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Abstract—Traffic with self-similar and heavy-tailed
characteristics has been widely reported in commu-
nication networks, yet, the state-of-the-art of ana-
lytically predicting the delay performance of such
networks is lacking. This work addresses heavy-tailed
traffic that has a finite first moment, but no second
moment, and presents end-to-end delay bounds for
such traffic. The derived performance bounds are
non-asymptotic in that they do not assume a steady
state, large buffer, or many sources regime. The
analysis follows a network calculus approach where
traffic is characterized by envelope functions and
service is described by service curves. The system
model is a multi-hop path of fixed-capacity links
with heavy-tailed self-similar cross traffic at each
node. A key contribution of the paper is a proba-
bilistic sample-path bound for heavy-tailed arrival
and service processes, which is based on a scale-
free sampling method. The paper explores how delay
bounds scale as a function of the length of the
path, and compares them with lower bounds. A
comparison with simulations illustrates pitfalls when
simulating self-similar heavy-tailed traffic, providing
further evidence for the need of analytical bounds.
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I. INTRODUCTION

Traffic measurements in the 1990s provided evi-
dence of self-similarity in aggregate network traffic
[24], and heavy-tailed file sizes and bursts were
found to be among the root causes [13], [37]. Since
such traffic induces backlog and delay distribu-
tions whose tails decay slower than exponential,
the applicability of analytical techniques based on
Poisson or Markovian traffic models in network
engineering has been called into question [32], thus
creating a need for new approaches to teletraffic
theory.

A random process X is said to have a heavy-
tailed distribution if its tail distribution is governed
by a power-law Pr(X(t) > x) ∼ Kx−α, with a
tail index α ∈ (0, 2) and a scaling constant K.1 We
will consider tail indices in the range 1 < α < 2,
where the distribution has a finite mean, but infinite
variance. A random process X is said to be self-
similar, if a properly scaled version has the same
distribution as the original process. We can write
this as X(at) ∼dist aHX(t) for every a > 0.
The exponent H ∈ (0, 1), referred to as the Hurst
parameter, specifies the degree of self-similarity.2

We refer to a process as heavy-tailed self-similar if
it satisfies both criteria.

A performance analysis of networks with heavy-
tailed self-similar traffic or service, where no higher
moments are available, is notoriously hard, espe-
cially an analysis of a network path across multiple
nodes. Single node queueing systems with heavy-

1We write f(x) ∼ g(x), if limx→∞ f(x)/g(x) = 1. We
note that there are alternative definitions where all distributions
with a slower than exponential tail decay are referred to as
heavy-tailed.

2The networking literature frequently uses the weaker con-
cept of second-order self-similarity, which assumes finite sec-
ond moments.
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tailed processes have been studied extensively [7],
[31]. However, there exist only few works that
can be applied to analyze multi-node paths. These
works generally consider an asymptotic regime with
large buffers, many sources, or in the steady state.
Tail asymptotics for multi-node networks have been
derived for various topologies, such as feedforward
networks [19], cyclic networks [2], tandem net-
works with identical service times [6], and tandem
networks where packets have independent service
times at nodes in the more general context of
stochastic event graphs [3]. However, the accuracy
of asymptotic approximations is not always sat-
isfactory, particularly, the quality of large buffer
asymptotics for heavy-tailed service distributions
was found to be lacking in [1], thus motivating a
performance analysis in a non-asymptotic regime.

This paper presents a non-asymptotic delay anal-
ysis for multi-node networks with heavy-tailed self-
similar traffic and heavy-tailed service. We derive
delay bounds for a flow or flow aggregate that
traverses a network path and experiences cross
traffic from heavy-tailed self-similar traffic at each
node. Both fluid and packetized interpretations of
service are supported; in the latter case, we assume
that a packet maintains the same size at each
traversed node. A key contribution of this paper is
a probabilistic sample-path bound for heavy-tailed
self-similar arrival and service processes, which is
based on a scale-free sampling method. We propose
a characterization for heavy-tailed service and show
that it can express end-to-end service available on a
path as a composition of the heavy-tailed service at
each node. We use the end-to-end service charac-
terization to compute end-to-end delay bounds with
a single-node result. The derived end-to-end delay
bounds follow (up to a logarithmic correction) the
same power law tail decay as asymptotic results
that exist in the literature for single nodes. Finally,
we show that end-to-end delays in networks with
heavy-tailed traffic and service grow polynomially
with the number of nodes. For example, for a Pareto
traffic source with tail index α we find that end-to-
end delays are bounded by O(N

α+1
α−1 (logN)

1
α−1 ) in

the number of nodes N .

Our analysis follows a network calculus approach
where traffic is characterized in terms of envelope
functions, which specify upper bounds on traffic
over time intervals, and service is characterized
by service curves, which provide lower bounds on
the service available to a flow [5]. An attractive
feature of the network calculus is that the service
available on a path can be composed from service
characterizations for each node of the path. We
consider a probabilistic setting that permits perfor-
mance metrics to be violated with a small proba-
bility [9]. Probabilistic extensions of the network
calculus are available for traffic with exponential
tail distributions [10], distributions that decay faster
than any polynomial [35], and traffic distributions
with an effective bandwidth [25]. The latter two
groups include certain self-similar processes, in
particular, those governed by fractional Brownian
motion [30], but do not extend to heavy-tailed
distributions. There are also efforts for extending
the network calculus to heavy-tailed distributions
[15], [16], [20], [21], which are discussed in more
detail in the next section.

The remainder of this paper is organized as fol-
lows. In Section II and Section III, respectively, we
discuss our characterization of heavy-tailed traffic
and service by appropriate probabilistic bounds.
In Section IV we present our main results: (1) a
sample-path envelope for heavy-tailed self-similar
traffic, (2) probabilistic bounds for delay and back-
log at a single node, (3) a description of the leftover
capacity at a constant-rate link with heavy-tailed
self-similar cross traffic, and (4) a composition
result for service descriptions at multiple nodes. In
Section V we discuss the scaling properties of the
derived delay bounds in terms of power laws. We
present brief conclusions in Section VI.

II. THE htss TRAFFIC ENVELOPE

In this section we present and evaluate a proba-
bilistic envelope function that permits the derivation
of rigorous backlog and delay bounds for heavy-
tailed self-similar network traffic. The proposed
envelope further develops concepts that were pre-
viously studied in [16], [20], [21].
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We consider arrivals and departures of traffic
at a system, which represents a single node or
a sequence of nodes. We use a continuous time
model where cumulative arrivals and departures of
a traffic flow in a time interval [0, t) are given
by left-continuous processes A(t) and D(t), re-
spectively. The arrivals in the time interval [s, t)
are denoted by a bivariate process A(s, t) :=
A(t) − A(s). Backlog and delay at a node are
represented by B(t) = A(t) − D(t) and W (t) =
inf {d : A(t− d) ≤ D(t)}, respectively. When A
and D are plotted as functions of time, B and W are
the vertical and horizontal distance, respectively,
between these functions.

A statistical envelope [11] G for an arrival pro-
cess A is a non-random function which bounds
arrivals over a time interval by requiring that, for
all s, t ≥ 0 and for all σ > 0,

Pr
(
A(s, t) > G(t− s;σ)

)
≤ ε(σ) , (1)

where ε is a non-increasing function of σ that satis-
fies ε(σ)→ 0 as σ →∞. The function ε(σ) is used
as a bound on the violation probability. Statistical
envelopes have been developed for different traffic
types, including regulated, Markov modulated On-
Off, and Gaussian self-similar traffic. A recent
survey provides an overview of envelope concepts
[27].

The computation of performance bounds on
backlog and delay requires a statistical envelope
that bounds an entire sample path {A(s, t)}s≤t.
A statistical sample-path envelope G [11] is a
statistical envelope that satisfies for all t ≥ 0 and
for all σ > 0

Pr
(

sup
s≤t

{
A(s, t)− G(t− s;σ)

}
> 0
)
≤ ε(σ) .

(2)

Clearly, a statistical sample-path envelope is also
a statistical envelope, but not vice versa. In fact,
only few statistical envelopes (in the sense of
Eq. (1)) lend themselves easily to the development
of sample-path envelopes (as in Eq. (2)). One such
envelope appears in the Exponentially Bounded
Burstiness (EBB) model from [38], which requires
that Pr(A(s, t) > r(t − s) + σ) ≤ Me−θσ, for

some constants M , r and θ and for all σ > 0.
If r corresponds to the mean rate of traffic, an
EBB envelope specifies that the deviation of the
traffic flow from its mean rate has an exponential
decay. A sample-path bound for EBB envelopes
in the sense of Eq. (2) is obtained via the union
bound3 by evaluating the right-hand side of Eq. (2)
as
∑

k Pr(A(sk, t) > G(t−sk−1;σ)) for a suitable
discretization {sk}k=1,2,..., yielding G(t − s;σ) =
Rt + σ for R > r and ε(σ) = Me−θσ

1−e−θ(R−r) [11].
The EBB envelope has been generalized to dis-
tributions with moments of all orders, referred to
as Stochastically Bounded Burstiness (SBB) [35]
and corresponding sample-path bounds have been
developed in [39]. SBB envelopes can characterize
arrival processes that are self-similar, but not heavy-
tailed. For instance, fractional Brownian motion
processes can be fitted with an envelope function
G(t) = rt + σ with a Weibullian bound on the
violation probability of the form ε(σ) = Ke−θσ

α

for some θ > 0 and 0 < α < 1.
We say that an arrival process A(s, t) is self-

similar with Hurst parameter H ∈ (0, 1), if it has
stationary increments, i.e., A(s, t) ∼dist A(s+τ, t+
τ) for all τ > 0, and if its deviations from a
constant-rate flow X(s, t) = A(s, t)−r(t−s) have
the self-similarity property described in Section I,
i.e., X(0, at) ∼dist aHX(0, t) for all a > 0. This
type of process is referred to as H-sssi in [34],
where ‘sssi’ stands for self-similar with station-
ary increments and H is the Hurst parameter. A
statistical envelope for general self-similar arrival
processes can be expressed as

Pr
(
A(s, t) > r(t− s) + σ(t− s)H

)
≤ ε(σ) .

(3)

Here, ε(σ) is a bound on the tail distribution of
X(s, t) = A(s, t) − r(t − s). If X(s, t) is a self-
similar process with stationary increments, then
A has an envelope given by Eq. (3). In particu-
lar, a fractional Brownian motion process satisfies
Eq. (3) with a Gaussian tail bound for ε(σ). In
this paper, we consider a self-similar traffic with
a heavy-tailed violation probability, which arises

3For two events X and Y , Pr(X ∪Y ) ≤ Pr(X)+Pr(Y ).
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from heavy-tailed arrival processes with indepen-
dent increments.4 This consideration leads to our
proposed extension of the EBB and SBB concepts
that capture characteristics of heavy-tailed and self-
similar traffic. We define a heavy-tail self-similar
(htss) envelope as a bound that satisfies for all
σ > 0

Pr
(
A(s, t) > r(t−s)+σ(t−s)H

)
≤ Kσ−α , (4)

where K and r are constants, and H and α indicate
the Hurst parameter and the tail index. We generally
assume that α ∈ (1, 2), that is, arrivals have a finite
mean but possibly infinite variance, and H ∈ (0, 1).
In the htss envelope the probability of deviating
from the average rate r follows a power law.
Moreover, due to self-similarity, these deviations
may increase as a function of time. In terms of
Eq. (1), the htss envelope is a statistical envelope
with

G(t;σ) = rt+ σtH , ε(σ) = Kσ−α . (5)

For distributions with a more complex power law
decay, e.g., ε(σ) = log σ · σ−α, we can replace
the prefactor by a constant and properly adjust the
decay rate, e.g., see Eq. (39) of Lemma 3 in the
appendix. Derivations for self-similar traffic with a
Gaussian tail can be found in the appendix of [26].
We remark that the Hurst parameter H appearing in
Eqs. (3)–(5) causes the summands in the envelopes
to scale differently. For this reason, it is advisable
to fix the units of data and time, and subsequently
view the parameters r and σ as unitless.

In Section IV, we will derive a sample-path
envelope for the htss envelope, which is needed
for the computation of probabilistic upper bounds
on backlog and delay of heavy-tailed self-similar
traffic at a network node. Characterizations of self-
similar and heavy-tailed traffic by envelopes have
been presented before, generally, by exploiting spe-
cific properties of α-stable processes [15], [21].
The envelope for α-stable processes in [16] takes
the same form G(t;σ) = rt + σtH as the htss

4This becomes evident in Eqs. (14)–(15) below in an ap-
plication of the generalized central limit theorem for a Pareto
traffic source.

envelope, but specifies a fixed violation probability
rather than a bound on the distribution. An issue
with such a characterization is that it does not
easily lead to sample-path envelopes. For H = 0, a
sample-path version of Eq. (4) has been obtained in
[20] by applying an a-priori bound on the backlog
process of an α-stable self-similar process from
[21]. Since the backlog bound given in Eq. (24) of
[21] is a lower bound (and not an upper bound)
on the tail distribution of the buffer occupancy,
the envelope in [20] does not satisfy Eq. (2). In
Section IV it will become evident that backlog
bounds and sample-path envelopes for arrivals are
interchangeable, in that the availability of one can
be used to derive the other. Thus, the sample-path
bound derived in this paper for heavy-tailed self-
similar processes satisfying the htss envelope from
Eq. (4) also provides the first rigorous backlog
bound for this general class of processes.

In the remainder of this section, we show how to
construct htss envelopes for relevant distributions,
as well as for measurements of packet traces.
We discuss how to obtain htss envelopes using
a tail estimate for α-stable distributions (Subsec-
tion II-A), the generalized central limit theorem
(Subsection II-B), and a direct construction from
measurement data (Subsection II-C).

A. α-stable Distribution

Stable distributions provide well-established
models for non-Gaussian processes with infinite
variance. The potential of applying stable processes
to data networking was demonstrated in [21] by
fitting traces of aggregate traffic (i.e., the Bellcore
traces studied in [24]) to an α-stable self-similar
process.

A defining property of an α-stable distribution
(0 < α ≤ 2) is that the linear superposition of i.i.d.
α-stable random variables preserves the original
distribution. That is, if X1, X2, . . . , Xm are inde-
pendent random variables with the same (centered)
α-stable distribution, then m−1/α

∑m
i=1Xi has the

same distribution. A challenge of working with α-
stable distributions is that closed-form expressions
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for the distribution are only available for a few
special cases. However, there exists an explicit
expression for the characteristic function of stable
distributions, in terms of four parameters (see [34]):
a tail index α ∈ (0, 2], a skewness parameter
β ∈ [−1, 1], a scale parameter a > 0, and a location
parameter µ ∈ R. For our purposes it is sufficient
to work with a normalized stable random variable
Sα where β = 1, a = 1, and µ = 0.

The point of departure for our characterization
of α-stable processes with htss envelopes is the
α-stable process proposed in [21] which takes the
form

A(t) dist.= rt+ btHSα . (6)

Here, r is the mean arrival rate and b is a parameter
that describes the dispersion around the mean.

Remark: We can use Eq. (6) to observe the
statistical multiplexing gain of α-stable processes.
By the defining property of Sα, the superposition of
N i.i.d. processes as in Eq. (6), denoted by Amux,
yields

Amux(t) = Nrt+N1/αbtHSα .

Since 1/α < 1 in the considered range α ∈ (1, 2),
the aggregate of a set of flows increases slower than
linearly in the number of flows, thus, giving clear
evidence of multiplexing gain. The multiplexing
gain diminishes as α→ 1.

A straightforward method for constructing an
htss envelope for Eq. (6) is to take advantage of
the quantiles of Sα. While the density of Sα is
not available in a closed form, the quantiles can
be obtained numerically or by a table lookup. Let
the quantile z(ε) be the value satisfying

P
(
Sα > z(ε)

)
= ε , (7)

so that

Pr

(
A(t)− rt
btH

> z(ε)
)

= ε .

We obtain a statistical envelope by setting G(t;σ) =
rt+ z(ε)σtH with a fixed ε. In fact, this is the en-
velope for α-stable processes from [16]. However,
since z(ε) does not follow a power law, it is not an
htss envelope. To obtain an htss envelope from the
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Fig. 1. Comparison of htss envelopes for an α-stable dis-
tribution with r = 75, α = 1.6, H = 0.8, b = 60. Envelopes
labeled as quantiles are constructed with Eq. (8). Those labeled
as tail approximation are constructed with Eq. (11).

quantiles, we express Eq. (4) in terms of Eq. (7),
which can be done by setting

K = sup
0<ε<1

{ε · (bz(ε))α} . (8)

Since we are mainly concerned with violations of
the bound for large values of σ, we can construct
a better htss envelope for Eq. (6) using the tail
approximation for α-stable distributions [34]

Pr
(
Sα > σ

)
∼ (cασ)−α , σ →∞ , (9)
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where cα =
(

2Γ(α) sin πα

2
π

)− 1
α and Γ(·) is the

Gamma function. With Eq. (6) we can write

Pr

(
A(t)− rt
btH

> σ

)
∼ (cασ)−α , σ →∞ .

(10)
Matching this expression with Eq. (4) we obtain
the remaining parameter K of the htss envelope by
setting

K =
(
b

cα

)α
. (11)

By Eq. (9), the resulting htss envelope strictly holds
only for large σ, or, equivalently, low violation
probabilities. However, this is exactly the regime
where we want the envelope to provide a reliable
bound.

In Fig. 1, we present envelopes for a process
satisfying Eq. (6) with

r = 75 , α = 1.6, H = 0.8, b = 60 .

Since the parameters above must be unitless, we
make an initial choice for traffic unit (kb) and time
unit (msec). Thus, data rates as expressed by r
take the unit of Megabits per second. Fig. 1(a)
depicts statistical envelopes for a single flow with
violation probabilities ε = 10−1, 10−2, 10−3. The
graph compares the htss envelopes constructed from
the quantiles via Eq. (8) with the tail approximation
obtained using Eq. (11). As can be expected, the
envelopes computed from the asymptotic tail ap-
proximation are smaller than the quantile envelopes.
We add that envelopes computed from the quan-
tiles for a fixed ε, as described in Eq. (7), are
very close to the tail approximation envelopes. If
the corresponding envelopes were included in the
figure, they would appear almost indistinguishable,
suggesting that Eq. (9) provides reasonable bounds
for all values of σ. Fig. 1(b) illustrates the statis-
tical multiplexing gain when aggregating N i.i.d.
flows with N = 10, 100, 1000. The figure plots
the normalized htss envelopes Gmux/N with fixed
violation probability ε = 10−3. This figure shows
that increasing the number of flows decreases the
(normalized) envelope.

B. Pareto Packet Distribution

We next present an htss envelope construction for
a packet source with a Pareto arrival distribution.
Packets arrive evenly spaced at rate λ and packet
sizes are described by i.i.d. Pareto random variables
Xi with tail distribution

Pr
(
Xi > x

)
=
(

x

Xmin

)−α
, x ≥ Xmin , (12)

where α ∈ (1, 2) and Xmin is the minimum packet
size. X has finite mean E [X] = Xminα

α−1 and infinite
variance. We will construct an htss envelope for the
compound arrival process

A(t) =
N(t)∑
i=1

Xi , (13)

where N(t) = bλtc denotes the number of packets
which arrive by time t. This arrival process is
asymptotically self-similar with a Hurst parameter
of H = 1/α.

For the htss envelope construction of the Pareto
source, we take advantage of the generalized cen-
tral limit theorem (GCLT) [17], which states that
the normalized α-stable distribution Sα appears as
the limit of normalized sums of i.i.d. random vari-
ables. For the independent Pareto random variables
Xi, the GCLT yields∑n

i=1Xi − nE [X]

cαn
1
α

n→∞−→ Sα (14)

in distribution. Since the GCLT is an asymptotic
limit, envelopes derived with the GCLT are approx-
imate, with higher accuracy for larger values of n.
Using that N(t) ≈ λt for suitable large values,
we can write the arrival function in Eq. (13) with
Eq. (14) as

A(t) ≈ λtE [X] + cα(λt)1/αSα .

Since this expression takes the same form as
Eq. (6), we can now use the tail estimate of Eq. (9)
to obtain an htss envelope as in Eq. (4) with
parameters

r = λE[X], α, H =
1
α
, K ≈ λ . (15)
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Fig. 2. Envelopes for a Pareto packet source (ε = 10−3).

The same parameters are valid when N(t) is a
Poisson process, according to Theorem 3.1 in [23].

Similar techniques can yield htss envelopes for
other heavy-tailed processes. For example, an ag-
gregation of independent On-Off periods, where
the duration of ‘On’ and ‘Off’ periods is governed
by independent Pareto random variables, yields an
α-stable process [29] in the limit of many flows
(N → ∞) and large time scales (t → ∞). This
aggregate process is particularly interesting since
depending on the order in which the limits of N
and t are taken, one obtains processes that are self-
similar, but not heavy-tailed (fractional Brownian
motion), processes that are heavy-tailed, but not
self-similar (α-stable Lévy motion), or a general
α-stable process. An approximation by an α-stable
process followed by an estimation of htss parame-
ters can also be reproduced for the M/G/∞ arrival
model [29].

Example. We next compare envelope constructions
for a Pareto source with evenly spaced packet
arrivals with a size distribution given by Eq. (12).
The parameters are

α = 1.6, Xmin = 150 Byte, λ = 75 Mbps .

With these values, the average packet size is

400 Byte. We evaluate the following types of en-
velopes:

1) Htss GCLT envelope. This refers to the enve-
lope constructed with the GCLT according to
Eq. (15). The value of σ of the htss envelope
is set so that the right hand side of Eq. (4)
satisfies a violation probability of ε = 10−3.

2) Deterministic trace envelope. This envelope
is computed from a simulation of a packet
trace with 1 million packets drawn from the
given Pareto distribution. We compute the
smallest envelope for the trace that satisfies
Eq. (1) with ε(σ) = 0 for all σ > 0.
The deterministic trace envelope, which is
computed by G(t) = supτ{A(t+ τ)−A(τ)}
[5], provides the smallest envelope of a trace
that is never violated.

3) Average rate. For reference, we also include
the average rate of the data in the figures,
which is obtained from the same packet trace
as in the deterministic trace envelopes.

The resulting envelopes for time periods up to
one second are plotted in Fig. 2. The discrete steps
of the deterministic trace envelope around t = 0 ms,
t = 460 ms, and t = 680 ms are due to arrivals of
very large packets at certain times in the simulated
trace. In the depicted range, the htss GCLT envelope
lies between the deterministic envelope and the
average data rate.

C. Measured Packet Traces

We next show how to obtain an htss envelope
from measured traffic traces. Ever since traffic
measurements at Bellcore from the late 1980s dis-
covered long-range dependence and self-similarity
in aggregate network traffic [24], many studies have
supported, refined, sometimes also repudiated (e.g.,
[18]) these findings.

We use trace data collected in October 2005
at the 1 Gbps uplink of the Munich Scientific
Network, a network with more than 50,000 hosts,
to the German research backbone network. The
complete trace contains more than 6 billion packets,
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collected over a 24-hour time period. Further details
on the data trace and the collection methodology
can be found in [14]. From this data, we select
the first 109 packets corresponding to 2.75 hours
worth of data, with an overall average rate of
r∗ = 465 Mbps. We refer to this data as the Munich
trace.

To extract the tail index and the Hurst parameter
from the trace, we take advantage of parameter
estimation methods for stable processes from [28],5

which yields the following parameters for the Mu-
nich trace:

α∗ = 1.98 , H∗ = 0.93 .

Having values for α and H , but without knowl-
edge of the distribution, we now construct an htss
envelope from the data trace. The htss envelope can
be created directly from Eq. (4) by inspecting the
relative frequency at which subintervals of the trace
violate the htss envelope. First, K is selected as the
smallest number that satisfies the right hand side of
Eq. (4) for all values of σ. Then σ is found by fixing
the violation probability ε.

To provide a sense of the Munich trace data, we
present in Fig. 3 a log-log plot of the normalized
random variable

Y :=
A(s, t)− r∗(t− s)

(t− s)H∗ .

Since Pr(Y > σ) = Pr(A(s, t) > G(t − s;σ))
where G is given in Eq. (5), the distribution of
Y corresponds to that of violations of the htss
envelope. In the figure, we show the log-log plot
of Y for different values of (t−s), namely, t−s =
10, 100, 1000 ms. If the trace data was self-similar
with the exact Hurst parameter H∗, the log-log
data curves should match perfectly for all values
of (t − s). (We note that by reducing the value of
the Hurst parameter slightly, the curves for different
values of (t− s) can be made to match up almost
perfectly).

On the other hand, the distribution of the Munich
trace does not appear to be heavy-tailed. If the
data trace was truly heavy-tailed, the log-log plots

5We use source code provided to us by the authors of [4].
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Fig. 3. Normalized log-log plot of Munich trace.
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would maintain a linear rate of decline at a rate
around α∗, and would remain close to the linear
segment for any σ sufficiently large. We will see
that a characterization of such a non-heavy-tailed
process by an htss envelope leads to a pessimistic
estimation.

We can also use Fig. 3 to graphically construct
an htss envelope for the Munich trace. Since we
already have determined the tail index α∗ and the
Hurst parameter H∗ as given above, we only need
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to find K. The value of this parameter can be
obtained by taking the logarithm of Eq. (4). Using
the definition of Y , this yields

logPr
(
Y > σ

)
≤ logK − α∗ log σ .

Applying this relationship to Fig. 3, we should
select K as the smallest value such that the linear
function logK − α∗ log σ lies above the log-log
plots of Pr(Y > σ) in the figure. In Fig. 3,
we include the linear segment with K = 1225
as a thick line. Clearly, any other selection of K
and α∗ providing an upper bound of the log-log
plots of the Munich trace also yields a valid htss
envelope for all values of σ. An htss envelope for a
fixed violation probability ε can be obtained from
Fig. 3 by finding the value of σ that corresponds
to the desired violation probability of the linear
segment. Finally, we can use Fig. 3 to assess the
accuracy of the htss envelope. The linear segment
(the thick black line) is close to the trace data when
Pr(Y > σ) ≈ 10−1. Otherwise, the linear segment
is quite far apart from the plots of the trace. This
indicates that the htss envelopes developed with
the parameter settings used for the linear segment
are accurate only when the violation probability is
around ε = 10−1.

In Fig. 4, we show htss envelopes for the Munich
trace obtained with the linear segment from Fig. 3
for ε = 10−1 and ε = 10−3. For comparison, we
include in Fig. 4 the average rate of the traffic
trace, as well as a deterministic trace envelope of
the 1 sec subinterval of the trace that generates the
most traffic. Since the computation of a determin-
istic envelope as defined in Subsection II-B grows
quadratically in the size of the trace, the computa-
tion time to construct a deterministic trace envelope
for the complete Munich trace is prohibitive. The
included deterministic trace envelope for a subin-
terval is a lower bound for the deterministic trace
envelope of the complete data set. However, for
the depicted time intervals, the deterministic trace
envelope for the subinterval is a good representation
of the deterministic trace envelope of the entire data
set, for several reasons. First, by selection of the
subinterval, at t = 1000 ms the envelope of the

subinterval and the envelope of the complete trace
are identical. Second, since any deterministic trace
envelope is a subadditive function, the slope of the
envelope decreases for larger values of time. Now,
any function that satisfies these properties cannot
vary significantly from the depicted envelope of the
selected subinterval. Comparing the htss envelopes
with the reference curves confirms our earlier dis-
cussion on the accuracy of the htss envelopes: For
ε = 10−1, the htss envelope is close to the plot of
the average rate. On the other hand, the envelope
for ε = 10−3 is quite pessimistic, and lies even
above the deterministic trace envelope.

III. SERVICE GUARANTEES WITH HEAVY TAILS

We next formulate service guarantees with a
power-law decay. In the network calculus, service
guarantees are given in terms of functions that
provide for a given arrival function a lower bound
on the departures. In general, a statistical service
curve is a function S(t;σ) such that for all t ≥ 0
and for all σ > 0

Pr
(
D(t) < A ∗ S(t;σ)

) ≤ ε(σ) .

Here,

A ∗ S(t;σ) = inf
s≤t

{
A(s) + S(t− s;σ)

}
denotes the min-plus convolution of the arrivals
with the service curve S(t;σ) [5], and ε is a
non-increasing function that satisfies ε(σ) → 0 as
σ →∞.

We define a heavy-tailed (ht) service curve as a
service curve of the form

S(t;σ) = [Rt− σ]+ , ε(σ) = Lσ−β (16)

for some β with 0 < β < 2 and some constant L.
In analogy to the formulation of traffic envelopes
in Section II, the ht service curve specifies that the
deviation from the service rate guarantee R has a
heavy-tailed decay. The rationale for not including
a Hurst parameter in the definition of the ht service
guarantees is that the form of Eq. (16) facilitates the
computation of service bounds over multiple nodes.
In this paper, we consider two types of ht service
curves, one characterizing the available capacity at
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a link with cross-traffic, the other modeling packet
level traffic.

• Service at a link with cross traffic (Leftover
Service): This service curve seeks to describe the
service available to a selected flow at a constant-rate
link with capacity C, where the competing traffic
at the link, referred to as cross traffic, is given by
an htss envelope. By considering the pessimistic
case that the selected flow receives a lower priority
than the cross traffic, we will obtain a lower bound
for the service guarantees for most workconserving
multiplexers [5]. Since the service guarantee of the
selected flow consists of the capacity that is left
unused by cross traffic, we refer to the service
interpretation as leftover service. As the derivation
of an ht service curve for such a leftover service
requires a sample-path bound for the htss cross
traffic, we defer the derivation to Subsection IV-B.

• Packet-level traffic: Even though we consider
fluid flow traffic, the ht service model is capable
of expressing a packetized view of traffic with
a heavy-tailed packet size distribution. We model
discrete packet sizes by a service element that
delays traffic until all bits belonging to the same
packet have arrived, and then releases all bits of
the packet at once. Such an element is referred to
as a packetizer. By investigating packetized traffic
we can relate our bounds to a queuing theoretic
analysis with a packet-level interpretation of traffic
(see Section V). We now derive a service curve for a
packetizer. For a packet-size distribution satisfying
Pr
(
X > σ

} ≤ Lσ−α, we show that a constant-
rate workconserving link of capacity C provides
an ht service curve with rate R = C and a suitable
function ε(σ).

Denote by X∗(t) the part of the packet in trans-
mission at time t that has already been processed.
The departures of a packetizer are given by

D(t) =
{
A(t) , t = t ,
A(t) + C(t− t)−X∗(t) , t < t ,

where t is the beginning of the busy period of t. We
can absorb the first line into the second by setting
t = t and X∗(t) = 0 when the server is idle at time
t.

NodeNode
  11

NodeNode
  22

NodeNode
  NN

...

cross trafficcross traffic cross trafficcross traffic cross trafficcross traffic

through through 
traffictraffic

Fig. 5. A network with cross traffic.

If X∗(t) > 0, we can view it as the current
lifetime of a renewal process. It is known from the
theory of renewal processes (see [22], pp. 194) that

lim
t→∞

Pr
(
X∗(t) > σ

∣∣∣X∗(t) > 0
)

=

∫∞
σ Pr(X > x) dx

E[X]

≤ L

(α− 1)E[X]
σ−(α−1) .

This bound holds for all times t, provided that the
arrival time of the first packet after the network
is started with empty queues at t = 0 is properly
randomized. Set S(t;σ) = [Ct − σ]+. If ρ is a
bound on the utilization of A as a fraction of the
link rate C, then P (X∗(t) > 0) ≤ ρ, and we obtain

Pr
(
D(t) < A ∗ S(t;σ)

)
≤ Pr

(
X∗(t) > σ

)
≤ ρL

(α− 1)E[X]
σ−(α−1) . (17)

IV. NETWORK CALCULUS WITH htss
ENVELOPES

We consider a network as in Fig. 5, where a flow
traverses N nodes in series. Its traffic is referred to
as through traffic. At each node, the through traffic
is multiplexed with arrivals from competing flows,
called cross traffic. Both through and cross traffic
are described by htss envelopes. We seek to derive
bounds on the end-to-end delay and backlog of the
through traffic.

A. Statistical Sample-Path Envelope

The network calculus for heavy-tailed traffic is
enabled by a statistical sample-path envelope for
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traffic with htss envelopes. To motivate the rele-
vance of the sample-path bound, let us consider
the backlog of a flow at a workconserving link that
operates at a constant rate C. The backlog at time
t is given by

B(t) = sup
s≤t

{
A(s, t)− C(t− s)} .

Notice that the backlog expression depends on the
entire arrival sample path {A(s, t)}s≤t. To compute
an upper bound for the tail probability Pr

(
B(t) >

σ
)
, in many places in the literature, in particular,

in all prior works attempting a network calculus
analysis with heavy-tailed traffic [15], [16], [20],
[21], [33], the tail distribution is approximated by

Pr
(
B(t) > σ

) ≈ sup
s≤t

Pr
(
A(s, t)−C(t−s) > σ

)
.

However, the right hand side is generally smaller
than the left hand side. Applying to the right
hand side a statistical envelope that only satisfies
Eq. (1) but not Eq. (2) does not yield an upper
bound but rather an upper bound to a lower bound.
The derivation of rigorous upper bounds requires a
sample-path bound for the arrivals. To derive such
bounds, we discretize time by setting xk = τγk,
where τ > 0 and γ > 1 are constants that will be
chosen below. If t− xk ≤ s < t− xk−1, then

A(s, t)− C(t− s) ≤ A(t− xk, t)− Cxk−1 .

It follows that

B(t) ≤ sup
k

{
A(t− xk, t)− Cxk−1

}
.

If the arrivals satisfy an htss envelope G(t) = rt+
σtH with ε(σ) = Kσ−α, we obtain with the union
bound

Pr
(
B(t) > σ

)
≤

∞∑
k=−∞

Pr
(
A(t− xk, t) > σ + Cxk−1

)
≤ 1
H(1−H) log γ

∫ ∞
z

Kx−α−1dx
∣∣∣
z= (C/γ−r)Hσ1−H

γH(1−H)

≤ K̃σ−α(1−H) . (18)

In the second inequality we have used Lemma 4
from the appendix to evaluate the sum. Writing
C = r+µ and minimizing over γ gives the constant

K̃ = K · inf
1<γ<1+µ

r

{(r + µ

γ
− r
)−αH

× γαH(1−H)

αH(1−H) log γ

}
. (19)

We remark that, typically, we have 1 < α < 2 and
α−1 ≤ H < 1, so that α(1−H) < 1. This means
that the backlog is almost surely finite, but cannot
be expected to have finite mean.

The main technical ingredient of the above proof
of the backlog bound is the discretization of time by
the geometric sequence xk = γkτ . This scale-free
discretization is well-suited to capture self-similar
properties of traffic. Scale-free sampling is an in-
stance of under-sampling, where not every time step
is used in probabilistic estimates. Commonly in the
literature, time is discretized by dividing it into
equal units with xk = kτ . In [36], the choice is
described as a general optimization problem over
arbitrary sequences x0 ≤ x1 ≤ . . . ≤ t, but all
examples in [36] only optimize over τ in uniformly
spaced sequences. We note that using a uniform
discretization in the derivation of Eq. (18) would
cause the infinite sum to become unbounded.

An immediate consequence of the backlog bound
is a sample-path bound for htss envelopes.

Lemma 1: ht SAMPLE-PATH ENVELOPE. If ar-
rivals to a flow are bounded by an htss envelope

G(t;σ) = rt+ σtH , ε(σ) = Kσ−α ,

then, for every choice of µ > 0,

G(t;σ) = (r + µ)t+ σ , ε(σ) = K̃σ−α(1−H) ,

is a statistical sample-path envelope according to
Eq. (2). The constant K̃ is given by Eq. (19).

The proof follows immediately from Eq. (18) by
replacing C with the relaxed arrival rate r+µ. The
ht sample-path envelope is reminiscent of a leaky-
bucket constraint with a single burst and rate, but
does not reflect the self-similar scaling of the htss
envelope.
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We note that a small modification of the proof
would yield a sample-path envelope of the form

G(t;σ) = (r + µ)t+ σtH +M , ε(σ) = Lσ−α ,

which retains the self-similar scaling properties of
the htss envelope. The constant L depends on the
parameters α,H, r, µ and on the choice of M > 0.
The reason we prefer the simpler envelope given by
Lemma 1 is that it facilitates the estimation of the
service provided to a flow across multiple nodes.

B. Heavy-Tailed Leftover Service Curve

cross trafficcross traffic

through trafficthrough traffic

AAcc DDcc

AA DD
capacity capacity CC

Fig. 6. Constant-rate link with capacity C.

With a sample-path envelope for heavy-tailed
traffic in hand, we can now derive a service curve
for the heavy-tailed leftover service from Section III
at a constant-rate link with capacity C, as illustrated
in Fig. 6. We denote arrivals of the through flow by
A and cross traffic arrivals by Ac. Departures are
denoted by D and Dc, respectively. Assuming that
Ac is characterized by an htss envelope of the form
Gc(t) = rc(t−s)+σ(t−s)Hc with ε(σ) = Kcσ

−αc

where the bound on the arrival rate satisfies rc < C,
we will show that the through flow is guaranteed
a ht service curve S(t;σ) = [Rt − σ]+ with rate
R = C − rc − µ, and a violation probability ε(σ)
that can be estimated explicitly. Here, µ > 0 is a
free parameter.

Let t be the beginning of the busy period of t
at the link. Then, the aggregate departures in [t, t)
satisfy (D + Dc)(t, t) = C(t − t), and departures
for the cross traffic satisfy Dc(t, t) ≤ min{C(t −
t), Ac(t)−Ac(t)}. With this we can derive

D(t) ≥ A(t) +
[
C(t− t)−Ac(t, t)

]
+

≥ inf
s≤t

{
A(s) + (C − rc − µ)(t− s)}
− sup

s≤t
{Ac(s, t)− (rc + µ)(t− s)} ,

for every choice of µ > 0. We obtain

Pr
(
D(t) < A ∗ S(t;σ)

)
≤ Pr

(
sup
s≤t
{Ac(s, t)− (rc + µ)(t− s)} > σ

)
≤ K̃cσ

−αc(1−Hc) , (20)

where K̃c is given by Eq. (19) This proves that
S(t;σ) = [Rt− σ]+ is an ht service curve.

The description of the leftover service in Eq. (20)
can be combined with Eq. (17) with Lp and αp in
place of α and L, respectively, to characterize the
leftover service available to a packetized through
flow at a node, following a construction similar
to Theorem 1 in [8]. The result (which we state
without proof) is that at a link that operates at
rate C > rc, the through flow receives a service
guarantee given by the ht service curve

S(t;σ) = [(C − rc − µ)t− σ]+ , ε(σ) = Lσ−β ,
(21)

where β = min{αp − 1, αc(1 − Hc)}, µ > 0 is a
free parameter, and L is a constant. The violation
probability is given by

ε(σ) = inf
σ1+σ2=σ

{
K̃cσ

−αc(1−H)
1

+
ρLp

(αp − 1)E[X]
σ
−(αp−1)
2

}
, (22)

where ρ ≤ 1 is the utilization of the through traffic
as a fraction of C, E[X] is the average packet size,
and the constant K̃c is defined by Eq. (19) with K̃c

in place of K. When traffic is not packetized, the
second term in the sum above is equal to zero. The
constant L in Eq. (21) can be computed explicitly
by first using Lemma 3 (Eq. (38)) to lower the
larger exponent to β, and then applying Eq. (41)
in Lemma 3.

C. Single Node Delay Analysis

We next present a delay bound at a single node
where arrivals are described by htss envelopes and
service is described by an ht service curve.

Theorem 1: SINGLE NODE DELAY BOUND.
Consider a flow that is characterized by an htss en-
velope with G(t;σ) = rt+σtH and ε(σ) = Kσ−α,
and that receives an ht service curve at a node given
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by S(t;σ) = [Rt−σ]+ and ε(σ) = Lσ−β . If r < R,
then the delay W satisfies

Pr
(
W (t) > w

) ≤ M(Rw)−min{α(1−H),β} ,

where M is a constant that depends on α, H , r,
µ = R− r, and β.

PROOF. Let A(t) and D(t) denote the arrival and
departures of the (tagged) flow at the node. The
delay is given by

W (t) = inf
{
t− s | A(s) ≤ D(t)

}
.

Fix σ1, σ2 > 0 with σ1 + σ2 = Rw. Suppose that
on a particular sample path,

sup
s≤t−w

{
A(s, t− w)−R(t− s− w)} ≤ σ1 ,

and that

D(t) ≥ inf
s≤t

{
A(s) + [R(t− s)− σ2]+

}
.

If the infimum is assumed for some s ≤ t−w, then

D(t) ≥ A(s) +R(t− s)− σ2

≥ A(t− w) .

If, on the other hand, the infimum is assumed for
some s ≥ t− w, then

D(t) ≥ A(s) ≥ A(t− w)

by monotonicity. In both cases, we see that W (t) ≤
w. It follows with the union bound that

Pr
(
W (t) > w

)
≤ Pr( sup

s≤t−w
{A(s, t− w)−R(t− s− w)} > σ1

)
+ Pr

(
D(t) < inf

s≤t
[A(s) +R(t− s)− σ2]+

)
≤ K̃σ−α(1−H)

1 + Lσ−β2 , (23)

where K̃ is defined by Eq. (19). For the first term,
we have used the sample-path bound in Lemma 1
with µ = R − r, and for the second term we have
used the definition of ht service curves. The proof
is completed by first lowering the larger of the
two exponents to β′ = min{α(1 − H), β} using
Lemma 3 (Eq. (38)), and then minimizing explicitly

over the choice of σ1 and σ2 using Lemma 3
(Eq. (41)). For the constant, this yields the estimate

M ≤
{
K̃

β′

(1+β′)α(1−H) + L
β′

(1+β′)β
s

}1+β′

. (24)

2

Example: We compute the delay experienced by
a Pareto traffic source at a 100 Mbps link. The
parameters are as used in the example in Subsec-
tion II-B, where we create a desired link utilization
by adjusting λ.

The service curve is computed from Eq. (17).
The reason for selecting this example (which does
not have cross traffic) is that it permits a compar-
ison with a queueing theoretic result in [8], which
presents a lower bound for the quantiles wN (ε) of
a Pareto source in a tandem network with N nodes
and no cross traffic as

wN (ε) ≥ (Nb)
α

α−1(
(α− 1)λ−1| log(1− ε)|) 1

α−1

. (25)

In Fig. 7 we show a log-log plot of the delay
distribution for link utilization values of 10%, 75%
and 90%. The graphs illustrate the power-law decay
for the upper bound and the lower bound from [8].
We also show the results of four simulation runs
of an initially empty system with 106, 107, 108 and
109 packets. Note that the fidelity of the simulations
deteriorates at smaller violation probabilities. Since
even long simulations runs do not contain suffi-
ciently many events with large delays, they violate
analytical lower bounds. Even the simulation run of
1 billion arrivals does not maintain the power-law
decay for violation probabilities below ε = 10−3,
thus illustrating a hazard with simulations of heavy-
tailed traffic.

D. Multi-Node Delay Analysis

We turn to the computation of end-to-end delays
for a complete network path. As in the deterministic
version of the network calculus [5] we express the
service given by all nodes on the path in terms of
a single service curve, and then apply single-node
delay bounds. We start with a network of two nodes.
We denote by A1 the arrivals of the analyzed flow
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Fig. 7. Log-log plot of single-node delays for a Pareto
traffic source. Upper bounds and lower bounds are compared
to simulation traces with 106, 107, 108 and 109 arrivals.

S1 S2
D1=A2A1 D2

Fig. 8. Two nodes in series.

at the first node, and by D1 or A2 the departures
of the first node that arrive to the second node.

Lemma 2: CONCATENATION OF TWO ht SER-
VICE CURVES. Consider an arrival flow traversing
two nodes in series. The first node offers an ht
service curve with S1(t;σ) = [R1t − σ]+ and
ε1(σ) = L1σ

−β1 , and the second node offers a
service curve S2(t;σ) = [R2t−σ]+ and an arbitrary
function ε2(σ). Then for any γ > 1, the two nodes
offer the combined service curve given by

S(t;σ) =
[
min

{
R1,

R2

γ

}
t− σ

]
+
,

ε(σ) = inf
σ1+σ2=σ

{
ε̃1(σ1)

(| log ε̃1(σ1)|+ 2
)
2[β1−1]+

+ ε2(σ2)
}
,

where ε̃1(σ) = min
{

1, 2
β1 log γL1σ

−β1
1

}
.

The service rate R = min{R1, R2/γ} in the ex-
pression for the service curve is the result of a min-
plus convolution of the service curves at the individ-
ual nodes. The logarithmic term can be removed at
the expense of lowering the exponent using Eq. (39)
from Lemma 3. If the second node also offers an ht
service curve, with ε2(σ) = L2σ

−β2 , then for every
choice of β with β < β1 and β ≤ β2 there exists a
constant L = L(β,R2, γ) such that ε(σ) ≤ Lσ−β .
The value of the constant L can be computed from
Lemma 3 (Eqs. (38) and (41)).

PROOF. We proceed by inserting the service guar-
antee for D1 = A2 at the first node into the service
guarantee at the second node. Similar to the backlog
and delay bounds, this requires an estimate for an
entire sample path of the service at the first node.

Fix t ≥ 0. We consider discretized time points
t − yk, where y0 = 0 and yk = τ + γ′yk−1 for
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some τ > 0 and γ′ > 1 to be chosen below. For
t− yk ≤ s < t− yk−1, we have

A2(s) + [R2(t− s)− σ]+
≥ A2 (t− yk) + [R2yk−1 − σ]+ ,

and thus

A2 ∗ S2(t;σ) ≥ inf
k≥1

{
A2 (t− yk)

+
[
R2

γ′
yk −

(
σ +

R2

γ′
τ
)]

+

}
. (26)

Set R = min
{
R1,

R2
γ

}
and let γ′ > 1 and δ > 0

be chosen so that R2
γ′ − δ = R. Also fix σ1, σ2 > 0

and set σ = σ1 + σ2. If for a given sample path

D2(t) ≥ A2 ∗ S2(t;σ2) (27)

and, for all k ≥ 1 with yk ≤ t,

D1(t−yk) ≥ A1∗S1(t−yk;σ1+δyk−R2

γ′
τ) , (28)

then we can insert the lower bound for D1 = A2

from Eq. (28) into Eq. (26). After collecting terms,
the result is D2(t) ≥ A1 ∗ S(t;σ).

The violation probability of Eq. (27) is given
by ε2(σ2). Assume for the moment that σ ≥
δτ/(γ′ − 1). We estimate the violation probability
of Eq. (28) by

Pr
(
Eq. (28) fails for some k with yk ≤ t

)
≤ L1

∞∑
k=1

Pr
(
D1(t− yk)

< A1 ∗ S1(t− yk;σ1 + δyk − R2

γ′
τ)
)

≤ L1

log γ′
(σ1 −Rτ)−β1

×
(

1
β1

+
[
log

(γ′ − 1)(σ1 −Rτ)
δτ

]
+

)
.

In the first step, we have used the union bound
and the ht service curve S1. In the second step, we
have used Lemma 5 to evaluate the sum (with γ′ in
place of γ, and δ in place of c), and recalled that
R2/γ

′−δ = R. (Here, we have used the assumption

on σ given before the equation). We eliminate the
shift with Lemma 3 (Eq. (40)), and insert the choice

τ = R−1

(
L1

β1 log γ′

) 1
β1

.

Taking γ′ =
√
γ and δ = R(γ′ − 1), we arrive at

Pr

(
Eq. (28) fails for

some k with yk ≤ t
)

≤ L̃1σ
−β1
1

(
log(L̃1σ

−β1
1 ) + 2

)
≤ ε̃1(σ1)

(| log ε̃1(σ1)|+ 2
)
,

where L̃1 = 2max{1,β1}

β1 log γ L1. This bound remains valid
for σ < δτ

γ′−1 = Rτ , since then we have ε̃1(σ) = 1.
Applying the union bound to the violation proba-
bilities in Eqs. (27) and (28) gives the claim of the
lemma. 2

Iterating the lemma results in the following end-
to-end service guarantee, referred to as network
service curve. To keep the statement of the theorem
simple, we have assumed that each node offers
an ht service guarantee with the same rate R, the
same constant L, and the same power law β. The
general case can be reduced to this with the help
of Lemma 3 (Eqs. (38) and (41)).

Theorem 2: ht NETWORK SERVICE CURVE.
Consider an arrival flow traversing N nodes in
series, and assume that the service at each node
n = 1, . . . , N satisfies an ht service curve

Sn(t;σ) = [Rt− σ]+ , ε(σ) = Lσ−β .

Then, for every choice of γ > 1, the network
provides the service guarantee

Snet(t;σ) =
[
(R/γ)t− σ]

+
,

εnet(σ) ≤ N2+β · 2[β−1]+

×ε̃(σ) (| log ε̃(σ)|+ (1 + β) logN + 2) ,

where ε̃(σ) = min
{

1, 2max{1,β}

β log γ Lσ−β
}

.

We will combine the theorem with the single-
node delay bound from Theorem 1 to obtain end-to-
end delay bounds. Here, γ should be chosen small
enough so that Rγ exceeds the arrival rate. If the



16

100 102 104 106 108

10−4

10−3

10−2

10−1

w (ms)

P
(W

>
w

)
N=8 

N=1 

N=2

N=4

N=8

N=1 

N=4

N=1        Upper Bounds

N=2 

N=2 

N=8      Lower Bounds

N=4 

Simulations

Fig. 9. Log-log plot of delay bounds for N nodes.

utilization is high, this may force γ to be close to
one, causing the bound on the violation probability
ε̃(σ) to deteriorate.

PROOF. We use Lemma 2 to recursively estimate
the service offered by the last n nodes with n =
2, . . . , N . In each step, we reduce the service rate
by a factor γ

1
N−1 in place of γ. Fix σ, and set σn =

σ/N for n = 1, . . . N . If ε̃(σ/N) ≥ 1, there is
nothing to show. Otherwise, we obtain

Pr
(
DN (t) < A1 ∗ Snet(t;σ)

)
≤

N∑
n=1

Nε̃(
σ

N
)
(| log(Nε̃(

σ

N
)|+ 2

)
,

and the claim follows by collecting the factors of
N . 2

Example: We perform a multi-node delay analysis
for a sequence of homogeneous nodes with the
same parameters used for Fig. 7, and compare the
results with the lower bound in Eq. (25). In Fig. 9
we show lower and upper bounds for networks
with N = 1, 2, 4, 8 nodes. For reference, we also
include the results of individual simulation runs
with 108 packets. The difference between lower
and upper bounds is more pronounced than in the
single-node analysis, and increases with the number
of nodes N . For the analytical bounds, the upper
bounds for single-node delays (from Fig. 7) are
better than the multi-node bounds with N = 1.

This is due to simplifications made in the multi-
node analysis. It is feasible to get the multi-node
bound to match the single-node results, however,
at the expense of a significant increase of the
complexity of the formulas. For both lower and
upper bounds, the straight lines make the power-
law decay in w apparent. The growth of the bounds
in N suggests a power-law growth in N , where
the larger spacing for the upper bounds indicates
a higher power. As before, we see that simulations
violate analytical lower bounds. Since simulations
of heavy-tailed traffic have little predictive values
for larger delays, our analytical bounds provide
more reliable estimates, even with the significant
gap between upper and lower bounds.

V. SCALING OF DELAY BOUNDS

We now explore the scaling properties of the de-
lay bounds from the previous section. Throughout
this section, we consider a network as in Fig. 5.
We assume that the network is homogeneous, in the
sense that all nodes have the same capacity C, and
all traffic is bounded by htss envelopes as in Eq. (4)
with the same power α and Hurst parameter H . The
cross traffic at each node has rate rc and constant
Kc, and the through flow has rate r0 and constant
K0. Traffic can be either fluid-flow or packetized.
In the latter case, the packet-size distribution of the
through flow satisfies

Pr
{
X > σ

) ≤ Lpσ−αp .
We assume the stability condition r0+rc < C holds
at each node.

Single node, large delays (w → ∞). Our first
result concerns the power-law decay of the delay
distribution at a single node. We choose a relaxation
of µ = 1

2(C− rc− r0), and use the leftover service
curve from Eq. (21), given by

S(t;σ) = [(C − rc − µ)t− σ]+ , εs(σ) ≤ Lσ−β ,
(29)

where

β = min{αp − 1, α(1−H)} , (30)

and L is an explicitly computable constant. (For
fluid-flow traffic, that is, without a packetizer, the
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first term does not appear, and we have β = α(1−
H).) We then apply the delay bound of Theorem 1
with R = r0 + µ to obtain

Pr(W (t) > w) ≤MRβw−β . (31)

The constant M is determined by Eq. (24) of
Theorem 1 with β′ = β. This shows that the delay
decays with the same power law as the backlog
bound in Eq. (18).

Multiple nodes, large delays (w →∞). Now we
consider scaling in networks with N > 1 nodes.
We choose µ = 1

3(C− rc− r0) and obtain for each
node the service curve in Eq. (29), with β given by
Eq. (30). We next choose γ = C−rcµ

r0+µ and obtain
from Theorem 2 the network service curve

Snet(t;σ) =
[
Rnett− σ

]
+
,

where Rnet = r0+µ, and with violation probability
bounded by

εnet(σ) ≤ N2

(
[log z]+ +

2
β

)
z−β

∣∣∣∣∣
z= σ

L̃1/βN

,

with an explicitly computable constant L̃ that does
not depend on N . Combining the network service
curve with the arrival envelope, we obtain from
Eq. (23) of Theorem 1 for the end-to-end delay
Wnet that

Pr
(
Wnet(t) > w

)
≤ inf

σ1+σ2=Rnetw

{
K̃σ−β1 + εnet(σ2)

}
.

Here, the constant K̃ is given by Eq. (19) with r0 in
place of r. We further choose σ1 = N−1− 2

βRnetw
and σ2 = Rnetw − σ1, and see that

Pr(Wnet(t) > w) ≤ N2+β (M1 logw (32)

+M2 logN +M3)w−β .
(33)

The constants M1, M2, and M3 are again explicitly
computable, and do not depend on N . The tail
of the delay distribution, i.e., when w → ∞, is
dominated by the first summand in the brackets,
thus, we have the asymptotic upper bound

Pr(Wnet(t) > w) = O
(
w−β logw

)
, (w →∞) .

(34)

Multiple nodes, long paths (N → ∞). For
long paths, i.e., N → ∞, the second summand
in Eq. (33) dominates. The quantiles of the delay,
defined by

wnet(ε) = inf
{
w > 0 | Pr(Wnet > w) ≤ ε}

satisfy

wnet(ε) = O
(
N

2+β
β (logN)

1
β

)
, (N →∞) .

(35)

Comparison of scaling bounds. We next compare
these upper bounds with scaling results from the
literature for a Pareto service time distribution
and no cross traffic, where traffic arrives in the
form of evenly spaced packets Xi, with an i.i.d.
Pareto packet-size distribution, as characterized in
Section II. We assume that service times of packets
are identical at each node in the sense of [6]. By
scaling the units of time and traffic, we may assume
an average packet size of E[X] = 1 and a link rate
C = 1, resulting in a rate λ = ρ, where ρ is the
utilization.

For this model, it is known from queueing theory
that the delay at a single node decays with a power
law with exponent α−1 [12]. Theorem 1 from [12]
yields for the queueing time Q of the a packet in
the steady state that

Pr
(
Q > σ

)
∼ ρ

1− ρ
(α− 1)α−1

αα
σ−(α−1) ,

(σ →∞) . (36)

The delay of the kth packet is the sum of its
queueing time Qk and its processing time Xk. This
per-packet delay is related with the delay W (t) at
a given time by

W (t) =
(
Qk(t) +X∗(t)

)
IB(t)>0 ,

where k(t) is the number of the packet being
processed at time t, and X∗(t) is the lifetime of the
current packet, as defined in Section III, and IB(t)>0

is the indicator function that the backlog is positive.
Since packets are i.i.d., Qk(t) is independent of
X∗(t) and its distribution agrees with Qk, and we
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can compute from Eq. (36)

lim
t→∞

Pr
(
W (t) > w

) ∼ ρ

1− ρc(α)w−(α−1) ,

(w →∞) , (37)

where c(α) is a constant that depends on the tail
index.

If we compare this asymptotic exact result with
our single-node bound, we see that Eq. (31) pro-
vides the same power-law decay as Eq. (37), since
β = α−1 in this case. The constant M in Eq. (31)
is of order O

(
(1−ρ)−2

)
, while the right hand side

of Eq. (37) is of order (1 − ρ)−1, which indicates
that our delay bound becomes pessimistic as ρ→ 1.

Exploring the scaling in a multi-node network,
we first note that Eq. (36) states that for a single
node, the tail probability for the delay decays with
Ω
(
w−(α−1)

)
. Since the end-to-end delay exceeds

the delay at a single node, Eq. (36) guarantees
that W (t) = Ω

(
w−(α−1)

)
. Our upper bound in

Eq. (34) differs from this lower bound by at most
a logarithmic factor.

Furthermore, Eq. (35) implies that delay quan-
tiles are bounded by O

(
N

α+1
α−1 (logN)

1
α−1
)

as N →
∞. From the lower bound from [8] given in
Eq. (25) we can obtain that quantiles of the end-
to-end delay grow at least as fast as wnet(ε) =
Ω
(
N

α

α−1
)
. Thus, we know that delays grow poly-

nomially in N , but the exact degree of the growth
remains open.

Lastly, we note that end-to-end delays are ex-
pected to grow more slowly if service times are
independently regenerated at each node. A large
buffer asymptotic from [3] for multi-node networks
could be used to obtain the scaling properties of
such a network.

VI. CONCLUSIONS

We have presented an end-to-end analysis of
networks with heavy-tailed and self-similar traf-
fic. Working within the framework of the network
calculus, we developed envelopes for heavy-tailed
self-similar traffic and service curves for heavy-
tailed service models. By presenting new sample-
path bounds for arrivals and service, we were able

to derive non-asymptotic performance bounds on
backlog and delay, as well as network-wide service
characterizations. We explored the scaling behavior
of the derived bounds and showed that, for single
nodes, the tail probabilities of our delay bounds
observe the same power-law decay as known results
for G/G/1 systems. We also described the scaling
behavior of end-to-end delays. Our paper may mo-
tivate further study of the conditions under which
performance bounds in a heavy-tailed regime can
be tightened. A useful, possibly difficult extension
is the derivation of a multi-node service curve that
accounts for self-similarity, in addition to heavy-
tails.
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APPENDIX: TECHNICAL LEMMAS

In our derivations, we frequently use properties
of the function ε(σ) = Kσ−α that appears in the
definition of the htss envelope. The properties are
summarized in the following lemma, and presented
without proof.

Lemma 3:
1) (Lower power.) For Kσ−α ≤ 1 and α′ < α

Kσ−α ≤ K α′
α σ−α

′
. (38)

2) (Eliminate logarithmic factor.) For β′ < β,

σ−β log σ ≤ 1
e(β − β′)σ

−β′ . (39)

3) (Remove shift.) For α > 0, σ0 > 0, and
K(σ − σ0)−α ≤ 1,

K(σ−σ0)−α ≤ 2[α−1]+
(
K+σα0

)
σ−α . (40)

4) (Minimize sum.)

min
σ1+···+σn=σ

n∑
j=1

Kjσ
−α
j

=
( n∑
j=1

K
1

1+α

j

)1+α
σ−α ≤ nαKσ−α , (41)

where K = 1
n(K1 +K2 + . . .+Kn).

The following lemmas derive auxiliary estimates
for two sums that involve geometric sequences.

Lemma 4: Assume that ε(x) is a nonincreasing
nonnegative function. Fix γ > 1 and τ > 0, and set
xk = τγk. Then, for every σ ≥ 0 and every c > 0,
∞∑

k=−∞
ε

(
σ + cxk
xHk

)

≤ 1
H(1−H) log γ

∫ ∞
z

ε(x)
x

dx

∣∣∣∣∣
z= cHσ1−H

γH(1−H)

.

PROOF. Consider first the case where c = τ =
1, i.e., xk = γk. Since ε is non-increasing, each
summand in the series satisfies

ε

(
σ + γk

γHk

)
≤ min

{
ε
(
σγ−Hk

)
, ε
(
γ(1−H)k

)}
.

Since the first term on the right hand side increases
with k while the second term decreases, we can
bound the series by the sum of two integrals

∞∑
k=−∞

ε

(
σ + γk

γHk

)

≤
∫ T+1

−∞
ε
(
σγ−Ht

)
dt+

∫ ∞
T

ε
(
γ(1−H)t

)
dt ,

where the overlap between the intervals of integra-
tion compensates for the change of monotonicity.
The optimal choice for the limit of integration is
T = −H + log σ

log γ , so that σγ−H(T+1) = γ(1−H)t.
In the first integral, the change of variables x =
σγ−Ht yields∫ T+1

−∞
ε
(
σγ−Ht

)
dt =

1
H log γ

∫ ∞
z

ε(x)
x

dx ,

where z = σ1−Hγ−H(1−H). In the second integral,
the change of variables x = γ(1−H)t yields∫ ∞
T

ε
(
γ(1−H)t

)
dt =

1
(1−H) log γ

∫ ∞
z

ε(x)
x

dx ,

Adding the two integrals proves the claim for c =
τ = 1. For other values of c and τ , we rescale
σ = cτ σ̃, and apply the first case to the function
ε̃(x) = ε

(
cτ1−Hx

)
. 2

Lemma 5: Assume that ε(x) is a nonincreasing
nonnegative function. Fix τ > 0 and γ > 1, and
define recursively y0 = 0, yk = τ + γyk−1. Then,
for every c > 0 and σ ≥ cτ

γ−1 ,

∞∑
k=1

ε (σ + cyk) ≤ 1
log γ

(
ε(z) log

(γ − 1
cτ

z
)

+
∫ ∞
z

ε(x)
x

dx

)∣∣∣∣∣
z=σ+cτ

.

PROOF. Consider first the case where c = 1 and
τ = γ−1, i.e., yk = γk−1, and set z = σ+γ−1.
For σ ≥ 1, each summand is bounded by

ε
(
σ + γk − 1

)
≤ min

{
ε(σ + γ − 1), ε

(
γk
)}

.
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Since both terms are nonincreasing, we can bound
the series by
∞∑
k=1

ε
(
σ+γk−1

) ≤ ∫ T

0
ε(σ+γ−1) dt+

∫ ∞
T

ε
(
γt
)
dt .

We choose T = log(σ+γ−1)
log γ ≥ 1, so that γT =

σ + γ − 1, and change variables x = γt in the
second integral to obtain
∞∑
k=1

ε
(
σ + γk − 1

)
≤ 1

log γ

(
ε(z) log z +

∫ ∞
z

ε(x)
x

dx

) ∣∣∣∣∣
z=σ+γ−1

.

This proves the claim in the special case c = 1,
τ = γ − 1. For other values of c and τ , we rescale
σ = cτ

γ−1 σ̃, z = cτ
γ−1 z̃, and apply the first case to

ε̃(x) = ε
(

cτ
γ−1x

)
. 2
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