a network without admission control and policing. We
propose mechanisms for routers that achieve best-effort bounds
as well as proportional guarantees by selectively dropping traffic
and by adjusting the traffic rate allocated to classes.

We use control theory to design the adaptive rate allocation
and dropping mechanisms, by relying on feedback loops at link
schedulers to enforce proportional differentiation of loss and de-
lay and to give traffic classes best-effort bounds to loss, through-
put and delay. The feedback loops do not require prior knowl-
edge of traffic arrivals and do not require signaling. At times
when not all best-effort bounds can be satisfied simultaneously,
the feedback-based mechanisms relax some of the bounds us-
ing a predetermined precedence order. We assess the stability of
our adaptive rate allocation and dropping mechanisms through
experiments in a testbed network of BSD PC-routers and sim-
ulations. Testbed measurements show that the implementation
of the proposed mechanisms in 1 GHz PC-routers can fully uti-
lize the available capacity of 100 Mbps, while enforcing the de-
sired service differentiation. The implementation of our pro-

posed mechanisms in PC-routers is publicly available [34], and
is included in the altq and KAME extensions to the BSD ker-
nels.

As a final note, the mechanisms presented in this paper can be
extended to include TCP congestion control algorithms [43,44],
as shown in [45]. Used in conjunction with routing mechanisms
that can perform route-pinning, such as MPLS [46], our adaptive
rate allocation and buffer management mechanisms can be used
as a building block for end-to-end service differentiation. We
refer to [1] for a more thorough inspection of the interaction
of end-to-end performance with the per-hop service proposed
here.

REFERENCES

[1] N. Christin, Quantifiable Service Differentiation for Packet Networks,
Ph.D. thesis, Univ. Virginia, Aug. 2003.

[2] N. Christin, J. Liebeherr, and T. F. Abdelzaher, “A quantitative assured
forwarding service,” Proc. IEEE INFOCOM’02, New York, NY, June
2002, vol. 2, pp. 864–873.

[3] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource
reservation protocol (RSVP),” IETF RFC 2205, Sept. 1997.

[4] K. Nichols, V. Jacobson, and L. Zhang, “Two-bit differentiated services
architecture for the Internet,” IETF RFC 2638, July 1999.

[5] D. Clark and W. Fang, “Explicit allocation of best-effort packet delivery
service,” IEEE/ACM Trans. Net., vol. 6, no. 4, pp. 362–373, Aug. 1998.

[6] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An
architecture for differentiated services,” IETF RFC 2475, Dec. 1998.

[7] B. Davie, A. Charny, J. Bennett, K. Benson, J.-Y. Le Boudec, W. Courtney,
S. Davari, V. Firoiu, and D. Stiliadis, “An expedited forwarding PHB,”
IETF RFC 3246, Mar. 2002.

[8] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured forwarding
PHB group,” IETF RFC 2597, June 1999.

[9] C. Dovrolis and P. Ramanathan, “Proportional differentiated services, part
II: Loss rate differentiation and packet dropping,” Proc. IWQoS’00, Pitts-
burgh, PA, June 2000, pp. 52–61.

[10] C. Dovrolis, D. Stiliadis, and P. Ramanathan, “Proportional differentiated

14

services: Delay differentiation and packet scheduling,” IEEE/ACM Trans.
Net., vol. 10, no. 1, pp. 12–26, Feb. 2002.

[11] P. Hurley, J.-Y. Le Boudec, P. Thiran, and M. Kara, “ABE: providing low
delay service within best effort,” IEEE Networks, vol. 15, no. 3, pp. 60–69,
May 2001, See also http://www.abeservice.org.

[12] R. Liao and A. Campbell, “Dynamic core provisioning for quantitative
differentiated service,” Proc. IWQoS’01, Karlsruhe, Germany, June 2001,
pp. 9–26.

[13] J. Liebeherr and N. Christin, “JoBS: Joint buffer management and schedul-
ing for differentiated services,” Proc. IWQoS’01, Karlsruhe, Germany,
June 2001, pp. 404–418.

[14] K. Cho, “A framework for alternate queueing: towards traffic management
by PC-UNIX based routers,” Proc. USENIX’98, New Orleans, LA, June
1998, pp. 247–258.

[15] “The KAME project,” http://www.kame.net.
[16] C. Dovrolis, D. Stiliadis, and P. Ramanathan, “Proportional differentiated

services: Delay differentiation and packet scheduling,” Proc. ACM SIG-
COMM’99, Boston, MA, Aug. 1999, pp. 109–120.

[17] H. Saito, C. Lukovszki, and I. Moldován, “Local optimal proportional
differentiated services scheduler for relative differentiated services,” Proc.
IEEE ICCCN’00, Las Vegas, NV, Oct. 2000, pp. 554–550.

[18] T. Nandagopal, N. Venkitaraman, R. Sivakumar, and V. Barghavan, “De-
lay differentiation and adaptation in core stateless networks,” Proc. IEEE
INFOCOM’00, Tel-Aviv, Israel, Apr. 2000, pp. 421–430.

[19] Y. Moret and S. Fdida, “A proportional queue control mechanism to pro-
vide differentiated services,” Proc. ISCIS’98, Belek, Turkey, Oct. 1998,
pp. 17–24.

[20] S. Bodamer, “A scheduling algorithm for relative delay differentiation,”
Proc. IEEE HPSR’00, Heidelberg, Germany, June 2000, pp. 357–364.

[21] U. Bodin, A. Jonsson, and O. Schelen, “On creating proportional loss dif-
ferentiation: predictability and performance,” Proc. IWQoS’01, Karlsruhe,
Germany, June 2001, pp. 372–386.

[22] A. Striegel and G. Manimaran, “Packet scheduling with delay and loss
differentiation,” Comp. Comm., vol. 25, no. 1, pp. 21–31, Jan. 2002.

[23] D. Stiliadis and A. Varma, “Latency-rate servers: a general model for
analysis of traffic scheduling algorithms,” IEEE/ACM Trans. Net., vol. 6,
no. 5, pp. 611–624, 1998.

[24] R. Cruz, “A calculus for network delay, part I: Network elements in isola-
tion,” IEEE Trans. Info. Theory, vol. 37, no. 1, pp. 114–131, Jan. 1991.

[25] R. Cruz, “A calculus for network delay, part II: Network analysis,” IEEE
Trans. Info. Theory, vol. 37, no. 1, pp. 132–141, Jan. 1991.

[26] M. Leung, J. Lui, and D. Yau, “Characterization and performance evalua-
tion for proportional delay differentiated services,” Proc. ICNP’00, Osaka,
Japan, Nov. 2000, pp. 295–304.

[27] C. V. Hollot, V. Misra, D. Towsley, and W. Gong, “On designing im-
proved controllers for AQM routers supporting TCP flows,” Proc. IEEE
INFOCOM’01, Anchorage, AK, Apr. 2001, vol. 3, pp. 1726–1734.

[28] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son, “Feedback control real-time
scheduling: Framework, modeling and algorithms,” J. Real-Time Sys., vol.
23, no. 1–2, July 2002.

[29] Y. Lu, A. Saxena, and T. F. Abdelzaher, “Differentiated caching services;
A control-theoretical approach,” Proc. IEEE ICDCS’01, Phoenix, AZ,
Apr. 2001, pp. 615–624.

[30] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. S. Jayram, and J. Bigus,
“Using control theory to achieve service level objectives in performance
management,” J. Real-Time Sys., vol. 23, no. 1–2, July 2002.

[31] K. Åström and B. Wittenmark, Adaptive Control, Addison-Wesley, Read-
ing, MA, 1995.

[32] G. Franklin, J. Powell, and M. Workman, Digital control of dynamic sys-
tems, Addison-Wesley, Menlo Park, CA, 3rd edition, 1998.

[33] “The FreeBSD project,” http://www.freebsd.org.
[34] http://qosbox.cs.virginia.edu/software.html.
[35] N. Christin and J. Liebeherr, “The QoSbox: Quantitative service differen-

tiation in BSD routers,” Computer Networks, 2006. In print.
[36] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the differen-

tiated services field (DS field) in the IPv4 and IPv6 headers,” IETF RFC
2474, Dec. 1998.

[37] L. Zhang, “Virtual clock: A new traffic control algorithm for packet
switched networks,” ACM Trans. Comp. Sys., vol. 9, no. 2, pp. 101–125,
May 1991.

[38] A. Parekh and R. Gallagher, “A generalized processor sharing approach
to flow control in integrated services networks: The single-node case,”
IEEE/ACM Trans. Net., vol. 1, no. 3, pp. 344–357, June 1993.

[39] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit
round-robin,” IEEE/ACM Trans. Net., vol. 4, no. 3, pp. 375–385, June
1996.

[40] R. Jones, “netperf: a benchmark for measuring network performance -

revision 2.0,” Information Networks Division, Hewlett-Packard Company,
Feb. 1995, See also http://www.netperf.org.

[41] “ns-2 network simulator,” http://www.isi.edu/nsnam/ns/.
[42] “Packet sizes and sequencing,” CAIDA, May 2001. http://www.

caida.org/outreach/resources/learn/packetsizes.
[43] M. Allman, V. Paxson, and W. Stevens, “TCP congestion control,” IETF

RFC 2581, Apr. 1999.
[44] S. Floyd and T. Henderson, “The NewReno modification to TCP’s fast

recovery algorithm,” IETF RFC 2582, Apr. 1999.
[45] N. Christin and J. Liebeherr, “Marking algorithms for service differentia-

tion of TCP traffic,” Comp. Comm., vol. 28, no. 18, pp. 2058–2069, Nov.
2005.

[46] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label switching
architecture,” IETF RFC 3031, Jan. 2001.

Nicolas Christin (S’99, M’03) received the Engineer-
ing Degree from Ecole Centrale Lille, France, in 1999,
and Master’s and Ph.D. degrees in Computer Science
from the University of Virginia in 2000 and 2003, re-
spectively. In 2002-2003, he worked in Nortel’s Ad-
vanced Technology group, From 2003 to 2005, he
was a postdoctoral fellow in the School of Information
Management and Systems at UC Berkeley. He is now
a faculty in Carnegie Mellon University’s Information
Networking Institute, on international assignment in
CyLab Japan. His research interests are in computer

networks, network security, and network economics, and range from design-
ing and evaluating formal models and algorithms to implementation aspects and
measurements.

Jörg Liebeherr (S’88, M’92, SM’03) received the
Ph.D. degree in Computer Science from the Georgia
Institute of Technology in 1991. After a Postdoc at
the University of California, Berkeley, he joined the
Department of Computer Science at the University of
Virginia in 1992. In 1997-1998 he was an Associate
Professor in the Department of Electrical Engineering
at Polytechnic University. Since Fall 2005, he is with
the Department of Electrical and Computer Engineer-
ing of the University of Toronto as the Nortel Chair of
Network Architecture and Services. He has served on

editorial boards and program committees of several journals and conferences in
computer networking. He was a Member-at-Large on the IEEE Communica-
tions Society Board of Governors in 2003-2005, and chair of the IEEE Commu-
nications Society Technical Committee on Computer Communications in 2004-
2005.

Tarek Abdelzaher received his B.Sc. and M.Sc. de-
grees in Electrical and Computer Engineering from
Ain Shams University, Cairo, Egypt, in 1990 and 1994
respectively. He received his Ph.D. from the Uni-
versity of Michigan in 1999. He has been an As-
sistant Professor at the University of Virginia, where
he founded the Software Predictability Group. He is
currently an Associate Professor at the Department of
Computer Science, the University of Illinois at Urbana
Champaign. He is Editor-in-Chief of the Journal of
Real-Time Systems, an Associate Editor of the IEEE

Transactions on Mobile Computing, the ACM Transaction on Sensor Networks,
and the Ad Hoc Networks Journal, as well as Editor of ACM SIGBED Review.
He authored more than 60 papers and served on numerous technical program
committees in real-time computing, sensor networks, performance management,
among others. He was Program Chair of RTAS 2004 and General Chair of
RTAS 2005. He is currently Program Chair of RTSS 2006 and General Chair
of IPSN 2007. Abdelzaher’s research interests lie broadly in understanding and
controlling the temporal properties of software systems in the face of increas-
ing complexity, distribution, and degree of embedding in an external physical
environment. Tarek Abdelzaher is a member of IEEE and ACM.

