
A Scalable Control Topology for Multicast Communications �

J�org Liebeherr Bhupinder S. Sethi

Department of Electrical Engineering Department of Computer Science

Polytechnic University University of Virginia

Brooklyn, NY 11201 Charlottesville, VA 22903

Abstract
Large-Scale multicast applications for the Internet

require the availability of multicast protocols that en-
hance the basic connectionless IP Multicast service. A
critical requirement of such protocols is their ability
to support a large group of simultaneous users. In this
paper, we present a new approach for distributing con-
trol information within a multicast group. The goal of
our approach is to scale to very large group sizes (in
excess of 100,000 users). Multicast group members are
organized as a logical n-dimensional hypercube, and all
control information is transmitted along the edges of
the hypercube. We analyze the scalability of the hy-
percube control topology and show that the hypercube
balances the load per member for processing control
information better than existing topologies.

1 Introduction
Recently emerging large-scale multicast applica-

tions [17] have increased the need for advanced mul-
ticast services on the Internet. These services are im-
plemented on top of the basic connectionless IP Mul-
ticast service which does not guarantee reliable or in-
sequence delivery [5].

In the basic multicast service, a user joins a mul-
ticast group simply by indicating interest in receiving
data sent to that group. Any packet that is trans-
mitted to a multicast group is forwarded to all mem-
bers of the group. Error control, rate control, or in-
sequence delivery are not part of the basic service. To
implement these advanced services, multicast group
members must exchange control informationwith each
other. However, adding even relatively low-level func-
tions, such as error control or ow control, to the ba-
sic multicast service may introduce severe scalability
problems.

A major impediment for scalability of multicast ap-
plications is the need of multicast group members to
exchange control information with each other. Con-

�This work is supported in part by a National Science Foun-
dation CAREER Grant (NCR-9624106).

sider, for example, the implementation of a reliable
multicast service. A unicast protocol with a sin-
gle sender and a single receiver requires the receiver
to send positive or negative acknowledgment packets
(ACKs and NACKs) to the sender to indicate recep-
tion or loss of data. If the same mechanisms are ap-
plied to large groups, the sender would soon be ooded
by the number of incoming ACK or NACK packets;
this is referred to as ACK Implosion [4, 11].

In recent years, numerous techniques and proto-
col mechanisms have been proposed to cope with the
amount of control information that is exchanged be-
tween members of a multicast group, mostly in the
context of providing a reliable multicast service. In
the more recent proposals, multicast group members
are organized in a logical graph, henceforth called con-
trol topology. Only those group members which are
neighbors in the logical graph can exchange control
information. By merging control information received
from their neighbors, the dissemination of control in-
formation can be made e�cient. Control topologies
that have been considered in the literature are rings
[3, 22] and trees [10, 13, 15, 23].

This paper proposes a new approach for dissemi-
nating control information between the members of a
multicast group. We present a topology that is derived
from an n-dimensional hypercube. We claim that the
hypercube topology has excellent scalability proper-
ties, making it the preferred choice for multicast ap-
plications with very large group sizes. The key contri-
butions of this paper are twofold. First, we we show
how to construct a hypercube control topology with
simple boolean operations. Second, we show that the
hypercube balances the load for processing control in-
formation at multicast group members. Thus, the cre-
ation of bottlenecks in the control topology is avoided.
In [14] we present a soft-state protocol that maintains
the hypercube control topology without requiring any
network entity to have global knowledge.

The remainder of the paper is structured as follows.
In Section 2 we review the existing proposals for dis-

Multicast
Group

Multicast
Group

Multicast
Group

Control
Topology

Physical
Topology

Figure 1: Multicast Framework.

seminating control information to the members of a
multicast group. In Section 3 we present the hyper-
cube as a new solution to disseminate control infor-
mation in a multicast group. In Section 4 we analyze
the scalability properties of a hypercube and compare
them with other control topologies. In Section 5 we
present our conclusions.

2 Control Topologies for Multicast
Communications

In this section we review currently used control
topologies for disseminating control information in
multicast groups. An underlying assumption of our
work is that communication within a multicast group
is symmetric, i.e., on the average, each member of the
group generates the same amount of tra�c.

It is convenient to view the members of a multicast
group as a set of nodes V . Nodes are numbered in
an arbitrary sequence, that is V = f1; 2; : : :; Ng. We
assume that each node can directly communicate with
any other member of the group.

2.1 No Control Topology

Several protocols that extend the basic IP Multicast
service do not provide a topology for disseminating
control information. Instead, the control information
from any node is broadcast to all other nodes in the
group. Clearly, such a protocol must restrict the vol-
ume of control information, since otherwise the scala-
bility is severely impeded. The RTP protocol [20] lim-
its the total amount of control tra�c to 5% of the data

tra�c. In [1], feedback from receivers to the senders
is adapted to the size of the multicast group.

Among reliable multicast protocols, the most pop-
ular approach to contain control tra�c without a con-
trol topology is a method known asNACK suppression
[7, 19] or damping [21]. Here, a multicast group mem-
ber with a control packet to send is forced to queue
this packet for a random time interval before it can
be transmitted. If a member receives a control packet
which matches a queued packet, it cancels the trans-
mission. For large group sizes, however, the random
queueing time must be large, resulting in slow feed-
back times for the control information.

Yet another set of protocols without a control topol-
ogy employ a central controlling station which coor-
dinates ordering and reliability [2, 6, 8]. Due to the
high load at the controlling station, the scalability of
such protocols is strictly limited.

2.2 Ring Topology

Ring control topologies have been implemented to
provide a reliable multicast service with total order-
ing of messages [3, 22]. In these protocols, the mul-
ticast group is structured as a logical ring, and a to-
ken is passed around the ring. Control messages are
unicast between the current holder of the token and
other nodes. The scalability of ring topologies is only
moderate since control messages are always directed
to the token holder, thus creating a bottleneck at that
node. Also, the time to pass the token around the ring
increases for large group sizes, resulting in decreased
overall throughput.

2.3 Tree Topology

Tree topologies assume that control information is
transmitted along the edges of a rooted spanning tree.
There is a spanning tree for each multicast member.
We use Tk to denote the spanning tree with node k as
root. Node l transmits a control message to the root
node k by passing the message to its immediate ances-
tor in Tk, the tree rooted at k. Tree topologies achieve
scalability by exploiting the hierarchical structure of a
tree. A drawback of tree-based topologies is the over-
head in constructing and maintaining the tree. Note
that the tree must be dynamically modi�ed both in
response to host failures and to members joining and
leaving the tree.

Several tree-based control topologies have been pro-
posed for transmission of control information [9, 13,
15, 19, 23], mostly for multicast groups with only a
single sender. We discuss the shared K-ary tree topol-
ogy proposed in [13] which explicitly targets symmet-
ric multicast groups. The shared tree topology is de-
rived from a single balanced K-ary tree with root r. If

some other node k 6= r becomes the root, then the tree
is re-hung with node k as new root [13]. Re-hanging
trees with a new root is illustrated in Figure 2. In
Figure 2(a) we show a binary (2-ary) tree with node 1
as root. Figure 2(b) depicts the same tree, `re-hung'
for node 10 as root node.

Re-hanging a tree does not increase the number of
children of each node. However, after re-hanging, the
tree may no longer be balanced. Note that the longest
path to the root in the re-hung tree in Figure 2(b) is
twice as long as in the original tree in Figure 2(a).

1

4

9

5

11

6

12 13

7

14 15

2 3

8 10

(a) Original Tree Rooted at Node 1.

4

9

5

11

6

12 13

7

14 15

2

3

1

10

8

(b) Re-hung Tree Rooted at Node 10.

Figure 2: Shared Binary Tree.

3 The Hypercube Control Topology

In this section we propose the hypercube as a new
control topology for multicast communications. We
propose organizing the members of a multicast group
as the nodes of a logical n-dimensional hypercube. We
present a method for embedding spanning trees into
the hypercube and use these spanning trees for dis-
seminating control information.

3.1 Hypercube and Tree Embeddings

An n-dimensional hypercube is a graph with N = 2n

nodes where each node is labeled by a bit string
kn : : :k1 (ki 2 f0; 1g). Nodes in the hypercube are

connected by an edge if their bit strings di�er in ex-
actly one position. In Figure 3 we depict hypercubes
for dimensions n = 1 to n = 4.

Hypercubes have been studied extensively by the
parallel computing community; they are deemed at-
tractive as a multiprocessor architecture because of
their symmetry, the short distances between nodes,
and the number alternative routes. The literature on
hypercubes is rich, and we refer to [12, 18] as excellent
sources on the topic.

In the following we show that the properties of the
hypercube topology can be exploited to address the
problem of disseminating control information in large
multicast groups. We propose to organize the mem-
bers of a multicast group as the nodes of a hypercube.
Then we embed spanning trees into the hypercube and
disseminate control information along the edges of the
spanning trees.

Past research on parallel algorithms has produced
numerous algorithms for embedding trees in hyper-
cubes (see [12] for an overview). The goal of these
algorithms is to assign a parallel computation, repre-
sented as a tree, into a multicomputer with an hyper-
cube interconnection network. These algorithmsmake
a number of assumptions that are not applicable in the
context of a multicast group. First, most algorithms
assume a static hypercube. Second, with few excep-
tions these algorithms assume a complete hypercube,
i.e., N = 2n. Both assumptions are not realistic for
multicast groups with a dynamically changing mem-
bership.

Our goal is to exploit the strong symmetry of the
hypercube in the context of multicast communica-
tions. To achieve this we must devise methods that
address the problems of actual multicast applications.
First, we have to consider incomplete hypercubes with
N < 2n nodes. When embedding spanning trees in
an incomplete hypercube with nodes V , we want to
make sure that all spanning trees only contain nodes
in V . Such trees are said to be completely contained
in the incomplete hypercube. Second, we have to con-
sider that the multicast group membership changes
dynamically. Since adding and removing nodes may
degenerate the compact structure of a hypercube, we
need to have mechanisms in place that keep the dimen-
sion of the hypercube as small as possible; we refer to
this property as compactness.

3.2 Gray Ordering of Hypercube Nodes

The key to ensure complete containment of all span-
ning trees and maintain compactness of the incomplete
hypercube is the selection of a particular ordering of
the nodes.

n=1 n=2

0 1

100

00 01

10 11

n=3

000 001

010 011

101

110 111

n=4

Figure 3: n-dimensional Hypercubes.

The standard ordering of hypercube nodes inter-
prets the label of a node as a binary number. Specif-
ically, the number a =

Pn

i=1 ai � 2
i�1 is associated

with the node labeled Bin(a) := an : : : a1 (ai 2
f0; 1g). With the ordering imposed by the num-
bers, compactness can be achieved by ensuring that
in a multicast group with N members the positions
Bin(0); Bin(1); : : : ; Bin(N � 1) are always occupied.
However, using this ordering it is not clear how to
construct spanning trees that satisfy the complete con-
tainment condition.

As a solution we propose to use a di�erent order-
ing of the nodes, which is based on interpreting node
labels using a Gray code. A Gray code, denoted by
`G(�)', is de�ned via the following properties [18]:

� The values are unique. That is, if G(i) = G(j))
i = j.

� G(i) and G(i + 1) di�er in only one bit, for 0 �
i < 2d�1 � 1.

� G(2d�1 � 1) and G(0) di�er in only one bit.

In other words, a Gray code corresponds to a Hamil-
tonian walk on the hypercube [12]. Let i be a number
and Bin(i) its binary representation, it is easy to ver-
ify that following generates a Gray code:

G(i) := Bin(i)
 Bin(i=2)

where `
' is the XOR operator and `x=2' is an integer
division by 2. We use G�1(�) to denote the inverse of
G(�), that is, G�1(G(i)) = i.

By interpreting the node labels in the hypercube
as Gray codes, the relationship between i and G(i)
de�nes an ordering of the nodes. Clearly, with this or-
dering, compactness can be enforced by ensuring that
the members of a hypercube with K nodes occupy po-
sitions G(0); G(1); : : :; G(K � 1).

Example: Consider the ordering of nodes in a 3-
dimensional hypercube. Refer to Figure 3 for the la-
beling of nodes. In the following table, we show the
position number i, the binary interpretation Bin(i),
and the Gray code G(i):

i 0 1 2 3 4 5 6 7
Bin(i) 000 001 010 011 100 101 110 111

G(i) 000 001 011 010 110 111 101 100

Thus, using the standard ordering Bin(i) a
multicast group with K = 5 members would
occupy the following positions in the hyper-
cube: 000; 001; 010; 011; 100. In contrast, using
a Gray code G(i) occupies the following positions:
000; 001; 011; 010; 110.

3.3 Tree Embedding in Gray-ordered Hy-
percubes

We now present an algorithm to embed spanning
trees into hypercubes that use Gray codes for order-
ing the nodes. The embedding of spanning trees in
the hypercube is calculated locally: A node with label
G(x) directly obtains the address of its parent node in
the tree with root G(r).

Most importantly, for a Gray-ordered hypercube
which preserves compactness as shown in the previ-
ous subsection, our algorithm always generates a com-
pletely contained spanning tree. The algorithm is pre-
sented in Figure 4. Given two node labels I and R,
the algorithm computes the label of the parent node
of node I in the spanning tree that is rooted at node
R. If each node performs the procedure Parent for a
root node R, we obtain a spanning tree with root R
embedded into the hypercube.

In Figures 5 and 6 we show the embeddings of the
spanning trees in a 3-dimensional hypercube for root
nodes 1 and 5, respectively.

All trees that are constructed by procedure Par-
ent have the following set of properties. The proper-
ties follow directly from the procedure Parent and are
shown without proof.

Property 1: A node and its parent always have a
Hamming distance of 1.
Property 2: The path length between a node and a
root is given by their Hamming distance.
Property 3: In a hypercube with N nodes, all trees
have a depth of dlog2(N)e. If N = 2n, the embedding
results in a binomial tree. 1

1A binomial tree of height 0 is a single node. For all i > 0,
a binomial tree of height i is a tree formed by connecting the

Input: Label of the i-th node in the Gray encoding:
G(i) := I = In : : : I2I1, and the label of
the r-th node (6= i) in the Gray encoding:
G(r) := R = Rn : : :R2R1.

Output: Label of the parent node of node I in the
embedded tree rooted at R.

Procedure Parent (I;R)

If (G�1(I) < G�1(R))
// Flip the least signi�cant bit
// where I and R di�er.
Parent := InIn�1 : : : Ik+1(1 � Ik)Ik�1 : : : I2I1

with k = mini (Ii 6= Ri).
Else // (G�1(I) > G�1(R))

// Flip the most signi�cant bit
// where I and R di�er.
Parent := InIn�1 : : : Ik+1(1 � Ik)Ik�1 : : : I2I1

with k = maxi (Ii 6= Ri).
Endif

Figure 4: Tree Embedding Algorithm.

Property 4: If Parent (I;R) is the p-th node in
the Gray encoding, then the following holds: p �
maxfi; rg.

Property 4 ensures that the algorithm in Figure 4
guarantees complete containment of all embedded
trees. Next we analyze the properties of the proposed
hypercube control topology and compare it against
tree-based solutions.

4 Comparison of Scalability Properties
To gain insight into the scalability property of the

hypercube control topology, we conduct a performance
comparison with the K-ary shared tree discussed in
Subsection 2.3. Our analysis should be seen in the
light of our assumption that communication within a
multicast group is symmetric, that is, on the average
each member of the group generates the same amount
of tra�c.

The scope of our investigation is limited to quan-
titative aspects of disseminating control information.
We do not consider the e�ects of protocol processing
or routing issues. Furthermore, we consider generic
transmission of control messages without assumptions
on a particular control function (ow control, error
control, etc.) as in [16].

4.1 Performance Measures

We de�ne a set of performance measures which cap-
ture the load for control processing incurred at each
member of a multicast group. In all con�gurations
considered, control information is transmitted along

roots of two binomial trees of height i � 1 with an edge and
designating one of these roots to be the root of the new tree
(cited from [18]).

4-110

0-000 1-001

3-010 2-011

6-101

5-111

4-110

0-000

1-001 3-010

2-011

5-111

6-101

(a) Embedding (b) ResultingTree

Figure 5: Embedding a Tree with Node 1 as Root.

4-110

0-000 1-001

3-010 2-011

6-101

5-111

3-010

6-101

5-111

4-110 2-011

1-001

0-000

(a) Embedding (b) ResultingTree

Figure 6: Embedding a Tree with Node 5 as Root.

the edges of a rooted spanning tree. Recall that we
use Tl to denote the spanning tree with node l 2 V as
root.

For most control functions, a good indicator for the
load at a node in a control tree is the number of direct
children. We de�ne:
wk(Tl) := Number of children of node k 2 V in

tree Tl.
Since control functions may incur a load at a node that
is proportional to the number of nodes in the subtree
below it, we de�ne:
vk(Tl) := Number of descendants of node k 2 V

in tree Tl (including node k), where
the descendants of node k in tree Tl
are the nodes that have node k on
their path to the root node l.

Finally, since the path lengths in a control tree indi-
cate delays of passing control information in the tree,
we de�ne a measure that expresses this delay:
pk(Tl) := Length of the path from node k to

root node l in Tl.
Based on the these notions we de�ne more concise
measures by taking the average over all trees Tl with
l 2 V , denoted as wk, vk, and pk. These measures are
de�ned as follows:
wk :=

1

N

PN

l=1 wk(Tl) Average number of direct
children of node k 2 V in
a spanning tree.

vk :=
1

N

PN

l=1 vk(Tl) Average number of de-
scendants of node k 2 V .

pk :=
1

N

PN

l=1 pk(Tl) Average path length
from node k to the root.

To further condense the amount of data, we take the
averages and maxima of the above values and obtain:

wavg :=
1

N

PN

k=1wk wmax := maxk wk

vavg :=
1

N

PN

k=1 vk vmax := maxk vk
pavg :=

1

N

PN

k=1 pk pmax := maxk pk
We use wavg and vavg as indicators of the average

processing load at a node. For wavg, our rationale
is that the load of processing control information di-
rectly correlates to the number of children of a node.
Somewhat di�erently, vavg correlates the load to the
total number of descendants of a node. We interpret
pavg as a measure for the delays that occur in dissemi-
nating control information; the longer the path length
to the root node, the higher the expected delay.

We use the values of wmax, vmax, and pmax to cal-
culate measures for the degree of load balancing of a
topology. Speci�cally, we use the ratios wmax=wavg,
vmax=vavg, and pmax=pavg to compare the worst-case
node and average node for a control topology. Our
expectation is that a control topology with good scal-
ability properties must balance the load incurred at a
node, which is reected in the need for low maximum-
to-average ratios.

In the following we present the results of the above
measures for the K-ary tree and the hypercube. Since
some derivations are quite long, they cannot be in-
cluded in this paper. The reader is referred to [14] for
the complete set of derivations.

4.2 Analysis of the Shared K-ary Tree

Recall that the control trees in the shared K-ary
tree are obtained from a single K-ary by re-hanging
this tree with di�erent nodes as root [13]. In Figure 2
we showed an example of re-hanging a binary tree.

As K is increased, the maximum path length from
a node to the (re-hung) root decreases. This, however,
increases the load on the node that is the root in the
original tree. In the extreme case, we have N = K
and obtain a star topology where re-hanging the tree
always results in N � 1 nodes hanging o� the original
root of a star topology.

Let us assume for simplicity that all leaves of the

tree are occupied, that is, N = Kd+1
�1

K�1
for some d � 0.

Then we obtain [14]:2

wavg = 1
wmax = K

vavg = 2d+
k � 5

k � 1

2The expressions shown here have an error term of order
O(1=N). We refer to [14] for the exact expressions.

vmax =

8>><
>>:

5

8
N + 1=4 if k = 2

k � 1

k
N + 2=k if k > 2

pavg = 2d�
4

k � 1

pmax = 2d�
3

k � 1

4.3 Analysis of the n-dimensional Hyper-
cube

Calculating the performance measures for the hy-
percube, where trees are embedded as described in
Section 3, requires considerable e�ort [14]. For a com-
plete hypercube, that is, N = 2n, we obtain [14]:

wavg = 1
wmax = 2
vavg = 1=2 log

2
N + 1

vmax = 1=8(log
2
N)2 + 3=8 log

2
N + 1

pavg = 1=2 log
2
N

pmax = 1=2 log
2
N

4.4 Discussion

We now use the measures from the previous subsec-
tions to demonstrate how the control topologies scale
when the number of nodes grows large.

Let us �rst examine the number of children of a
node, wavg and wmax. Since, for all spanning trees,
the average number of children is wavg � 1, i.e., on
the average a node in a control tree has only one child,
we only compare the ratios wmax=wavg:

K-ary Tree: wmax=wavg = K
Hypercube: wmax=wavg = 2

Thus, there is a node in a K-ary tree that has K times
as many children as the average node resulting in a
highly unbalanced load. The hypercube, in contrast,
is better load-balanced. Here, the di�erence between
the worst-case and the average case is only a factor of
2. (In the K-ary tree, the maximumis attained for the
root in the originalK-ary tree. The hypercube attains
the maximum at the node with label 00...0.).

In Figure 7(a) we present a graph where we plot
the values for vavg by varying the number of nodes
N . We present results for the shared K-ary tree (with
K = 2; 5; 10; 100) and the hypercube. In the �gure
we see that, in a K-ary shared tree, vavg decreases
for increasing values of K. Note that, over the entire
range of values, vavg for the hypercube is smaller than
the vavg values for the 10-ary tree.

The comparison of the ratios vmax=vavg, depicted
in Figures 7(b), reveals a problem with load balancing

0

5

10

15

20

25

10 100 1000 10000 100000
0

5

10

15

20

25

10 100 1000 10000 100000
0

5

10

15

20

25

10 100 1000 10000 100000
0

5

10

15

20

25

10 100 1000 10000 100000
0

5

10

15

20

25

10 100 1000 10000 100000

v

Binary Tree

100-ary Tree

Number of Nodes (N)

5-ary Tree

10-ary Tree

Hypercube

avg

(a) Results for vavg.

5-ary
Tree

100-ary
Tree

10-ary
Tree

0

100

200

300

400

500

600

700

800

900

1000

10 100 1000 10000 100000
0

100

200

300

400

500

600

700

800

900

1000

10 100 1000 10000 100000
0

100

200

300

400

500

600

700

800

900

1000

10 100 1000 10000 100000
0

100

200

300

400

500

600

700

800

900

1000

10 100 1000 10000 100000
0

100

200

300

400

500

600

700

800

900

1000

10 100 1000 10000 100000

Binary
Tree

maxv / v

Hypercube

Number of Nodes (N)

avg

(b) Results for vmax=vavg.

Figure 7: Comparison of Average Number of Descendants.

Binary Tree

5-ary Tree

10-ary Tree

Hypercube

100-ary Tree

5

10

15

20

25

10 100 1000 10000 100000

Number of Nodes (N)

p avg

(a) Results for pavg.

p /

5-ary Tree
Hypercube

Binary Tree

100-ary Tree
10-ary Tree

0.8

1

1.2

1.4

1.6

1.8

2

10 100 1000 10000 100000

Number of Nodes (N)

max pavg

(b) Results for pmax=pavg.

Figure 8: Comparison of the Average Path Lengths.

for the shared tree topologies. Since vmax increases
linearly in N , all shared trees have a bottleneck at
the node were the maximum is attained. For large
values of K, scalability problems arise even for small
group sizes. Even for the binary tree, the maximum-
to-average ratio exceeds 100 when the number of nodes
has only a few thousand nodes. In a direct comparison
with the K-ary tree, the value of vmax=vavg for the
hypercube appears almost insigni�cant.

In Figures 8(a) and 8(b) we present the results for
the path lengths. It is interesting to note that the av-
erage path to the root is shorter in the hypercube than
in a 10-ary tree. Figure 8(b) shows that load balancing
is not an issue when considering the path lengths. As
the size of the multicast group is increased, the ratio
pmax=pavg quickly approaches 1 in all topologies.

In summary, the hypercube appears very suitable
to support large multicast groups. A comparison with
shared K-ary trees has shown that the hypercube has
all the advantages, and none of the disadvantages of
the shared K-ary tree. Particularly, the hypercube
provides an excellent balance of the average and worst-
case load at the nodes. The load-balancing indicators
wmax=wavg and vmax=vavg clearly demonstrates that
the shared tree topology has problems when scaled
to very large group sizes. In contrast, the hypercube
topology does not have these scalability problems.

5 Conclusions
We have presented a new approach for dissemi-

nating control information between the members of
a multicast group. In our approach, we organize the
members of the multicast group in a logical hyper-

cube and assign each multicast group member a num-
ber that is derived from a Gray code. The Gray en-
coding enables each node to locally calculate the next
hop for transmitting control information. We analyzed
the scalability properties of our approach in symmet-
ric multicast groups, i.e, where each group member
is a sender. In a comparison with an K-ary shared
tree control topology we showed that the hypercube is
superior in balancing the load of control information
among all nodes. As future work, we will implement
the proposed approach. We refer to [14] for a set of
soft-state protocol mechanisms that maintain the hy-
percube topology in a packet-switching networks.

6 Acknowledgments
We gratefully acknowledge the help of Prof. Al-

mut Burchard from the Department of Mathematics
at Princeton University with devising the tree embed-
ding algorithm.

References
[1] J. Bolot. End-to-End Packet Delay and Loss Behavior

in the Internet. Proc. ACM Sigcomm '93, 23(4):289{
298, September 1993.

[2] C. Bormann, J. Ott, H. Gehrcke, T. Kerschat, and
N. Seifert. MTP-2: Towards Achieving the S.E.R.O.
Properties for Multicast Transport. In Proc. ICCN
`94, San Francisco, 1994.

[3] J. M. Chang and N. F. Maxemchuck. Reliable Broad-
cast Protocols. ACM Transactions on Computing Sys-
tems, 2(3):251{273, August 1984.

[4] J. Crowcroft and K. Paliwoda. A Multicast Transport
Protocol. In Proc. ACM Sigcomm '88, pages 247{256,
August 1988.

[5] S. E. Deering and D. R. Cheriton. Host Groups: A
Multicast Extension to the Internet Protocol. Techni-
cal Report RFC 966, Internet Engineering Task Force,
December 1985.

[6] M. F. Kaashoek et. al. An E�cient Reliable Broad-
cast Protocol. Operating Systems Review, 23(4):5{20,
October 1989.

[7] S. Floyd, V. Jacobson, McCanne S, C.-G. Liu, and
L. Zhang. A Reliable Multicast Framework for Light-
Weight Sessions and Application Level Framing. In
Proc. ACM Sigcomm '95, pages 342{356, August
1995.

[8] A. Frier and K. Marzullo. MTP: An Atomic Mul-
ticast Transport Protocol. Technical report, Cornell
University, 1990.

[9] H. Garcia-Molina and A. Spauster. Ordered and Re-
liable Multicast Communication. ACM Transactions
on Computer Systems, 9(3):242{271, August 1991.

[10] H. W. Holbrook, S. K. Singhal, and D. E. Cheriton.
Log-based Receiver-Reliable Multicast for Distributed
Interactive Simulation. In Proc. ACM Sigcomm '95,
August 1995.

[11] M. G. W. Jones, S. A. Sorensen, and S. Wilbur. Pro-
tocol Design for Large Group Multicasting: The Mes-
sage Distribution Protocol. Computer Communica-
tions, 14(5):287{297, 1991.

[12] F. T. Leighton. Introduction to Parallel Algorithms
and Architectures: Arrays, Trees, Hypercubes. Mor-
gan Kaufman Publishers, San Mateo, 1992.

[13] B. N. Levine, D. B. Lavo, and J.J. Garcia-Luna-
Aceves. The Case for Reliable Concurrent Multicast-
ing Using Shared Ack Trees. In Proc. ACM Multime-
dia `96, November 1996.

[14] J. Liebeherr and B. S. Sethi. Towards Super-Scalable
Multicast. Technical report, Polytechnic University,
1998. http://aida.poly.edu/~jorg/stu�.

[15] A. Paul, K. K. Sabnani, J. C.-H. Lin, and S. Bhat-
tacharyya. Reliable Multicast Transport Protocol
(RMTP). IEEE Journal on Selected Areas in Com-
munications. Special Issue for Multipoint Communi-
cations, 15(3):407 { 421, April 1997.

[16] S. Pingali, D. Towsley, and J. F. Kurose. A Compar-
ison of Sender-Initiated and Receiver-Initiated Reli-
able Multicast Protocols. In Proc. ACM Sigmetrics
`94, May 1994.

[17] M. Pullen, M. Myjak, and C. Bouwens. Limitations
of Internet Protocol Suite for Distributed Simulation
in the Large Multicast Environment. IETF Internet-
Draft, March 1997.

[18] M. J. Quinn. Parallel Computing: Theory and Prac-
tice. McGraw-Hill, New York, 2nd edition, 1994.

[19] S. Ramakrishnan and B. N. Jain. A Negative Ac-
knowledgment With Periodic Polling Protocol for
Multicast over LANs. In Proc. IEEE Infocom '87,
pages 502{511, March/April 1987.

[20] H. Schulzrinne, S. Casner, R. Frederick, and V. Ja-
cobson. RTP: A Transport Protocol for Real-Time
Applications. Technical Report RFC 1889, Internet
Engineering Task Force, January 1996.

[21] W. T. Strayer, B. D. Dempsey, and A. C. Weaver.
XTP: The Xpress Transfer Protocol. Addison-Wesley
Publishing, 1992.

[22] B. Whetten, S. Kaplan, and T. Montgomery. A High
Performance Totally Ordered Multicast Protocol. In
Proc. Infocom '95, 1995.

[23] R. Yavatkar, J. Gri�oen, and M. Sudan. A Reliable
Dissemination Protocol for Interactive Collaborative
Applications. In Proceedings of ACM Multimedia 95,
November 1995.

